KIT | KIT-Bibliothek | Impressum | Datenschutz

What to Prioritize? Natural Language Processing for the Development of a Modern Bug Tracking Solution in Hardware Development

Do Thi, Thu Hang; Dobler, Markus; Kühl, Niklas ORCID iD icon

Abstract:

Managing large numbers of incoming bug reports and finding the most critical issues in hardware development is time consuming, but crucial in order to reduce development costs.

In this paper, we present an approach to predict the time to fix, the risk and the complexity of debugging and resolution of a bug report using different supervised machine learning algorithms, namely Random Forest, Naive Bayes, SVM, MLP and XGBoost. Further, we investigate the effect of the application of active learning and we evaluate the impact of different text representation techniques, namely TF-IDF, Word2Vec, Universal Sentence Encoder and XLNet on the model's performance. The evaluation shows that a combination of text embeddings generated through the Universal Sentence Encoder and MLP as classifier outperforms all other methods, and is well suited to predict the risk and complexity of bug tickets.


Zugehörige Institution(en) am KIT Institut für Wirtschaftsinformatik und Marketing (IISM)
Karlsruhe Service Research Institute (KSRI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 06.01.2022
Sprache Englisch
Identifikator ISBN: 9780998133157
ISSN: 1530-1605
KITopen-ID: 1000137329
Erschienen in Proceedings of the Hawaii International Conference on Systems Sciences (HICSS-55)
Veranstaltung 55th Hawaii International Conference on System Sciences (HICSS 2022), Online, 03.01.2022 – 07.01.2022
Verlag IEEE Computer Society
Seiten 798-807
Serie Proceedings of the Annual Hawaii International Conference on System Sciences
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page