Ultrahigh surface density of Co-N₂C single-atom-sites for boosting photocatalytic CO₂ reduction to methanol

Minzhi Ma^{[a], [b]}, Zeai Huang^{*[a], [b]}, Dmitry E. Doronkin^[c], Wenjun Fa^[d], Zhiqiang Rao^[b], Yanzhao Zou^[b], Rui Wang^[b], Yunqian Zhong^[b], Yuehan Cao^[b], Ruiyang Zhang^[b], and Ying Zhou^{*[a], [b]}

[a] State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University Chengdu, 610500, China

E-mail: zeai.huang@swpu.edu.cn, yzhou@swpu.edu.cn

Fax: +86 28 83037406; Tel: +86 28 83037411

[b] School of New Energy and Materials, Southwest Petroleum University Chengdu,610500, China

[c] Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology Karlsruhe, 76131, Germany

[d] Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province & College of Advanced Materials and Energy, Xuchang University Henan, 461000, China

* Corresponding authors: Zeai Huang (zeai.huang@swpu.edu.cn); Ying Zhou(yzhou@swpu.edu.cn)

Abstract:

Cobalt species as active sites for photocatalytic reduction of CO₂ to valuable products such as methanol have received increasing attention, however, it remains a huge challenge to achieve the high activity. Herein, a pyrolysis-induced-vaporization strategy was successfully employed to fabricate Co/g-C₃N₄ single-atom catalysts (Co/g-C₃N₄ SACs) with surface Co atom loading up to 24.6 wt%. Systematic investigation of Co/g-C₃N₄ SACs formation process disclosed that concentrated-H₂SO₄ exfoliation of g-C₃N₄ nanosheets (g-C₃N₄ NSs) as the substrate followed by a two-step calcination process is essential to achieve ultrahigh metal loading. It was found that the ultrahigh-density of Co single-atom sites were anchored on the g-C₃N₄ substrate surface and coordinated with two nitrogen and one carbon atoms (Co-N₂C). These single dispersed Co-N₂C sites on the g-C₃N₄ surface were found to act not only as electron gathering centers but also as the sites of CO₂ adsorption and activation, subsequently, boosting the photocatalytic methanol generation during light irradiation. As a result, the methanol formation rate at 4 h (941.9 µmol g⁻¹) over Co/g-C₃N₄-0.2 SAC with 24.6 wt% surface Co loading was13.4 and 2.2 times higher than those of $g-C_3N_4(17.7 \mu mol g^{-1})$ and aggregated $CoO_x/g-C_3N_4-0.2$ (423.9 µmol g⁻¹), respectively. Simultaneously, H₂ (18.9 µmol g⁻¹ h⁻¹), CO (2.9 µmol g⁻¹ h⁻¹), CH₄ (3.4 µmol g⁻¹ h⁻¹), C₂H₄ (1.1 µmol g⁻¹ h⁻¹) ¹), $C_3H_6(1.4 \mu mol g^{-1} h^{-1})$, and $CH_3OCH_3(3.3 \mu mol g^{-1} h^{-1})$ products were detected over Co/g-C₃N₄-0.2 SAC. Besides, the photocatalytic activity of the Co/g-C₃N₄-0.2 SAC for the reduction of CO₂ to methanol was stable within 12-cycle experiments (~48 h). This work paves a strategy to boost the photoreduction CO₂ activity via loading ultrahigh surface density single atomically dispersed cobalt active sites.

Keywords: Cobalt, $g-C_3N_4$, single-atom catalysts, ultrahigh surface metal loading, photoreduction CO₂ to methanol

1. Introduction

Photocatalytic CO₂ reduction is identified as a two-birds-one-stone strategy to convert greenhouse gas CO₂ into value-added fuel chemicals, alleviating the pressure on the greenhouse effect as well as the dependence on fossil fuels [1]. Methanol (CH₃OH) is considered to be an ideal product for photocatalytic CO₂ reduction due to its convenient storage and transport with wide applications [2]. Photocatalytic CO₂ reduction to CH₃OH involves a 6-electron process, hence gathering a large number of electrons on photocatalyst surface is favorable to trigger high-performance CH₃OH formation [3]. Among the reported photocatalysts, using earth-abundant cobalt-based catalysts is beneficial to convert CO₂ [4]. Because cobalt is believed to capture CO₂ efficiently due to the strong hybridization between 2p orbitals of carbon/oxygen atoms and the 3d orbitals of cobalt atoms [5, 6]. Furthermore, cobalt atoms bonded with N/C atoms can act as active centers to gather electrons under light irradiation for enhancing CO₂ activation and reduction to CH₃OH [4, 7, 8]. However, bulk cobalt photocatalysts with limited surface-active sites of low atom-utilization efficiency are unfavorable to transfer and gather the photogenerated electrons at CO₂ photoreduction sites during light irradiation [9], leading to the limited efficiency of CO₂ reduction to CH₃OH.

Recently, single-atom catalysts with monodispersed Co-N_xC_{4-x} (x=0-4) coordination active motifs (Co-N_xC_{4-x}/substrate SACs) possess the merits of maximum atomutilization efficiency, tunable electronic environments, high efficiency of charge transfer, and high electron mobility, which were reported to be beneficial for CO₂ reduction [10]. More importantly, the single dispersed Co-N_xC_{4-x} coordination moiety usually results in an enrichment of photogenerated electrons on catalysts under light irradiation [2, 11, 12]. It can facilitate the multielectron process in the photoreduction of CO₂ to CH₃OH [13-15]. However, most reported Co-N_xC_{4-x}/substrate SACs of low Co loadings with a limited number of active sites are unfavorable to achieve high photocatalytic CO₂ reduction activity. Generally, increasing the cobalt loading is considered an effective solution strategy but cobalt atoms with high loadings are highly prone to migration and aggregation to CoO_x species with much low activity for photocatalytic CO₂ reduction [16]. Therefore, fabrication of highly-loaded Co-N_xC_{4-x}/substrate SACs (>10 wt%) to achieve high photocatalytic activity is still extremely difficult [8, 17, 18].

Up to date, although several strategies to fabricate high metal loading of Co-N_xC_{4-x}/substrate SACs are achieved via direct pyrolysis of a nitrogenous organic compound and metal salt precursors [19, 20], most of the Co-N_xC_{4-x} single-atom sites exist in the bulk supports [8, 17, 21]. These single metal atoms in the support matrix can be only used as electron transport channels, but not as electrons gathering centers for photocatalytic CO₂ reaction on the surface [22, 23]. Subsequently, the CH₃OH production of photocatalytic CO₂ reduction showed a relatively low yield due to the limited surface-active sites. Therefore, designing and developing a strategy to fabricate ultrahigh surface loading cobalt single-atom catalyst with Co-N_xC_{4-x} coordination moiety is highly demanded but of great challenge for CO₂ photoreduction to CH₃OH.

Herein, we report a novel pyrolysis-induced-vaporization strategy for fabricating cobalt single-atom catalysts (Co SACs) with Co-N₂C coordination moiety and surface

cobalt loading as high as 24.6 wt%, which is a record value of all reported Co-N_xC_{4-x}/substrate SACs up to now. The as-synthesized Co/g-C₃N₄ SACs surface has extremely high monodispersed Co-N₂C active sites. As a result, it showed much higher activity for photocatalytic CO₂ reduction to CH₃OH in the absence of both sacrificial reagent and photosensitizer. This study provides new insights into the fabrication of high surface density of Co-N_xC_{4-x}/substrate SACs for highly photocatalytic CO₂ reduction activity to solar fuels.

2 Experiments

2.1 Materials

All used chemicals were analytical-grade reagents without any further purification before the experiment. Co(NO₃)₂·6H₂O and dicyandiamide were purchased from Aladdin Reagent Corp. Anhydrous H₂SO₄ (98%), absolute ethanol (95%), and silica sand (70-150 mesh) were purchased from Chengdu Kelong Chemical Reagent Corp. 99% ¹³C enriched ¹³CO₂ was provided by Chengdu Keyuan Gas Corp. Dialysis bags were purchased from Viskase Corp (MD44, MW:3500).

2.2 Fabrication of g-C₃N₄ NSs catalyst

The bulk g-C₃N₄ was prepared using a thermal polymerization method [24]. Briefly, 20 g dicyandiamide was put into a porcelain calcination boat, then heated from 30 °C to 550 °C within 4 h and maintained at 550 °C for 4 h under an air atmosphere. After that, the products were cooled down to 50 °C naturally. The g-C₃N₄ NSs were synthesized *via* a modified method from the literature [25]. Firstly, 9 g bulk g-C₃N₄ was dispersed in 90 mL anhydrous H₂SO₄ and stirred for 1 h. Then, 90 mL of deionized water was gradually added to the g-C₃N₄/H₂SO₄ mixture. Next, the clear solution was added to 300 mL absolute ethanol and stirred for 18 h. Finally, the sample was dialyzed to neutral with a dialysis bag (height: 30 cm, width: 6 cm, solution volume: 20 mL; membrane cutoff: 3500 kDa) in deionized water to remove both residual SO₄²⁻ and ethanol, then collected after drying at 60 °C.

2.3 Fabrication of Co/g-C₃N₄ SACs

The Co/g-C₃N₄ was prepared using Co(NO₃)₂·6H₂O and g-C₃N₄ NSs as the precursors. Specifically, the required amount of Co(NO₃)₂·6H₂O and 2.0 g of assynthesized g-C₃N₄ NSs was mixed with deionized water. After drying on a hot plate, the obtained mixture was put into a semi-closed porcelain boat with a cover. The mixture was heated in a tube furnace to 130 °C within 11 min under Ar flow. It was kept at this temperature for 9 hours, then heated to 550 °C with a heating rate of 8.67 °C/min, and maintained at this temperature for 1 h. The sample was washed five times with 30 mL deionized water after cooling down. Cobalt atoms were successfully anchored on the surface of the g-C₃N₄ NSs during the pyrolysis-induced-vaporization strategy by a two-step calcination process. Fabricated samples were marked as Co/g-C₃N₄-N. where x was the desired weight ratio of Co atoms to g-C₃N₄ NSs. For example, Co/g-C₃N₄-0.2 refers to the desired weight ratio of Co atoms (0.4 g, the corresponding weight of Co(NO₃)₂·6H₂O precursor is 0.99 g) to g-C₃N₄ NSs (2.0 g) of 0.2.

For comparison, a sample was prepared using $Co(NO_3)_2 \cdot 6H_2O$ (0.99 g) and g-C₃N₄ NSs (2.0 g) at identical conditions but without an intermediate heating step (one-step calcination) at 130 °C for 9 h, was designated m-Co/g-C₃N₄-0.2. A sample prepared via the one-step pyrolysis of the mixture of $Co(NO_3)_2 \cdot 6H_2O(0.99 \text{ g})$ and bulk g-C₃N₄ (2.0 g) was named T-Co/g-C₃N₄-0.2. Moreover, a sample fabricated using the $Co(NO_3)_2 \cdot 6H_2O(0.99 \text{ g})$ and the bulk g-C₃N₄ (2.0 g) at identical conditions was named $CoO_x/g-C_3N_4-0.2$.

2.4 Characterization

X-ray powder diffraction (XRD) patterns were obtained on a PANalytical X'pert diffractometer with Cu Ka radiation (40 kV, 40mA). The scanning electron microscopy (SEM) was performed on a JEOL JSM-7800F microscope. The transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM) were collected on a Tecnai G2 F30 electron microscope operating at an accelerating voltage of 200 kV. The X-ray photoelectron spectroscopic (XPS) measurements were performed using a Thermo ESCALAB250Xi X-ray photoelectron spectrometer and all of the binding energies were calibrated to the C 1s level of adventitious carbon species (peak at lower binding energy) at 284.8 eV. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) images and the related energydispersive X-ray spectra (EDX) were recorded on a Themis Z with an FEI Super X-EDX system and a double-corrected FEI Titan Themis TEM at 300 KV. The UV-vis diffuse reflectance spectra were recorded at room temperature on a Shimadzu UV-2600 spectrophotometer with an integrating sphere using Ba₂SO₄ as the reflectance standard. The photoluminescence (PL) spectra were measured using a fluorescence spectrophotometer (Hitachi F-7000FL). The Fourier-transform infrared (FT-IR) spectra were acquired on a Nicolet 6700 spectrometer with samples pressed into KBr pellets. The CO₂ adsorption isotherms at 25 °C and CO₂ temperature-programmed desorption (CO₂-TPD) profiles of the samples (catalyst: 50 mg; carrier gas: Ar; temperature increasing rate: 10 °C min⁻¹; CO₂ adsorbed at 25 °C) were acquired on ASAP 2020 V4.00 and ASAP 2920, respectively. The samples were pretreated at 200 ^oC for 10 min at Ar atmosphere before CO₂ adsorption isotherms and CO₂-TPD tests. The products of the isotopic labeling experiment were analyzed by a quadrupole mass spectrometer (MS, Pfeiffer Vacuum OmniStar GSD 320 O1). Inductively coupled plasma optical emission spectroscopy (ICP-OES) measurements were performed on an Agilent 730 ICP-OES spectrometer to determine the concentration of metal species and elemental analysis (EA) was performed on a Vario EL III (Elementar) to determine the concentration of C, N, H, O, and S species. The simultaneous thermogravimetricdifferential scanning calorimetry-mass spectrometer analysis (TG-DSC-MS) was used to study the formation process of Co/g-C₃N₄ SAC, conducted in a flow of Ar with a NETZSCH STA 449F3 thermal analyzer equipped with a QMS 403 D mass spectrometer. In addition, the mixture of Co(NO₃)₂·6H₂O (0.99 g) and g-C₃N₄ NSs (2.0 g) was kept at 130 °C for 1 hour during the TG-DSC-MS testing process.

X-ray absorption spectra (XAS) in terms of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were measured at the CAT end station of the CAT-ACT beamline at the Synchrotron Radiation Source at KIT, Karlsruhe [26]. The samples were measured ex-situ at the Co K absorption edge in transmission mode in the form of pellets diluted with cellulose. The spectra were

normalized and the X-ray absorption fine structure spectra (EXAFS) background was subtracted using the ATHENA program from the IFFEFIT software package [27]. The k³-weighted $\chi(k)$ data in the k-space ranging from 3-13 Å⁻¹ (multiplied by a Hanning window function with dk = 1.0 Å⁻¹) were Fourier transformed to obtain radial distribution functions (R space). To obtain the detailed structural parameters around Co atoms in the as-prepared samples, quantitative curve-fittings were carried out for the Fourier transformed $k^{3}\chi(k)$ in the R-space between 1.2 and 3 Å using the ARTEMIS module of IFEFFIT. Effective backscattering amplitudes F(k) and phase shifts $\Phi(k)$ of all fitting paths were calculated by the ab initio code FEFF 6.0. During the fitting of the $Co/g-C_3N_4-0.2$ sample, the amplitude reduction factor S_0^2 was fixed to the best-fit value of 1.00, and the Co-N coordination number (CN) was fixed to 2.0 and the Co-C coordination number (CN) was fixed to 1.0 while the interatomic distance (R), the Debye-Waller factor (σ^2), energy shift (δE_0), were allowed to vary. The fit quality was then evaluated using R-factor and reduced Chi-square. The wavelet transformed (WT) of EXAFS spectra were obtained using the WTEXAFS program [28].

2.5 Photocatalytic activity measurement

Photocatalytic activities of the as-prepared samples were evaluated in a closed system with a quartz window under ambient temperature and atmospheric pressure. The detailed information could be found in our previous report [29, 30]. In detail, 5.0 mg of the photocatalyst was firstly dispersed in 5 mL pure water in a Petri dish with an area of 44.2 cm², then dried at 90 °C. Then the sample was placed in the middle of the 276 mL reaction cell with a stirring bar at the bottom. Ar (99.999%) gas was flushed through

the reaction system to completely exchange the air and then both 4.0 mL of CO₂ (99.999%) and 1.0 mL H₂O were added into the reaction system. After that, the reactor was irradiated from the top using a 300 W Xe lamp (CEAULIGHT Co., Ltd., China) at the light intensity of ca. 1.5 W/cm². 1.0 mL of gas sample was taken out from the reactor every hour and used for the subsequent analysis by GC7900 gas chromatography (GC, Tian Mei Analytical Instrument Co., Ltd., China) equipped with a TXD-01 column, a nickel conversion furnace (NCF), a thermal conductivity detector (TCD) and a flame ionization detector (FID) to detect H₂, CO, and CH₄. C_xH_yO_z products were determined by a 7890B gas chromatograph (GC, Agilent Technologies Inc., United States of America) with an HP/Plot-Q column. The photocatalytic CO₂ reduction activity experiments of each group were repeated at least three times. The isotope labeling experiments of ¹³CO₂ reduction with H₂O were performed under identical conditions with the reaction system described above.

2.6 In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) investigation

In-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements were performed at room temperature with a mixture of CO₂ (20% CO₂/Ar) and H₂O vapor (introduced by bubbling the gas flow through a water saturator at 40 °C). This study was carried out using a Bruker Tensor II instrument equipped with a Harrick High-Temperature cell [30-32]. The photocatalyst (30 mg) was pretreated at 200 °C for 15 min under 20 mL min⁻¹ pure Ar gas (99.999%) flow. After that, CO₂ with H₂O vapor was continuously fed into the cell at 20 mL min⁻¹ for 35 min. In the

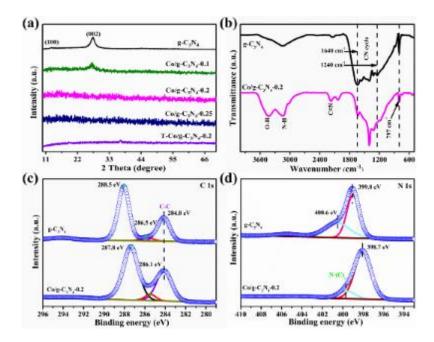
circulation system, the mixture gas was allowed to reach adsorption-desorption equilibrium at the photocatalyst surface, and IR spectra were obtained every 1.5 min. After 35 min, the equilibrium was achieved, then the photocatalyst was illuminated with a PLS-FX300HU cold light lamp (Perfect light Co., Ltd., China; 700 mW cm⁻²) under the moist CO_2 gas flow condition, and the data were collected at regular intervals of 1.5 min.

2.7 Photoelectrochemical measurements

All photoelectrochemical measurements were performed on a CH660E electrochemical workstation (Chenhua Instrument, Shanghai, China) equipped with a one-pot type cell with a three-electrode system. The saturated calomel electrode (SCE) was used as the reference electrode, and Pt wire was used as the counter electrode. The working electrode was prepared by a doctor blade method. The mixture of a photocatalyst and Nafion (5.0 wt%) was coated on a Fluorine-doped tin oxide (FTO) with a film thickness of ca. 50 μ m and area of 4 cm², which was further treated at 90 °C for 3 h under Ar flow. Photocurrent-time and electrochemical impedance measurements of sample films at open circuit potential (OCP) were performed in 0.5 M Na₂SO₄.

2.8 Theoretical calculation method

Density functional theory (DFT) calculations were carried out using the CASTEP module in Materials Studio based on the plane-wave-pseudo-potential approach [33, 34]. The Perdew–Burke–Ernzerhof (PBE) functional of the generalized gradient approximation (GGA) was used as the exchange-correlation function [33, 34]. The


ultrasoft pseudo-potential was employed to describe the interaction between valence electrons and the core. A vacuum spacing of 15 Å was employed to eliminate interactions between layers. A kinetic energy cutoff of 380 eV and Monkhorst-Pack special k-point meshes of $3\times3\times1$ were used to carry out geometry optimization and electronic structure calculation. The optimized lattice constant of the bulk g-C₃N₄ was a=b=4.74 Å and c=6.72 Å and the model structure containing from 1 to 7 cobalt atoms, 24 carbon atoms, and 32 nitrogen atoms. During the geometry optimization, all atoms were allowed to relax without any constraints until the convergence thresholds of maximum displacement (0.001 Å), maximum force (0.03 eV/Å), and energy (1.0×10^{-5} eV/atom) were reached [35]. The 2×2 supercell of monolayer g-C₃N₄ (001) was employed in the calculation.

3 Results and discussion

3.1 Structure and morphology of Co/g-C₃N₄

The as-prepared g-C₃N₄ without Co loading shows two representative diffraction peaks at around 12.6° and 27.9° corresponding to (100) and (002) planes, respectively (**Fig. 1a**) [24]. Introduction of Co to g-C₃N₄ caused a decrease in crystallinity, however, no peak shifts were observed in all samples, indicating that Co atoms were not doped into the g-C₃N₄ matrix (**Fig. 1a**) [36]. All diffraction peaks disappeared when the desired Co to g-C₃N₄ weight ratio was higher than 0.1, implying that the long-range order in the atomic arrangement of g-C₃N₄ was broken. The short-range order of g-C₃N₄ in Co/g-C₃N₄-0.2 was confirmed to be maintained via FT-IR and XPS analyses (**Fig. 1b-d**). The basic units of g-C₃N₄ such as CN heterocycle (1240-1649 cm⁻¹) and triazine units (797 cm⁻¹) were observed in Co/g-C₃N₄-0.2 (**Fig. 1b**) [37-40]. The local framework composition of g-C₃N₄ such as the C-NH_x bonding structure, sp²-bonded carbon in N=C-N, and bridging N atoms in N-(C)₃, and sp²-hybridized nitrogen atoms in C=N–C still existed in Co/g-C₃N₄-0.2 (**Fig. 1c-d**) [41, 42]. In addition, the atomic ratio of C to N in the Co/g-C₃N₄-0.2 sample was detected to be around 0.66, which was close to the C/N ratio (0.62) in the g-C₃N₄ (**Table S1**). More importantly, obvious shifts to lower binding energy of C 1s, apart from the adventitious carbon species at 284.8 eV, and N 1s were observed in the Co/g-C₃N₄-0.2 sample (**Fig. 1c-d**) [43], implying that introduction of Co atoms to the g-C₃N₄ increased the electron density of C and N atoms, which is believed to be helpful to capture photogenerated electrons under light irradiation [11]. It is concluded that the structural skeleton of g-C₃N₄-0.2.

No peaks assigned to cobalt species were observed in XRD patterns of all samples prepared via the pyrolysis-induced-vaporization strategy after two-step calcination (**Fig. 1a**). However, the one-step calcination of cobalt nitrate with bulk g-C₃N₄ was easily aggregated to be CoO_x (T-Co/g-C₃N₄-0.2) (**Fig. 1a**), consistent with the previous literature [11]. The TEM images of g-C₃N₄ clearly show a thin-layer structure (**Fig. S1a**) without crystal lattice fringes (**Fig. S1b**). Thin layers were maintained in the Co/g-C₃N₄-0.2 (**Fig. S1c**). In addition, an obvious porous structure due to the H₂SO₄ exfoliation was formed in g-C₃N₄ and Co/g-C₃N₄-0.2. Similarly, the HR-TEM image of Co/g-C₃N₄-0.2 shows no crystalline lattices (**Fig. S1d** and inset of **Fig. S1d**). AC-HAADF-STEM image of the Co/g-C₃N₄-0.2 with bright folds and dark pores (**Fig. S2a**) confirms the porous structure. The corresponding EDX mapping results demonstrated that carbon, nitrogen, and cobalt elements were homogeneously distributed, giving direct evidence of highly dispersed Co in the $Co/g-C_3N_4-0.2$ (**Fig. S2b-d**).

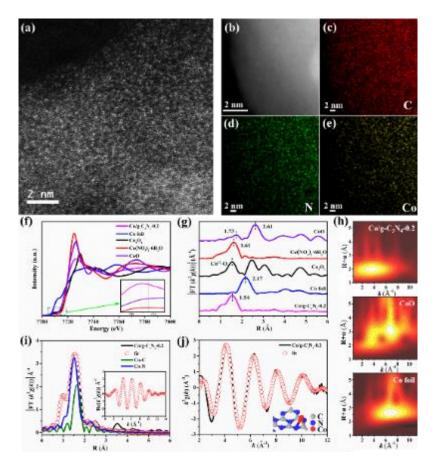


Fig. 1. (a) XRD patterns of as-prepared catalysts; (b) FT-IR spectra of $g-C_3N_4$ and Co/g-C₃N₄-0.2; high-resolution C 1s (c) and N 1s (d) XPS spectra of $g-C_3N_4$ and Co/g-C₃N₄-0.2.

AC-HAADF-STEM was conducted to further investigate the distribution of cobalt atoms in the Co/g-C₃N₄-0.2. The single bright dots can be ascribed to isolated metal atoms (**Fig. 2a and S3**). The AC-HAADF-STEM-EDX further proved that these dots are Co atoms (**Fig. 2b-e and S4**). XANES and EXAFS spectroscopy at Co K-edge were conducted to further study the local structure of Co atoms on Co/g-C₃N₄-0.2 (**Fig. 2f-g and 2i-j**). The Co K-edge region of the XANES spectrum of the Co/g-C₃N₄-0.2 was markedly different from the cobalt foil and Co₃O₄ reference spectra (**Fig. 2f**), however, similar to that of the CoO and Co(NO₃)₂·6H₂O references, suggesting that the chemical state of Co in Co/g-C₃N₄-0.2 is +2. The high-resolution Co 2p XPS pattern (Fig. S5) of the Co $2p_{3/2}$ peak at 781.7 eV was ascribed to Co²⁺, further proving that the oxidation state of Co on the g-C₃N₄ NSs surface was +2 [44-46]. Pre-edge XANES of Co peak at 7708-7709 eV in Co/g-C₃N₄-0.2 was slightly shifted to lower energy as compared to that of CoO and Co(NO₃)₂·6H₂O references (Fig. 2f). This might stem from the cobalt coordination to N and/or C atoms in Co/g-C₃N₄-0.2 other than the O atom because of the lower electronegativity of N and C elements as compared to the O element [12]. It is generally believed that O atoms bonded with metal could be gradually substituted by metal-N/C during g-C₃N₄ pyrolysis in an inert atmosphere [47]. Because the metal-O bonds possess less thermodynamically favorable under those conditions as compared to that of metal-N/C bonds [47]. Interestingly, Co₃O₄ was found to be transformed into CoN_xC_y via annealing of Co₃O₄ and g-C₃N₄ NSs mixture at 550 °C and Ar atmosphere (Fig. S6), proving that the Co-O bonds could be substituted by the Co-N and Co-C bonds during pyrolysis treatment. These results further suggested that cobalt atoms in $Co/g-C_3N_4-0.2$ tend to bond with carbon and nitrogen atoms rather than oxygen atoms.

The Fourier-transformed (FT) k^3 -weighted EXAFS of Co/g-C₃N₄-0.2 displays a single peak at around 1.54 Å (uncorrected for phase shift), assigned to the coordination between cobalt and light elements such as nitrogen and/or carbon (**Fig. 2g**) [11]. It is worthwhile to mention that the FT EXAFS peak position of Co atoms in the Co/g-C₃N₄-0.2 was located at 1.54 Å, consistent with that of single atomically dispersed cobalt catalysts, such as Co(II) phthalocyanine (CoPc), other Co/g-C₃N₄ SACs, and Co-

N/carbon SACs [9, 11, 48, 49]. Nevertheless, it is significantly smaller than that of the Co^{II}-O position in Co(NO₃)₂·6H₂O (around 1.61 Å) and CoO (around 1.73 Å). More importantly, Co-Co scattering paths peak at around 2.17, and Co-(O)-Co scattering paths peak at around 2.61 were not observed in the Co/g-C₃N₄-0.2. These results strongly implied that cobalt species in the Co/g-C₃N₄-0.2 do not exist mainly in the form of Co phase $/CoO_x$ clusters or nanoparticles. Eventually, in combination with the AC-HAADF-STEM and related mapping results (Fig. 2a-e), one can infer that the Co species were tentatively assigned to be single atomically dispersed on Co/g-C₃N₄-0.2 (Co/g-C₃N₄-0.2 SAC). This result was further validated by the wavelet transform (WT) analysis. The intensity maximum of Co foil and CoO is at around 6.7 $Å^{-1}$ assigned to Co neighbors, obviously different from Co/g-C₃N₄-0.2 SAC with only one intensity maximum at around 3.7 Å⁻¹ (light element such as O, C, N) was observed as shown in Fig. 2h. To give further insights into the coordination of Co in the sample of Co/g-C₃N₄-0.2 SAC, the corresponding FT EXAFS fitting was conducted to extract the structural information (Fig. 2i-j). The Co-N₂C coordination moiety with 2.07 Å of Co-N and 2.21 Å of Co-C average bond lengths gives a reasonably good fit of the experimental Co/g-C₃N₄-0.2 SAC EXAFS spectrum (Table S2). This is reasonable since Co-N₂ sites have been reported to be the most stable structure over Co-N-C SACs as found in both theoretical and experimental studies [12]. All the above results leading us to conclude that Co-N and Co-C bonds formed in the first coordination shell around Co on the $Co/g-C_3N_4-0.2$ SAC. In other words, single atomically dispersed Co sites with Co-N₂C coordination in the sample of Co/g-C₃N₄-0.2 SAC were successfully fabricated.

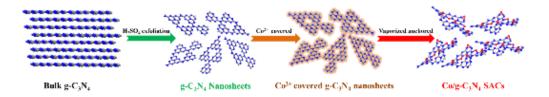


Fig. 2. (a) AC-HAADF-STEM image of Co/g-C₃N₄-0.2; STEM-EDX mappings of Co/g-C₃N₄-0.2 (scale bar: 2 nm) for (b) HAADF image, (c) C, (d) N, and (e) Co elements, respectively; (f) Co K-edge XANES spectra and (g) Fourier-transformed (FT) k^3 -weighted EXAFS spectra (uncorrected for the phase shift) of Co foil, CoO, Co₃O₄, Co(NO)₃· 6H₂O, and Co/g-C₃N₄-0.2; (h) Wavelet transform (WT) of Co/g-C₃N₄-0.2, CoO, and Co foil; (i) Fit of the Co/g-C₃N₄-0.2 EXAFS spectrum in R-space and q-space (inset) with the contribution of individual shells (j) the same fit in k-space and the corresponding model structure (inset).

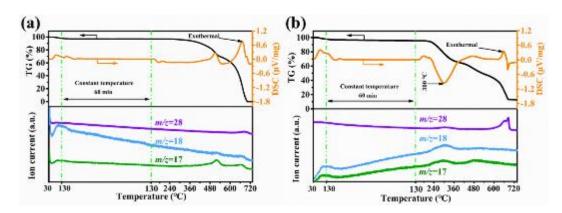
The loading amount of Co in the Co/g-C₃N₄-x samples was determined by ICP-AES (**Table S1**). The Co/g-C₃N₄-0.2 SAC showed an ultrahigh Co loading of 29.3 wt%,

which was a record value of the Co SACs (Table S3) [50]. Simultaneously, the corresponding surface Co loading is calculated by the XPS to be 24.6 wt% (6.9 at%). The maximum loading of single Co atoms in the heptazine-based 2×2 supercell of monolayer g-C₃N₄ (001) (32 N atoms and 24 C atoms) is calculated to be 6 atoms, in other words, the theoretical limit of the single Co atoms loading on the g-C₃N₄ is 32.5 wt%. This explains the fact that the second shell (Co-(O)-Co) as in CoO_x was observed by EXAFS in the Co/g-C₃N₄-0.25 sample with a Co concentration of 36.1 wt% (Fig. **S7**). The surface Co loading of Co/g-C₃N₄-0.2 SAC fabricated by pyrolysis-inducedvaporization strategy considerably exceeded that of previously reported Co/g-C₃N₄ SACs [50, 51]. Previously, it was reported that single atomically dispersed Co atoms on the g-C₃N₄ were more prone to aggregate to Co clusters during conventional Co SACs fabrication process with cobalt loading higher than 1.7 wt% [11]. Therefore, our strategy involving stepwise heating and g-C₃N₄ NSs as the substrate is an efficient method to fabricate Co/g-C₃N₄ SACs with ultrahigh surface loading of single atomically dispersed Co sites.

3.2 Mechanism of formation of Co/g-C₃N₄ SACs with ultrahigh surface loading

Scheme 1. The bulk cobalt nitrate vaporization induced by the pyrolysis process for the fabrication of Co/g-C₃N₄ SACs (blue: N atoms; grey: C atoms; red: Co atoms).

It is important to figure out the formation mechanism of the single atomically


dispersed Co sites with ultrahigh loading on g-C₃N₄. Two key points were found for achieving ultrahigh surface single cobalt atom loading of Co/g-C₃N₄ SACs: 1) porous g-C₃N₄ NSs as the substrate; 2) a two-step calcination process (**Scheme 1**). Firstly, the g-C₃N₄ NSs were prepared using concentrated H₂SO₄ exfoliation to obtain small porous structures (**Fig. S8**) [25]. The color of g-C₃N₄ NSs was completely converted from the faint yellow of bulk g-C₃N₄ to white (**Fig. S9**). The XRD peaks at around 12.6° and 27.9° corresponding to (100) and (002) planes were significantly decreased, suggesting that the g-C₃N₄ NSs have has smaller grains (**Fig. S10**) [52, 53]. Moreover, compared with bulk g-C₃N₄, the g-C₃N₄ NSs exhibits higher surface area and higher pore volume (**Table S1**). Simultaneously, CoO_x nanoparticles were found in the CoO_x/g-C₃N₄-0.2 sample fabricated using the bulk g-C₃N₄ as the substrate (**Fig. S11**). These results indicated that the g-C₃N₄ NSs surface could provide much more separated N₂C coordination sites for anchoring single atomically dispersed cobalt atoms and suppressing the cobalt atoms aggregation as compared to that of bulk g-C₃N₄.

Secondly, the aggregation of single atomically dispersed cobalt atoms during pyrolysis of the mixture of $Co(NO_3)_2 \cdot 6H_2O$ and $g-C_3N_4$ NSs process can be prevented by two-step calcination. The formation process of $Co/g-C_3N_4$ SACs during the two-step calcination procedure was studied using simultaneous TG-DSC-MS (**Fig. 3**). The g-C₃N₄ NSs showed only 4.0 wt% loss and no obvious endothermic peak in the range from 200 °C to 400 °C (**Fig. 3a**). However, the mixture of $g-C_3N_4$ NSs and $Co(NO_3)_2 \cdot 6H_2O$ precursors showed 30.9 wt% mass loss. A very broad endothermic peak at 300 °C was identified at this temperature range as exhibited in **Fig. 3b**, however

did not appear in the case of g-C₃N₄ NSs (Fig. 3a). This means that mass loss from 200 ^oC to 400 ^oC may be related to the decompose of Co(NO₃)₂·6H₂O (H₂O: m/z=17 and 18; N₂: m/z=28). Simultaneously, the single endothermic peak at 300 °C (Fig. 3b) is significantly different from the characteristic endothermic decomposition peak of the pure $Co(NO_3)_2 \cdot 6H_2O$ and the mixture of $Co(NO_3)_2 \cdot 6H_2O$ and bulk g-C₃N₄ (sharp peak at approx. 240 °C) as reported previously [54, 55]. Such a phenomenon might be ascribed to the vaporization and decomposition of $Co(NO_3)_x$ species. On the one hand, Co species with purple color was observed on the walls of the quartz tube after pyrolyzing (Fig. S9d and S12a). In contrast, almost none of the Co species were found in the quartz tube (Fig. S12b) when the sample of m-Co/g-C₃N₄-0.2 was fabricated by one-step calcination the mixture of $g-C_3N_4$ NSs and $Co(NO_3)_2 \cdot 6H_2O$ (Fig. S9c). Simultaneously, the CoO and/or Co(OH)2 were generated on the sample of m-Co/g-C₃N₄-0.2 (Fig. S13). On the other hand, the mass percentage content of cobalt in the mixture of Co(NO₃)₂·6H₂O and g-C₃N₄ NSs precursors after calcination from 30 °C to 800 °C under Ar atmosphere followed by calcination at 800 °C for 1 h under Air atmosphere was found to be significantly decreased from 16.67 wt% to 10.34 wt% (Fig. S14). This indicates that a part of cobalt is taken away by Ar after vaporization. Moreover, the release of NH₃ (m/z=17) at around 530 °C during the calcination (Fig. 3) is potential evidence that the volatile Co species $(Co(NH_3)_x)$ were formed by strong Lewis acid-base interaction between the single cobalt atom and NH₃ [56, 57]. Thus, one can infer that the two-step calcination method can efficiently inhibit the aggregation of single atomically dispersed cobalt atoms by inducing the vaporization of cobalt species.

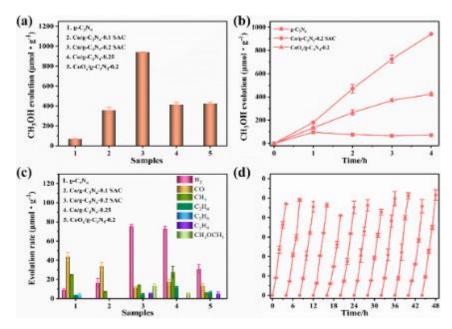
At the same time, the Co(NO₃)₂·6H₂O could completely infiltrate into small pores of g-C₃N₄ NSs (Fig. S8a-d) due to the low melting point of Co(NO₃)₂·6H₂O (55 °C) [54, 55] during the first calcination step at 130 °C (Fig. S9c-d). Therefore, the mixture of Co(NO₃)₂·6H₂O and g-C₃N₄ NSs precursors surface after the first calcination step at 130 °C was completely covered to Co(NO₃)_x·yH₂O crystals, clearly observed by the optical microscope (Fig. S8a-b). These results implied that the pyrolysis of the mixture of Co(NO₃)₂·6H₂O and g-C₃N₄ NSs precursors at 550 °C can further help to improve the single atomically dispersed cobalt atoms loading. This is mainly because the gas generated (such as NH₃, CO, NO, and Co(NH₃)_x, etc.) by the vaporization and decomposition of $Co(NO_3)_x$ · yH₂O crystals process can expose more N₂C sites on the surface of g-C₃N₄. This point can be proved by BET. The surface area and pore volume of the as-prepared Co/g-C₃N₄-0.2 SAC (70.4 m²/g, 0.37 cm³/g) compared with the g- C_3N_4 (5.0 m²/g, 0.016 cm³/g) are enlarged by 14.1 and 23.1 times, respectively (**Table** S4). In addition, the surface area and pore volume of the as-fabricated $Co/g-C_3N_4-0.1$ SAC (18.6 m²/g, 0.12 cm³/g), Co/g-C₃N₄-0.25 (29.2 m²/g, 0.21 cm³/g) and CoO_x/g- C_3N_4 -0.2 (27.7 m²/g, 0.13 cm³/g) also have some extent increased (**Table S4**).

Based on the above discussion, the formation mechanism of $Co/g-C_3N_4$ SACs with ultrahigh single atomically dispersed cobalt atoms was proposed as follows. Firstly, the porous g-C₃N₄ NSs provided sufficient sites for the adsorption and anchoring of cobalt atoms. Secondly, the pretreatment step at 130 °C for 9 h was vital to remove water from the mixture of $Co(NO_3)_2 \cdot 6H_2O$ and g-C₃N₄ NSs precursors, besides, Co atoms in $Co(NO_3)_2 \cdot 6H_2O$ were coordinatively unsaturated to anchor on the g-C₃N₄ surface. Thirdly, the extra unanchored cobalt atoms were vaporized from the surface of g-C₃N₄ during the pyrolysis process. As a result, inhibiting the aggregation of cobalt atoms in the process of higher temperature annealing was achieved. Finally, the high amounts of single atomically dispersed Co atoms were uniformly distributed on the surface of $Co/g-C_3N_4-0.2$ SAC (Scheme 1). Therefore, the pyrolysis-induced-vaporization strategy and g-C₃N₄ NSs as the substrate were of great significance for the fabrication of $Co/g-C_3N_4$ SACs with high surface Co loading.

Fig. 3. Simultaneous TG-DSC-MS curves of (a) $g-C_3N_4$ NSs, (b) the mixture of $g-C_3N_4$ NSs, and Co(NO₃)₂·6H₂O.

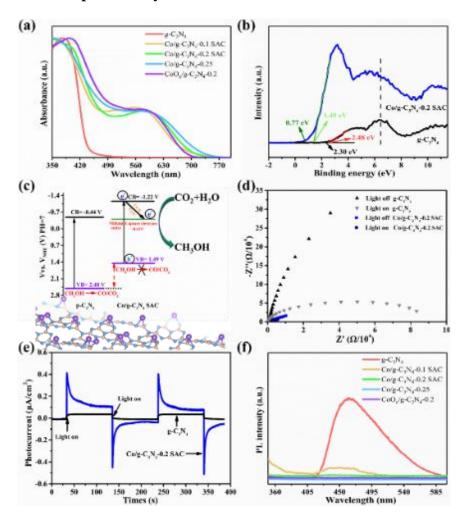
3.3 Photocatalytic CO₂ reduction

It is generally believed that cobalt species supported on $g-C_3N_4$ show high photocatalytic activity in CO₂ reduction [16], therefore the as-prepared catalysts were evaluated for the photocatalytic CO₂ reduction with H₂O in the absence of both sacrificial reagent and photosensitizer. The formation rates of H₂, CO, CH₄, C₂H₄, C₂H₆, C₃H₆, CH₃OCH₃, and CH₃OH products were evaluated (**Fig. 4**). However, it was difficult to quantify the O₂ content due to the high oxygen detection limitation using the TDX-01 column. As shown in **Fig. 4a**, the Co/g-C₃N₄-0.2 SAC sample exhibited the highest CH₃OH (941.9 μ mol g⁻¹) generation rate at 4 h and the CH₃OH selectivity was as high as 96.2%, which is 13.4, 2.6, 2.3, and 2.2 times higher than those of g-C₃N₄ (70.7 μ mol g⁻¹), Co/g-C₃N₄-0.1 SAC (356.9 μ mol g⁻¹), Co/g-C₃N₄-0.25 (415.4 μ mol g⁻¹), and CoO_x/g-C₃N₄-0.2 (423.9 μ mol g⁻¹), respectively (**Fig. 4**).


The low Co loading in Co/g-C₃N₄-0.1 SAC resulted in lower photocatalytic activity due to the low concentration of single dispersed Co-N₂C active sites (**Fig. 4, Fig. S7, Fig. S15a, and Table S1**). High loading of Co atoms, however, also led to poor activity, this may be due to reduction of active-atom-site numbers, followed by the reduction of the catalytic activity (**Fig. 4, Fig. S7, and Fig. S15b**) [16, 58]. Furthermore, the aggregation Co loaded on the bulk g-C₃N₄ (CoO_x/g-C₃N₄-0.2) also resulted in lower photocatalytic activity for photocatalytic CO₂ reduction (**Fig. 4, Fig. S7, and Fig. S15c**). Previous work demonstrated that CoO_x with lower active species showed lower activity for photocatalytic CO₂ reduction as compared with the single atomically dispersed Co sites [16, 58]. These results indicated that the high-density single dispersed Co-N₂C active sites are crucial for the photoreduction of CO₂ to methanol with high selectivity and activity. In addition, the ultrahigh density of single dispersed Co-N₂C active sites showed the stable formation of CH₃OH and suppress the CH₃OH peroxidation (**Fig. 4b**).

The high density single dispersed Co-N₂C active sites also facilitated the generation of H₂ (18.9 μ mol g⁻¹ h⁻¹), CO (2.9 μ mol g⁻¹ h⁻¹), CH₄ (3.4 μ mol g⁻¹ h⁻¹), C₂H₄ (1.1 μ mol

 $g^{-1}h^{-1}$), C₃H₆(1.4 µmol $g^{-1}h^{-1}$), and CH₃OCH₃ (3.3 µmol $g^{-1}h^{-1}$) (**Fig. 4c**). Furthermore, when ¹³CO₂ was used as the feed gas, related ¹³C products were formed (Fig. S16). Blank tests exhibit that CO₂ photoreduction products were no detected without either light or photocatalyst or reactant. These results confirmed that methanol was mainly generated from CO₂ reduction rather than an external pollutant carbon source. Impressively, as exhibited in Fig. 4b, our sample showed high stability of photocatalytic reduction of CO₂ to CH₃OH after 12 cycles (~48 h), the activity loss of methanol was almost negligible and there was no significant decrease in by-products except H₂, CH₄, and CH₃OCH₃ (Fig. S17-S18). From the XPS and XRD data, it was observed that the basic structure skeleton of $Co/g-C_3N_4-0.2$ SAC was not significantly changed after the 48 h reaction (Fig. S19a-d). As shown in Fig. S19e, the mass loss of Co/g-C₃N₄-0.2 SAC after reaction from 20 to 230 °C was only 0.2 wt%, which is mainly caused by desorption of water adsorbed on the surface. More importantly, it is worth noting that the Co/g-C₃N₄-0.2 SAC showed an obvious mass loss when higher than 450 °C, indicating that the Co/g-C₃N₄-0.2 SAC showed a very high thermal stability in the process of the photocatalytic reaction process. This could be one of the reasons why the Co/g-C₃N₄-0.2 SAC maintained stable photocatalytic activity in the process of catalytic reduction of CO₂ to methanol.


The specific generation rates of different products for CO_2 reduction under similar reaction conditions over recently reported photocatalysts with single atomically dispersed cobalt sites (Co SACs) were compared (**Table S5**). For the Co/g-C₃N₄-0.2 SAC in our work, the CH₃OH generation rate and CH₃OH selectivity in the

photocatalytic CO₂ reduction was excellent among the reported Co SACs and some other similar photocatalysts [16, 59, 60]. Moreover, it is worth noting that the photocatalytic activity for the reduction of CO₂ to CH₃OH over Co/g-C₃N₄-0.2 SAC was close to that of RuSA-MC₃N₄ (**Table S5**) because Co/g-C₃N₄-0.2 SAC can provide the ultrahigh density of single dispersed Co-N₂C active sites [61]. Therefore, the Co/g-C₃N₄-0.2 SAC with an ultrahigh density of single dispersed Co-N₂C sites could achieve the high activity, high selectivity, high stability for photoreduction of CO₂ to methanol.

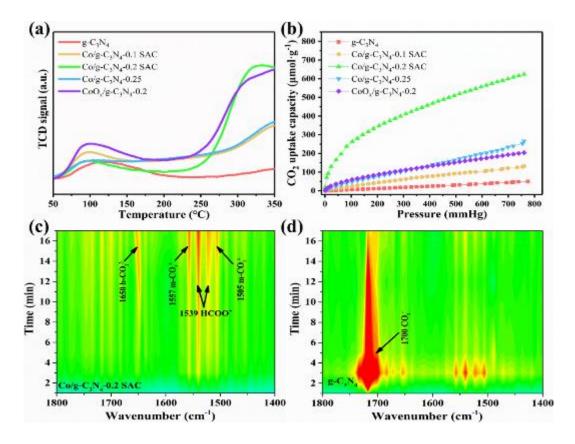
Fig. 4. Photocatalytic activity measurements from photoreduction of CO₂ with H₂O. (a) CH₃OH production and (c) H₂, CO, CH₄, C₂H₄, C₂H₆, C₃H₆, CH₃OCH₃ products at 4 hours over g-C₃N₄, Co/g-C₃N₄-0.1 SAC, Co/g-C₃N₄-0.2 SAC, Co/g-C₃N₄-0.25, and CoO_x/g-C₃N₄-0.2; Typical time profile of CH₃OH generation (b) by g-C₃N₄, Co/g-C₃N₄-0.2 SAC, and CoO_x/g-C₃N₄-0.2; (d) CH₃OH production corresponding to cycle experiments of Co/g-C₃N₄-0.2 SAC. Conditions: 5 mg of catalyst; CO₂ =4 ml, Ar as the balance gas; 300 W Xe lamp light source; Reactor volume: ca. 270 ml.

3.4 Mechanism of photocatalytic CO₂ reduction

Fig. 5. (a) UV-vis diffuse reflectance spectra of $g-C_3N_4$, $Co/g-C_3N_4-0.1$ SAC, $Co/g-C_3N_4-0.2$ SAC, $Co/g-C_3N_4-0.25$, and $CoO_x/g-C_3N_4-0.2$; (b) XPS valence band spectra of the $g-C_3N_4$ and the $Co/g-C_3N_4-0.2$ SAC; (c) Band structure of $g-C_3N_4$ and $Co/g-C_3N_4-0.2$ SAC; (d) Time-dependent photocurrent curves (i-t curve) of $g-C_3N_4$ and $Co/g-C_3N_4-0.2$ SAC, and (e) corresponding electrochemical impedance spectroscopy (EIS) Nyquist plots; (f) Photoluminescence spectra of $g-C_3N_4$, $Co/g-C_3N_4-0.1$ SAC, $Co/g-C_3N_4-0.2$ SAC, $Co/g-C_3N_4-0.25$, and $CoO_x/g-C_3N_4-0.2$.

To unveil the reason why the ultrahigh density of single dispersed Co-N₂C active sites on Co/g-C₃N₄-0.2 SAC can reduce CO₂ to methanol with high activity and high

selectivity one can study the following three aspects: (a) light absorption ability; (b) generation ability and transfer efficiency of photogenerated carriers; (c) surface reaction [23, 62, 63]. The introduction of high loading monodispersed Co-N₂C sites in the Co/g-C₃N₄-0.2 SAC increased the light absorption range from 450 nm to 700 nm as compared with the g-C₃N₄ (Fig. 5a). The color of the Co/g-C₃N₄-0.2 SAC was light green and very different from the color of the g-C₃N₄ (Fig. S9e). The intense color resembles molecular systems like metal phthalocyanine or metal(bpy)₃Cl₂ [64, 65], further illustrating the strong interaction between single dispersed Co-N₂C active sites and g-C₃N₄ via Co-N and Co-C bonds. Although the Co/g-C₃N₄-0.1 SAC, Co/g-C₃N₄-0.2 SAC, Co/g-C₃N₄-0.25, and CoO_x/g-C₃N₄-0.2 have almost the similar light absorption ability (Fig. 5a), the photocatalytic activities were not as high as that of Co/g-C₃N₄-0.2 SAC (Fig. 4a). This suggested that the Co/g-C₃N₄-0.2 SAC with high activity and high selectivity for photocatalytic reduction of CO₂ to methanol was not mainly caused by its ultra-high density of single dispersed Co-N₂C active sites with enhanced light absorption ability.


The XPS valence band spectra (VBS) were analyzed to study the change of charge density (**Fig. 5b**), the VBS of Co/g-C₃N₄-0.2 SAC showed two significantly different features as compared to that of g-C₃N₄. On the one hand, the peak at 6 eV, primarily ascribed to N 2p states was less sharp than that of g-C₃N₄. On the other hand, the band tail was prolonged to 0.77 eV, which was 1.53 eV lower than the band tail of g-C₃N₄ (2.30 eV). These features could be ascribed to the ultrahigh density of single dispersed Co-N₂C active sites and they strongly interact with g-C₃N₄ on the sample of Co/g-C₃N₄-

0.2 SAC. DFT calculations were conducted to analyze the effect of the ultrahigh density of single dispersed Co-N₂C sites on the local electronic density of g-C₃N₄. The charge transfer from single dispersed Co atoms to g-C₃N₄ was as high as 0.74 e⁻ based on the population analysis. As a result, there was an increased charge density on C and N atoms around cobalt atoms on Co/g-C₃N₄-0.2 SAC, consistent with the XPS analysis (**Fig. 1cd**). This result indicated that an electron channel could be formed between cobalt atoms and g-C₃N₄ by Co-N and Co-C bonds at single dispersed Co-N₂C active sites, which would be conducive to the transmission of photogenerated carriers.

The valence band of g-C₃N₄ and Co/g-C₃N₄-0.2 SAC was mainly formed by the N 2p and a small fraction of C 2p, the conduction band was mainly formed by C 2p and Co 2p [66]. The valence band maximum (VBM) and conduction band minimum(CBM) of Co/g-C₃N₄-0.2 SAC (1.49 eV, -0.44 eV) moved up 0.99 and 0.78 as compared to that of g-C₃N₄ (2.48 eV, -1.22 eV), respectively(**Fig. 5b-c and Fig. S20**), leading to much higher charge density at carbon atoms and nitrogen atoms in Co/g-C₃N₄-0.2 SAC. Although the band-gap of the Co/g-C₃N₄-0.2 SAC was significantly narrowed after the introduction of the ultrahigh density of single dispersed Co-N₂C active sites, it still matched redox potentials of CO₂/CH₄ (-0.24 V vs NHE) and CO₂/CH₃OH (-0.38 V vs NHE) [2]. Therefore, the ultrahigh density of single dispersed Co-N₂C active sites changes the band structure of g-C₃N₄ in the sample of Co/g-C₃N₄-0.2 SAC (**Fig. 5b-c**). More importantly, the ultrahigh density of single dispersed Co-N₂C sites with the half-filled d electrons of Co²⁺ led to the formation of a mid-gap energy level in the Co/g-C₃N₄-0.2 SAC as shown in **Fig. 5c** [11, 67]. It can serve as an electron gathering center

to form a localized electron center [11]. Therefore, it is concluded that the ultrahigh density of single dispersed Co-N₂C sites allowed to tune the electronic structure of g- C_3N_4 to promote photoreduction CO₂ to CH₃OH with high selectivity and activity with suppressing methanol over oxidation to CO and CO₂ as presented in **Fig. 4b**.

Another key aspect that influences the photoreduction CO_2 activity is the generation ability and transfer efficiency of photogenerated carriers. Compared to the g-C₃N₄, $Co/g-C_3N_4-0.2$ SAC revealed the highest time-dependent photocurrent and the smallest diameter of semicircle arc at the light on or light off (**Fig. 5d-e**). In addition, the Co/g- $C_3N_4-0.1$ SAC, $Co/g-C_3N_4-0.2$ SAC, $Co/g-C_3N_4-0.25$, and $CoO_x/g-C_3N_4-0.2$ showed almost no PL peak as compared with g-C₃N₄ (**Fig. 5f**). Thus, these results indicate that the ultrahigh density of single dispersed Co-N₂C active sites in the Co/g-C₃N₄-0.2 SAC increase charge separation and transfer efficiency in the interfacial zone compared to g-C₃N₄[11, 48, 68].

Fig. 6. (a) CO_2 -TPD and (b) CO_2 adsorption isotherms of g-C₃N₄, Co/g-C₃N₄-0.1 SAC, Co/g-C₃N₄-0.2 SAC, Co/g-C₃N₄-0.25, and CoO_x/g-C₃N₄-0.2 samples, respectively; In situ DRIFTS spectra measured during photoreduction of CO₂ with H₂O after adsorption of saturated CO₂ and H₂O over (maxima (red) and minima (green)) on (c) Co/g-C₃N₄-0.2 SAC and (d) g-C₃N₄.

It is generally known that the adsorption of CO₂ on the photocatalyst surface is the first step of photocatalytic reduction of CO₂. The CO₂ adsorption capacity of Co/g-C₃N₄-0.2 SAC was 635.4 μ mol g⁻¹, which was by a factor of 12, 4.8, 2.4 and 3.0 higher than that of g-C₃N₄ (51.9 μ mol g⁻¹), Co/g-C₃N₄-0.1 SAC (131.8 μ mol g⁻¹), Co/g-C₃N₄-0.25 (265.8 μ mol g⁻¹) and CoO_x/g-C₃N₄-0.2 (208.8 μ mol g⁻¹), respectively (**Fig. 6a**). The CO₂-TPD was also investigated to obtain more insights into CO₂ adsorption (**Fig.**

6b). After the introduction of the ultrahigh density of single dispersed Co-N₂C sites, the chemisorption (desorption peak at around 320 °C) of CO₂ on Co/g-C₃N₄-0.1 SAC, $Co/g-C_3N_4-0.2$ SAC, $Co/g-C_3N_4-0.25$, and $CoO_x/g-C_3N_4-0.2$ was stronger than that on the g- C_3N_4 . It indicated that Co species can improve the adsorption strength of CO_2 on the material surface. As presented in **Figure 6c-d**, the peaks of 1650 cm⁻¹, 1557 cm⁻¹, 1539 cm⁻¹, 1505 cm⁻¹, and 1700 cm⁻¹ were assigned to bidentate carbonates ($b-CO_3^{2-}$), monodentate carbonates (m-CO₃²⁻), formate species (HCOO⁻), monodentate carbonates $(m-CO_3^{2-})$, and CO_2^{-} , respectively [69-73]. Interestingly, the normalization intensities of adsorbed b- CO_3^{2-} and m- CO_3^{2-} on the surface of Co/g- C_3N_4 -0.2 SAC increased with the increase of the illumination time. This may be due to the local abundant electrons at the high density single dispersed Co-N₂C sites during illumination promoted the absorption of CO₂ on the surface of the Co/g-C₃N₄-0.2 SAC. Because high surface charge density contributes to enhancing CO₂ adsorption and activation [74, 75]. Therefore, the ultrahigh density of single dispersed Co-N₂C sites on Co/g-C₃N₄-0.2 SAC contributed to improving CO₂ adsorption and activation ability, thereby promoting the highly selective and activity photocatalytic reduction of CO₂ to methanol.

All in all, high density of single dispersed Co-N₂C active sites on the sample of Co/g-C₃N₄-0.2 SAC played a critical role in photocatalytic CO₂ reduction to CH₃OH with high activity and high selectivity due to improving CO₂ adsorption and activation ability during the photoreduction CO₂ process and enhancing the photogenerated electron-hole pair separation efficiency. More importantly, the high density of single dispersed Co-N₂C sites can serve as the electron gathering centers to localize photogenerated electrons and tune the band structure of $g-C_3N_4$ to boost the photoreduction CO₂ to methanol and suppress the methanol overoxidation. In addition, the high thermal stability of the Co/g-C₃N₄-0.2 SAC structure was a key factor for maintaining the high stability of photoreduction CO₂ to methanol.

4 Conclusion

In summary, we have proposed a novel pyrolysis-induced-vaporization strategy for the fabrication of Co/g-C₃N₄ SACs with ultrahigh surface metal loading of 24.6 wt%. Such high surface loading of single Co atoms was achieved using g-C₃N₄ NSs as the substrate, because it can offer numerous uniform coordination N₂C sites for Coanchoring, followed by the two-step calcination to suppress the Co aggregation during the calcination process. The formation of the ultrahigh density of single dispersed Co-N₂C active sites promoted the migration of photogenerated carriers and helps for the localization of photogenerated electrons under light irradiation. As a result, Co/g-C₃N₄ SAC was found to be beneficial for photocatalytic CO₂ reduction to CH₃OH with high activity, high selectivity, and high stability. This work opens a new opportunity for fabricating ultrahigh surface cobalt density SACs, which can be used for diverse applications such as photocatalysis, electrocatalysis, and photoelectrocatalysis.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was financially supported by the Sichuan Provincial International Cooperation Project (2019YFH0164; 2021YFH0055), the Cheung Kong Scholars Program of China. We would like to thank the Institute for Beam Physics and Technology (IBPT) for the operation of the storage ring, the Karlsruhe Research Accelerator (KARA). We acknowledge the KIT light source for the provision of instruments at the CAT-ACT beamline of the Institute of Catalysis Research and Technology (IKFT), in particular, Dr. Tim Prüßmann and Dr. Anna Zimina (IKFT) for their help and technical support during experiments. We appreciate the calculation support from the National Supercomputing Center in Shenzhen.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version.

References

[1] T.H. Tan, B. Xie, Y.H. Ng, S.F.B. Abdullah, H.Y.M. Tang, N. Bedford, R.A. Taylor, K.-F. Aguey-Zinsou, R. Amal, J. Scott, Nat. Catal. 3 (2020) 1034-1043.

[2] D. Adekoya, M. Tahir, N.A.S. Amin, Sust. Energ. Rev. 116 (2019) 109389.

[3] X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Chem. Rev. 120 (2020) 7984-8034.

[4] C.H. Li, X. Tong, P. Yu, W. Du, J. Wu, H. Rao, Z.M.M. Wang, J. Mater. Chem. A 7 (2019) 16622-16642.

[5] S. Ning, H. Xu, Y. Qi, L. Song, Q. Zhang, S. Ouyang, J. Ye, ACS Catal. 10 (2020) 4726-4736.

[6] K.K. Mandari, J.Y. Do, A.K.R. Police, M. Kang, Appl. Catal. B: Enviorn. 231 (2018) 137-150.

[7] Y. Cao, S. Chen, Q. Luo, H. Yan, Y. Lin, W. Liu, L. Cao, J. Lu, J. Yang, T. Yao, S. Wei, Angew. Chem. Int. Ed. 56 (2017) 12191-12196.

[8] S.K. Kaiser, Z. Chen, D. Faust Akl, S. Mitchell, J. Perez-Ramirez, Chem. Rev. 120 (2020) 11703-11809.

[9] C. Gao, S. Chen, Y. Wang, J. Wang, X. Zheng, J. Zhu, L. Song, W. Zhang, Y. Xiong, Adv. Mater. 30 (2018) e1704624.

[10] K. Kim, T. Kang, M. Kim, J. Kim, Appl. Catal. B: Enviorn. 275 (2020) 119107.

[11] W. Liu, L. Cao, W. Cheng, Y. Cao, X. Liu, W. Zhang, X. Mou, L. Jin, X. Zheng, W. Che, Q. Liu, T. Yao, S. Wei, Angew. Chem. Int. Ed. 56 (2017) 9312-9317.

[12] Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L.H. Li, Y. Han, Y. Chen, S.Z. Qiao, J. Am. Chem. Soc. 139 (2017) 3336-3339.

[13] X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Chem. Rev. 120 (2020) 7984-8034.

[14] X. Wang, Y. Wang, M. Gao, J. Shen, X. Pu, Z. Zhang, H. Lin, X. Wang, Appl. Catal. B: Enviorn. 270 (2020) 118876.

[15]G. Wang, C.T. He, R. Huang, J. Mao, D. Wang, Y. Li, J. Am. Chem. Soc. 142 (2020) 19339-19345.

[16] P. Huang, J. Huang, S.A. Pantovich, A.D. Carl, T.G. Fenton, C.A. Caputo, R.L. Grimm, A.I. Frenkel, G. Li, J. Am. Chem. Soc. 140 (2018) 16042-16047.

[17] X. Xiao, L. Zhang, H. Meng, B. Jiang, H. Fu, Solar RRL 5(2020) 2000609.

[18]L. Zhao, Y. Zhang, L.B. Huang, X.Z. Liu, Q.H. Zhang, C. He, Z.Y. Wu, L.J. Zhang,

J. Wu, W. Yang, L. Gu, J.S. Hu, L.J. Wan, Nat. Commun. 10 (2019) 1278.

[19] Y. Xiong, W. Sun, Y. Han, P. Xin, X. Zheng, W. Yan, J. Dong, J. Zhang, D. Wang, Y. Li, Nano Res. 14 (2021) 2418-2423.

[20] S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang, X. Li, J. Dong, Q. Chen, W. Zhang, Z. Zhang, S. Liang, R. Yu, Y. Wang, D. Wang, Y. Li, Angew. Chem. Int. Ed. 59 (2020) 10651-10657.

[21] Y. Xiong, W.M. Sun, P.Y. Xin, W.X. Chen, X.S. Zheng, W.S. Yan, L.R. Zheng, J.C. Dong, J. Zhang, D.S. Wang, Y.D. Li, Adv. Mater. 32 (2020) e2000896.

[22] P. Chen, B. Lei, X. Dong, H. Wang, J. Sheng, W. Cui, J. Li, Y. Sun, Z. Wang, F. Dong, ACS nano 14 (2020) 15841-15852.

[23] R.Y. Zhang, P.H. Li, F. Wang, L.Q. Ye, A. Gaur, Z.A. Huang, Z.Y. Zhao, Y. Bai, Y. Zhou, Appl. Catal. B: Enviorn. 250 (2019) 273-279.

[24] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. mate. 8 (2009) 76-80.

[25]Z. Zhou, J. Wang, J. Yu, Y. Shen, Y. Li, A. Liu, S. Liu, Y. Zhang, J. Am. Chem. Soc. 137 (2015) 2179-2182.

[26] A. Zimina, K. Dardenne, M.A. Denecke, D.E. Doronkin, E. Huttel, H. Lichtenberg,S. Mangold, T. Pruessmann, J. Rothe, T. Spangenberg, R. Steininger, T. Vitova, H. Geckeis, J.D. Grunwaldt, Rev. Sci. Instrum. 88 (2017) 113113.

[27] B. Ravel, M. Newville, J. Synchrotron Radiat. 12 (2005) 537-541.

[28]Z.M. Xia, H. Zhang, K.C. Shen, Y.Q. Qu, Z. Jiang, Physica B 542 (2018) 12-19.

[29] B. Tan, Y. Ye, Z. Huang, L. Ye, M. Ma, Y. Zhou, Chinese Chem. Lett. 31 (2020) 1530-1534.

[30]Y. Cao, L. Guo, M. Dan, D.E. Doronkin, C. Han, Z. Rao, Y. Liu, J. Meng, Z. Huang, K. Zheng, P. Chen, F. Dong, Y. Zhou, Nat. Commun. 12 (2021).

[31] Y. Cao, R. Zhang, T. Zhou, S. Jin, J. Huang, L. Ye, Z. Huang, F. Wang, Y. Zhou, ACS Appl. Mater. Inter. 12 (2020) 9935-9943.

[32]Z. Rao, Y. Cao, Z. Huang, Z. Yin, W. Wan, M. Ma, Y. Wu, J. Wang, G. Yang, Y. Cui, Z. Gong, Y. Zhou, ACS Catal. 11 (2021) 4730-4738.

[33]B.C. Zhu, J.F. Zhang, C.J. Jiang, B. Cheng, J.G. Yu, Appl. Catal. B: Enviorn. 207 (2017) 27-34.

[34] F. Raziq, A. Hayat, M. Humayun, S.K. Baburao Mane, M.B. Faheem, A. Ali, Y. Zhao, S. Han, C. Cai, W. Li, D.-C. Qi, J. Yi, X. Yu, M.B.H. Breese, F. Hassan, F. Ali, A. Mavlonov, K. Dhanabalan, X. Xiang, X. Zu, S. Li, L. Qiao, Appl. Catal. B: Enviorn. 270 (2020) 118867.

[35]B.C. Zhu, L.Y. Zhang, D.F. Xu, B. Cheng, J.G. Yu, J. CO₂ Util. 21 (2017) 327-335.

[36]G. Zhang, S. Zang, L. Lin, Z.A. Lan, G. Li, X. Wang, ACS Appl. Mater. Inter. 8 (2016) 2287-2296.

[37] R.Y. Zhang, M.Z. Ma, Q. Zhang, F. Dong, Y. Zhou, Appl. Catal. B: Enviorn. 235

(2018) 17-25.

[38]H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Mater. 29 (2017) 1605148.

[39]H. Yu, L. Shang, T. Bian, R. Shi, G.I. Waterhouse, Y. Zhao, C. Zhou, L.Z. Wu, C.H. Tung, T. Zhang, Adv. Mater. 28 (2016) 5080-5086.

[40] W. Wang, Y. Huang, Z. Wang, Acta Phys. Chim. Sin. 0 (2020) 2011073-2011070.

[41]F. Yu, L. Wang, Q. Xing, D. Wang, X. Jiang, G. Li, A. Zheng, F. Ai, J.-P. Zou, Chinese Chem. Lett. 31 (2020) 1648-1653.

[42] J. Ge, L. Zhang, J. Xu, Y. Liu, D. Jiang, P. Du, Chinese Chem. Lett. 31 (2020) 792-796.

[43] P.W. Chen, K. Li, Y.X. Yu, W.D. Zhang, Appl. Surf. Sci. 392 (2017) 608-615.

[44] A.Y. Makoto Yuasa, K.T. Hisayuki Itsuki, a.K.O. Masakuni Yamamoto, Chem. Mater. 17 (2005) 4278-4281.

[45] T.L. Feng, Q.S. Zeng, S.Y. Lu, M.X. Yang, S.Y. Tao, Y.X. Chen, Y. Zhao, B. Yang, ACS Sustain. Chem. Eng. 7 (2019) 7047-7057.

[46]G. Zhang, C. Huang, X. Wang, Small 11 (2015) 1215-1221.

[47]X. Rong, H.J. Wang, X.L. Lu, R. Si, T.B. Lu, Angew. Chem. Int. Ed. 59 (2020) 1961-1965.

[48] Y. Cao, S. Chen, Q. Luo, H. Yan, Y. Lin, W. Liu, L. Cao, J. Lu, J. Yang, T. Yao, S. Wei, Angew. Chem. Int. Ed. 56 (2017) 12191-12196.

[49] J.B. Wu, H. Zhou, Q. Li, M. Chen, J. Wan, N.A. Zhang, L.K. Xiong, S. Li, B.Y. Xia, G. Feng, M.L. Liu, L. Huang, Adv. Energy Mater. 9 (2019).

[50] J.B. Wu, L.K. Xiong, B.T. Zhao, M.L. Liu, L. Huang, Small Methods 4 (2020) 1900540.

[51]S.P. Ding, M.J. Hulsey, J. Perez-Ramirez, N. Yang, Joule 3 (2019) 2897-2929.

[52] X. Du, G. Zou, Z. Wang, X. Wang, Nanoscale 7 (2015) 8701-8706.

[53] Y.G. Xu, M. Xie, S.Q. Huang, H. Xu, H.Y. Ji, J.X. Xia, Y.P. Li, H.M. Li, RSC Adv. 5 (2015) 26281-26290.

[54]H.J. Yan, X.H. Xie, K.W. Liu, H.M. Cao, X.J. Zhang, Y.L. Luo, Powder Technol. 221 (2012) 199-202.

[55] T. Cseri, S. Békássy, G. Kenessey, G. Liptay, F. Figueras, Thermochimica Acta 288 (1996) 137-154.

[56] Y.T. Qu, Z.J. Li, W.X. Chen, Y. Lin, T.W. Yuan, Z.K. Yang, C.M. Zhao, J. Wang, C. Zhao, X. Wang, F.Y. Zhou, Z.B. Zhuang, Y. Wu, Y.D. Li, Nat. Catal. 1 (2018) 781-786.

[57] S. Shwan, M. Skoglundh, L.F. Lundegaard, R.R. Tiruvalam, T.V.W. Janssens, A. Carlsson, P.N.R. Vennestrøm, ACS Catal. 5 (2014) 16-19.

[58] L. He, W. Zhang, S. Liu, Y. Zhao, Appl. Catal. B: Enviorn. 298 (2021) 120546.

[59]G.X. Zhao, H. Pang, G.G. Liu, P. Li, H.M. Liu, H.B. Zhang, L. Shi, J.H. Ye, Appl. Catal. B: Enviorn. 200 (2017) 141-149.

[60] J. Zhou, W. Chen, C. Sun, L. Han, C. Qin, M. Chen, X. Wang, E. Wang, Z. Su, ACS Appl. Mater. Inter. 9 (2017) 11689-11695.

[61] P. Sharma, S. Kumar, O. Tomanec, M. Petr, J. Zhu Chen, J.T. Miller, R.S. Varma, M.B. Gawande, R. Zboril, Small 17 (2021) e2006478.

[62] L.J. Fang, X.L. Wang, Y.H. Li, P.F. Liu, Y.L. Wang, H.D. Zeng, H.G. Yang, Appl. Catal. B: Enviorn. 200 (2017) 578-584.

[63] D.M. Schultz, T.P. Yoon, Science 343 (2014) 1239176.

[64] C. Gao, Q. Meng, K. Zhao, H. Yin, D. Wang, J. Guo, S. Zhao, L. Chang, M. He, Q. Li, H. Zhao, X. Huang, Y. Gao, Z. Tang, Adv. Mater. 28 (2016) 6485-6490.

[65]S.N. Talapaneni, G. Singh, I.Y. Kim, K. AlBahily, A.H. Al-Muhtaseb, A.S. Karakoti, E. Tavakkoli, A. Vinu, Adv. Mater. (2019) e1904635.

[66] C. Feng, L. Tang, Y. Deng, J. Wang, Y. Liu, X. Ouyang, H. Yang, J. Yu, J. Wang, Appl. Catal. B: Enviorn. 281 (2021) 119539.

[67]Z. Teng, Q. Zhang, H. Yang, K. Kato, W. Yang, Y.-R. Lu, S. Liu, C. Wang, A. Yamakata, C. Su, B. Liu, T. Ohno, Nat. Catal. 4 (2021) 374-384.

[68] Q.Q. Song, J.Q. Li, L. Wang, Y. Qin, L.Y. Pang, H. Liu, J. Catal. 370 (2019) 176-185.

[69] L. Liu, H. Zhao, J.M. Andino, Y. Li, ACS Catal. 2 (2012) 1817-1828.

[70] C. Han, R. Zhang, Y. Ye, L. Wang, Z. Ma, F. Su, H. Xie, Y. Zhou, P.K. Wong, L. Ye, J. Mater. Chem. A 7 (2019) 9726-9735.

[71]M.M. Millet, G. Algara-Siller, S. Wrabetz, A. Mazheika, F. Girgsdies, D. Teschner, F. Seitz, A. Tarasov, S.V. Levchenko, R. Schlogl, E. Frei, J. Am. Chem. Soc. 141 (2019) 2451-2461.

[72] S. Neatu, J.A. Macia-Agullo, P. Concepcion, H. Garcia, J. Am. Chem. Soc. 136 (2014) 15969-15976.

[73] N. Ojha, A. Bajpai, S. Kumar, Catal. Sci. Technol. 9 (2019) 4598-4613.

[74] N.N. Vu, S. Kaliaguine, T.O. Do, Adv. Funct. Mater. 29 (2019) 1901825.

[75]X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Nat. Energy 4 (2019) 690-699.

Supplementary Information

Ultrahigh surface density of Co-N₂C single-atom-sites for boosting photocatalytic CO₂ reduction to methanol

Minzhi Ma^{[a], [b]}, Zeai Huang^{*[a], [b]}, Dmitry E. Doronkin^[c], Wenjun Fa^[d], Zhiqiang Rao^[b], Yanzhao Zou^[b], Rui Wang^[b], Yunqian Zhong^[b], Yuehan Cao^[b], Ruiyang Zhang^[b], and Ying Zhou^{*[a], [b]}

[a] State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University Chengdu, 610500, China

E-mail: zeai.huang@swpu.edu.cn, yzhou@swpu.edu.cn

Fax: +86 28 83037406; Tel: +86 28 83037411

[b] School of New Energy and Materials, Southwest Petroleum University Chengdu, 610500, China

[c] Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer

Chemistry, Karlsruhe Institute of Technology Karlsruhe, 76131, Germany

[d] Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province & College of Advanced Materials and Energy, Xuchang University Henan, 461000, China

* Corresponding author: Zeai Huang; Ying Zhou (zeai.huang@swpu.edu.cn, yzhou@swpu.edu.cn)

Table of contents

	1.1 Morphology of samples	4
	1.2 AC-HAADF-STEM image and EDX mapping	5
	1.3 AC-HAADF-STEM image	6
	1.4 EDX spectrum	7
	1.5 High-resolution Co 1s XPS spectrum	8
	1.6 XRD patterns of CoC _x N _y	9
	1.7 EXAFS spectra	10
	1.8 The morphology of the samples	11
	1.9 The color of the samples	12
	1.10 XRD patterns of bulk g-C ₃ N ₄ and g-C ₃ N ₄ -NSs	13
	1.11 XRD patterns of Co/bulk-g-C ₃ N ₄ -0.2	14
	1.12 Color of the tube furnace after pyrolyzing	15
	1.13 The XRD patterns	16
	1.14 TG curve	17
	1.15 TEM and HR TEM images	18
	1.16 Isotope experiment	19
	1.17 Recycle experiments	20
	1.18 Gas chromatographic signal	21
	1.19 TG experiment and characterizations for reused sample	22
	1.20 Tauc plots	23
	1.21 Elemental analysis	24
	1.22 The Co K-edge EXAFS fitting parameters	25
	1.23 Recent reported SACs with high metal loading (> 10 wt%)	26
	1.24 BET results	27
	1.25 Compared with the reported work	28
Suj	pplementary References	30

1.1 Morphology of samples

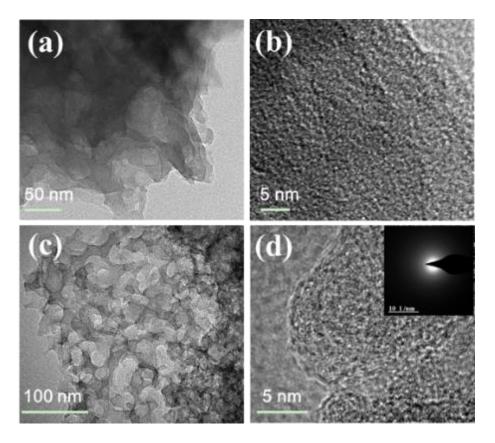
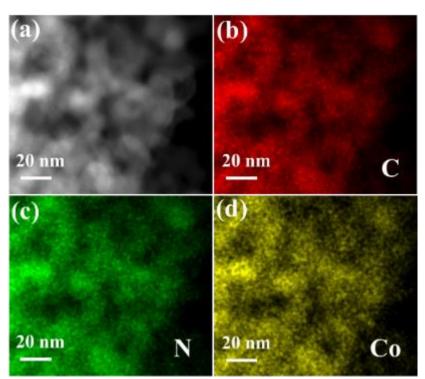
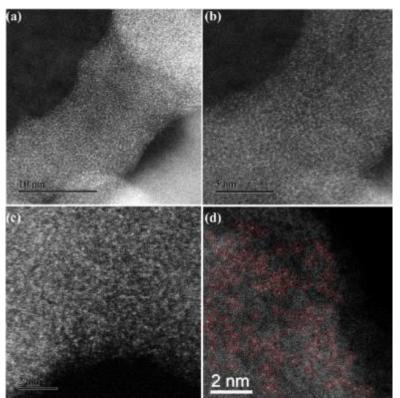
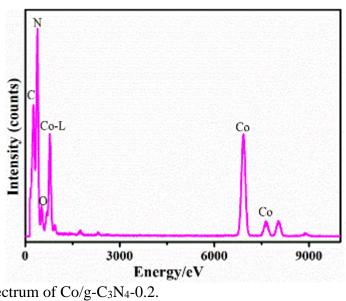



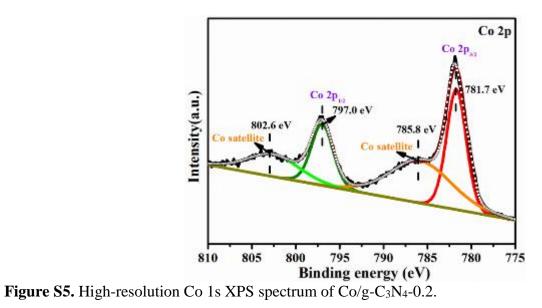
Figure S1. TEM (a,c) and HR-TEM (b, d) images of $g-C_3N_4$ and $Co/g-C_3N_4-0.2$

1.2 AC-HAADF-STEM image and EDX mapping

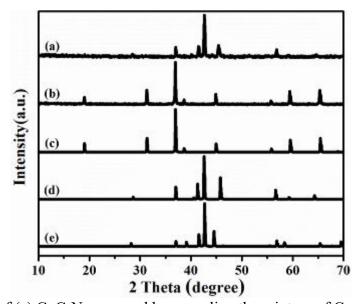
Figure S2. (a) AC-HAADF-STEM image and the corresponding EDX mapping of (b) carbon, (c) nitrogen, and (d) cobalt elements of $Co/g-C_3N_4-0.2$.

1.3 AC-HAADF-STEM image

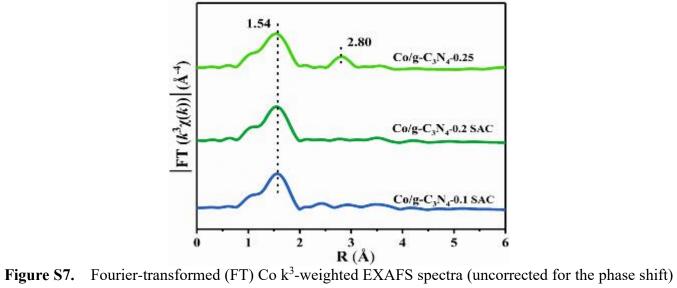




Figure S3. AC-HAADF-STEM image of Co/g-C₃N₄-0.2

1.4 EDX spectrum


Figure S4. The EDX spectrum of Co/g-C₃N₄-0.2.

1.5 High-resolution Co 1s XPS spectrum


8

1.6 XRD patterns of CoC_xN_y

Figure S6. XRD patterns of (a) CoC_xN_y prepared by annealing the mixture of Co_3O_4 and g-C₃N₄-NSs at 550 °C for 1 h at Ar atmosphere, (b) commercial Co_3O_4 , (c) Co_3O_4 -JCPDS 74-1657 reference, (d) Co_2C -JCPDS 72-1369 reference, and (e) Co_2N -JCPDS 72-1368 reference, respectively.

1.7 EXAFS spectra

of Co/g-C₃N₄-0.1 SAC, Co/g-C₃N₄-0.2 SAC, and Co/g-C₃N₄-0.25.

1.8 The morphology of the samples

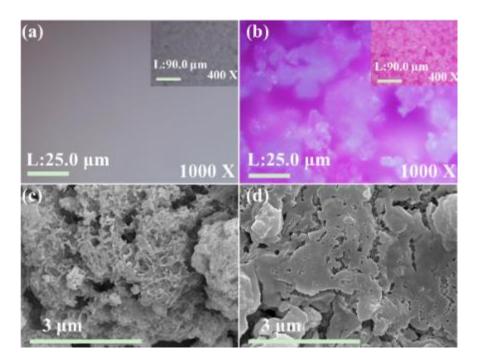
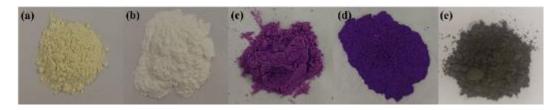



Figure S8. The optical images and SEM images of (a, c) $g-C_3N_4$ -NSs and (b, d) the mixture of $g-C_3N_4$ -NSs and $Co(NO_3)_2$ ·6H₂O;

1.9 The color of the samples

Figure S9. The color of the samples (a) $g-C_3N_4$, (b) $g-C_3N_4-NS_5$, (c) the mixture of $Co(NO_3)_2 \cdot 6H_2O$ and $g-C_3N_4-NS_5$, (d) the mixture of $Co(NO_3)_2 \cdot 6H_2O$ and $g-C_3N_4-NS_5$ after pre-drying at 130 °C for 9 h, (e) $Co/g-C_3N_4-0.2$ SAC.

1.10 XRD patterns of bulk $g-C_3N_4$ and $g-C_3N_4$ -NSs

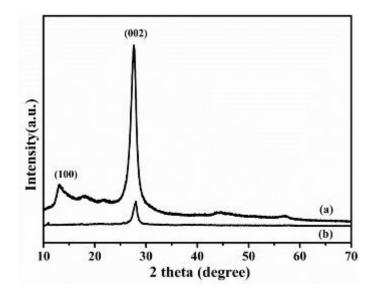
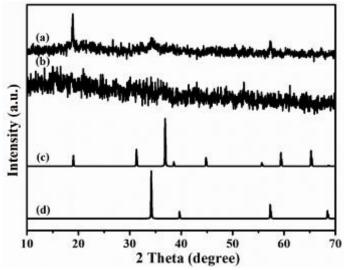
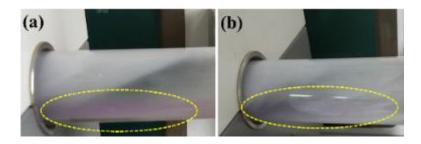
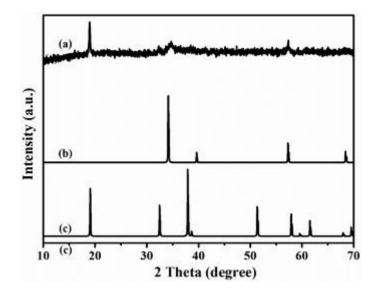


Figure S10. XRD patterns of (a) bulk g-C₃N₄, (b) g-C₃N₄-NSs.

1.11 XRD patterns of Co/bulk-g-C₃N₄-0.2


Figure S11. (a) The XRD patterns of (a) $CoO_x/g-C_3N_4-0.2$, (b) $Co/g-C_3N_4-0.2$ SAC, (c) Co_3O_4 -JCPDS 42-1467, and (d) CoO-JCPDS 42-1300.

1.12 Color of the tube furnace after pyrolyzing

Figure S12. Color of the tube furnace after pyrolyzing the mixture of $Co(NO_3)_2 \cdot 6H_2O$ and $g-C_3N_4-NSs$ (a) $Co/g-C_3N_4-0.2$ SACs prepared by two-step calcination, (b) m-Co/g-C₃N₄-0.2 prepared by one-step calcination.

1.13 The XRD patterns

Figure S13. The XRD patterns of (a) Co/g-C₃N₄-0.2 prepared by one-step calcination without the pre-drying treatment process (130 °C), (b) CoO-JCPDS 42-1300, and (c) Co(OH)₂-JCPDS 30-0443.

1.14 TG curve

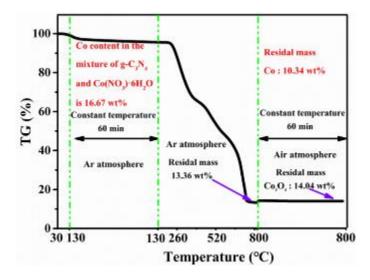


Figure S14. The TG curve of the mixture of $g-C_3N_4$ -NSs and $Co(NO_3)_2 \cdot 6H_2O$.

1.15 TEM and HR TEM images

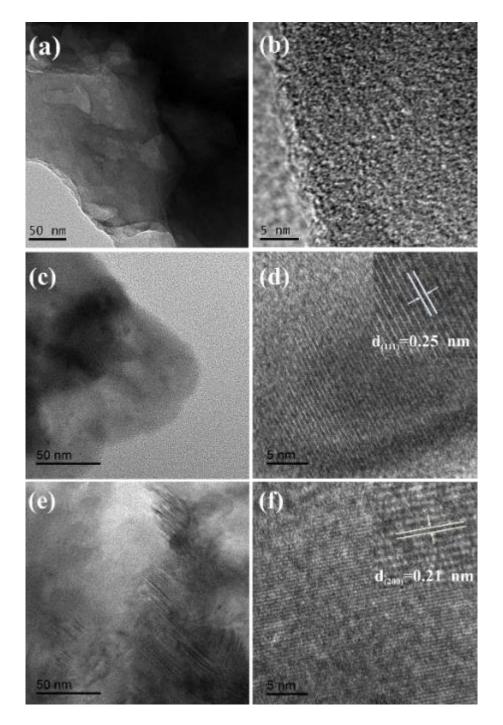


Figure S15. TEM (a, c, e) and HR-TEM (b, d, f) images of $Co/g-C_3N_4-0.1$ SAC, $Co/g-C_3N_4-0.25$, and $CoO_x/g-C_3N_4-0.2$.

1.16 Isotope experiment

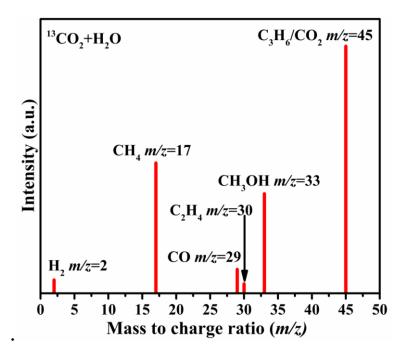
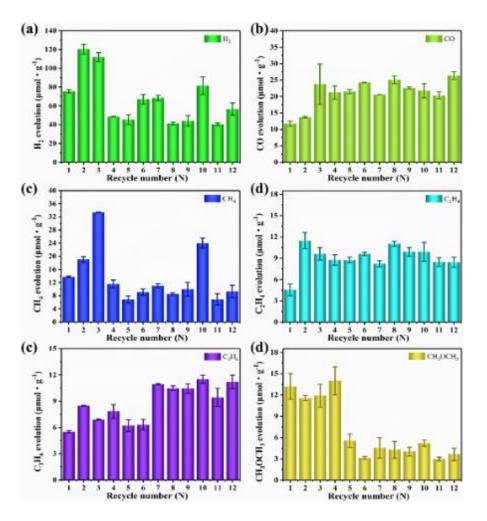



Figure S16. Mass spectra obtained during the photocatalytic conversion of ${}^{13}CO_2$ over Co/g-C₃N₄-0.2 SAC.

1.17 Recycle experiments

Figure S17. (a) H₂, (b) CO, (c) CH₄, (d) C₂H₄, (e) C₃H₆, and (f) CH₃OCH₃ production corresponding to cycle experiments of Co/g-C₃N₄-0.2 SAC.

1.18 Gas chromatographic signal

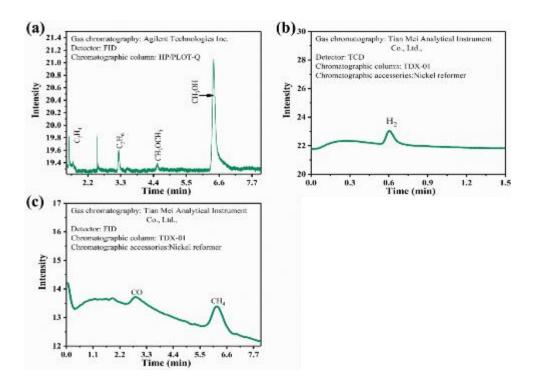
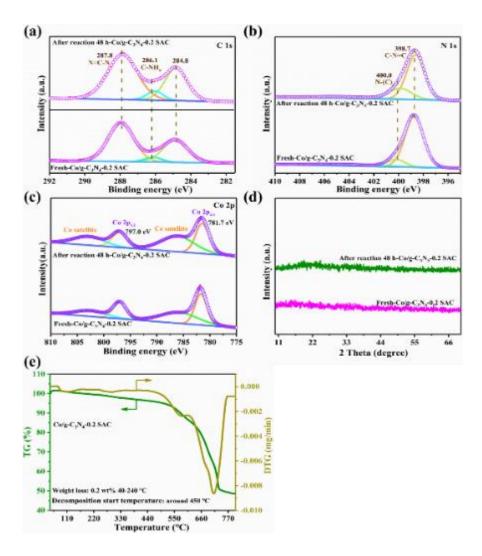



Figure S18. Results of GC analysis in the photoreduction of CO2 reaction of the sample of $Co/g-C_3N_4-0.2$ SAC after light irradiation 4 h.

1.19 TG experiment and characterizations for reused sample

Figure S19. High-resolution C 1s (a), N 1s (b), and (c) Co 2p XPS spectra of Co/g-C₃N₄-0.2 SAC after reaction 48 h; (e) XRD patterns of photocatalysts; (e) TG curves of Co/g-C₃N₄-0.2 SAC.

1.20 Tauc plots

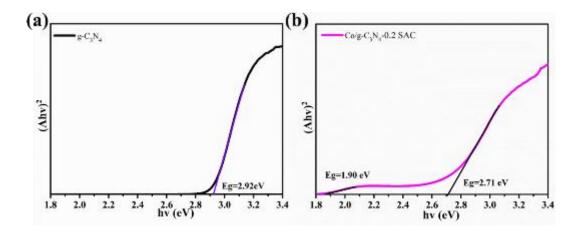


Figure S20. Tauc plots of the three samples. (a) $g-C_3N_4$, (b) $Co/g-C_3N_4$ -0.2 SAC.

1.21 Elemental analysis

Samples		Cont	ent of ele	ment (w	rt %)		Molar	[.] ratio (a	t %)
	Со	Ν	С	Н	0	S	Total	C/N	Co
g-C ₃ N ₄ -NSs	-	52.0	25.0	2.8	24.2	0.6	104.6	0.56	-
g-C ₃ N ₄	-	54.4	28.9	2.4	15.3	0.1	101.1	0.62	-
Co/g-C ₃ N ₄ -0.10	14.3	43.5	24.9	1.8	14.9	0.8	100.2	0.68	3.0
Co/g-C ₃ N ₄ -0.20	29.3	38.7	21.8	1.4	9.4	0.8	101.4	0.66	6.8
Co/g-C ₃ N ₄ -0.25	36.1	31.8	17.6	1.6	13.4	0.7	101.2	0.65	8.9

Table S1. The ICP-AES results for cobalt element and EA results for C, N, H, O, and S elements.

1.22 The Co K-edge EXAFS fitting parameters

Samples	bonds	CN	R (Å)	σ ² (10 ⁻³ Å ²)	ΔE (eV)	χ_v^2 / R factor	S ₀ ²
Со	Co-Co	12 ^f	2.49(±0.02)	6.6(±3.1)	$6.7(\pm 0.8)$	273/0.0003	0.87
$Co(NO_3)_2$	Co-O	6 ^f	$2.07(\pm 0.01)$	$6.6(\pm 1.1)$	3.5(±1.1)	98/0.001	$0.70^{ m f}$
CoO	Co-O	6 ^f	$2.08(\pm 0.06)$	9.3(±3.7)	$6.9(\pm 1.9)$	371/0.004	0.87
	Co-Co	12 ^f	$2.96(\pm 0.06)$	9.3(±3.7)	$6.9(\pm 1.9)$		
Co ₃ O ₄	Co-O	6 ^f	$1.96(\pm 0.05)$	3.0 ^f	$-0.8(\pm 1.9)$	5/0.005	$0.70^{ m f}$
	Co-Co ₁	6 ^f	2.91(±0.06)	$4.7(\pm 1.0)$	$-0.3(\pm 3.4)$		
	Co-Co ₂	6 ^f	$3.38(\pm 0.04)$	3.5(±1.1)	$-8.6(\pm 4.0)$		
Co/g-C ₃ N ₄ -0.2	Co-N	$2^{\rm f}$	$2.07(\pm 0.03)$	6.2(±1.3)	9.3(±2.8)	240/0.009	$1.00^{ m f}$
SAC	Co-C	1 ^f	2.21(±0.04)	$1.4(\pm 2.5)$	9.3(±2.8)		

Table S2. Structural parameters obtained from the Co K-edge EXAFS fits.

f - Fixed to the given set value during the fit. The corresponding error bars are given in brackets.

1.23 Recent reported SACs with high metal loading (> 10 wt%).

Materials Loading [wt%, Ref.		Ref.	Materials	Loading [wt%, ICP]	Ref.
Co/g-C ₃ N ₄ SAC	29.3 (XPS 24.6)	This work	SCoNC	15.3	[1]
Co-NC SAC	12.1	[2]	$h-Pt_1-CuS_x$	24.8 at%	[3]
HPC-800	11.3	[3]	NiSA-N-CNTs	20.3 (EDS)	[4]
SAS-Fe	30.0	[5]	SWNT/Pt	10.2 (XPS)	[6]
Cu–N–C	20.9	[7]	Co@Co-N-C-A NHs	19.4	[8]

 Table S3. Recent advances for SACs with different metal loadings.

1.24 BET results

Samples	Sbet(m ² /g)	pore volume (cm ³ /g)	pore size (nm)
g-C ₃ N ₄	5.0	0.016	12.9
g-C ₃ N ₄ -NSs	22.2	0.16	28.4
Co/g-C ₃ N ₄ -0.1 SAC	18.6	0.12	13.8
Co/g-C ₃ N ₄ -0.2 SAC	70.4	0.37	21.0
$Co/g-C_3N_4-0.25$	29.2	0.21	9.4
$CoO_x/g-C_3N_4-0.2$	27.7	0.13	19.2

Table S4. The surface area, pore structure parameters, and particles size.

1.25 Compared with the reported work

Table S5. Comparison of photocatalytic activity of Co/g-C₃N₄ SAC with other photocatalyst.

Photocatalyst	conditions	sacrificial agent	CO production rate (µmol g ⁻¹ h ⁻¹)	CH4 rate (µmol g ⁻¹ h ⁻¹)	CH3OH rate (µmol g ⁻¹ h ⁻¹)	Ref.
Co/g-C ₃ N ₄ -0.2	Catalyst: 5 mg; CO ₂ : 99.999 %; Water:1 mL; Light source: 300W Xe lamp	-	2.9	3.4	235.5	This work
Zn _x Cd _{1-x} S/Au@g-C ₃ N ₄	Catalyst: 50 mg; CO ₂ : 99.99 9%; Water: vapor; NaHCO ₃ : 0.084 g; H ₂ SO ₄ : aqueous solution (0.3 mL, 0.2 M) Light source: 300W Xe lamp with a 420 nm cut off filter.	-	-	-	1.31	[9]
RuSA–mC ₃ N ₄	Catalyst: 50 mg CO ₂ : saturating the solution with CO ₂ , water and DMF mixture;Blue LED grow Light, wavelength range 400-500-34W (1.5A, H150, kessil)	-	-	-	250	[10]
α -Fe ₂ O ₃ /g-C ₃ N ₄	Catalyst: 10 mg; CO ₂ : 99.99 9%; Water:40 mL; Light source: 300W Xe lamp with a 420 nm cut off filter	-	-	-	5.63	[11]
$Zn_{0.2}Cd_{0.8}S/g$ -C ₃ N ₄	Catalyst: 10 mg; CO ₂ : 99.99 9%; Water:20 mL; Light source: 300W Xe lamp with a 420 nm cut off filter	-	-	-	11.5	[12]
mCD/CN	Catalyst: 10 mg; CO ₂ : 99.99 9%; Water:10	-	-	-	13.9	[13]

	mL; Light source: 300W Xe lamp					
a-Mo/C ₃ N ₄	Catalyst: 50 mg; CO ₂ : 99.99 9%; Water:20 mL; Light source: 300W Xe lamp with a 420 nm cut off filter	-	18	0.13	0	[14]
$Co^{2+}@C_3N_4$	Catalyst: 1 mg; CO ₂ : 99.999 %; Acetonitrile: 4 ml, bubble CO ₂ ; Light source: halogen lamp with a 420 nm cut off filter	Triethanolamine	30	-	0	[15]
Co-porphyrin/PCN	CO ₂ : 99.999 %; Acetonitrile: 4 ml, CO ₂ : 80 kPa; Light source: 300W Xe lamp with $400 < \lambda < 800$ nm	Triethanolamine	17	0.7	0	[16]
MOF-525-Co	Catalyst: 2 mg; CO ₂ : 99.999%; Acetonitrile: 2 ml, bubble CO ₂ ; Light source: 300W Xe lamp with a 400 < λ < 800 nm cut off filter	Triethanolamine	200.6	36.7	0	[17]
Co-Bi ₃ O ₄ Br	Catalyst: 30 mg; CO2: 99.999 %; Water:50 mL; Light source: 300W Xe lamp	-	107.1	-	0	[18]

Supplementary References

- [1] J.B. Wu, H. Zhou, Q. Li, M. Chen, J. Wan, N.A. Zhang, L.K. Xiong, S. Li, B.Y. Xia, G. Feng, M.L. Liu, L. Huang, Adv. Energy Mater. 9 (2019).
- [2] L. Zhao, Y. Zhang, L.B. Huang, X.Z. Liu, Q.H. Zhang, C. He, Z.Y. Wu, L.J. Zhang, J. Wu, W. Yang, L. Gu, J.S. Hu, L.J. Wan, Nat. Commun. 10 (2019) 1278.
- [3] R. Shen, W. Chen, Q. Peng, S. Lu, L. Zheng, X. Cao, Y. Wang, W. Zhu, J. Zhang, Z. Zhuang, C.
 Chen, D. Wang, Y. Li, Chem 5 (2019) 2099-2110.
- Y. Cheng, S. Zhao, B. Johannessen, J.P. Veder, M. Saunders, M.R. Rowles, M. Cheng, C. Liu,
 M.F. Chisholm, R. De Marco, H.M. Cheng, S.Z. Yang, S.P. Jiang, Adv. Mater. 30 (2018)
 e1706287.
- [5] Y. Xiong, W.M. Sun, P.Y. Xin, W.X. Chen, X.S. Zheng, W.S. Yan, L.R. Zheng, J.C. Dong, J. Zhang, D.S. Wang, Y.D. Li, Adv. Mater. 32 (2020) e2000896.
- [6] M. Tavakkoli, N. Holmberg, R. Kronberg, H. Jiang, J. Sainio, E.I. Kauppinen, T. Kallio, K. Laasonen, ACS Catal. 7 (2017) 3121-3130.
- [7] F. Li, G.-F. Han, H.-J. Noh, S.-J. Kim, Y. Lu, H.Y. Jeong, Z. Fu, J.-B. Baek, Energy Environ. Sci.
 11 (2018) 2263-2269.
- [8] S.L. Zhao, J. Yang, M. Han, X.M. Wang, Y. Lin, R. Yang, D.D. Xu, N.E. Shi, Q. Wang, M.J. Yang, Z.H. Dai, J.C. Bao, Appl. Catal. B: Environ. 260 (2020) 118207.
- [9] P. Madhusudan, R. Shi, S. Xiang, M. Jin, B.N. Chandrashekar, J. Wang, W. Wang, O. Peng, A. Amini, C. Cheng, Appl. Catal. B: Environ. 282 (2021) 119600.
- [10] P. Sharma, S. Kumar, O. Tomanec, M. Petr, J. Zhu Chen, J.T. Miller, R.S. Varma, M.B. Gawande, R. Zboril, Small 17 (2021) e2006478.

- [11] H. Guo, M. Chen, Q. Zhong, Y. Wang, W. Ma, J. Ding, J. CO₂ Util. 33 (2019) 233-241.
- [12] H. Guo, J. Ding, S. Wan, Y. Wang, Q. Zhong, Appl. Surf. Sci. 528 (2020) 146943.
- [13] Y. Wang, X. Liu, X. Han, R. Godin, J. Chen, W. Zhou, C. Jiang, J.F. Thompson, K.B. Mustafa, S.A. Shevlin, J.R. Durrant, Z. Guo, J. Tang, Nat. Commun. 11 (2020) 2531.
- [14] R.Y. Zhang, P.H. Li, F. Wang, L.Q. Ye, A. Gaur, Z.A. Huang, Z.Y. Zhao, Y. Bai, Y. Zhou, Appl. Catal. B: Enviorn. 250 (2019) 273-279.
- [15] P. Huang, J. Huang, S.A. Pantovich, A.D. Carl, T.G. Fenton, C.A. Caputo, R.L. Grimm, A.I. Frenkel, G. Li, J. Am. Chem. Soc. 140 (2018) 16042-16047.
- [16] G.X. Zhao, H. Pang, G.G. Liu, P. Li, H.M. Liu, H.B. Zhang, L. Shi, J.H. Ye, Appl. Catal. B: Enviorn. 200 (2017) 141-149.
- [17]H.B. Zhang, J. Wei, J.C. Dong, G.G. Liu, L. Shi, P.F. An, G.X. Zhao, J.T. Kong, X.J. Wang, X.G. Meng, J. Zhang, J.H. Ye, Angew. Chem. Int. Ed. 55 (2016) 14308-14312.
- [18] J. Di, C. Chen, S.Z. Yang, S. Chen, M. Duan, J. Xiong, C. Zhu, R. Long, W. Hao, Z. Chi, H. Chen, Y.X. Weng, J. Xia, L. Song, S. Li, H. Li, Z. Liu, Nat. Commun. 10 (2019) 2840.