
Software and Systems Modeling
https://doi.org/10.1007/s10270-021-00896-9

SPEC IAL SECT ION PAPER

Model-based resource analysis and synthesis of service-oriented
automotive software architectures

Stefan Kugele1 · Philipp Obergfell2 · Eric Sax3

Received: 2 March 2020 / Revised: 7 March 2021 / Accepted: 3 May 2021
© The Author(s) 2021

Abstract
Context Automotive software architectures describe distributed functionality by an interaction of software components. One
drawback of today’s architectures is their strong integration into the onboard communication network based on predefined
dependencies at design time. The idea is to reduce this rigid integration and technological dependencies. To this end, service-
oriented architecture offers a suitable methodology since network communication is dynamically established at run-time.
Aim We target to provide a methodology for analysing hardware resources and synthesising automotive service-oriented
architectures based on platform-independent service models. Subsequently, we focus on transforming these models into a
platform-specific architecture realisation process following AUTOSAR Adaptive.
Approach For the platform-independent part, we apply the concepts of design space exploration and simulation to analyse and
synthesise deployment configurations, i. e., mapping services to hardware resources at an early development stage. We refine
these configurations to AUTOSAR Adaptive software architecture models representing the necessary input for a subsequent
implementation process for the platform-specific part.
Result We present deployment configurations that are optimal for the usage of a given set of computing resources currently
under consideration for our next generation of E/E architecture.We also provide simulation results that demonstrate the ability
of these configurations to meet the run time requirements. Both results helped us to decide whether a particular configuration
can be implemented. As a possible software toolchain for this purpose, we finally provide a prototype.
Conclusion The use of models and their analysis are proper means to get there, but the quality and speed of development
must also be considered.

Keywords Service-oriented architecture · Real-time behaviour · Model-based design · Automotive architectures

Communicated by Tao Yue, Man Zhang, and Silvia Abrahao.

B Stefan Kugele
Stefan.Kugele@thi.de

Philipp Obergfell
Philipp.Obergfell@bmw.de

Eric Sax
eric.sax@kit.edu

1 Technische Hochschule Ingolstadt, Research Institute
AImotion Bavaria, 85049 Ingolstadt, Germany

2 BMW Group Research, New Technologies, Innovations,
85748 Garching bei München, Germany

3 Karlsruhe Institute of Technology, Institute for Information
Processing Technologies, 76131 Karlsruhe, Germany

1 Introduction

During the last decades, thousands of primarily software-
controlled functions were included in modern cars, which
are executed on many electronic control units (ECU). Their
particular characteristics reach from non-safety-critical to
safety-critical and real-time-critical functions.Driving forces
for this development were: (i) safety requirements, (ii)
customer demands for more comfort and the newest info-
tainment systems, and (iii) advanced driver assistance sys-
tems allowing to reach higher levels of driving automation
(cf. [88]).

1.1 Status quo

These driving forces led to the current electric/electronic
(E/E) architectures best characterised as historically grown,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00896-9&domain=pdf
http://orcid.org/0000-0002-9833-4548


S. Kugele et al.

mostly federated, partly integrated architectures with often
pragmatic, cost-efficient, and ad hoc solutions. More than
100 purpose-built ECUs realise in an interplay of timed sig-
nals sent via heterogeneous bus systems (e. g. CAN, LIN,
FlexRay, or Ethernet) with gateway structures the func-
tions’ behaviours. Current automotive software architectures
mainly follow the idea of static communication paths in
line with the AUTOSAR Classic Platform [7]. Here, dis-
tributed software applications are already strictly bound to
ECUs at the development stage to enable exchanging mes-
sages between them. This, however, impairs the possibility
of developing both parts independently of each other. This
ECU or message-centric focus cannot cope with future chal-
lenges in automotive software and systems engineering. To
promote faster adoption of innovative features and services,
more agile development methodologies need to be built into
established processes. A lot of research effort is currently put
into developing all-new E/E architectures that will be even
better equipped for future trends, innovations, and new tech-
nologies [49,95]. We see three fundamental changes in the
automotive industry requiring new approaches for develop-
ment at design-time as well as for operation during run-time:
Challenge 1—Automation : Driving at higher levels of
driving automation (i. e., levels 3–5 according to SAE
J3016 [88]) requires a particular focus on functional safety
and security. Liabilities switch from the driver to the car
vendors in automated driving beginning with level 3. At
conditional automation such as highway pilots, the car fully
controls in a particular operational situation the vehicle (lon-
gitudinal and lateral movement) without the need to be
monitored by the human driver. Regulatory authorities will
require by law to continuously improve those safety-critical
functions, i. e., fix possible errors and update crucial com-
ponents to the state-of-the-art. Necessary machine learning
models are trained in OEMs’ backends and need to be deliv-
ered continuously.
Challenge 2—Intelligence : Machine learning is an emerg-
ing and cross-disciplinary field that is making great strides
in innovative and automated vehicle functions. Sophisticated
smart capabilities and highly personalised functions are
no longer a future vision but can already be found today.
Machine learning requires a lot of data to be useful. E/E
architectures need to be able to transmit, store, and process
this data, which poses requirements on bandwidth, comput-
ing power, and communication topology.
Challenge 3—Connectivity : Experts are sure that reaching
level 5 of driving automation can only be achieved through
car-to-x (car, infrastructure, backend) communication. Vehi-
cles are in use formore than 15 years on average. Information
technology improves rapidly during that period: E.g. an
encryption algorithm used for backend or car-to-car commu-
nication can become outdated and not be considered secure

anymore and has to be updated after almost a decade. Hence,
possible attack surfaces need to be mitigated continuously.

Table 1 summarises essential aspects that have already
partially changed today, but most will change—that is our
firm belief—in the future.

1.2 Future perspective

To cope with these challenges, besides a scalable and per-
formant computing platform, software architecture plays a
critical role. When designing a system’s software architec-
ture, the primary goals are to develop safe, performant, flex-
ible, adaptive, and maintainable systems. Service-oriented
architectures (SOA) are known for supporting the design of
flexible systems. In contrast to existing Controller Area Net-
work (CAN)-based approaches combined with AUTOSAR
Classic, service-oriented approaches allow for late binding
at run-time facilitating the integration of new functionalities
and services at run-time.

Automotive OEMs are on the way to steadily substitute
legacy communication by includingmore andmore IP-based
communication technologies into their vehicles, which sup-
ports a better separationof software andhardware.At the very
core of the presented approach is the principle of service-
orientation. The combination of IP-based communication
and SOA allows to add, update, remove, or start and stop
services at run-time. Moreover, network engineers’ work-
load is reduced to a minimum since they do not need to do
all the way from signals down to messages manually, but
only define the service provision and consumption relation-
ship and their interaction pattern.

1.3 Scope of the paper

In Fig. 1, two applications App1 and App2 are logically
interacting. (a) In the first case—the traditional way—by
exchanging signals that manually need to be mapped into
protocol data units (PDUs), which in turn are mapped to
CAN messages. This is a time-consuming and error-prone
process, hindering dynamicity and thus reconfiguring the
network topology at run-time. The resulting communication
infrastructure is then static over the system’s lifetime. (b)
In the second case, by establishing a service provision/usage
relationship and their pattern of interaction,whichwe are dis-
cussing and proposing in this paper. We distinguish between
two principle communication patterns (cf. Fig. 2):

(1) Request/Response, i. e., a method is called and a result is
returned and

(2) Publish/Subscribe, i. e., a server first publishes a service
and a client subscribes to it. Then, either periodically or at
each change event at server-side, the client gets notified.

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

Table 1 Future methodologies
and addressed challenges

Aspect Current Future Challenge

Methodology and process

↪→ Process model heavyweight agile , ,

↪→ Artefact signal, PDU, msg. service ,

↪→ Development ECU service ,

Architecture

↪→ Paradigm federated centralised, zonal ,

↪→ Deployment static dynamic

Communication

↪→ Paths static static, dynamic ,

↪→ Technology heterogeneous homogeneous , ,

Deployment

↪→ Delivery once continuous , ,

↪→ Update — over-the-air , ,

(a) (b)

Fig. 1 a Classic signal to message mapping: Logical signals are
grouped into PDUs (protocol data units), which in turn are mapped
to CAN messages. b In contrast to service binding in a SOA approach.
Here, only the interaction patterns are defined. The rest is done auto-
matically

In a service-oriented architecture, services provided by
a server can be looked-up in a service registry and used
by clients (cf. Fig. 2). In a request/response pattern, the
client sends a request to the server, which in turn responds
to the client. A method-call is realised in this way. In the
publish/subscribe-pattern, the server first publishes a ser-
vice which can be found by the client. The client then
subscribes to the service and gets either periodically
notified or by a change at server-side. Technically, this func-
tionality is achieved using, for instance, the SOME/IP [96] or
DDS [71] middleware in combination with the AUTOSAR
Adaptive Platform (AP) standard for Ethernet-based topolo-
gies.

SOA paradigms help to decouple software and hardware
development to a large extent, facilitating fast and light-
weight software updates in a fast-moving agile development
process based on the idea of continuous software engineer-
ing [14]. Serviceswill replace the former centricity on signals
and ECUs in a strongly model-driven and model-focused
approach shortly. On the one hand, we use models early
in the development process for verification, simulation, and

Fig. 2 Interaction patterns: Services can be published and then be found
in order to subscribe to them. The interaction is performed either by
applying a request/response pattern or subscribing to a service that then
notifies the client(s) on a periodic or sporadic basis

analysis purposes, and, on the other hand, as a basis for
the generation of test cases in a model-to-model transfor-
mation fashion. As the scope for this paper, we aim to
solve three challenges associated with service-orientation by
model-based techniques:

(C1) The deployment problem for a service-oriented archi-
tecture onto an overall future E/E architecture,

(C2) the assessment of timing properties with an emphasis
on the idea of run-time reconfiguration, and

(C3) the transition of platform-independent architecture
models into a platform-specific software development
process in line with the AUTOSARAdaptive standard.

Before we go into the guiding research question, the con-
text and embedding within a pre-development project at
the industry partner should first be addressed. In this pre-
development project, the question of a future centralised E/E

123



S. Kugele et al.

architecture for automated driving at level 4 arose. To this
end, two independent development strands were pursued:
On the one hand, an onboard network topology model was
presented as a draft, and on the other hand, the specialist
departments provided the first indications of the necessary
time and memory requirements. Both artefacts served as a
basis in this pre-development project.

The guiding research question is derived from this:

In a pre-development project, can the unification
between a specification of an independently created
novel E/E architecture and initial estimates of the
resource consumption of the service-oriented software
architecture succeed and a system specification be
derived from it?

The following three framework conditions must be met:
(1) The processor, memory, and safety constraints must be
observed, (2) the communication behaviour at bus level must
ensure timely data provision, and (3) the architecture must
be implementable in a software development process.
Contributions This paper provides the following contribu-
tions:

(i) Platform-independent meta-model for service-oriented
architectures;

(ii) methodology for deploying corresponding platform-
independent models on a centralised E/E architecture;

(iii) embedding of the gained results in a platform-specific
software development process.

This paper is an extended version of the MODELS 2019
paper [69]. We have extensively revised and extended the
manuscript compared to the previous work in different direc-
tions:

(i) We have extended the related work;
(ii) We now demonstrate how a model-based software

design approach based on the AUTOSAR Adaptive
Platform looks like. To do so, we show the transition
from a platform-independent model to a platform-
specific one—in our case AUTOSAR Adaptive;

(iii) Moreover, we demonstrate how to generate test cases
already in an early design step in order to safeguard the
architecture;

(iv) We have extended our experiments and evaluation
by also considering the connection of the proposed
centralised architecture in combination with legacy
sub-systems, which is of great importance in an indus-
trial context;

(v) This paper also illustrates the use of the industry-
standard PREEvision MBSE tool with which we have
seamlessly evaluated the work.

Outline The remainder of this paper is structured as follows.
Section 2 summarises related work followed by the main
approach in Sect. 3. In Sect. 4, we present the conducted
evaluation of our approach. Finally, we discuss the results
and conclude in Sects. 5 and 6.

2 Related work

Related to ourwork are thefields ofmodel-based architecture
design and automotive service-oriented architectures. The
first field is relevant to us because the underlying concepts
of model-based design in general and architecture descrip-
tion, optimisation and analysis, in particular, can be used
to address the first two framework conditions. The second
area addresses related work according to the third frame-
work condition (cf. Sect. 1.3). Here, we want to present the
status quo in terms of technologies, standards, and the overall
implementation process for realising the concept of service-
oriented communication in an automotive way.

2.1 Model-based architecture design

Westructure the field ofmodel-based architecture design into
three parts: (1) The development and usage of architecture
description languages, (2) the notion of component-based
architectures, which is especially relevant to the design of
software architectures, and (3) architecture analysis methods
for architecture verification and validation.

2.1.1 Architecture description

The concept of architecture description is standardised by
the ISO 42010 [45] and introduces the notion of architec-
ture viewpoints.Viewpoints definemodelling techniques that
support the comprehension of specific parts (e. g. the soft-
ware architecture) or specific activities (e. g. the software
integration) within the system architecture’s development
process. The application of these modelling techniques
then finally provides an architecture view that supports
architecture stakeholders, e. g. software architects, for their
concerns. Over time, instances of this idea have been intro-
duced. All of them focus on an approach that consists
of different abstraction levels, e. g. in order to separate
functional and implementation-related parts such as the
software architecture from each other. Broy et al. [15]
and Dajusren [22] developed approaches for architecture
description frameworks that facilitate deriving viewpoints
based on abstraction levels. In addition, they focused for
each abstraction level on the distinction between structural
and behavioural aspects. With a focus on process-related
viewpoints, Pelliccione et al. [74] recently introduced an
architecture description approach related to development

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

process activities like continuous integration, deployment,
and automotive software ecosystems. All of them are rather
new for the automotive domain. For the more general
domain of embedded systems, Pohl et al. [75] introduce the
SPES_XT (Software PlattformEmbedded Systems)method-
ology, which neglects a process view and implementation
planning. In addition, several Architecture Descriptions Lan-
guages (ADLs) and reference architectures made their way
into practice (cf. [24] and [79]). Here, the idea of different
abstraction levels is implemented by the Electronics Archi-
tecture and Software Technology—Architecture Description
Language (EAST-ADL) [26] and the Electric Electronic
Architecture—Analysis Design Language (EEA-ADL) [47].
The latter is the architectural description language underly-
ing the MBSE tool PREEvision, which we use for this work.
Although modelling with EAST-ADL addresses important
aspects in vehicle development, practical acceptance in the
automotive industry is low. One reason for this may be that
the last (alpha) version of EAST-ADL2 is dated 2013 and
therefore does not yet take AUTOSAR Adaptive Platform
into account. For the more general domain of embedded
systems, the MARTE [73] approach and the Mechatron-
icUML [25] have been developed. All of them rely on the
MOF [72] framework. Especially common in the avionics
domain, the Architecture Analysis and Design Language
(AADL) [30,87], standardised by the Society of Automo-
tive Engineers (SAE), is used in combination with respective
tools (e. g. OSATE, the Open Source AADL Tool Environ-
ment [19]) to model, analyse, and verify the design and
architecturalmodels.Most of theADLs listed here serve sim-
ilar goals: Modularisation and hierarchisation of component
descriptions and architectures to ease the development of
highly complex, usually embedded, systems. The approach
presented here could also have been realised with one of the
other approaches. AADL would have been a good choice
here. However, since the MSBE tool was set in this pre-
development project at the industry partner, there was no
choice.

2.1.2 Component-based architecture

The notion of component-based design is the inherent idea
of every software architecture. Especially for the domain
of embedded and automotive systems, dedicated compo-
nent models have been introduced. Their main distinction
to other domains is the necessity to reflect real-time and
functional safety requirements. From the industry perspec-
tive, the de-facto standard is given by AUTOSAR. Espe-
cially in terms of formal component models, complementing
approaches from the academic world have been published.
Kugele et al. [53] present one approach that combines
component-based architectures and contract-based design
with a focus on functional safety. A more general approach

in terms of focusing on a variety of non-functional prop-
erties is given by Damm et al. [23] in the form of their
rich component framework. Especially for the concern of
deterministic execution behaviour, the actor [59] and the
reactor model [60] provide applicable ways for the over-
all domain of embedded systems. Lastly, another variation
of an automotive software component in the form of agents
is present. Here, Sillmann et al. [85] provide an approach
focusing on describing the electric powertrain software archi-
tecture as an agent-based system. Of course, the architectural
approaches mentioned above also use the term components
to describe both the system architecture and the system
behaviour: AUTOSAR, FOCUS, AADL, UML, SysML, or
the Palladio Component Model to mention some of them. To
the best of our knowledge, none of the component models
mentioned is used in daily productive use in the automo-
tive industry (except for AUTOSAR, UML, and SysML, of
course). This does not necessarily mean that the approaches
are not suitable, but for productive use, the tools used in par-
ticular must be mature.

2.1.3 Architecture optimisation

Traditionally, the automotive industry uses optimisation
methods in various areas during vehicle development. Busi-
ness management questions (e. g. cost models [6,8,9,78]),
questions concerning mechanics and electrics (e. g. car body
optimization [86], hybrid powertrain [31], orEMC[80])were
often addressed and answered, to name only a few. In recent
years, however, researchers and practitioners have also been
concernedwith the reliability of automotiveE/Earchitectures
and automatic mapping software components to available
ECUs, also referred to in the literature as deployment or
allocation. Design Space Exploration (DSE) techniques have
often been and still are used for this purpose.

In the following, we concentrate on the optimisation
of software architectures in particular. Mertens and Kozi-
olek [64] presented the tool PerOpteryx, which is an optimi-
sation framework for the improvement of component-based
software architectures. The tool evaluates the performance of
various design alternatives of component-based architectures
modelled in the Palladio Component Model (PCM) [10]. It
thus supports the engineer during the design process. The
idea behind this approach is similar to what we aim for
in this paper to support engineers at an early stage of the
design process by synthesising and evaluating architectural
proposals. These can then be the first indications for a final
architecture since they have already been verified. However,
in the present work, we focus on a particular use case, namely
the early analysis of a software and hardware architecture
designed for automated driving. Grunske et al. [39] give
an overview of architecture-based methods for optimising
the reliability of software-intensive systems. The authors

123



S. Kugele et al.

use evolutionary algorithms and multi-criteria optimisa-
tion strategies to find good architecture design alternatives
with the tool ArcheOpterix [1]. In contrast to the above
approaches, we use a two-step procedure in this paper. First,
an SMT-based (SAT modulo theories) DSE is performed,
and then a simulation-based end-to-end latency analysis is
applied for the architecture candidates found. The candidates
are the Pareto-optimal results of an optimisation problem
and not solutions based on heuristics. In a previous work
of one of the authors of this paper, Kugele et al. [50]
used integer linear programming (ILP) to optimise the
deployment concerning non-functional requirements in com-
bination with an SMT-based scheduling scheme within the
COLA toolchain [40]. Furthermore, Meedeniyaa et al. [66]
uses a genetic algorithm (GA) in a reliability-driven deploy-
ment optimisation of embedded systems. Kumar et al. [57]
also use a GA to perform multi-level redundancy allocation.
Streichert et al. [90] apply multi-criteria evolutionary algo-
rithms for topology optimisation in networked embedded
systems. Lukasiewycz et al. [62] extend this work to enable
simultaneous topology and routing optimisation in automo-
tive networks. Their approach is based on SAT encoding,
which combines a pseudo-Boolean (PB) solver and Multi-
Objective Evolutionary Algorithms. Glass et al. [36] present
further improvement. They propose a new algorithm for
multi-objective routing with a genetic encoding independent
of the underlying network topology. For a comprehensive,
systematic literature review on software architecture opti-
misation methods, please refer to Aleti et al. [2]. Since this
work’s main focus was not on developing even better optimi-
sationmethods,we have taken a pragmatic approach here and
generated the deployment candidates using an SMT-based
method.Of course, the tools described above could have been
used aswell. However, seamless integration into PREEvision
would not have been so easy.

2.1.4 Architecture analysis

Model-based approaches provide various analysis techniques
besides architecture description in corresponding languages
or based on specific component models. In this respect, the
main objectives are to derive whether an architecture con-
cept can meet real-time capabilities or functional correctness
requirements. Especially for safety-critical architectures,
these characteristics are highly demanded. For a generic
approach for evaluating and analysing embedded systems,
please refer to [33]. Possible approaches are given by model-
based timing analysis, simulation techniques, as well as
model checking.
Model-based Timing Analysis For the field of model-based
timing analysis, the real-time calculus [92] and the Sym-
TA/S (Symbolic TimingAnalysis for Systems) approach [82]
are widely known and implemented in corresponding tools

(cf. [21]).As a contribution during early development phases,
the paradigm of logical execution time [28] is helpful and
has, therefore, found its way into the field of real-time eval-
uation for automotive systems. The tool aiT [32] is also used
in several domains, including avionics and automotive. aiT
computes using abstract interpretation the worst-case execu-
tion time of an executable for a given processor model. On
the one hand, this approach produces provable upper bounds;
on the other hand, however, the gained values are for many
situations too conservative [94].
Simulation Techniques We use the tool chronSIM [44] for
timing simulation. In general, it does not provide evidence
for upper bounds (Which are too conservative in practice).
Instead, a practical, pragmatic approach between accuracy,
conservatism, and analysis time is found through many
simulation runs. For simulation-based approaches, the C++
library SystemC [43], as well as the Functional Mock-up
Interface (FMI) standard [68], provide capabilities for the
test of system-level behaviour. Besides that, tools such as
MATLAB/Simulink [65] or ASCET [29] describe de-facto
industry standards for early system-level tests. From the aca-
demic world, the tool Ptolemy II [77] that relies on the
introduced actor and reactor models is present. With a focus
on the power consumption of automotive system architec-
tures, Bucher et al. [18] provide a simulation-based approach
using Ptolemy in combination with the Electric Electronic
Architecture—Analysis Design Language (EEA-ADL) [47].
Model Checking Also, formal techniques like model check-
ing are widely used in academia and become more and
more important for practitioners. The automotive functional
safety standard ISO 26262 [46] highly recommends for-
mal techniques at a certain degree of required integrity.
AutoFOCUS [34] is a research prototype for model-driven
development supporting formal verification capabilities.

2.2 Automotive service-orientation

Model-based design is a widely used methodology for
embedded systemsdesign.Numerous tools and languages are
available both in an industrial (e. g. SCADE [83] by Esterel
Technologies, MATLAB/Simulink/Statechart [91] from The
MathWorks, and ASCET-SD from ETAS) as well academia
(e. g., MechatronicUML, PCM, FOCUS) setting. Of course,
SysML or UML as general-purpose modelling language
with its profile for Modelling and Analysis of Real-time and
Embedded systems (MARTE) has to be mentioned.

As the second part of the related work, we present pub-
lications relevant to the specific field of automotive service-
oriented architectures. As a means of structuring them, we
build the divisions of modelling methods, implementation-
related contributions, and development process-related con-
tributions.

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

2.2.1 Modelling methods

Broy and Stølen [17] provide one groundbreaking publica-
tion for modelling embedded service-oriented architectures
relying on formal models for service syntax and semantics.
Later on, Broy and Krüger [16] introduced an approach that
describes services explicitly by timed streams of data.Malkis
andMarmsoler [63] again relaxed this constraint by allowing
services to be any computational task. Besides these general
contributions to formal service models applicable to embed-
ded systems, automotive-specific work has been published.
Recently, Kugele et al. [54] introduced the idea of αSOA by
formalising a framework for different service clusters that
partly relies on the formal model of Broy and Stølen [17].
Afterwards, Cebotari and Kugele [20] refined this frame-
work and described their transformation onto the modelling
language Franca [27] used in the industry. For specific appli-
cation domains, Lampe et al. [58] drafted an architecture
for automated driving based on services. For the field of
safety and failure handling, Bocchi et al. [13] provided an
approach that models the concept of run-time reconfigura-
tion in a service-oriented way.

2.2.2 Implementation-related contributions

Middleware concepts are available for the implementation
of automotive service-oriented architectures, some of which
are also part of the AUTOSAR standard. Two instances in
this respect are the scalable service-oriented middleware
over IP (SOME/IP) [96], and the Data Distribution Ser-
vice (DDS) [71] approach. In addition, Android AUTO [37]
and the GENIVI platform [3] illustrate solutions dedicated
to the infotainment domain. Besides their industry applica-
tion, researchers have investigated primarily the AUTOSAR
compliant solutions SOME/IP and DDS. For SOME/IP
and with a particular focus on deterministic service exe-
cution, Menard et al. [67] recently provided one approach
that relies on the reactor component model [60]. Earlier,
Seyler et al. [84] described one approach for timing anal-
ysis based on SOME/IP. For DDS, Kugele et al. [51] and
Kampmann et al. [48] focused on the potential to integrate
newapplications based on the idea of containerisation contin-
uously. Besides established technologies such as SOME/IP
and DDS, research prototypes for middleware solutions have
been developed. As an example, the RACE approach [89]
was initialised in 2012. More recently, Lotz et al. [61] pub-
lished one approach that relies on a run-time environment for
microservices. In this work, we are using the SOME/IP as the
communication protocol. SOME/IP is part of the AUTOSAR
Adaptive Platform standard and supported by the used mod-
elling and simulation tools.

2.2.3 Development process-related contributions

Service-oriented architectures provide abstraction from the
onboard communication network. Therefore, of particular
interest for car manufactures is the potential to ease and
fasten the development process for developing software
applications. Work in respect of service-oriented architec-
tures and process-related aspects has been rarely published.
Traub et al. [95] draft the idea of an automotive software
engineering approach relying on services rather than the clas-
sic signal-oriented approach. Obergfell et al. [70] describe
an approach for an incremental development procedure that
relies on the concept of service-oriented architecture as
one primary driver. However, the current state-of-the-art
for software and systems engineering still relies on clas-
sic signal-oriented architectures. Consequently, this paper’s
focus is the development of drafts for service-oriented archi-
tectures and their inclusion into a subsequent realisation
process. Therefore, we do not focus on introducing new
SOA modelling notations but rather using the concepts of
modelling in the MBSE tool and the SOME/IP protocol’s
service-oriented communication.

2.3 Summary

In this section on related work, we have listed a summary of
existing preliminary work. These have been grouped themat-
ically into the main categories of model-based architecture
design and automotive service-orientation, each with more
detailed descriptions. This thematic selection is also based on
the guiding research question and classifies the work accord-
ingly. Our work is partly based on the work discussed and
differs; in particular in that it is not a pure research prototype
but rather a closer integration into an existing toolchain of the
industry partner in a pre-development project on automated
driving at level 4. For this reason, some purely academic
approaches, in particular, were not usable, although perhaps
better suited in one or two places. It must also be emphasised
that the pre-development project was a mixture of a pure
greenfield approach and a takeover and integration of exist-
ing components so that from our point of view, the selected
techniques resulted in a very usable solution overall.

3 Approach

Our approach aims at an early analysis of hardware resources
and the synthesis of SOA-based software architectures in
the automotive sector. We do this on the level of platform-
independent models (PIM). Subsequently, we describe how
the transition to platform-specific models (PSM) occurs and
how these models are used within a corresponding software

123



S. Kugele et al.

Fig. 3 The big picture:Modelling, design space exploration, and timing
analysis, the transition from platform-independent to platform-specific
architecture, software design, and finally validation using testing. The
dashed lines indicate that if no candidate solution could be found or

timing/bandwidth requirements are not fulfilled, the modelling must be
adjusted, for example, by adding further suitable cores or memory units
or new network links

development process. The approach consists of the following
parts:

1. The first part describes a platform-independent meta-
model used to formalise automotive services as the main
building blocks of a service-oriented architecture.

2. In the second part, an automated design space explo-
ration (DSE) for the allocation of service-based appli-
cations from different automotive domains to computing
resources is discussed.

3. The third part evaluates the interaction between these
applications in terms of the timing behaviour.

4. Finally, the transition to platform-specific models follow-
ing the AUTOSAR Adaptive Platform is shown.

Please note that we have chosen to look at parts 2. and 3.
independently. This has several advantages: (i) By separating
them, we achieve better modularisation so that different anal-
ysis backends can be used, and therefore the tool becomes
more flexible. (ii) Considering allocation and time/band-
width analysis together leads to an optimisation problem that
is much harder to solve. Developers then have to wait signif-
icantly longer for a solution. It is then no longer a question
of a fewminutes. The application of our approach is outlined
in Fig. 3.

3.1 Modelling automotive services

Automotive services provide functionality that is encapsu-
lated by their service interfaces. Those are exposed to client
applications for usage, i. e., service consumption. The service
interface can be instantiated in different ways (cf. Fig. 4): (i)
As a sporadic event, (ii) as periodic notification event, or as
(iii) method call.

Service interfaces have special timing characteristics. For
a periodic notification event, the timing is considered over a
period of time during which the client must receive a min-
imum number of events. For a (request-driven) behaviour,

Fig. 4 Modelling automotive services

the timing property describes the maximum allowed latency
between a request/response pair.

We present a generic structure consisting of nested structs
to model data relevant for a service interface. For sporadic
and periodic notification events, a nested structure describes
the data provided to the client. Formethods, two nested struc-
tures represent the input for a method or the output of a
method.

In our running example, we consider the service inter-
face of the environmental model of the vehicle instantiated
as a periodic notification event. For any automated driving
system, it is essential to perceive and evaluate its environ-
ment. The collected data from different sensor sources (see
Sect. 4.3) are fused into a comprehensive environmental

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

(a) (b)

(c)

Fig. 5 a Picture #007007 taken from the KITTI benchmark [35]. bAn excerpt of an object diagram of the environmental model is given respecting
the characteristics of obstacles. c Definition of the data structure (struct) that models obstacles

model. In the example given, the environmentmodel provides
a list of obstacles, which are represented as 3D bounding
boxes (blue cuboid in Fig. 5) and are positioned relative
to the ego-vehicle. An obstacle is thus described in three-
dimensional space by the tuple (x, y, z, w, l, h, θ, t), where
(x, y, z)ᵀ indicates the location of the box centroid, (w, l, h)

defines its size, θ defines its yaw angle, and t indicates the
type of obstacle. Types can be cars, pedestrians, and cyclists:
t ∈ T = {c,p, y}. Figure 5b illustrates an example of a ser-
vice interface that contains eight data elements encapsulated
in a struct. The timing property of the service interface
describes that the client should receive at least counter = 3
events within a period ofΔ = 30ms (cf. Fig. 2). The obstacle
types are also encoded using unsigned integers since enu-
merations are not considered in SOME/IP as one dominant
middleware approach in the field of SOA.1

3.2 Automotive framework conditions

Unlike, for instance, consumer electronics (CE) software and
systems, automotive E/E architectures, including software,
pose particular requirements, which, when combined, are
specific and unique to the automotive domain.

In the past, state-of-the-art semiconductor technologies
known from CE devices found their way into automotive
applications about 7–10 years after their initial introduc-
tion. Today, however, computationally intensive algorithms
for computer vision and machine learning are fundamental
to achieving higher driving automation levels and require

1 See §4.1.4.6 of the SOME/IP protocol specification: https://
www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/
AUTOSAR_PRS_SOMEIPProtocol.pdf

leading-edge technologies on both the software and silicon
side.

From that perspective, we can roughly identify three cat-
egories of requirements: (i) Function, (ii) Safety & Security,
and (iii) Technology. Right at the core is the function to be
developed. After the hazard analysis and risk assessment
(HARA), safety goals are defined, and a functional and tech-
nical safety concept is derived. These analyses include the
elicitation of safety requirements and the classification into
automotive safety integrity levels (ASILs). Based on these
assessments, technical measures such as diverse redundancy
or safety patterns, in general, are taken. In addition, the use of
hypervisors (cf. [81]) enables the provision of services with
different levels of criticality on the same ECU by supporting
time and space partitioning. This also facilitates security fea-
tures by limiting and monitoring information flow between
partitions. In addition to the security and safety aspects, func-
tions also place special demands on the hardware.

These requirements comprise computing requirements
demanding for certain types of processors or application-
specific integrated circuits (ASICs) in combinationwith their
performance, e. g. frequency and memory range. For exam-
ple, a function that provides computer vision services will
benefit from being deployed onto a graphics processing unit
(GPU). Services that rely on frameworks such as Tensor-
Flow2 benefit from being run on a tensor processing unit
(TPU). The network topology with specific bandwidth and
protocol properties is relevant to meet latency constraints for
distributed functions. In the future, a network topology such
as those exemplified in Fig. 6a will be of importance. The
primary communication will be based on switched Ethernet
in a centralised computing platform equipped with several

2 https://www.tensorflow.org/

123

https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.tensorflow.org/


S. Kugele et al.

Fig. 6 a Depicts a section of the hardware topology used for auto-
mated driving at level 4. The centralised computer platform consists
of three ECUs connected to peripheral devices: sensors, actuators, an
Ethernet switch, a LIN gateway, and the Driving Dynamics and Telem-
atics ECUs. b An exemplary refinement of the technical architecture of
Platform ECU 1 with three processor cores, their ASIL qualification,

frequency, and available memory capacities. On the right of the figure, a
legend is given. All the modelling artefacts needed for the E/E architec-
ture modelling required in this paper are depicted: sensors, actuators,
ECUs, processor cores, switch, (network) connections, and property
specifications. Moreover, the memory (RAM and flash) available for
each core is specified

ECUs containing several cores, GPUs, and TPUs. As an
example, Fig. 6b depicts an ECU architecture with three
processor cores, their ASIL qualification, and correspond-
ing volatile (RAM) and flash memory components as part of
a central platform. The idea behind this selective concentra-
tion of computational resources (cf. [52]) is the attempt to
gradually transform from a highly federated and distributed
architecture into a centralised one. Still today, ECUs and
their included software functions belong to logical domains
such as infotainment, powertrain, chassis, and comfort. In
the course of centralisation, those—from their real-time,
functional safety, or used technology—considerably differ-
ent functions, will be migrated to the centralised platform.

Sensory data and relevant information such as high def-
inition maps provided by other ECUs are processed within
the centralised computing platform. Actuation is either via
actuators directly connected to the platform or via a gateway
connected to sub-networks.3 Please note that this simplified
topology contains only relevant, redundantly used sensors
that are necessary for the environment model. For driving
at level 4, redundant actuators are, of course, also available.
The automated driving function is executed on the centralised
computing platform. A trajectory is planned under consider-
ation of the environmental model. Necessary control actions

3 In Fig. 6a, we consider a single gateway connecting the central com-
puting platform to a LIN (Local Interconnect Network) network that
implements sensors and actuators relevant to the comfort functions.

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

such as longitudinal and lateral movement are then sent via
the Ethernet switch to the driving dynamics ECU,which then
controls the actuators accordingly.

The redundancy mentioned above is necessary because,
at level 4, the primary driving system is monitored by a sys-
tem. A fail-operational behaviour must be provided for in
the unlikely event of a system malfunction. Fail-operational
means in comparison to fail-safe that the system continues to
operate if one of its control systems fails. For our application,
the environmental model is deployed twice, once for nominal
behaviour and once for the fail-operational behaviour. Both
operate on their set of sensors, also shown in the topology dia-
gram. Lastly, services and the providing software functions
inherently run in parallel on different cores or in a dis-
tributedE/E architecture. Therefore, this concurrent nature of
automotive software must efficiently use the full computing
power available in multi-core/manycore processors, taking
into account the theoretically limited speedup according to
Amdahl’s law [5]. The availability of high-performance cores
qualified according to the highest safety level is still limited.

3.3 Deployment candidate synthesis

The availability of multi-core SoCs (System-on-Chips) pro-
vides greater scope for architecture implementation. The
formerly predominant one-to-one function to ECU mapping
does not hold anymore in times of dynamic updatable E/E
architectures. The drawback of this freedom is an exploded
design space that needs to be explored to find “optimal”
architecture blueprints. Those blueprints represent deploy-
ment candidates, namely the mapping of functions providing
or consuming services to processor cores.

We use techniques of design space exploration to address
this challenge in a similar way as one of the authors has
done in previous works [55,56]. Our aim is not only to derive
feasible, i. e., valid solutions but also to derive optimal solu-
tions. Therefore, the term optimality has to be clarified for
this work. It is in the nature of innovative and future-proof
automotive architectures that not a single optimisation goal
describes best the intent of its engineers; however, several
objectives need to be optimised (minimises or maximised)
simultaneously, yielding amulti-objective optimisation prob-
lem. In such a setting, there is not “the” best solution but
a set of Pareto-optimal solutions describing compromises
between possibly contradicting goals. Besides optimisa-
tion objectives, also constraints need to be considered.
Necessary constraints prevent solutions from overloading
processors, exceeding memory capacities, or invalidating
safety requirements. The multi-objective optimisation prob-
lem is mathematically given as follows:

minimise f1(xxx), . . . , fm(xxx), xxx ∈ X

subject to gi (xxx) ≤ 0, i = 1, . . . , m

h j (xxx) = 0, j = 1, . . . , p

where fi , 1 ≤ i ≤ m (m > 1), are the objectives with
fi : X → R and X is the decision space containing the
decision variables: xxx = (x1, x2, . . . , xk)

ᵀ encoding the DSE
problem. Moreover, gi are inequality and h j are equality
constraints. Note that m and p can be equal 0.

For the case example described in Sect. 4, we consider the
two optimisation criteria:

f1 minimise the number of used cores and
f2 minimise the use of cores that are qualified according

to high ASILs for applications that do not require the
highest levels.

After close consultation with the industry partner’s respon-
sible persons, these two optimisation targets were identified
and justified as follows. In a platform to be developed for
automated driving, scaling is always of great (business) inter-
est. This means that the methodology and the computing
platform’s general structure should be usable for the lower
price segment and premium vehicles. This means that dif-
ferent variants of the automated centralised platform could
be offered—for example, with regard to a different number
of available processor cores. This could take into account
the selected extra equipment scope. The second optimisation
function considers that processors or processor cores quali-
fied for a very high safety level are very expensive and usually
relatively slow. Even if they could execute specific applica-
tions, they should only be used when a very high safety level
is required. Recall that there are four ASILs identified by the
standard ISO 26262: ASIL A, ASIL B, ASIL C, and ASIL
D. ASIL D dictates the highest integrity requirements on the
product and ASIL A the lowest. QM does not require spe-
cial safety measures. We detect when a software function is
deployed on an overqualified processor core and capture the
violation by a penalty value (let QM = 0, A = 1, B = 2, C = 3,
and D = 4): For example, a software function having a spec-
ified safety requirement of ASIL B (i. e., 2) is deployed on a
processor core qualified up to ASIL D (i. e., 4) would yield a
penalty value of 2 (i. e., 4−2 = 2). A non-safety-critical soft-
ware function gives the maximal penalty (having no ASIL
requirement) deployed on an ASIL D processor core. This
would yield a penalty value of 4.

Performance and resource indicators derived from the
design space exploration allow for early verification of
hardware capabilities such as performance, memory con-
sumption, and bandwidth requirements. The presented work
considers (i) processor utilisation, (ii) volatile memory
(RAM), (iii) flash memory, and (iv) ASIL compatibility for
the DSE and deployment synthesis.

123



S. Kugele et al.

Finally, we retrieve a set of synthesised deployment can-
didates that form a good working basis for engineers in their
daily architectural work. In the next step, the candidates are
evaluated with respect to their timing behaviour, essential
for an automated driving functionality posing strict real-time
requirements.

3.4 Network deployment and timing analysis

Each of the synthesised deployment candidates is further
analysed using simulation-based assessments. The simula-
tion aims to assess whether the timing properties encapsu-
lated in a service interface will persist during run-time. Of
course, the simulation-based approach does not guarantee the
worst-case execution time (WCET). However, for the early
architectural design, simulation is an adequate technique also
demanded by ISO 26262, part 6, §7.4.18. Furthermore, since
automotive systems are extensively tested in HiL (hardware
in the loop) testbeds and undergo winter and summer trials,
these early analyses during architecture development are suf-
ficient. Much more pessimistic approaches, which are also
based on mathematical theories such as the real-time calcu-
lus [93], are generally too conservative for practical use [94].

We generate parts of the source code necessary for the
simulation-based assessment from service interface models.
The C++ source code is necessary for the used timing sim-
ulation framework and provides basic runtime assessment
elements. These comprise source code stubs for the service
implementation and the client’s monitor containing timing
properties to be checked.

As we are concerned with assessing timing properties
and not the particular algorithmic implementation of ser-
vices, our service source code contains only source code
stubs. A runnable service application is implemented and
then included in a simulation scenario based on a generated
source code stub.

On the client-side, we transform a service interface’s tim-
ing properties into run-time conditions that must hold. For a
periodic notification event, it is checked whether the fresh-
ness of received data is given. For a method, it is checked
whether the latency requirement for receiving the response
on a sent request is not violated. The run-time conditions
are used to monitor a service’s execution from the client’s
perspectivewithin the simulation.Details about the template-
based code generation are given in [69].

3.5 Platform-specific software architecture

For each architecture candidate that successfully passes the
simulation-based analysis, we retain the corresponding ser-
vice/client to core mappings. Based on these mappings, we
then refine the platform-independent software architecture

Fig. 7 AUTOSAR Adaptive software architecture with two instances
of an environmental model software component (servers) shown in the
lower part and one trajectory planning software component (client)
shown in the upper part of the figure. These platform-specific software
components are enriched with deployment information. For example, it
is specified that the platform-independent software component “Envi-
ronmentalModel” is executed onCore 3 of PlatformECU1, whereas its
fail-operational counterpart “Environmental Model (FO)” is executed
on Core 3 of Platform ECU 3

model by a platform-specific one. For this purpose, the fol-
lowing steps are performed:

1. First, we map services and clients of the platform-
independentmodel to software components of a platform-
specific software architecture model,

2. Second, we model the behaviour of software compo-
nents that provide and consume certain services within
our platform-specific software architecture; and

3. Finally, we steer the implementation process of the
software component towards a continuous integration
approach by automatically generating test cases for soft-
ware units from the collected abstract behaviouralmodels.

We assume that the AUTOSAR Adaptive Platform serves
as a platform-specific software architecture for this work’s
remainder. Here, both services and clients are instantiated by
AUTOSAR Adaptive software components.

In Fig. 7, an exemplary AUTOSAR Adaptive software
architecture is depicted. There, three software components
and their corresponding types are shown.4 In this case, the
environmental model software component type is instan-
tiated twice (the two boxes in the middle). All platform-
specific software components are annotated with mapping
information in order to define which entity of the platform-
independent model (shown by yellow labels) is technically
realised by which platform-specific software component
(shown in blue). For example, it is specified that the platform-
independent software component “Environmental Model”
is executed on Core 3 of Platform ECU 1, whereas its

4 A software component type can be used to instantiate software com-
ponents several times.

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

fail-operational counterpart “Environmental Model (FO)” is
executed on Core 3 of Platform ECU 3. This relationship is
shown for the software component for trajectory planning
and the corresponding platform-independent entity on the
client-side. On the service side, two instances of the envi-
ronmental model’s software component—one nominal and
one fail-operational—implement the environmental model’s
platform-independent service. As a result of the previous
steps, Fig. 7 also shows the software components’ mappings
to ECU cores.

3.6 Software design

As part of the platform-specific software architecture design,
the introduced approach considers software components’
internal behaviour. These abstract models serve two pur-
poses: first, they specify the behaviour and second are used in
downstream quality assurance activities to derive test cases.
As a structuring means, we separate the entire behavioural
specification into two parts: one software application, each
for the client and the service side. Both specifications are
described using different states that are assumed at run-time.

In the following, we chose UML state machine diagrams
for modelling because they are supported by the MBSE
tool (PREEvision [76]) we use. Of course, also other even
more powerful modelling notations such as Real-Time Stat-
echarts from MechatronicUML [25] or Timed Automata [4]
for example by using the tool Uppaal [11] would have been
possible. However, we wanted to have an as seamless as pos-
sible user experience and thus decided to only use a single
modelling environment within the toolchain.

As can be seen in the following, the environmental model
service’s required behaviour is that it sends a “fresh” model
every 10ms.Moreover, the trajectory planning client requires
three updates within 30 ms. Please note that we are operating
on a discrete-time base of 1 ms. This discrete time was suf-
ficient for our purposes. Of course, the time base could have
been chosen as fine-grained as required.

3.6.1 Behaviour specification (service side)

We now apply the notation in order to describe the behaviour
of software components that provide services or consume
them as clients. The following is an overview of states and
their interrelation for software components that provide ser-
vices based on the publish/subscribe pattern. We consider as
an example one of the AUTOSAR Adaptive software com-
ponents that provide the service of the environmental model
in Fig. 7. Figure 8 depicts the state machine diagram of the
abstract behaviour.

Fig. 8 State machine for the environmental model service

Initial State The initial state characterises the beginning
of any consideration of a service’s run-time behaviour.
In this state, the service has not been requested by any
client, i. e., no client has sent a subscription message to
the service (aka subscription request).

Idle State The Idle state is directly reached from the initial
statewhenever an incoming subscriptionmessage fromat
least one client is received in order to activate the service.
We assume that the service has already been published.
This implements the publish/subscribe pattern.

Execution State The Execution state is reached from the
Idle state and guarded by a trigger event. In principle,
either periodic or sporadic events are imaginable for
publish/subscribe pattern implementations (cf. Fig. 2).
For the environmentalmodel, we assume periodic events.
Here, the specified behaviour of theExecute state is repet-
itively initiated every 10 ms. Then, the client is notified
(do-action send_notification), the timer is reset
(timer:= 0), and the next state is Idle again. In this way,
the periodic behaviour is described.

Final State The final state is reached from the Idle state
whenever there is no client subscription anymore, i. e.,
all clients have unsubscribed the service, which leads to
a service deactivation.

3.6.2 Behaviour specification (client-side)

The following is an overview of states and their interre-
lationships for software components that use services. As
an example, we discuss the software component using the
environmentmodel—tobe precise—the software component
representing the trajectory planning (cf. Fig. 7). Note that in
principle, even a simple if-statement would be sufficient
to switch between nominal and fail-operational configu-
ration. However, we considered it essential—especially to
enable more dynamicity for future vehicle architectures—to
enable run-time reconfigurations that are not fixed. For this
purpose, SOME/IP’s run-time resubscription mechanism is
considered in both behavioural specification and during the
simulation of the architectural candidates. For a clearer pre-
sentation in the statemachine diagrams aswell as in the paths,

123



S. Kugele et al.

Fig. 9 State machine for the trajectory planning as environmental
model client. Abbreviations are given in (1) to (4)

we use the following abbreviated notation:

init ≡ counter:=0; timer:=0; activate (1)

reset ≡ counter:=0; timer:=0 (2)

nominal ≡ counter ≥ 3 ∧ timer ≤ 30 (3)

fail − operational ≡ counter < 3 ∨ timer > 30 (4)

Initial State The initial state characterises the beginning of
any consideration of a client’s run-time behaviour. In this
state, no service has been requested by any client, i. e.,
no client has sent a subscription message to the service
(aka subscription request).

Monitoring State The service monitoring by the client is
activated as soon as a subscription took place.

Execution States Two different execution states are reach-
able from themonitoring state: (i) Nominal execution and
(ii) Fail-Operational execution.
The Nominal state is executed if at least three events
(counter >= 3) have been received within Δ = 30
ms period (i. e., timer ≤ 30). In this case, the trajec-
tory is being sent, and the event counter is reset. Now,
monitoring is active again. The second case, namely if
less than three events (counter < 3) have been received
within Δ = 30 ms period (i. e., timer ≤ 30), describes
the degraded fail-operational behaviour. In this case,
the reconfiguration procedure is activated by sending
resubscription messages to a fail-operational instance of
the environmental model service. Moreover, the event
counter is reset, and the monitoring state is active again.

Fig. 10 Architecture development cycle

Final State The final state is reached from the monitoring
state whenever an unsubscription message has been sent
to the service.

3.7 Architecture development cycle

In the previous steps, we have shown, by way of exam-
ple, how the platform-specific software architecture in the
sense of AUTOSAR Adaptive is aligned with our approach.
In addition, we have developed abstract behavioural models
for software components. The scope of application of our
models is architectural behaviour. This includes behavioural
modelling of services and client-side servicemonitoring. The
detailed behaviour, e. g. the algorithm of the object fusion
as part of the environment model service, is not part of the
consideration. The reason for this is that detailed behavioural
models—fromwhich the application’s source is generated—
are typically worked out later in the development process
and not at an early stage when we see the approach. How-
ever, to verify that our modelled architectural behaviour is
eventually implemented, we provide an architecture devel-
opment cycle between the design of software component
models and their implementation. For the architecture devel-
opment cycle depicted in Fig. 10, we aim to generate test
cases from the software components’ abstract behavioural
models. These test cases will then be made available to the
developers and included in their domain-specific software
engineering toolchain to enable continuous feedback of test
results.

RegardingFig. 10,wealready introduced step (1) (cf. Sects.
3.6.2 and 3.6.1). Next, test cases are generated in step (2) as
follows:

1. First, we derive runs through a statemachine of a software
component and

2. second, we describe the mapping between runs and test
cases as an abstract concept of a test case generator.

3.7.1 Exemplary runs of the state machines

We use runs to describe possible execution traces of the state
machines shown in Figs. 8 and 9. We demonstrate the runs
from two perspectives:

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

1. Environmental Model Service and the
2. Trajectory Planning Client.

For the latter one, we distinguish between the nominal and
the fail-operational behaviour.

1. Environmental Service: For the service side in Fig. 8, the
following run shows the notification mechanism, which
is executed after the timer is evaluated to 10.

ρ1 = 〈Init [subscription=true]/init−−−−−−−−−−−−−→ Idle
[timer=10]/−−−−−−−→

Execute
[is_notified]/timer:=0−−−−−−−−−−−−→ Idle

[subscription=false]/deactivate−−−−−−−−−−−−−−−−−−→ Final〉

2. Trajectory Planning Client (Nominal): For the client-
side, the following run shows the nominal behaviour, i. e.,
counter ≥ 3 events were received within Δ = 30 ms
(i. e., timer ≤ 30).

ρ2 = 〈Init [subscription=true]/init−−−−−−−−−−−−−→ Idle
[nominal]/−−−−−−→

Nominal
[trajectory_sent=true]/reset−−−−−−−−−−−−−−−−→

Monitoring
[subscription=false]/deactivate−−−−−−−−−−−−−−−−−−→ Final〉

3. Trajectory Planning Client (Fail-Operational): For the
fail-operational behaviour of the client, the following run
shows the case that less than three events (i. e., counter <

3) were received within Δ = 30 ms.

ρ3 = 〈Init [subscription=true]/init−−−−−−−−−−−−−→ Idle
[fail−operational]/−−−−−−−−−−→

Fail-Operational
[resubscription_sent=true]/reset−−−−−−−−−−−−−−−−−−−→

Idle
[subscription=false]/deactivate−−−−−−−−−−−−−−−−−−→ Final〉

3.7.2 Test cases

Runs or execution traces of the state machines are the basis
for the generation of test cases—more precisely, of software
unit tests. As an example, Listing 1 illustrates the source
code stub of the software implementing the environment
model service. In particular, we show the notification

function using the timer as an argument. If the timer eval-
uates to 10, the notification message to the client is sent, the
is_notified variable is set to true, and the timer is reset.
Otherwise, if timer is less than 10, no notification message
is sent and is_notified is set to false. As an example
of the trajectory planning client, the source code stub of
Listing 2 is given. It depicts the state_handling function

#include <cstdint >
#include <environmentalModel.h>
void notification(std:: int32_t timer)
{

if (timer == 10)
{

send_notification ();
set_is_notified(true);
set_timer (0);

}
else if (timer < 10)
{

set_is_notified(false);
}

}

Listing 1 Exemplary implementation of environmental model
service.

#include <cstdint >
#include <trajectoryPlanning.h>
void state_handling(std:: int32_t counter)
{

if (counter >= 3)
{

send_trajectory ();
set_trajectory_sent(true);
set_counter (0);

}
else
{

send_resubscription ();
set_resubscription_sent(true);
set_counter (0);

}
}

Listing 2 Exemplary implementation of trajectory planning
client.

that takes as argument the variable counter. In the nominal
case, i. e., the counter is greater or equal than three, it sends
the trajectory. Moreover, trajectory_sent is set to true

and the timer is reset. In the fail-operational case, the func-
tion state_handling sends resubscription messages. Here,
resubscription_sent is set to true and the counter is
reset, too.

For both functions notification and state_handling

(with the nominal and fail-operational case), unit tests are
derived and shown in the following. This captures step (2) of
Fig. 10.

1. Unit Test 1 tests the notification function. To do
so, we consider test precondition, test stimulus, and two
assertions to be checked by taking corresponding inputs
from the run ρ1.

123



S. Kugele et al.

Unit Test 1
precondition timer == 10

stimuli notification(timer)

assertions
(1) is_notified == true

(2) timer == 0

We neglect parts of the run ρ1 that describe how the
environmentalmodel service is activated and deactivated,
respectively. We focus on the notification mechanism,
i. e., the applicative part of the service. Activation and
deactivation remain as requirements for the underlying
middleware.

2. Unit Test 2 and Unit Test 3 test the state_handling

function. For both test cases, we again consider test pre-
conditions, test stimuli, and assertions to be checked
taking inputs from the corresponding runs. For the run
ρ2, the mapping is given as follows:

Unit Test 2
precondition counter >= 3

stimuli state_handling(counter)

assertions
(1) trajectory_sent == true

(2) counter == 0

For the run ρ3, the mapping is given as follows:

Unit Test 3
precondition counter < 3

stimuli state_handling(counter)

assertions
(1) resubscription_sent == true

(2) counter == 0

For the generated Unit Test 2 and Unit Test 3, we neglect
parts of the runs ρ2 and ρ3 that describe how the trajec-
tory planning is activated and deactivated, respectively.
Similarly to the environmental model service, we focus
only on the applicative and not the middleware parts.

Finally, the generated tests (3) must be executed with a
suitable test framework of choice or availability in order to
obtain the test results (4). These two final steps complete the
architecture development cycle sketched in Fig. 10.

3.7.3 Remarks on testing approach

Of course, the derived test cases do not cover the complete
functionality of the corresponding software units. In this
respect, test approaches that target criteria such as statement
coverage, branch coverage,modified condition/decision cov-
erage (MC/DC), or reinforced condition/decision coverage
(RC/DC) are well-established. As an intention of the archi-
tecture development cycle, we see the possibility to derive
test cases for software units resulting from system-level
requirements at an early stage of development. These system-
level requirements are rarely formalised today, which in turn
is detrimental to the prospect of automating a fast-moving
software development process.

4 Evaluation

In this section, we evaluate the approach presented. First,
we outline in Sect. 4.1 how we intend to conduct the
evaluation. Then, in Sect. 4.2, we detail the process of
combining the tools used. Section 4.3 presents the initially
platform-independent software/service architecture for auto-
mated driving according to level 4, which is then deployed
to the centralised, novel computing platform in the follow-
ing Sect. 4.4. The optimisation objectives also described in
Sect. 3.3 are considered here. The deployment candidates
obtained are analysed in more detail in two dedicated exper-
iments:

– Experiment 1 (cf. Sect. 4.5.1) explicitly analyses the
end-to-end latency of the automated driving function.
End-to-end latency covers the entire chain of the auto-
mated driving function, from the environment model to
trajectory planning and control of the vehicle dynamics
components. Experts set themaximum time to be 130ms.
Since this is a highly safety-critical function, there must
be a redundant fail-operational execution path in case of
e. g. a technical failure of the nominal execution path.

– Experiment 2 (cf. Sect. 4.5.2) analyses the fail-opera-
tional behaviour. Of course, the strict end-to-end latency
requirement (130 ms) applies, knowing that additional
re-subscription must be performed at run-time. For the
next step in the development, the transition to platform-
specific software architecture (cf. Sect. 4.6), in our case,
the AUTOSARAdaptive Platform, must be made, which
also includes validation employing tests.

In conclusion, wewill put the evaluation results in the light of
the guiding research question in Sect. 4.7. In the following,
we evaluate our approach. The evaluation has three main
objectives:

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

1. The synthesis of service/client to core mappings that
we call deployment candidates. These candidates are the
result of a cross-domain deployment optimisation, which
describes the integration of software from different auto-
motive domains on a centralised computing platform and

2. the assessment of timing properties for each deployment
candidate that finally yield implementation candidates.

3. In the remainder of Sect. 4, we demonstrate the process
introduced in Sect. 3.7 to implement a selected deploy-
ment candidate.

4.1 Evaluation planning

In future automotive E/E architectures, software components
that provide and consume services will play a major role. As
in our example, a single or only a few multi-core ECUs will
serve as a central computing platform that integrates soft-
ware components from different domains. This will require
software components that have different memory and per-
formance design and security requirements to be brought
together in amixed-criticality environment.Of course, timely
provision of all necessary services in such a safety-critical
real-time system is also a necessity. It is these points that jus-
tify conducting the experiments with regard to the guiding
research question.

We address this challenge in Sect. 4.4 and show how
an optimised deployment using Pareto-optimisation built
in the Z3 [12] SMT solver can be used to derive deploy-
ment candidates. We believe that the formulation of different
constraints and optimisation objectives, which also contain
mixed-integer linear constraints and complex logical rela-
tionships, can be formalised very well using SMT. Heuristic
approaches would also be possible, but we found out that for
our scenario, the found deployment candidates on common
workstations are in the range of seconds or a few (less than 5)
minutes and are therefore also useful for a real development
project. The use of pure ILP or MILP solvers would be con-
ceivable but would make the formulation of constraints and
optimisation objectives massively more difficult (keywords:
Big-M-method and formulation of nonlinear mixed-integer
and disjunctive programming [38]).

In a second step of the so far platform-independent pro-
cess, simulation-based latency simulations are carried out
(cf. Sect. 4.5), which have to consider the requirements
of the architecture and generally of a real-time system.
Requirements were the use of SOME/IP with subscription
and resubscription mechanisms in a switched Ethernet topol-
ogy with Audio Video Bridging (AVB, IEEE 802.1 [42])
and credit-based traffic shaping (IEEE 802.1Qav [41]).
Section 4.5 discusses the simulation-based solution consid-
ering the above-mentioned requirements. We conduct two
experiments: The first experiment simulates only end-to-end
latency for the nominal path. The second experiment simu-

Fig. 11 Simplified and platform-independent software architecture for
automated driving

lates a reconfiguration at run-time, i. e.,wewant to investigate
if a SOME/IP-based reconfiguration at run-time is possible
or not using resubscription mechanisms. This is important
to know because, for the fail-operational path, other net-
work connections and ports on the Ethernet switch are used.
Finally, we propose a transition from platform-independent
to platform-specific software architectures by implement-
ing the verified (platform-independent) deployment candi-
date using an AUTOSAR Adaptive software architecture,
which is discussed in Sect. 4.6. Of course, we use the
industry-standard AUTOSAR, especially the Adaptive Plat-
form, which enables service-oriented communication and,
thus, dynamics at run-time. The platform-independentmodel
is refined to a platform-specific model by first specifying
the service interfaces, which are then automatically trans-
lated into an .arxml (AUTOSAR XML) file. This, in turn,
is used to generate header files that engineers must use to
develop their implementation (.cpp files). In a model-based
test step, the implementation is tested against the unit tests
derived from the abstract behavioural specification.

To evaluate the approach, we use a platform-independent
service-oriented software architecture for automated driving.
Figure 11 depicts an export of the MBSE tool. The modelled
hardware architecture and network topology are likewise
depicted in Fig. 12. Details of processor, memory, and ASIL
requirements and capabilities are explained in Sect. 4.4.

In the following, the outlined evaluation is carried out.
The evaluation may have several outcomes:

1. We find that the tools and technologies used (SMT-based
optimisation and simulation-based timing and network
analysis) do not provide a solution for the modelled hard-
ware topology and service architecture. The background
is that different teams created the topology and resource
requirements/service architecture, and therewas no agree-
ment.
Consequence: Revision of the topology and/or service
architecture. If this is also unsuccessful, the approach can
be considered a failure for the planned architecture and
functionality.

123



S. Kugele et al.

Fig. 12 Network topology for automated driving with deployed soft-
ware components from the platform-independent software architecture.
The shown (yellow) software components are statically deployed. E.g. a

camera software component is placed on the camera sensor. For the two
environmental model instances, their target ECUs are known; however,
their particular target core is part of the DSE process

2. Deployment candidates may be found, but the time
requirements cannot be met for them.
Consequence: Rework as in 1.

3. At least one deployment candidate meets all time and
bandwidth requirements and can also be implemented.
Consequence: The approach has been successfully eval-
uated for this topology and functionality.

4.2 Process steps

For the twomain objectives of the evaluation,we consider the
platform-independent model of a software architecture that
is deployed and analysed with regard to timing. The inter-
connection of the tools PREEvision, the Z3 SMT solver,
and the timing analysis tool chronSIM [44] is depicted in
Fig. 13. PREEvision was originally developed in coopera-
tion with Daimler AG and has since then been introduced
to several OEMs and suppliers. For this reason, it offers a
domain-specific modelling notation that is specially tailored
to the requirements of the automotive industry. Itmeets all the
concept development requirements of electric/electronic/-

Fig. 13 Platform-independent process steps

software architectures in automotive engineering with plenty
of graphical views. Since the industry partner’s toolchain
includes PREEvision as a fundamental building block, we
decided not to use other only UML-based MBSE tools for
this paper.

We use PREEvision as (1) modelling environment for ser-
vices and clients, their requirements with respect to hardware
resources, and the computing platform. For the generation

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

of deployment candidates, we (2) generate the DSE prob-
lem out of PREEvision and solve it using the Z3 SMT
solver. Based on the explored deployment candidates, we
then pursue a timing analysis for each candidate. Here,
we again use PREEvision (3) in order to generate rele-
vant inputs for a simulation-based timing analysis within
chronSIM. We distinguish between two processes: first, the
platform-independent process, which is depicted in Fig. 13
and results in a platform-independent software architecture
discussed next. Second, the platform-specific process, which
is depicted in Fig. 16 and discussed in Sect. 4.6.

4.3 Platform-independent software architecture

The guiding example of the evaluation is a simplified
architecture for automated driving. As a first step within
the platform-independent process, we introduce the corre-
sponding software architecture that we have developed in
PREEvision (see Fig. 11). The architecture consists of sev-
eral components, each providing or consuming data. Services
and clients are structured in a layered architecture, as we pro-
posed in [54]. The lowest layer consists of services that sense
the environment with the help of sensors like lidar, radar, or
cameras and influence the vehicle’s movement with the help
of actuators for steering and (de-)acceleration. Sensory infor-
mation forms the database for the vehicle’s environmental
model service, which is located on the second layer and is
responsible for perception, sensor fusion, and scene under-
standing. As we can see, the driving dynamics service as
the actuator coordination unit is also located on this layer.
The environmental model service provides data for trajec-
tory planning as a client on the top layer. On this basis,
the trajectory planning calculates control requests that are
finally translated by the driving dynamics service into lateral
and longitudinal control actions, i. e., acceleration, braking,
and steering. The architectural concept reflects automated
driving at level 4, according to the SAE J3016 [88] classi-
fication. Level 4 says that the person sitting in the driver’s
seat is not driving when the automated driving features are
engaged. Moreover, the automated driving features will not
require the driver to take over control. This is important since
it influences the hardware as well as software architecture. In
Fig. 12, such an architecture with all redundant computing
as well as sensing capabilities is depicted. The driver is not
part of any fail-operational path anymore. Examples can be
local driverless taxis.

In addition to the services mentioned above and clients
responsible for automated driving, we aim for the centralised
consolidation of other software functions on the new plat-
form’s computers. Since these software functions originate
from other domains, we refer to this step as cross-domain
optimisation. In total, we consider 25 services/clients from
different domains: Infotainment (6), comfort (15), and assist-

ed/automated driving (4). The environmental model service
as one of the entities under consideration is deployed twice, a
nominal and a fail-operational (FO) instance (see Sect. 3.2).
Note that Fig. 12 also includes services for sensing and act-
ing. Because their allocation to a particular physical device
is fixed, they are not part of the design space exploration
process.

Each service/client has a specific resource footprint in
termsof (i) utilisationof the processor core, (ii) flashmemory,
(iii) volatilememory, and (iv)ASIL classification. Details are
shown in Table 3. We cannot give the exact ASIL classifi-
cation per service/client, processor core load, and memory
consumption for confidentiality reasons, but we do give their
assignment to classes. Using a single-core processor with a
clock frequency of 200 MHz as a base, we specify the num-
ber of services/clients that require up to ten, up to 100 or
more relative core usage. Similarly, three classes are speci-
fied for memory consumption and ASIL classification, with
the numbers of the services/clients they contain. The ASIL
requirements are necessary to select suitable processor cores
that have specific ASIL qualifications. The appropriate levels
of integrity are derived from a thorough evaluation by cor-
porate safety experts. The environment model and trajectory
planning (both instances) require the highest level (ASIL D),
as they contribute significantly to a level 4 automated driving
architecture. Of the remaining 22 services/clients, eight ser-
vices/clients have assigned an ASIL B requirement, and 14
non-safety critical services/clients have assigned QM (qual-
ity management) requirements.

4.4 Computing platform and deployment

Figure 12 represents the centralised computing platform that
is currently being evaluated as part of the development of
a new overall E/E architecture. It consists of three ECUs
equipped with different numbers of cores and hardware
accelerators. Table 3 gives an overview of the specific char-
acteristics of the ECUs. For reasons of confidentiality, we
cannot give the ASIL classification per core, but only its
absolute distribution over the ASIL levels: QM (3), A (0), B
(15), C (0) and D (7). For the same reason, we cannot give
the sizes of the predefined RAM partitions per core, but their
rough distribution is given in the table again. The cores of an
ECU share the available flash memory.

For the introduced and simplified architecture of an auto-
mated driving function (cf. Fig. 11), we take into account
predefined service/client to ECU mappings within Fig. 12.
These are the Environmental Model Service (ECU 1), the
Environmental Model Service (FO) (ECU 3), the Trajectory
Planning Client (ECU 2), the HD Map Service5 (Telemat-
ics ECU), the Driving Dynamics Client (Driving Dynamics

5 The HD Map service is not part of the fail-operational driving mode.

123



S. Kugele et al.

Table 2 Resource footprint and
safety requirements of
service/clients. The processor
utilisation for each service is
classified according to three
classes based on a single-core
processor running at a clock
frequency of 200 MHz as
baseline. Similarly, we use three
groups for the memory
consumption (both flash and
RAM)

Processor utilisation [%] [0, 10] (10-100] (100-1000]

[#] 3 21 1

Memory consumption [KiB] [0, 100] (100, 1000] (1000, 15000]

Flash [#] 1 15 9

RAM [#] 8 17 0

ASIL classification QM B D

[#] 14 8 3

Table 3 Capabilities and
characteristics of the centralised
computing platform. For each
ECU, the processor speed is
roughly given. Moreover, the
cumulated memory (flash and
RAM) of each ECU is stated

ECU Cores Clocka [GHz] Flash [MiB] RAMb [MiB] GPUs

ECU 1 9 0.2 − 2 512 2.506 1

ECU 2 10 0.2 − 2 256 4.002 0

ECU 3 6 0.2 − 2 512 8 1

a Clock speed distribution: 0.2 GHz (1), 0.3 GHz (12), and 2 GHz (12)
b RAM allocation: < 1 MiB (2), ≥ 1 MiB (10), > 100 MiB (13)

ECU), and all sensor and actuator services to their respec-
tive devices. ECU 1 and the connected sensors are part of
the nominal execution path, while ECU 3 and the connected
fail-operational sensors form the fail-operational path. The
LIN gateway is not part of the design space exploration anal-
ysis but is considered during network simulations since it
produces bus load at the Ethernet switch.
Optimisation The DSE process is automated by encoding the
deployment problem into an SMT instance. For this purpose,
the performance, memory, and safety requirements are for-
mulated as constraints, and the two optimisation objectives
mentioned in Sect. 3.3 form the objectives that must be min-
imised at the same time:

(1) First, we want to minimise the number of cores used;
(2) Second, we want to prevent non-safety-critical software

components from being used on cores with high ASIL
qualification.

Additional cores can be removed to save money and energy,
which in many cases is a decisive factor in the automotive
sector. The second optimisation function ensures the efficient
utilisation of the highly qualified processor cores. Usually,
those cores are expensive and thus reserved for services that
require e. g. anASILDqualification.We achieve this by iden-
tifying services/clients using processor cores that overfulfil
posedASIL requirements as violations. The subsequent eval-
uation of violations is done by penalty values (cf. Sect. 3.3).
Results We use the Z3 SMT solver supporting Pareto-
optimisation. Figure 14 shows the Pareto-front with three
computed deployment candidates indicated as circles (the
solver did not find other Pareto-optimal solutions). The areas
between deployment candidates 1 and 2 or 1 and 3 are not

Fig. 14 Pareto-front of the three found Pareto-optimal architecture can-
didates. For each candidate, timing characteristics is analysed in the
next step. Note, the dashed line only illustrates the Pareto front where
alternative—similarly good—solutions could lie

shown in detail (the dashed line). Further, non-dominated
candidates could still lie here. No further Pareto-optimal
solutions can lie in the red-shaded area since they are defini-
tively dominated by the ones already found. Recall that in the
min–min optimisation problem presented here (minimise the
number of used processor cores, minimise the penalties), the
solutions always strive towards the “lower left”. We speak
here of deployment candidates because in the next step—
the temporal and bandwidth simulation (cf. Sect. 4.5)—it is
checked for each of these candidates whether both the tem-
poral requirements are met and the utilisation of the involved
buses is within the bounds. For this purpose, the links at
the switch are also taken into account in the simulation.
Each solution describes a mapping of software applications

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

Table 4 Three deployment candidates are shown. For each of them, a
service/client-to-ECU mapping is given by the grey-shaded cells in the
table. The three black-shaded cells are the fixed service/client-to-ECU

mappings for the two environmental model service instances and the
trajectory planning service

(clients and services) to processor cores. These different
mappings yield different network configurations as data is
transmitted depending on the deployment.

The x-axis shows the number of processor cores. The y-
axis shows the summed up penalties. Recall that we want to
minimise both values.

As the DSE process’s output, each of the three deploy-
ment candidates is characterised by service/client to core
mappings. From these mappings, we subsequently derive the
service/client to ECUmappings and provide them in Table 4.

As the table shows, the ECUs as deployment targets of
certain services/clients can change depending on the con-
sidered candidate. For the Ethernet communication network,
these changes have an impact on the load that is carried by
the different links since services/clients share communica-
tion dependencies among each other. We, therefore, provide
an overview of necessary data transmission rates per Ether-
net link for each of the three candidates. Note, the allocation
of these transmission rates is only done at run-time since we
consider a dynamic communication paradigm in the form
of service-orientation. Table 5 shows the simulation results
of the different network configurations. Each configuration
corresponds to that of a deployment candidate.

As part of our network configurations, communication is
based on switched Ethernet using the Audio Video Bridg-
ing (AVB) standard. Traffic is shaped using the credit-based
shaping algorithm.

The feasibility of the approach—at least for the consid-
ered architecture size—has been shown. This answers the
guiding research question by demonstrating the applicability
for an actual pre-development project taken from the indus-

try. In this setting, a new centralised computing platform
consolidates existing software applications from different
automotive domains and a highly innovative level 4 automo-
tive driving function modelled in a service-oriented design
paradigm.

4.5 Simulation

Depending on the services’ distribution and their relation-
ship to each other (i. e., service-client-relationship), different
transfer rates are determined for each configuration. During
the simulation, we perform timing analyses for all three can-
didates of the automated driving architecture (cf. Fig. 12).
Our goal is to assess the end-to-end latency from the vehicle
environment’s perception to the vehicle dynamics’ stimula-
tion.

4.5.1 Experiment 1

Description The first simulation uses only a single envi-
ronment model without the possibility of fail-over to the
redundant instance. We are interested in an end-to-end
latency evaluation of the network paths. Figure 15a shows
the network path extending fromECU 1, the Ethernet switch,
to ECU 2, and ECU 4. The different application to proces-
sor core mappings for the three deployment candidates are
depicted in Table 4. In addition, the resulting network load
on the respective communication links is shown in Table 5.
The simulation is performed for each candidate individually.

Starting from the assumption that the trajectory planning
as a client has already subscribed to the service of the envi-

123



S. Kugele et al.

Table 5 (a) Network configuration 1, (b) network configuration 2, and
(c) network configuration 3

Link Transmission rate (kB/s)

(a) Configuration 1

ECU 1-GW 141.75

GW-ECU 1 141.75

ECU 2-GW 60.75

GW-ECU 2 60.75

ECU 3-GW 101.25

GW-ECU 3 101.25

ECU 1-ECU 3 1.20

ECU 3-ECU 1 1.20

ECU 1-ECU 2 150.3

ECU 2-ECU 1 0.30

ECU 3-ECU 2 150.30

ECU 2-ECU 3 0.30

(b) Configuration 2

ECU 1-GW 141.75

GW-ECU 1 141.75

ECU 2-GW 121.50

GW-ECU 2 121.50

ECU 3-GW 40.50

GW-ECU 3 40.50

ECU 1-ECU 3 0.00

ECU 3-ECU 1 0.00

ECU 1-ECU 2 151.50

ECU 2-ECU 1 1.50

ECU 3-ECU 2 150.3

ECU 2-ECU 3 0.30

(c) Configuration 3

ECU 1-GW 222.75

GW-ECU 1 222.75

ECU 2-GW 0.00

GW-ECU 2 0.00

ECU 3-GW 81.00

GW-ECU 3 81.00

ECU 1-ECU 3 0.00

ECU 3-ECU 1 0.00

ECU 1-ECU 2 150.30

ECU 2-ECU 1 0.30

ECU 3-ECU 2 150.30

ECU 2-ECU 3 0.30

ronment model, the behaviour of the network path can be
described as follows: The environment model periodically
provides event-based notifications via the Ethernet switch to
ECU 2. The trajectory planning then waits until the third
event is received and then stimulates the vehicle dynamics,
which is used on ECU 4 on the basis of a CAN message. As

a requirement, we have set up an end-to-end latency of 130
ms.

For the first experiment, we simulate the deployed archi-
tecture (cf. Fig. 12) without the possibility to reconfigure
the system in case of a timing violation and to switch to the
fail-operational instance of the environment model. There-
fore, we will only focus on the communication path shown
in Fig. 15a. By varying the jitter of 1 s for the start time of
the publish/subscribe process (cf. Fig. 2) between the envi-
ronmental model and trajectory planning function, diversity
is introduced into the simulation runs.
Results We conducted 500 simulation runs for each of the
three deployment candidates and thus derived network con-
figurations. The question is how we got to 500 runs. During
the simulation, randomness plays a role, as the jitter is also
varied. With only a few simulation runs, important timing
behaviours may not be detected. If we choose a huge num-
ber, there will, of course, be repetitions, which should also
be avoided because they do not provide any further knowl-
edge and only cost time. So we slowly approached the 500
in exchange with experts until there were no more new
behaviours and the first repetitionswere identified. From this,
we deduced that all candidates met the time requirement of
130 ms in 500 runs.

4.5.2 Experiment 2

Description The second simulation examines a reconfigu-
ration at run-time to activate the fail-operational path. The
behaviour of the network path in Fig. 15b can be described
as follows: First, the trajectory planner sends the subscription
message as the client of the fail-operational environmental
model. This subscription message is triggered by the Recon-
figuration Event6 and activates the environmental model
service, which periodically delivers notifications. The trajec-
tory planning, in turn, monitors whether the timing property
of the environmentalmodel, the receipt of at least three events
within a period of 30 ms, holds. If no violation is detected,
the driving dynamics’ stimulation is performed based on the
corresponding CAN message.

We now introduce the fail-operational instance of the
environmental model allowing a system reconfiguration at
run-time. To enforce the environmental model’s reconfig-
uration process within the simulations, we make sure that
the nominal instance does not provide its service in time.
We do this by scheduling an additional application on the
corresponding core. This application has a higher priority
than the environmental model and delays its execution. As a
result, the nominal instance’s timing property for the environ-

6 This event indicates that within a period of Δ = 30 ms, the trajectory
planning has received less than three events.

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

(a)

(b)

Fig. 15 a Nominal network path and b fail-operational path for the automated driving architecture

mental model becomes violated, and the trajectory planning
initialises the reconfiguration process as a client.

However, this also creates additional latency because of
executing the publish/subscribe process again. We take this
into account by defining a timing requirement on themaximal
reconfiguration time with the help of safety experts, which is
130 ms. Whenever the time from the reconfiguration event
until the driving dynamics’ stimulation exceeds 130 ms, we
will note this as a failed simulation run.
Results Again, we conducted 500 simulation runs for each of
the three architecture candidates. As a result, we could derive
that all candidates met the posed timing requirement of 130
ms even when a run-time reconfiguration between the nom-
inal and the fail-operational instance of the environmental
model service occurs.

Besides different network configurations, we introduced
variation potential among the simulations by introducing a
jitter of 1 s for the publish-subscribe process between the
environmental model and the trajectory planning client.

4.5.3 Overall simulation results

The results are based on the first drafts of software functions.
We again need to support the corresponding network analy-
sis by virtual validation techniques for the ongoing and more
detailed design of these functions. Nevertheless, from the
already gained simulation results, we derive two important
insights: (1) All architecture candidates meet posed tim-
ing requirements for the simulation experiments. (2) The
simulation of candidate 1 showed the lowest number of
reconfigurations.

Since the messages—exchanged during run-time
reconfiguration—put additional load on the network and
might conflict with an increasing network configuration in
further development, we treat this candidate with special
attention.

The thoroughly conducted experiments show that a
platform-independent model with timing requirements and
hardware capabilities annotated can indeed be used to eval-
uate the timing behaviour. In a simulation-based approach,

123



S. Kugele et al.

Fig. 16 Platform-specific process steps

it could be demonstrated that all requirements for temporal
behaviour could be fulfilled. For this purpose, the prac-
ticability was demonstrated by means of a model-to-text
transformation and the connection of a suitable tool.

4.6 Platform-specific software architecture

We receive candidates that have been validated by simu-
lations and are now considered for implementation. Since
the candidates are modelled in a platform-independent man-
ner, we first need to map them to platform-specific software
components—according to AUTOSARAdaptive—as exem-
plified in Fig. 7. For the rest of the software component
implementation process, we focus on the process steps spec-
ified in Fig. 16.

The platform-specific process describes twoparallel activ-
ities that merge in the test execution step:

1. The first branchmodels service interfaces and implements
them as software units (depicted with solid lines, left
path);

2. The second branch models the abstract behaviour of soft-
ware components in order to generate test cases (depicted
in dashed lines, right path).

Each of those activities is described next.

Fig. 17 Service interface provided by environmental model software
component as modelled within the MSBE tool

4.6.1 Service interface design

Following the mapping to AUTOSAR software components,
the service interfaces of the software functions to be imple-
mented are described. In Fig. 17, the environmental model
service interface is illustrated as composition of six func-
tions:

1. notification,
2. send_notification,
3. set_is_notified,
4. get_is_notified,
5. set_timer, and
6. get_timer.

The function send_notification triggers the middle-
ware to transmit objects to the client describing the vehicle’s
environment. This function has no parameters, takes objects
located in one shared memory accessible by the middleware,
and finally stimulates the Ethernet controller for transmis-
sion. All other functions have either typed input or output
parameters.

4.6.2 Implementation

All six functions shown in the service interface depicted
above need to be part of the implementation of the envi-
ronmental model service interface. To do so, we generate
the AUTOSAR XML representation of the service interface.
Listing 3 shows the function notification as part of the
ARXML representation of the environmental model service
interface (environmentalModel.arxml).

It contains for each function its signature, which is used to
generate a corresponding C++ header file. This header file is,
in our case, provided to developers of the automated driving
department. For its implementation, a detailed behavioural
model is used to generate the application’s source code. As

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

<?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>
<!--PREEvision 9.0.9 Endfassung -->
<!--JDK: 1.8.0 _222 -->
<!--Autosar Release 17-10 -->
<!--Date: 2020.02.29 at 22:38:11 -->
<?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>
<AUTOSAR xmlns="http :// autosar.org/schema/r4.0"

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"
xsi:schemaLocation="http :// autosar.org/schema/r4.0 AUTOSAR_00043.xsd">

<ADMIN -DATA >
<LANGUAGE >EN </LANGUAGE >
<USED -LANGUAGES >

<L-10 L="EN" xml:space="default"/>
</USED -LANGUAGES >

</ADMIN -DATA >
<AR -PACKAGES >

<AR-PACKAGE UUID="a12ec6d775433b4081351991da83df55">
<SHORT -NAME >ServiceInterfaces </SHORT -NAME >
<ELEMENTS >

<SERVICE -INTERFACE UUID="Na3161251621a1b7140218deXNa3161251621a1b7140218dd00">
<SHORT -NAME >Environmental_Model_Service_Interface </SHORT -NAME >
<NAMESPACES >

<SYMBOL -PROPS >
<SHORT -NAME >Services </SHORT -NAME >
<SYMBOL >Services </SYMBOL >

</SYMBOL -PROPS >
</NAMESPACES >
<METHODS >

<CLIENT -SERVER -OPERATION
UUID="Oac1ae26c17092b2ab368d33fXOac1ae26c17092b2ab368d33e00">
<SHORT -NAME >notification </SHORT -NAME >
<ARGUMENTS >

<ARGUMENT -DATA -PROTOTYPE
UUID="Oac1ae26c17092b2ab36b3beaXOac1ae26c17092b2ab36b3be900">
<SHORT -NAME >timer </SHORT -NAME >
<DIRECTION >IN </DIRECTION >

</ARGUMENT -DATA -PROTOTYPE >
</ARGUMENTS >
<FIRE -AND -FORGET >false </FIRE -AND -FORGET >

</CLIENT -SERVER -OPERATION >
...

</METHODS >
</SERVICE -INTERFACE >

</ELEMENTS >
</AR-PACKAGE >

</AR-PACKAGES >
</AUTOSAR >

Listing 3 Part of ARXML file for environmental model service interface showing notification function as method with argument timer as input
parameter.

our approach is aimed at level 4 of automated driving, this
model and thus the implementation of the header file is still
under development. As an exemplary implementation of the
environmental model service interface, Listing 1 is given.

4.6.3 Abstract behavioural model design

Now, we consider the second, right branch of the depicted
process in Fig. 16. Here, we aim to generate test cases from
abstract behavioural models given as UML state machines.
For the environmental model software component, we use

the state machine given in Fig. 8. This abstract behavioural
model—developed by system architects—shares the com-
monality with the detailed behavioural model—currently
under development—that both refer to the same service
interface in terms of structure (parameters and data types).
However, concerning behaviour, both models are developed
independently. They, therefore, provide redundancy required
for model-based testing: One model for generating test cases
and one for generating the application’s source code.

123



S. Kugele et al.

Scenario: TestCase1
Given method notification with timer == 10
Then method get_is_notified

with is_notified == true
Then method get_timer with timer == 0

Listing 4 Example test case description from BMW in-house DSL.

#include <environmentalModel.cpp >
TEST(TestCase1 , TestEnvironmentalModel)
{

notification (10);
ASSERT_EQ(true , get_is_notified ());
ASSERT_EQ(0, get_timer ());

}

Listing 5 Example test.

4.6.4 Test case generation

In Sect. 3.7.2, we illustrated the concept of generating test
cases from runs through a state machine. Now, we realise this
concept by deriving test case descriptions from UML state
machine diagrams. These descriptions are formalised within
an in-house DSL and thus abstract from target languages.
As an example, we provide TestCase1 (cf. Sect. 3.7.2) as
an abstract test case description within the in-house DSL in
Listing 4.

To achieve an executable test case, we use an Xtend-based
generator that outputs C++ unit test cases taking abstract test
descriptions as input. The example given in Listing 5 depicts
the software unit test case derived from the abstract test case
description in Listing 4. The software unit test case is in line
with the Google Test framework. Note, for this test case,
we refer to the exemplary implementation of the header file
environmentalModel.h in Listing 1.

4.6.5 Test execution

The execution of the test case in Listing 5 conducts in
principle the following steps: First, we stimulate the envi-
ronmental model service interface by the function call
notification(10). Afterwards, two assertions are checked
and logged within the test report. This report is finally pro-
vided to architects as feedback.

The abstract interface models of the platform-indepen-
dent software architecture are refined by modelling a pre-
cise platform-specific correspondence. Besides this interface
refinement, i. e., concretisation by increasing the level of
detail, the abstract behaviour-describing models are also
refined by the actual implementation. This can be done with
MBSE tools such as Simulink or ASCET or can be imple-
mented manually. The generated test cases must be created
from a different (abstract model) than the actual implemen-

tation, for example. Both the interface specification and the
implementation follow the guidelines and specifications of
the AUTOSAR Adaptive Platform.

4.7 Overall evaluation result

In conclusion, the evaluation can be assessed as follows. In
the guiding research question and the accompanying three
framework conditions, we asked whether it is possible in
a pre-development project to design an equally novel cen-
tralised architecture for automated driving according to level
4 for a highly innovative function in such a way that it can be
fed into a further implementation process. The experiments
and observations that have now been carried out showed that
both the framework conditions could be fulfilled, and the
downstream development process could be demonstrated. Of
the three possible evaluation results outlined in Sect. 4.1, the
third case, i. e., the positive evaluation of the approach pre-
sented here, could be confirmed.

5 Discussion

For the discussion, we account assumptions and limitations
that are embedded in our approach and evaluation.

5.1 Assumptions

Our approach assumes a component-based model of a
service-oriented architecture embedded into an overall auto-
motive E/E architecture model also respecting hardware. In
addition, we assume to have fine-grained hardware resource
requirements at an early stage of development. Both assump-
tions are not unrealistic but depend on a strong collaboration
between E/E architects, software architects, and function
developers beyond one company’s border.

5.2 Limitations

We considered 25 software functions from the automotive
domains infotainment, comfort, and assisted/automated driv-
ing for software deployment within a centralised computing
platform. As a supplement for future work, we want to scale
these figures in two ways: On the one hand, we want to
increase the number of software functions from the domains
already considered. On the other hand, we want to account
for functions from domains not yet considered, such as driv-
ing dynamics. Another limitation is the evaluation example.
Here, we considered a reconfiguration for the environmental
model based on two service instances and not an overall fail-
operational concept. To achieve this, all components of an
automated driving architecture need to have fail-operational
capabilities. In terms of the timing assessment, the applied

123



Model-based resource analysis and synthesis of service-oriented automotive software architectures

method is simulation-based and does not provide theoretical
worst-case considerations. Finally, the exemplified process
in Sect. 4.6 lacks in conducting the test execution step. As
already mentioned, this is true since software for an archi-
tecture featuring level 4 of driving automation is not present
yet.

6 Conclusion

Service-oriented architectures promote a better run-time
decoupling between software and hardware than currently
dominant signal-oriented architectures. Also, design-time
activities can be eased since network communication depen-
dencies between distributed software applications do not
need to be predefined (cf. Fig. 1b). For accomplishing the
rollout of this new architectural style at scale, we addressed
threemain challenges and provided possible solutions as con-
tributions.

6.1 Addressed challenges

Challenge 1 – Deployment (C1) The continuing trend
towards centralised computer platforms offers opportuni-
ties to unify software applications from different automotive
domains. As a result of this trend, the degree of distribution,
which currently comprises around100ECUs, canbe reduced.
In this paper, we have merged the deployment problem of
service-oriented architectures with the idea of centralised
computing. The central elements of this merging are: (1)
Models of service-oriented architectures fostering logical
and deployment aspects, (2) synthesis of architecture can-
didates that are optimal according to efficient utilisation of
computing resources, and (3) run time assessments of archi-
tecture candidates in a simulation-based manner.
Challenge 2 – Assessment of Timing Properties (C2) Espe-
cially for the last element of the above, we dealt with the idea
of reconfiguration at run-time, which is not available in cur-
rent architectures. We presented an approach for evaluating
timing requirements with special emphasis on reconfigura-
tion at run-time. For this purpose, an engineer does not have
to bind a fail-over service statically because service discovery
and binding used at run-time are also part of the simulation
model. One of the main advantages of the simulation-based
approach compared to worst-case estimation methods is that
they are far less pessimistic or conservative and waste fewer
resources. The relevant standard ISO 26262 does not impose
any requirements in this respect.
Challenge 3 – Transition From PIM to PSM (C3) The provi-
sion of abstraction between software and hardware—native
for service-oriented architectures—can accelerate automo-
tive software development. Similar work in this respect is
rare (cf. Sect. 2.2.3). We tackled the corresponding field by

focusing on two important parts: (1) The mapping relation
between flexible platform-independent models of service-
oriented architectures onto platform-specific ones and (2) the
idea of an architecture development cycle that synchronises
architects and software engineers by test cases as shared arte-
facts that are fed back.

6.2 Future perspective

For the rollout of our approach and service-oriented architec-
tures in general, the introduction of IP-based communication
networks on a large scale is a necessary prerequisite. As
a possible blueprint, we consider the topology given in
Fig. 6a. Besides the technical infrastructure available in parts,
the corresponding development processes and development
methodologies are still open issues. The following points
must be considered in future work: (1) The application and
evaluation of our architecture design approach within an
overall vehicle development process, (2) the strengthening of
feedback loops between architects and software engineers to
cope with incremental development rarely applied today, (3)
the consequencing challenge to handle versions and variants
on the model and source code level, and (4) the extension of
automotive service-oriented architectures to the potentially
non-automotive software ecosystem.

For all of these challenges, stakeholders will have an
intrinsic desire for problem reduction and abstraction. As
model-based techniques strongly account for these needs, we
will foster their development and usage at the BMW Group.

Acknowledgements We thank the anonymous SoSyM reviewers for
their insightful, collegial, and constructive feedback.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Aleti,A., Bjornander, S.,Grunske, L.,Meedeniya, I.: Archeopterix:
An extendable tool for architecture optimization of aadl models.
In: Proceedings of the ICSE Workshop on Model-based Method-
ologies for Pervasive and Embedded Software, vol. 0, pp. 61–71.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


S. Kugele et al.

IEEE Computer Society, Los Alamitos, CA, USA (2009). https://
doi.org/10.1109/MOMPES.2009.5069138

2. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.:
Software architecture optimization methods: A systematic litera-
ture review. IEEE Trans. Software Eng. 39(5), 658–683 (2013).
https://doi.org/10.1109/TSE.2012.64

3. Alliance, G.: GENIVI. https://www.genivi.org/. Accessed: 2020-
02-11

4. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Com-
put. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-
3975(94)90010-8

5. Amdahl, G.M.: Validity of the single processor approach to achiev-
ing large scale computing capabilities. In: Proceedings of the April
18–20, 1967, spring joint computer conference, pp. 483–485.Asso-
ciation for Computing Machinery (1967). https://doi.org/10.1145/
1465482.1465560

6. Arunkumar, N., Karunamoorthy, L.: An optimization technique
for vendor selection with quantity discounts using genetic
algorithm. J. Ind. Eng. Int. Islamic Azad University, South
Teheran Branch (2007). http://www.sid.ir/En/VEWSSID/J_pdf/
117320070401.pdf. [Online; accessed 25-August-2020]

7. AUTOSAR: Automotive Open System Architecture. http://www.
autosar.org

8. Axelsson, J.: Cost models for electronic architecture trade studies.
In: 6th International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2000), 11–15 September 2000, Tokyo,
Japan, p. 229. IEEE Computer Society (2000). https://doi.org/10.
1109/ICECCS.2000.10004

9. Axelsson, J.: Cost models with explicit uncertainties for elec-
tronic architecture trade-off and risk analysis. In: Proceedings
of 16th International Symposium of the International Council on
Systems Engineering (2006). http://www.mrtc.mdh.se/index.php?
choice=publications&id=1155

10. Becker, S., Koziolek, H., Reussner, R.H.: The palladio component
model for model-driven performance prediction. J. Syst. Softw.
82(1), 3–22 (2009). https://doi.org/10.1016/j.jss.2008.03.066

11. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.:
UPPAAL - a tool suite for automatic verification of real-time
systems. In: R. Alur, T.A. Henzinger, E.D. Sontag (eds.) Hybrid
Systems III: Verification and Control, Proceedings of the DIMAC-
S/SYCON Workshop on Verification and Control of Hybrid Sys-
tems, October 22-25, 1995, Ruttgers University, New Brunswick,
NJ, USA, Lecture Notes in Computer Science, vol. 1066, pp. 232–
243. Springer (1995). https://doi.org/10.1007/BFb0020949

12. Bjørner, N., Phan, A.D.: νZ - Maximal Satisfaction with Z3. In:
T. Kutsia, A. Voronkov (eds.) SCSS 2014, EPiC Series, 30, 1–9
(2014)

13. Bocchi, L., Fiadeiro, J.L., Lopes, A.: Service-oriented modelling
of automotive systems. In: 2008 32nd Annual IEEE International
Computer Software and Applications Conference, pp. 1059–1064
(2008). https://doi.org/10.1109/COMPSAC.2008.228

14. Bosch, J. (ed.): Continuous SoftwareEngineering. Springer (2014).
https://doi.org/10.1007/978-3-319-11283-1

15. Broy, M., Gleirscher, M., Kluge, P., Krenzer, W., Merenda, S.,
Wild, D.: Automotive architecture framework: Towards a holistic
and standardised system architecture description. Tech. rep., Tech-
nische Universität München (2009). ftp://ftp.software.ibm.com/
software/plm/resources/AAF_TUM_TRI0915.pdf

16. Broy, M., Krüger, I.H., Meisinger, M.: A formal model of services.
ACM Trans. Softw. Eng. Methodol. 16(1) (2007). https://doi.org/
10.1145/1189748.1189753

17. Broy, M., Stølen, K.: Specification and development of interactive
systems: FOCUS on streams, interfaces, and refinement. Springer-
Verlag, New York (2001)

18. Bucher, H., Kamm, S., Becker, J.: Cross-layer behavioral modeling
and simulation of e/e-architectures using preevision and ptolemy II.

Simul. Notes Eur. 29(2), 73–78 (2019). https://doi.org/10.11128/
sne.29.tn.10472

19. Carnegie Mellon University: Open Source AADL Tool Environ-
ment (2020 (accessed August 25, 2020)). https://osate.org

20. Cebotari, V., Kugele, S.: On the nature of automotive service
architectures. In: IEEE International Conference on Software
Architecture Companion, ICSA Companion 2019, Hamburg, Ger-
many,March 25-26, 2019, pp. 53–60. IEEE (2019). https://doi.org/
10.1109/ICSA-C.2019.00017

21. chronval. https://www.inchron.com/tool-suite/chronval.html.
Accessed: 2019-01-16

22. Dajsuren, Y.: On the design of an architecture framework and
quality evaluation for automotive software systems. Dissertation,
Technische Universiteit Eindhoven, Eindhoven (2015). https://
pure.tue.nl/ws/files/15934981/20160307_Dajsuren.pdf

23. Damm,W., Votintseva, A., Metzner, A., Josko, B., Peikenkamp, T.,
Böde, E.: Boosting re–use of embedded automotive applications
through rich components. In: FIT 2005—Foundations of Interface
Technologies (2005)

24. Daniel J.G.: Ein modellbasiertes, graphisch notiertes, inte-
griertes Verfahren zur Bewertung und zum Vergleich von
Elektrik/Elektronik-Architekturen. Dissertation, Karlsruher Insi-
tut für Technologie, Karlsruhe (2016). https://publikationen.
bibliothek.kit.edu/1000062484

25. Dziwok, S., Pohlmann, U., Piskachev, G., Schubert, D., Thiele, S.,
Gerking, C.: The mechatronicuml design method: Process and lan-
guage for platform-independent modeling. Tech. Rep. tr-ri-16-352,
Software Engineering Department, Fraunhofer IEM / Software
Engineering Group, Heinz Nixdorf Institute, Zukunftsmeile 1,
33102 Paderborn, Germany (2016). Version 1.0

26. EAST-ADL domain model specification (2013). http://www.east-
adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.
12.pdf

27. Eclipse Foundation: Franca IDL. https://github.com/franca/franca.
Accessed: 2020-02-12

28. Ernst, R., Kuntz, S., Quinton, S., Simons,M.: The logical execution
time paradigm: New perspectives for multicore systems (dagstuhl
seminar 18092). Dagstuhl Rep. 8, 122–149 (2018)

29. ETAS: ASCET-DEVELOPER. https://www.etas.com/de/
portfolio/ascet-developer.php. Accessed: 2020-02-11

30. Feiler, P., Gluch, D., Hudak, J.: The architecture analysis &
design language (AADL): An introduction. Tech. Rep. CMU/SEI-
2006-TN-011, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA (2006). http://resources.sei.cmu.edu/
library/asset-view.cfm?AssetID=7879

31. Fellini, R., Michelena, N., Papalambros, P., Sasena, M.: Optimal
design of automotive hybrid powertrain systems. In: Environmen-
tally Conscious Design and Inverse Manufacturing, 1999. Pro-
ceedings. EcoDesign ’99: First International Symposium On, pp.
400–405 (1999). https://doi.org/10.1109/ECODIM.1999.747645

32. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F.,
Schmidt, M., Theiling, H., Thesing, S., Wilhelm, R.: Reliable and
preciseWCETdetermination for a real-life processor. In: T.A.Hen-
zinger, C.M. Kirsch (eds.) Embedded Software, First International
Workshop, EMSOFT 2001, Tahoe City, CA, USA, October, 8-
10, 2001, Proceedings, Lecture Notes in Computer Science, vol.
2211, pp. 469–485. Springer (2001). https://doi.org/10.1007/3-
540-45449-7_32

33. Florentz, B., Huhn, M.: Embedded systems architecture: Evalua-
tion and analysis. In: C. Hofmeister, I. Crnkovic, R.H. Reussner
(eds.) Quality of Software Architectures, Second International
Conference on Quality of Software Architectures, QoSA 2006,
Västerås, Sweden, June 27-29, 2006Revised Papers, Lecture Notes
in Computer Science, vol. 4214, pp. 145–162. Springer (2006).
https://doi.org/10.1007/11921998_14

123

https://doi.org/10.1109/MOMPES.2009.5069138
https://doi.org/10.1109/MOMPES.2009.5069138
https://doi.org/10.1109/TSE.2012.64
https://www.genivi.org/
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
http://www.sid.ir/En/VEWSSID/J_pdf/117320070401.pdf
http://www.sid.ir/En/VEWSSID/J_pdf/117320070401.pdf
http://www.autosar.org
http://www.autosar.org
https://doi.org/10.1109/ICECCS.2000.10004
https://doi.org/10.1109/ICECCS.2000.10004
http://www.mrtc.mdh.se/index.php?choice=publications&id=1155
http://www.mrtc.mdh.se/index.php?choice=publications&id=1155
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1109/COMPSAC.2008.228
https://doi.org/10.1007/978-3-319-11283-1
ftp://ftp.software.ibm.com/software/plm/resources/AAF_TUM_TRI0915.pdf
ftp://ftp.software.ibm.com/software/plm/resources/AAF_TUM_TRI0915.pdf
https://doi.org/10.1145/1189748.1189753
https://doi.org/10.1145/1189748.1189753
https://doi.org/10.11128/sne.29.tn.10472
https://doi.org/10.11128/sne.29.tn.10472
https://osate.org
https://doi.org/10.1109/ICSA-C.2019.00017
https://doi.org/10.1109/ICSA-C.2019.00017
https://www.inchron.com/tool-suite/chronval.html
https://pure.tue.nl/ws/files/15934981/20160307_Dajsuren.pdf
https://pure.tue.nl/ws/files/15934981/20160307_Dajsuren.pdf
https://publikationen.bibliothek.kit.edu/1000062484
https://publikationen.bibliothek.kit.edu/1000062484
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
https://github.com/franca/franca
https://www.etas.com/de/portfolio/ascet-developer.php
https://www.etas.com/de/portfolio/ascet-developer.php
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7879
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7879
https://doi.org/10.1109/ECODIM.1999.747645
https://doi.org/10.1007/3-540-45449-7_32
https://doi.org/10.1007/3-540-45449-7_32
https://doi.org/10.1007/11921998_14


Model-based resource analysis and synthesis of service-oriented automotive software architectures

34. fortiss GmbH: Welcome to the fortiss AutoFOCUS 3 (2018).
https://af3-developer.fortiss.org/

35. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous
driving? the KITTI vision benchmark suite. In: 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition, Providence, RI,
USA, June 16-21, 2012, pp. 3354–3361. IEEE Computer Society
(2012). https://doi.org/10.1109/CVPR.2012.6248074

36. Glaß, M., Lukasiewycz, M., Wanka, R., Haubelt, C., Teich, J.:
Multi-objective routing and topology optimization in networked
embedded systems. In: W.A. Najjar, H. Blume (eds.) Proceedings
of the 2008 International Conference on Embedded Computer Sys-
tems: Architectures,Modeling and Simulation (IC-SAMOS 2008),
Samos, Greece, July 21-24, 2008, pp. 74–81. IEEE (2008). https://
doi.org/10.1109/ICSAMOS.2008.4664849

37. Google:AndroidAuto. https://www.android.com/auto/. Accessed:
2020-02-11

38. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunc-
tive programming techniques. Optim. Eng. 3(3), 227–252 (2002)

39. Grunske, L., Lindsay, P.A., Bondarev, E., Papadopoulos, Y., Parker,
D.: An outline of an architecture-based method for optimiz-
ing dependability attributes of software-intensive systems. In:
R. de Lemos, C. Gacek, A.B. Romanovsky (eds.) Architecting
Dependable Systems IV [the book is a result of the ICSE 2006
and DSN 2006 workshops], Lecture Notes in Computer Science,
vol. 4615, pp. 188–209. Springer (2006). https://doi.org/10.1007/
978-3-540-74035-3_9

40. Haberl, W., Herrmannsdoerfer, M., Kugele, S., Tautschnig, M.,
Wechs, M.: Seamless model-driven development put into prac-
tice. In: T. Margaria, B. Steffen (eds.) Leveraging Applications
of Formal Methods, Verification, and Validation - 4th International
Symposium on Leveraging Applications, ISoLA 2010, Heraklion,
Crete, Greece, October 18-21, 2010, Proceedings, Part I, Lecture
Notes in Computer Science, vol. 6415, pp. 18–32. Springer (2010).
https://doi.org/10.1007/978-3-642-16558-0_4

41. IEEE standard for local and metropolitan area networks - virtual
bridged local area networks amendment 12: Forwarding and queu-
ing enhancements for time-sensitive streams. Tech. rep. (2010).
https://doi.org/10.1109/IEEESTD.2009.5375704

42. IEEE standard for local and metropolitan area networks–audio
video bridging (AVB) systems. Tech. rep. (2011). https://doi.org/
10.1109/IEEESTD.2011.6032690

43. IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005):
IEEE Standard for Standard SystemC Language Refer-
ence Manual. IEEE (2012). https://books.google.de/books?
id=shlZAQAACAAJ

44. Inchron: chronSIM. https://www.inchron.com/tool-suite/
chronsim.html. Accessed: 2019-01-16

45. ISO/IEC/IEEE Systems and software engineering – Architecture
description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000) pp. 1–46 (2011). https://doi.
org/10.1109/IEEESTD.2011.6129467

46. ISO: Road vehicles–Functional safety (ISO 26262) (2011)
47. Jaensch, M.: Modulorientiertes Produktlinien Engineering für den

modellbasierten Elektrik/Elektronik-Architekturentwurf. Karl-
sruher Institut für Technologie (2014). https://books.google.de/
books?id=mhT1pN4Xg3UC

48. Kampmann, A., Alrifaee, B., Kohout, M., Wüstenberg, A.,
Woopen, T., Nolte, M., Eckstein, L., Kowalewski, S.: A dynamic
service-oriented software architecture for highly automated vehi-
cles. In: 2019 IEEE Intelligent Transportation Systems Confer-
ence, ITSC 2019, Auckland, New Zealand, October 27–30, 2019,
pp. 2101–2108. IEEE (2019). https://doi.org/10.1109/ITSC.2019.
8916841

49. Kugele, S., Cebotari, V., Gleirscher, M., Farzaneh, M.H., Segler,
C., Shafaei, S., Vögel, H.J., Bauer, F., Knoll, A., Marmsoler,
D., Michel, H.U.: Research challenges for a future-proof e/e

architecture—a project statement. In: 15. Workshop Automo-
tive Software Engineering, Proceedings, Chemnitz, Germany. LNI
(2017)

50. Kugele, S., Haberl, W., Tautschnig, M., Wechs, M.: Optimizing
automatic deployment using non-functional requirement annota-
tions. In: ISoLA, pp. 400–414 (2008)

51. Kugele, S., Hettler, D., Peter, J.: Data-centric communication and
containerization for future automotive software architectures. In:
IEEE International Conference on Software Architecture, ICSA
2018, Seattle, WA, USA, April 30 - May 4, 2018, pp. 65–74.
IEEE Computer Society (2018). https://doi.org/10.1109/ICSA.
2018.00016

52. Kugele, S., Hettler, D., Shafaei, S.: Elastic service provision
for intelligent vehicle functions. In: W. Zhang, A.M. Bayen,
J.J.S. Medina, M.J. Barth (eds.) 21st International Conference on
Intelligent Transportation Systems, ITSC 2018, Maui, HI, USA,
November 4-7, 2018, pp. 3183–3190. IEEE (2018). https://doi.
org/10.1109/ITSC.2018.8569374

53. Kugele, S., Marmsoler, D., Mata, N., Werther, K.: Verification
of component architectures using mode-based contracts. In: 2016
ACM/IEEE International Conference on Formal Methods and
Models for System Design, MEMOCODE 2016, Kanpur, India,
November 18-20, 2016, pp. 133–142 (2016). https://doi.org/10.
1109/MEMCOD.2016.7797758

54. Kugele, S., Obergfell, P., Broy, M., Creighton, O., Traub, M.,
Hopfensitz, W.: On service-orientation for automotive software.
In: 2017 IEEE International Conference on Software Architecture,
ICSA 2017, Gothenburg, Sweden, April 3-7, 2017, pp. 193–202.
IEEE (2017). https://doi.org/10.1109/ICSA.2017.20

55. Kugele, S., Pucea, G., Popa, R., Dieudonné, L., Eckardt, H.: On
the deployment problem of embedded systems. In: 13. ACM/IEEE
International Conference on Formal Methods and Models for
Codesign, MEMOCODE 2015, Austin, TX, USA, September
21–23, 2015, pp. 158–167. IEEE (2015). https://doi.org/10.1109/
MEMCOD.2015.7340482

56. Kugele, S., Pucea, G.: Model-based optimization of automotive
e/e-architectures. In: V. Ganesh, N. Williams (eds.) Proceedings of
the 6th International Workshop on Constraints in Software Test-
ing, Verification, and Analysis, CSTVA 2014, Hyderabad, India,
May 31, 2014, pp. 18–29. ACM (2014). https://doi.org/10.1145/
2593735.2593739

57. Kumar, R., Izui, K.,Masataka,M., Nishiwaki, S.:Multilevel redun-
dancy allocation optimization using hierarchical genetic algorithm.
IEEE Trans. Reliab. 57(4), 650–661 (2008). https://doi.org/10.
1109/TR.2008.2006079

58. Lampe, B., Woopen, T., Eckstein, L.: Collective Driving—Cloud
Services for Automated Vehicles in UNICARagil. In: 28th Aachen
Colloquium. Aachen, Germany (2019)

59. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented
design of embedded hardware and software systems. J. Circ.
Syst. Comput. 12(3), 231–260 (2003). https://doi.org/10.1142/
S0218126603000751

60. Lohstroh, M., Romero, Í.Í., Goens, A., Derler, P., Castrillon, J.,
Lee, E.A., Sangiovanni-Vincentelli, A.: Reactors: A deterministic
model for composable reactive systems. In: Proceedings of the 9th
Workshop on Design, Modeling and Evaluation of Cyber Physical
Systems (CyPhy2019) and theWorkshop onEmbedded andCyber-
Physical Systems Education (WESE 2019), p. 26pp (2019)

61. Lotz, J., Vogelsang, A., Benderius, O., Berger, C.: Microservice
architectures for advanced driver assistance systems: A case-study.
In: IEEE International Conference on Software Architecture Com-
panion, ICSA Companion 2019, pp. 45–52. IEEE (2019). https://
doi.org/10.1109/ICSA-C.2019.00016

62. Lukasiewycz,M.,Glaß,M.,Haubelt, C., Teich, J., Regler, R., Lang,
B.: Concurrent topology and routing optimization in automotive
network integration. In: L. Fix (ed.) Proceedings of the 45th Design

123

https://af3-developer.fortiss.org/
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/ICSAMOS.2008.4664849
https://doi.org/10.1109/ICSAMOS.2008.4664849
https://www.android.com/auto/
https://doi.org/10.1007/978-3-540-74035-3_9
https://doi.org/10.1007/978-3-540-74035-3_9
https://doi.org/10.1007/978-3-642-16558-0_4
https://doi.org/10.1109/IEEESTD.2009.5375704
https://doi.org/10.1109/IEEESTD.2011.6032690
https://doi.org/10.1109/IEEESTD.2011.6032690
https://books.google.de/books?id=shlZAQAACAAJ
https://books.google.de/books?id=shlZAQAACAAJ
https://www.inchron.com/tool-suite/chronsim.html
https://www.inchron.com/tool-suite/chronsim.html
https://doi.org/10.1109/IEEESTD.2011.6129467
https://doi.org/10.1109/IEEESTD.2011.6129467
https://books.google.de/books?id=mhT1pN4Xg3UC
https://books.google.de/books?id=mhT1pN4Xg3UC
https://doi.org/10.1109/ITSC.2019.8916841
https://doi.org/10.1109/ITSC.2019.8916841
https://doi.org/10.1109/ICSA.2018.00016
https://doi.org/10.1109/ICSA.2018.00016
https://doi.org/10.1109/ITSC.2018.8569374
https://doi.org/10.1109/ITSC.2018.8569374
https://doi.org/10.1109/MEMCOD.2016.7797758
https://doi.org/10.1109/MEMCOD.2016.7797758
https://doi.org/10.1109/ICSA.2017.20
https://doi.org/10.1109/MEMCOD.2015.7340482
https://doi.org/10.1109/MEMCOD.2015.7340482
https://doi.org/10.1145/2593735.2593739
https://doi.org/10.1145/2593735.2593739
https://doi.org/10.1109/TR.2008.2006079
https://doi.org/10.1109/TR.2008.2006079
https://doi.org/10.1142/S0218126603000751
https://doi.org/10.1142/S0218126603000751
https://doi.org/10.1109/ICSA-C.2019.00016
https://doi.org/10.1109/ICSA-C.2019.00016


S. Kugele et al.

Automation Conference, DAC 2008, Anaheim, CA, USA, June
8-13, 2008, pp. 626–629. ACM (2008). https://doi.org/10.1145/
1391469.1391629

63. Malkis, A., Marmsoler, D.: A model of service-oriented archi-
tectures. In: 2015 IX Brazilian Symposium on Components,
Architectures and Reuse Software, SBCARS 2015, Belo Hori-
zonte, Minas Gerais, Brazil, September 21–22, 2015, pp. 110–119.
IEEEComputer Society (2015). https://doi.org/10.1109/SBCARS.
2015.22

64. Martens, A., Koziolek, H.: Automatic, model-based software per-
formance improvement for component-based software designs.
Electron. Notes Theor. Comput. Sci. 253(1), 77–93 (2009). https://
doi.org/10.1016/j.entcs.2009.09.029

65. MATLAB: version 7.10.0 (R2010a). The MathWorks Inc., Natick,
Massachusetts (2010)

66. Meedeniya, I., Buhnova, B., Aleti, A., Grunske, L.: Reliability-
driven deployment optimization for embedded systems. J. Syst.
Softw. 84(5), 835–846 (2011). https://doi.org/10.1016/j.jss.2011.
01.004

67. Menard, C., Goens, A., Lohstroh, M., Castrillón, J.: Achiev-
ing determinism in adaptive AUTOSAR. CoRR abs/1912.01367
(2019). arXiv:1912.01367

68. Modelica Association Project “FMI”: Functional Mock-up Inter-
face for Model Exchange and Co-Simulation (2014)

69. Obergfell, P., Kugele, S., Sax, E.: Model-based resource analysis
and synthesis of service-oriented automotive software architec-
tures. In:M.Kessentini, T.Yue,A. Pretschner, S.Voss, L.Burgueño
(eds.) 22nd ACM/IEEE International Conference onModel Driven
Engineering Languages and Systems, MODELS 2019, Munich,
Germany, September 15–20, 2019, pp. 128–138. IEEE (2019).
https://doi.org/10.1109/MODELS.2019.000-8

70. Obergfell, P., Kugele, S., Segler, C., Knoll, A., Sax, E.: Continu-
ous software engineering of innovative automotive functions: An
industrial perspective. In: IEEE International Conference on Soft-
ware Architecture Companion, ICSA Companion 2019, Hamburg,
Germany, March 25–26, 2019, pp. 127–128. IEEE (2019). https://
doi.org/10.1109/ICSA-C.2019.00030

71. OMG: Data Distribution Service (DDS), 1.4 edn. (2015). http://
www.omg.org/spec/DDS/1.4/

72. OMG: Meta object facility (2016). http://www.omg.org/spec/
MOF/

73. OMG: UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded Systems (2009)

74. Pelliccione, P., Knauss, E., Heldal, R., Ågren, M., Mallozzi, P.,
Alminger, A., Borgentun, D.: Automotive architecture framework:
The experience of Volvo Cars. J. Syst. Archit. 77 (2017). https://
doi.org/10.1016/j.sysarc.2017.02.005

75. Pohl, K., Broy,M., Daembkes, H., Hnninger, H.: AdvancedModel-
Based Engineering of Embedded Systems: Extensions of the SPES
2020 Methodology, 1st edn., chap. 3. SPES_XT Modeling Frame-
work. Springer Publishing Company, Incorporated (2016)

76. Preevision. https://vector.com/vi_preevision_de.html. Accessed:
2019-01-16

77. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation
using Ptolemy II. Ptolemy.org (2014). http://ptolemy.org/books/
Systems

78. Quigley,C.,McMurran,R., Jones, R., Faithfull, P.:An investigation
into cost modelling for design of distributed automotive electrical
architectures. In: Automotive Electronics, 2007 3rd Institution of
Engineering and Technology Conference on, pp. 1–9 (2007)

79. Qureshi, T.N., Törngren, M., Pessson, M., Chen, D.J., Sjöstedt,
C.J.: Towards harmonizing multiplearchitecture description lan-
guages for real-time embedded systems. In: Real-Time in Sweden
(RTiS) (2011). http://www.mrtc.mdh.se/rtis2011/. QC 20120214

80. Rebholz, H., Tenbohlen, S.: A fast radiated emission model for
arbitrary cable harness configurations based on measurements and

simulations. In: Electromagnetic Compatibility, 2008. EMC 2008.
IEEE International Symposium on, pp. 1–5 (2008). https://doi.org/
10.1109/ISEMC.2008.4652041

81. Reinhardt, D., Morgan, G.: An embedded hypervisor for safety-
relevant automotive e/e-systems. In: Proceedings of the 9th IEEE
International Symposium on Industrial Embedded Systems (SIES
2014), pp. 189–198 (2014). https://doi.org/10.1109/SIES.2014.
6871203

82. Richter, K.: Compositional scheduling analysis using standard
event models. Ph.D. thesis (2004). https://publikationsserver.tu-
braunschweig.de/receive/dbbs_mods_00001765

83. SCADE Overview. http://www.esterel-technologies.com/
technology/WhitePapers

84. Seyler, J.R., Streichert, T., Glaß, M., Navet, N., Teich, J.: For-
mal analysis of the startup delay of SOME/IP service discovery.
In: W. Nebel, D. Atienza (eds.) Proceedings of the 2015 Design,
Automation & Test in Europe Conference & Exhibition, DATE
2015, Grenoble, France, March 9-13, 2015, pp. 49–54. ACM
(2015)

85. Sillmann, B., Glock, T., Ghassemi, R., Sax, E.: A multi-objective
optimization approach for analysing and architecting system of
systems. In: 2018 Annual IEEE International Systems Conference
(SysCon), Vancouver, CDN, April 23–26, 2018, pp. 1–8. IEEE
(2018). https://doi.org/10.1109/SYSCON.2018.8369581

86. Sobieszczanski-Sobieski, J., Kodiyalam, S., Yang, R.Y.: Optimiza-
tion of car body under constraints of noise, vibration, and harshness
(nvh), and crash. Structural andMultidisciplinary Optimization pp.
295–306 (2001). https://doi.org/10.1007/s00158-001-0150-6

87. Society of Automotive Engineers: SAE Standards: Architec-
ture Analysis & Design Language (AADL)—AS5506 (November
2004) and AS5506/1 (2006)

88. Society of Automotive Engineers: Taxonomy and Definitions for
Terms Related to On-road Motor Vehicle Automated Driving Sys-
tems. SAE Standard J3016, (2014)

89. Sommer, S., Camek, A., Becker, K., Buckl, C., Zirkler, A., Fiege,
L., Armbruster,M., Spiegelberg, G., Knoll, A.: Race: A centralized
platform computer based architecture for automotive applications.
In: 2013 IEEE International Electric Vehicle Conference (IEVC),
pp. 1–6 (2013). https://doi.org/10.1109/IEVC.2013.6681152

90. Streichert, T., Haubelt, C., Teich, J.: Multi-objective topology opti-
mization for networked embedded systems. In: G. Gaydadjiev,
C.J. Glossner, J. Takala, S. Vassiliadis (eds.) Proceedings of 2006
International Conference on Embedded Computer Systems: Archi-
tectures, Modeling and Simulation (IC-SAMOS 2006), Samos,
Greece, July 17-20, 2006, pp. 93–98. IEEE (2006). https://doi.org/
10.1109/ICSAMOS.2006.300814

91. The MathWorks Inc.: Using Simulink (2000)
92. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for

scheduling hard real-time systems. In: 2000 IEEE International
Symposium on Circuits and Systems. Emerging Technologies for
the 21st Century. Proceedings (IEEE Cat No.00CH36353), vol. 4,
pp. 101–104 vol. 4 (2000). https://doi.org/10.1109/ISCAS.2000.
858698

93. Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus
for scheduling hard real-time systems. In: IEEE International
Symposium on Circuits and Systems, ISCAS 2000, Emerging
Technologies for the 21st Century, Geneva, Switzerland, 28-31
May 2000, Proceedings, pp. 101–104. IEEE (2000). https://doi.
org/10.1109/ISCAS.2000.858698

94. Traub, M.: Durchgängige Timing-Bewertung von Vernetzungsar-
chitekturen und Gateway-Systemen imKraftfahrzeug. Ph.D. thesis
(2010). https://doi.org/10.5445/KSP/1000020379

95. Traub, M., Maier, A., Barbehön, K.L.: Future automotive architec-
ture and the impact of IT trends. IEEE Softw. 34(3), 27–32 (2017)

123

https://doi.org/10.1145/1391469.1391629
https://doi.org/10.1145/1391469.1391629
https://doi.org/10.1109/SBCARS.2015.22
https://doi.org/10.1109/SBCARS.2015.22
https://doi.org/10.1016/j.entcs.2009.09.029
https://doi.org/10.1016/j.entcs.2009.09.029
https://doi.org/10.1016/j.jss.2011.01.004
https://doi.org/10.1016/j.jss.2011.01.004
http://arxiv.org/abs/1912.01367
https://doi.org/10.1109/MODELS.2019.000-8
https://doi.org/10.1109/ICSA-C.2019.00030
https://doi.org/10.1109/ICSA-C.2019.00030
http://www.omg.org/spec/DDS/1.4/
http://www.omg.org/spec/DDS/1.4/
http://www.omg.org/spec/MOF/
http://www.omg.org/spec/MOF/
https://doi.org/10.1016/j.sysarc.2017.02.005
https://doi.org/10.1016/j.sysarc.2017.02.005
https://vector.com/vi_preevision_de.html
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems
http://www.mrtc.mdh.se/rtis2011/
https://doi.org/10.1109/ISEMC.2008.4652041
https://doi.org/10.1109/ISEMC.2008.4652041
https://doi.org/10.1109/SIES.2014.6871203
https://doi.org/10.1109/SIES.2014.6871203
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00001765
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00001765
http://www.esterel-technologies.com/technology/WhitePapers
http://www.esterel-technologies.com/technology/WhitePapers
https://doi.org/10.1109/SYSCON.2018.8369581
https://doi.org/10.1007/s00158-001-0150-6
https://doi.org/10.1109/IEVC.2013.6681152
https://doi.org/10.1109/ICSAMOS.2006.300814
https://doi.org/10.1109/ICSAMOS.2006.300814
https://doi.org/10.1109/ISCAS.2000.858698
https://doi.org/10.1109/ISCAS.2000.858698
https://doi.org/10.1109/ISCAS.2000.858698
https://doi.org/10.1109/ISCAS.2000.858698
https://doi.org/10.5445/KSP/1000020379


Model-based resource analysis and synthesis of service-oriented automotive software architectures

96. Völker, L.: Scalable service-Oriented MiddlewarE over IP. http://
some-ip.com/

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Stefan Kugele is Professor for
Model-based Systems Engineer-
ing and Software Engineering at
the Technische Hochschule Ingol-
stadt, Germany. He is working in
the Research Institute AImotion
Bavaria, the AI Hub for Mobil-
ity, with a focus on autonomous
driving, unmanned air mobility,
and AI-controlled production. He
received his PhD in computer sci-
ence from the Technical Univer-
sity of Munich in 2012, where
he was a postdoctoral research
associate until 2020. His current

research interests include model-based software and systems engineer-
ing of cyber-physical systems, architecture specification and optimiza-
tion, and the application of formal methods.

Philipp Obergfell received his
masters degree from TU Munich
in Automotive Software Engineer-
ing in 2017. In the same year,
he started his industrial PhD in
the field of model-based design
together with BMW’s research and
technology department and the
Karlsruhe Institute of Technology
(KIT). Since 2020, he is work-
ing in BMW’s serial development
department in the field of automo-
tive security.

Eric Sax Prof. Dr.-Ing. Eric Sax
is head of the Institute of Infor-
mation Processing Technology
(http://www.itiv.kit.edu/) at the
Karlsruher Institute of Technol-
ogy. In addition, he is director
at the Forschungszentrum Infor-
matik (http://www.fzi.de/) and the
so-called Hector School, the Tech-
nology Business School of KIT.
His main topics of research,
together with currently more than
50 PhD employees, are processes,
methods, and tools in systems engi-
neering. Data-driven and service-

oriented architectures that support the idea of machine learning are the
huge field of industrial cooperation with automotive partners.

123

http://some-ip.com/
http://some-ip.com/
http://www.itiv.kit.edu/
http://www.fzi.de/

	Model-based resource analysis and synthesis of service-oriented automotive software architectures
	Abstract
	1 Introduction
	1.1 Status quo
	1.2 Future perspective
	1.3 Scope of the paper

	2 Related work
	2.1 Model-based architecture design
	2.1.1 Architecture description
	2.1.2 Component-based architecture
	2.1.3 Architecture optimisation
	2.1.4 Architecture analysis

	2.2 Automotive service-orientation
	2.2.1 Modelling methods
	2.2.2 Implementation-related contributions
	2.2.3 Development process-related contributions

	2.3 Summary

	3 Approach
	3.1 Modelling automotive services
	3.2 Automotive framework conditions
	3.3 Deployment candidate synthesis
	3.4 Network deployment and timing analysis
	3.5 Platform-specific software architecture
	3.6 Software design
	3.6.1 Behaviour specification (service side)
	3.6.2 Behaviour specification (client-side)

	3.7 Architecture development cycle
	3.7.1 Exemplary runs of the state machines
	3.7.2 Test cases
	3.7.3 Remarks on testing approach


	4 Evaluation
	4.1 Evaluation planning
	4.2 Process steps
	4.3 Platform-independent software architecture
	4.4 Computing platform and deployment
	4.5 Simulation
	4.5.1 Experiment 1
	4.5.2 Experiment 2
	4.5.3 Overall simulation results

	4.6 Platform-specific software architecture
	4.6.1 Service interface design
	4.6.2 Implementation
	4.6.3 Abstract behavioural model design
	4.6.4 Test case generation
	4.6.5 Test execution

	4.7 Overall evaluation result

	5 Discussion
	5.1 Assumptions
	5.2 Limitations

	6 Conclusion
	6.1 Addressed challenges
	6.2 Future perspective

	Acknowledgements
	References




