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Abstract

In many real-world applications data is generated by continuous-time processes but due
to inadequate measurements can only be observed on a discrete-time grid. In this the-
sis, we consider the class of equidistantly sampled multivariate continuous-time ARMA
(MCARMA) processes. To obtain most flexibility, the driving process is assumed to be a
general centered Lévy process.
In the first part, we investigate parameter estimation procedures. We start with the
asymptotic behavior of the Whittle estimator when the driving process has at least existing
second moments. The Whittle estimator is based on a frequency domain approach. Namely,
it is the minimizing argument of the Whittle function which measures the distance between
the periodogram and its theoretical counterpart, the spectral density, corresponding to
a fixed parameter. Under some identifiability conditions, we obtain strong consistency
and asymptotic normality. We then introduce an adjusted version of this estimator for
a univariate setting. Thereby, we adapt the Whittle function in a way which makes it
independent of the variance parameter of the driving process. This step is motivated by
the desire to find an estimation procedure for processes with non-existent second moments.
Consequently, we investigate the minimizing argument of this adjusted function in two
settings. In the first one, light-tailed processes are again in our focus. As before, we obtain
strong consistency and asymptotic normality. Subsequently, we also consider the estimator
for processes without existing second moments, namely, for the class of symmetric α-stable
CARMA processes. Unfortunately, consistency can only be derived when the underlying
process is an Ornstein-Uhlenbeck (CAR(1)) process. Actually, we also give processes for
which consistency does not hold.
In the second part, we return to the class of light-tailed sampled MCARMA processes and
investigate the function-indexed normalized integrated periodogram. Under different sets
of conditions concerning the driving process and the set of index functions, we prove a
functional central limit theorem. We also consider several applications. In particular, we
derive the asymptotic normality of some spectral goodness-of-fit test statistics. Popular
examples are the Grenander-Rosenblatt and the Cramér-von Mises statistic. Based on



lemmata of the previous chapters, the asymptotic normality of the Whittle estimator can
also be concluded from the functional central limit theorem.
Finally, a simulation study demonstrates the behavior of the estimators as well as the
behavior of the goodness-of-fit test statistics for finite sample sizes.
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CHAPTER 1

Introduction

Autoregressive moving average (ARMA) processes are doubtless the most prominent process
class in the field of time series analysis and are well studied, see for example Brockwell and
Davis (1991) or Box et al. (2015). Their popularity might be traced back to Wolds Theorem
which states that any univariate second-order stationary time series can be represented as
the sum of a deterministic process and an MA(∞) process. Nowadays, technical advances
enable us to gather and access data more easily and therefore, big data sets and multivariate
data come more and more into focus. Consequently, the interaction between components
of the data gets significant interest. To model these relations realistically, it is essential
to use a framework which includes dependencies between different variables. Generalizing
the ARMA class to multivariate processes yields the class of vector ARMA (VARMA)
processes. An m-dimensional VARMA(p, q) process (Zn)n∈N is the solution of a difference
equation of the form

P (D)(B)Zn = Q(D)(B)en, n ∈ N, (1.1)

where B is the backshift operator BZn = Zn−1, P (D) and Q(D) are m×m-dimensional and
m×d-dimensional polynomials of order p and q, respectively, and (en)n∈Z is a d-dimensional
white noise, see, e.g., the monographs of Brockwell and Davis (1991) and Lütkepohl (2005)
for more details.
However, in various practical applications, the use of a time-continuous framework is
favorable. Even though data is often only gathered at discrete-time points, most underlying
processes are time-continuous in real-world situations. In the fields of physics and finance,
many applications already use continuous-time settings. For example, the Black-Scholes
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option-pricing model (Hull and White (1987)) is based on stochastic differential equations
and one of the most popular foundations of modern finance. In mechanics, continuous-
time processes are in the focus for many years, see Fowler (1929), and Bergstrom (1990)
presents numerous econometric applications. The continuous-time analogues to (V)ARMA
processes are the (multivariate) continuous-time ARMA ((M)CARMA) processes. They
date back to 1944, where Doob firstly mentioned the univariate Gaussian continuous-time
ARMA processes, see Doob (1944). In 2001, Brockwell (2001b) extended the definition
to Lévy-driven CARMA processes. This generalization allows to model processes with
various marginal distributions. For example, assuming the driving process to be α-stable
yields the class of α-stable CARMA processes. Stable CARMA processes were already
applied for future pricing in electricity markets (Benth et al. (2014)) and signal extraction
(McElroy (2013)). We return to this class of processes later. Applications of CARMA
processes with existing second moments in finance were discussed in Brockwell (2009) and,
in particular, Andresen et al. (2014) investigated the CARMA interest rate model. Later,
Marquardt and Stelzer (2007) generalized the class of Lévy-driven CARMA processes to
a multivariate setting. Obviously, choosing a process in this broader class might yield
more accuracy in many applications. However, they are also used as a starting point for
constructing an even richer process class, for example the class of continuous-time threshold
ARMA processes (Brockwell (2001a)) or the class of cointegrated MCARMA processes
(Fasen-Hartmann and Scholz (2020)). Just recently, the class of MCARMA processes was
further generalized. Namely, Brockwell and Matsuda (2017) considered the class of isotropic
CARMA random fields whereas Pham (2020) introduced the class of causal Lévy-driven
CARMA random fields. Furthermore, (M)CARMA processes were already investigated for
high-frequency data, see Brockwell et al. (2013), Ferrazzano and Fuchs (2013) and Fasen
and Fuchs (2013b) for light-tailed CARMA processes and Fasen and Fuchs (2013a) for
stable CARMA processes, or irregular spaced data (Jones (1981)).
However, in this thesis, we solely consider Lévy-driven MCARMA processes which are
sampled equidistantly and at a low frequency. We therefore introduce the two-sided
d-dimensional Lévy process L = (Lt)t∈R which is constructed by a sum of two inde-
pendent and identically distributed (i.i.d.) one-sided Lévy processes L(1) and L(2) via
Lt = L

(1)
t 1{t≥0} − lims↑−t L

(2)
s 1{t<0}. A one-sided Lévy process is a stochastic process

with stationary, independent increments, continuous in probability with càdlàg sample
paths and satisfying L0 = 0 almost surely. Then, by Marquardt and Stelzer (2007), a
MCARMA(p, q) process (Yt)t∈R is the stationary solution of a continuous-time state space
model (A,B,C, L) of the form

dXt = AXtdt+BdLt, Yt = CXt, t ∈ R,
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where

A =


0 Im 0 . . . 0
· · · Im

−Ap −Ap−1 . . . . . . −A1

 , B = (β>1 . . . β>p )>, C = (Im 0 . . . 0) ,

βp−j = −1{0,...,q}(j)

p−j−1∑
i=1

Aiβp−j−i −Bq−j

 , j = 0, . . . , p− 1,

for some matrices A1, . . . , Ap ∈ Rm×m, B0, . . . , Bq ∈ Rm×d. Strictly speaking, Marquardt
and Stelzer (2007) only investigated processes where the dimensions m and d are the same.
However, their results can easily be carried out to this general setting. Here and in the
following, Im denotes the m-dimensional identity matrix. The stationary solution of this
model also has the differential equation representation

P (D)Yt = Q(D)DLt, D = d

dt
,

P (z) := Imz
p +A1z

p−1 + . . .+Ap,

Q(z) := B0z
q + . . .+Bq.

Note that p and q are the degrees of the so-called autoregressive and moving average
polynomial, respectively. However, this representation is purely formal since the paths of a
Lévy process are not differentiable in general. Accordingly, it only serves us to depict the
similarities between MCARMA processes and their discrete-time counterparts. Sampling an
MCARMA process equidistantly with a fixed distance ∆ > 0 yields a discrete-time process
which has an MA(∞) representation as well as a discrete-time state space representation, see
Schlemm and Stelzer (2012a). Since the white noise process in the MA(∞) representation
of the sampled process is not independent and identically distributed in general, we only
obtain a weak MA(∞) representation. The properties of the sampled process are elaborated
in more detail in Chapter 2. For the sake of completeness, note that Fasen-Hartmann and
Scholz (2021) also found a weak VARMA(p, p−1) representation of the sampled MCARMA
process, recently.
In the introduced setting, we consider several spectral applications which have diverse
purposes in time series analysis. In general, frequency domain approaches are used in the
context of model fitting and prediction. Furthermore, in physical applications, they can be
interpreted directly and might therefore be a better option than a time domain procedure.
In this thesis, the main focus lies on model fitting.
We start with an investigation of the Whittle estimator, which was first presented by Peter
Whittle (1951) and later used in various different models to estimate some parameter in a
given setting. Therefore, the class of MCARMA processes has to be parameterized. In
our context, the parameters p and q are fixed and given. Obviously, this assumption is
quite strong since the degrees of the polynomials are not known in general applications. To
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determine the parameters p and q beforehand, information criteria could be applied. In the
context of sampled MCARMA processes Fasen and Kimmig (2017) already investigated
some information criteria. We now consider a parameter set Θ ⊂ Rr and let Y (ϑ) =
(A(ϑ), B(ϑ), C(ϑ), L(ϑ)) be the MCARMA(p, q) process corresponding to the parameter
ϑ ∈ Θ. This means that the components of the matrices A1, . . . , Ap, B0, . . . , Bq are
potentially unknown as well as the distribution and, in particular, the covariance ΣL of
the driving process. The aim is to estimate the true parameter ϑ0 ∈ Θ based on a sample
(Y∆(ϑ0), . . . Yn∆(ϑ0)) of the sampled process. The Whittle estimator is then defined as a
minimizing argument of the so-called Whittle function which exact definition depends on
the particular setting. However, in each scenario, the Whittle function at a parameter ϑ is
based on some kind of distance between the periodogram of the sampled process and the
spectral density corresponding to this ϑ. It therefore measures the distance between the
Fourier transform of the sample autocovariance function and the Fourier transform of the
theoretical autocovariance function of a process with the parameter ϑ. In our setting, the
Whittle function Wn is specifically defined as

Wn(ϑ) = 1
2n

n∑
j=−n+1

[
tr
(
f

(∆)
Y (ωj , ϑ)−1In,Y (ωj)

)
+ log

(
det

(
f

(∆)
Y (ωj , ϑ)

)) ]
, ϑ ∈ Θ,

(1.2)

where In,Y is the periodogram of the sample (Y∆(ϑ0), . . . Yn∆(ϑ0)), f (∆)
Y (·, ϑ) is the spectral

density of the sampled process corresponding to ϑ ∈ Θ and ωj = πj
n , j = −n+ 1, . . . , n, are

the Fourier frequencies. Note that it is possible to exchange the log(det(f (∆)
Y (·, ϑ))) terms

for log(det(V (∆)(ϑ))) without changing the minimizing argument. Thereby, V (∆)(ϑ) is the
covariance matrix of the one-step linear prediction error which generally depends on the
parameters of the autoregressive and moving average polynomials. In contrast, in case of
Whittle estimation for VARMA processes, Dunsmuir and Hannan (1976) used a Whittle
function in which the log(det(f (∆)

Y (·, ϑ))) terms were replaced by log(det(Σ(ϑ))) where Σ(ϑ)
denotes the covariance matrix of the white noise process corresponding to ϑ. Obviously,
this term does not depend on the moving average and autoregressive polynomials of the
underlying process. Consequently, it differs from our function which explains why their
ideas can not be directly carried out to our setting. In some articles, the asymptotic
behavior of the Whittle estimator is a direct conclusion of a functional central limit
theorem, see for example Dahlhaus (1988) or Bardet et al. (2008) for such a result in
the context of weakly dependent time series. Since the sampled MCARMA processes
have a weak VARMA representation, it seems fruitful to apply a functional central limit
theorem for the integrated periodogram of VARMA processes. For these processes, Bardet
et al. (2008), Dahlhaus (1988) and Mikosch and Norvaiša (1997) proved several versions
of spectral functional central limit theorems. Unfortunately, their results all assume the
white noise process to have quite strong properties which are not given in the sampled
MCARMA setting. However, in Chapter 4, we prove a functional central limit theorem
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for the integrated periodogram in the context of the sampled MCARMA process and will
then broadly outline the asymptotic normality of the Whittle estimator as a conclusion
of that result. Having said this, the conclusion heavily relies on the properties which we
treat beforehand. For example, for most statistical procedures, it is necessary to guarantee
identifiability. In our case, this means it has to be theoretically possible to learn the
true value after observing an infinite number of data points. In the context of sampled
MCARMA processes, identifiability contains different areas. On the one hand, we have
to prevent that different parametrizations yield the same process. On the other hand,
conditions have to be imposed to eliminate the so-called aliasing effect. Aliasing occurs
when two distinguishable processes become indistinguishable when sampled. In Figure 1.1,
the effect is illustrated. In this example, observing the process with a smaller sampling
distance would prevent the aliasing. In the same way, we bypass the effect in our setting
by assuming a small enough sampling distance. More details concerning the aliasing can
be found in Hansen and Sargent (1983).
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0
−

0.
5
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0

0.
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0

Sampled sine and cosine
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n(

x)
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Figure 1.1.: Sine and cosine function. When sampled at x = k+ 1/4π, k ∈ Z, the functions
can not be distinguished (red stars). When sampled at a higher frequency, it
is possible to identify the original function (green rectangles).

To tackle the problem that different parametrizations might yield the same continuous-
time process, we repeat the findings of Schlemm and Stelzer (2012b) who considered
Echelon state space realizations. Schlemm and Stelzer (2012b) dealt with identification of
MCARMA processes for the same reasons as we do: they aimed to derive an estimation
procedure for the sampled MCARMA processes with existing second moments. In their
article, they introduce a quasi maximum likelihood estimator and prove its strong consis-
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tency and asymptotic normality. In contrast to us, they have to assume existing (4 + δ)th
moments of the driving Lévy process for the asymptotic normality to hold. In case of
the Whittle estimator, we see in Chapter 3 that it suffices to assume the slightly weaker
condition of existing 4th moments. As an alternative for univariate CARMA processes, we
introduce the adjusted Whittle estimator in Chapter 4 which is a minimizing argument of
the adjusted Whittle function. Essentially, this function results from (1.2) when we omit
the log(det(f (∆)

Y (·, ϑ))) terms and multiply the remaining function with the covariance
matrix V (∆)(ϑ) of the one step linear prediction error. The motivation for doing so is
that the resulting function and therefore also the minimizing argument, is independent of
the covariance matrix of the driving Lévy process. Our hope was to thereby construct an
estimator for symmetric α-stable CARMA processes which do not have existing second
moments. However, even though we can show strong consistency and asymptotic normality
in a slightly adapted light-tailed setting, in general, the same does not hold for the α-stable
setting. We prove that the adjusted Whittle estimator is consistent for the class of uni-
variate Ornstein-Uhlenbeck (CAR(1)) processes, but since the adjusted Whittle function
converges to an α-stable random variable which in general does not have a minimum in the
true parameter, we can easily construct an example for which consistency does not hold.
Therefore, the sampled MCARMA case is fundamentally different to the case of α-stable
ARMA processes. For that case, Mikosch et al. (1995) investigated the Whittle estimator
and obtained a convergence result. On top, in their central limit theorem the convergence
rate is n1/α which is even better than in the light-tailed case. Consequently, the VARMA
results can not be carried out to the sampled MCARMA case. We trace this back to the
fact that the sampled MCARMA processes have indeed a weak VARMA representation
but with a white noise which is not i.i.d. in general. Only when considering the class of
CAR(1) processes, the sampled processes have a strong VARMA representation and in this
case we also have the desired convergence. Consequently, we indeed constructed a suitable
estimator for parameter estimation of Ornstein-Uhlenbeck processes, but we did not find
one for the general class of CARMA processes. While the problem of parameter estimation
for α-stable Ornstein-Uhlenbeck processes was already considered in some articles, see
Fasen and Fuchs (2013b), Hu and Long (2007), Hu and Long (2009), Ljungdahl and
Podolskij (2020), Zhang and Zhang (2013), parameter estimation procedures for the general
α-stable models are not investigated in detail yet. Only García et al. (2011) introduced
an indirect quasi maximum likelihood estimation procedure, but they do not present a
mathematical analysis. Even though their simulation study suggests that their method
has desirable asymptotic properties, we assume that their estimator is not consistent as
well. In a simulation study, we consider the setting of their simulation study as well
as an α-stable setting in which the adjusted Whitte estimator does not work. In both
situations, the adjusted Whittle estimator and the estimator of García et al. (2011) behave
similarly. This means that the adjusted Whittle estimator also seems to converge in the
setting introduced in García et al. (2011) and that we can not observe convergence of their
estimator in our setting. In addition, we also present a simulation study for the light-tailed
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setting. We therefore simulate different CARMA processes and study the behavior of the
Whittle estimator and the adjusted Whittle estimator. Additionally, we compare their
behaviors to those of the quasi maximum likelihood estimator of Schlemm and Stelzer
(2012b) which seems to be the only alternative to our procedures. As we will see, their
estimator seems to behave similar to the Whittle estimator and much better than the
adjusted Whittle estimator. Accordingly, we also do not recommend the adjusted Whittle
estimator in the light-tailed setting. However, the quasi-maximum likelihood estimator and
the Whittle estimator are quite good. At this point, we want to mention, that even though
no estimator should be preferred based on the simulation studies, the Whittle estimator
has two advantages. As said, the moment conditions concerning the driving process are
slightly weaker. Furthermore, an analytical representation of the covariance matrix of the
limit distribution in the asymptotic normality result is only known in case of the Whittle
estimator. This covariance matrix can be used to derive confidence bands, for example.

Finally, we also investigate the function-indexed integrated periodogram separately. A
functional central limit theorem for the function-indexed periodogram is of interest, since one
can easily derive the asymptotic behavior of various statistical applications. As mentioned
earlier, the asymptotic normality of the Whittle estimator can be concluded as well as
the asymptotic behavior of some spectral goodness-of-fit test statistics. Similar results
are already derived for many settings. For example, Dahlhaus (1988) proved a functional
central limit theorem for the integrated periodogram for a general class of multivariate
time series with appropriately bounded higher order cumulant spectra of the white noise
process and a weak entropy condition. Under the same entropy condition, Mikosch and
Norvaiša (1997) showed such a theorem for univariate linear processes with finite fourth
moments, whereas Can et al. (2010) proved weak convergence under a stronger condition
in the context of α-stable linear processes. Under a fundamentally different structured
function space condition, Bardet et al. (2008) derived a functional central limit theorem
for a broad class of weakly dependent time series. In light of these articles, we investigate
the integrated periodogram under similar conditions in the context of sampled MCARMA
processes. Consequently, we obtain a central limit theorem under three different sets of
conditions. Namely, in a first setting, we assume that the function space is of a given
structure similar to that of Can et al. (2010) whereas the driving Lévy process has to have
just existing 4th moments. Even though one can not say if the function set condition is
stronger than the one of our second setting, the set of indicator functions does not satisfy
the condition of the first setting. This set is of special interest since it yields the asymptotic
normality of the spectral goodness-of-fit test statistics. In the second setting, we impose a
covering number condition similar to that of Bardet et al. (2008) and also assume existing
fourth moments of the driving process. The set of indicator functions satisfies this covering
number condition. However, the scenario does not enable us to derive the asymptotic
normality of the Whittle estimator. Finally, we suppose an entropy condition in the third
setting which is strictly weaker than the condition of the second setting but we therefore
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have to assume that all moments of the driving process exist and are appropriately bounded.
Note that this setting is motivated by Dahlhaus (1988) and Dahlhaus and Polonik (2009).
It allows us to directly conclude the asymptotic normality of the Whittle estimator as well
as the asymptotic normality of the spectral goodness-of-fit test statistics. Therefore, we
also give the limit behavior of some popular spectral test statistics. As we will see, the limit
statistics are functionals of a Gaussian process. For Brownian motion driven MCARMA
processes, they correspond to the limits of the Gaussian ARMA case, see Priestley (1981),
but they differ from the limit statistic of the heavy-tailed ARMA process class which was
investigated in Klüppelberg and Mikosch (1996). Lastly, we also tackle the question how
the test statistics perform in practical applications. Therefore, we explicitly consider the
Grenander-Rosenblatt statistic and the Cramér-von Mises statistic for finite sample sizes
in a simulation study. Thereby, we first compare the behavior of the quantiles of the
empirical processes for different sample sizes with the theoretical quantiles of the limit
process. Since the empirical quantiles are close to the theoretical ones even for small and
moderate sample sizes, we also perform some testing. When simulating the processes under
various misspecifications, the corresponding tests reject quite often. We therefore conclude
that they both are suited for practical applications. Furthermore, since the theoretical limit
process depends on the distribution of the underlying Lévy process which is not known in
general, we also do some Bootstrap testing. In a small study, the results are promising.

Outline of the thesis

We want to give a short overview about what follows. In Chapter 2 we introduce the
fundamentals of this thesis. Namely, in Section 2.1, we first recall the definition of general
Lévy-driven univariate CARMA processes of Brockwell (2001b) and we then introduce the
class of MCARMA processes of Marquardt and Stelzer (2007) in Section 2.2. Since our
multivariate extension does not cover α-stable processes, it is necessary to consider the
general univariate class separately. In Section 2.3 we state different results concerning the
representation of the sampled process. Thereby, a distinction between sampled processes
with existing second moments and symmetric α-stable processes is done. In the same way,
we treat the following subsection. Obviously, when we talk about second order properties,
it is necessary to assume the existence of the second moments. However, in Section 2.4,
we first consider MCARMA processes with existing second moments and investigate the
behavior of the sample autocovariance function of the sampled processes and then deal
with the appropriately normalized sample autocovariance function for univariate α-stable
processes. We thereby also introduce the periodogram and its theoretical counterpart,
the spectral density which are the base of the later treated estimators and the integrated
periodogram.
In Chapter 3, we then consider the Whittle estimation procedure for sampled multivariate
Lévy-driven CARMA processes with existing second moments. We start with a brief
introduction of the estimator in Section 3.1. To provide the strong consistency and the
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asymptotic normality of this estimator, we address an identifiability problem. Schlemm
and Stelzer (2012b) already tackled this topic so that we just revisit the broad connections
in Section 3.2. The consequential setting is then given in Section 3.3 and we directly state
the main results concerning the Whittle estimator in Section 3.4. Thereby, a simplification
of the covariance matrix of the limit process of the asymptotic normality result is presented
for the Brownian motion driven MCARMA process and a comparison to the VARMA
setting is made. We conclude this chapter by the proofs of the strong consistency and the
asymptotic normality in Section 3.5. Note that a central limit theorem for the integrated
periodogram is a fundamental part of the proof of the asymptotic normality.
In Chapter 4, we leave the multivariate setting and solely consider univariate CARMA
processes. An adaption of the procedure of Chapter 3, yields an estimator which is
independent of the variance parameter of the driving process. We motivate this adjustment
in Section 4.1. In Section 4.2, we investigate the resulting estimator in the case that the
driving process has an existing positive variance. We thereby introduce an appropriate
setting and derive strong consistency and asymptotic normality of the adjusted Whittle
estimator. Note that the setting which is considered here is similar to the one of Chapter 3.
We then directly see that the variance of the limit process is at least as big as the limit
variance of the Whittle estimator for univariate CAR(1) processes. Looking back, this could
be a first indication that our adjusted Whittle estimator is not as promising as the original
one. However, the main objective of constructing this adjusted version was to obtain
an estimator which is suitable for estimation in a light-tailed and a heavy-tailed setting.
Therefore, as a second step, we also consider the procedure for symmetric α-stable CARMA
processes in Section 4.3. We derive uniform convergence of the adjusted Whittle function
to a random variable and conclude that this random variable only has a unique minimum
at the true parameter with certainty when the underlying process is an Ornstein-Uhlenbeck
(CAR(1)) process. Since it is necessary for the consistency that the limit of the adjusted
Whittle function only takes its minimum at the true parameter, we deduce that the adjusted
Whittle estimator is not consistent in general. Furthermore, we explicitly give examples for
which the estimator is not consistent.
In Chapter 5, we return to multivariate processes with existing second moments and focus
on the integrated periodogram. In contrast to Section 3.5 where we index the integrated
periodogram with the class of parameterized inverted spectral densities, we now allow more
general index functions. In Section 5.1 we state three different sets of conditions and then
directly give a functional central limit theorem in the resulting settings. Generally, the limit
process is a centered Gaussian process. We determine its parameters and also notice that in
the case of a Brownian motion driven MCARMA process, the limit process has a simplified
representation. As a conclusion of the functional central limit theorem, we directly obtain a
major part of the proof of the asymptotic normality of the Whittle estimator of Chapter 3.
Therefore, we quickly sketch this approach in Section 5.2. Additionally, we conclude
the asymptotic normality of various spectral goodness-of-fit test statistics. Finally, we
prove the functional central limit theorem in Section 5.3. We start to prove an analogue
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theorem for the white noise of the sampled process. In our corresponding metric spaces,
weak convergence can be shown by proving weak convergence of the finite-dimensional
distributions and tightness of the empirical process of the white noise. A universal proof for
the weak convergence of the finite-dimensional distributions is made, whereas the tightness
has to be shown for each setting separately. Finally, we bind the error which results from
approximating the original process by the process corresponding to the white noise and
conclude the proof of the functional central limit theorem for the general class of MCARMA
processes.
The suitability of the theoretical results of Chapter 3-Chapter 5 for practical applications
is the topic of Chapter 6. Here, practical means that we investigate how the estimators
and the goodness-of-fit test statistics behave for finite sample sizes in different settings.
Therefore, the chapter is divided in two parts. In the first part, Section 6.1, we compare
the estimation procedures. Since our initial simulation study is concerned with parameter
estimation in the multivariate setting, we start with the introduction of the Echelon state
space representation. Thereby, a suitable parametrization for avoiding redundancies in the
MCARMA model is derived. Subsequently, we consider the quasi maximum likelihood
estimator of Schlemm and Stelzer (2012b) which serves as the only alternative procedure
for parameter estimation in the general multivariate setting. Finally, we are able to present
our simulation results for the multivariate setting, where the performances of the quasi
maximum likelihood estimator and the Whittle estimator are compared as well as for the
univariate setting. In the light-tailed univariate setting, the adjusted Whittle estimator is
also applied. As expected, we see that it often yields the worst results. Concluding this
section, a simulation study for the α-stable case is presented as well. As an alternative
procedure to the adjusted Whittle estimator, we shortly introduce the estimator of García
et al. (2011). Matching the theory, the simulations indicate consistency for the Ornstein-
Uhlenbeck process but there are settings in which neither of the estimators seems to
converge. For the adjusted Whittle estimator, this property also matches the theoretical
results obtained in Section 4.3. Furthermore, it allows us to assume the same for the
estimator of García et al. (2011).
In the second part of this chapter, we also investigate the finite sample behavior of the
Grenander-Rosenblatt statistic and the Cramér-von Mises test statistic in a correctly
specified setting. Additionally, we do some testing under fixed alternatives. Since the limit
processes of the test statistics depend on the driving process, see Section 5.2, we also apply
a Bootstrap procedure.
Finally, Chapter 7 concludes the main part of the thesis by giving a short summary and
an outlook to open problems. Appendix A contains some analytical foundations. Namely,
all the basic Fourier analytical results are given as well as two results concerning the
approximation of integrals by sums.



CHAPTER 2

Multivariate Lévy-driven CARMA processes

In this chapter we introduce the fundamental process classes of this thesis. In particular,
we define Lévy-driven multivariate CARMA processes with existing second moments as
well as univariate symmetric Lévy-driven α-stable CARMA processes. We start with a brief
introduction of Lévy processes whose increments can be interpreted as the continuous-time
analogue of the white noise process in discrete-time settings. For more details concerning
Lévy processes, we refer to Applebaum (2004) and Sato (1999).

Definition 2.1 (Lévy process, see Sato (1999)).
A one-sided d-dimensional Lévy process (Lt)t≥0 is a stochastic process with stationary,
independent increments, continuous in probability with càdlàg sample paths satisfying
L0 = 0 almost surely.

Due to the Lévy-Khinchin formula, the characteristic function of a Lévy process (Lt)t≥0

has the representation
E
[
eix
>Lt

]
= etΨ(x), x ∈ Rd,

where
Ψ(x) = −1

2〈x,Σx〉+ i〈γ, x〉+
∫
Rd

(
ei〈x,t〉 − 1− i〈x, t〉1|t|≤1

)
ν(dx)

with Σ ∈ Rd×d symmetric and non-negative definite, γ ∈ Rd and ν a measure on Rd with

ν({0}) = 0 and
∫
Rd

min{‖x‖2, 1}dν(x) <∞.

Accordingly, we define the characteristic triplet (Σ, ν, γ). The naming is appropriate since
it uniquely characterizes a Lévy process and therefore, we identify any Lévy process by its
characteristic triplet, see Theorem 8.1 of Sato (1999). Note that, by Sato (1999), Corollary
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25.8,
E[‖Lt‖k] <∞ ∀t ≥ 0 ⇐⇒

∫
‖x‖≥1

‖x‖kν(dx) <∞.

Since we aim to define processes indexed by the set of real numbers, we have to construct
the driving process on the whole real line as well. A two-sided Lévy process L := (Lt)t∈R
can be built from two independent one-sided Lévy processes L(1) and L(2) through

Lt = L
(1)
t 1{t≥0} − lim

s↑−t
L(2)
s 1{t<0}.

In the following, we only deal with two-sided d-dimensional Lévy processes.

2.1. Univariate CARMA processes

In this section, we mainly consider univariate processes, which are driven by a univariate
Lévy process, i.e., d = 1. Following the structure of ARMA processes, we define for p > q

and a1, . . . , ap, c0, . . . , cq ∈ R, ap 6= 0, cj 6= 0 for some j ∈ {0, . . . , q}, the autoregressive
polynomial a and the moving average polynomial c as

a(z) := zp + a1z
p−1 + . . .+ ap and c(z) := c0z

q + c1z
q−1 + . . .+ cq,

respectively. The CARMA(p, q) process (Yt)t∈R can now be interpreted as the stationary
solution of the pth order differential equation

a(D)Yt = c(D)DLt, t ≥ 0, (2.1)

where D = d
dt is the differential operator. But since the paths of a Lévy process are not

differentiable in general, this definition is purely formal and we need an applicable one.
Introductory, we consider the class of general (N -dimensional) linear state space models.
Since we return to this definition when we introduce multivariate processes, we now allow
d 6= 1 and m 6= 1.

Definition 2.2 (continuous-time linear state space model, see Schlemm and Stelzer
(2012b)).
Let L be a d-dimensional Lévy process. For matrices A ∈ RN×N , B ∈ RN×d and C ∈ Rm×N

a continuous-time linear state space model (A,B,C, L) is defined by

dXt = AXtdt+BdLt, Yt = CXt, t ∈ R. (2.2)

The processes (Xt)t∈R and (Yt)t∈R are called state- and output process, respectively.

The univariate CARMA(p, q) process corresponding to (2.1) can now be defined by its
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controller canonical linear state space representation. Therefore, let

A :=



0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 . . . 0 1
−ap −ap−1 . . . . . . −a1


∈ Rp×p, (2.3a)

B := ep := (0, . . . . , 0, 1)> ∈ Rp

C := c> := (cq, cq−1, . . . , c0, 0, . . . , 0) ∈ R1×p.

Finally, let (Xt)t∈R be a strictly stationary solution of the first equation in (2.2). Then,
the output process (Yt)t∈R of Definition Definition 2.2 is the above CARMA(p, q) process,
i.e. Yt satisfies

dXt = AXt dt+ ep dLt, t ∈ R, (2.3b)

Yt := c>Xt, t ∈ R. (2.3c)

In general, this process exists, if we assume that the eigenvalues of A have nonzero real
parts and E[log+ |L1|] < ∞, see Theorem 3.3 of Brockwell and Lindner (2009). Here,
log+ |L1| stands for the positive part of the logarithm of |L1|. Under the stricter condition
that the eigenvalues of A have strictly negative real parts, the solution can be assumed
to be causal, i.e. Yt is independent of the σ-algebra generated by (Ls)s>t. Note that the
eigenvalues of A correspond to the zeroes of a. Therefore, we could alternatively impose
an equivalent condition on those zeroes.

Additionally, the process can be seen as a special continuous-time moving average (CMA)
process, see Remark 3.2 of Marquardt and Stelzer (2007). A CMA process (Yt)t∈R is a
process which can be represented as

Yt =
∫ ∞
−∞

g(t− s)dLs, t ∈ R,

for some g ∈ L2(R). Thereby, L2(R) denotes the space of square-integrable functions on
R. In the the context of a centered CARMA process, the state process (Xt)t∈R has the
multivariate Ornstein-Uhlenbeck representation

Xt =
∫ t

−∞
eA(t−u)epdLu, t ∈ R,

and accordingly,

Yt =
∫ ∞
−∞

g(t− s) dLs, t ∈ R, with g(t) = c>eAtep1[0,∞)(t). (2.4)
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Note that in contrast to the discrete-time ARMA and MA processes, the class of CMA
processes is richer than the class of CARMA processes.
To now model a CARMA process with non-existent second moments, we choose as

driving processes the class of α-stable Lévy processes which we tag with the superscript α.
Those processes are Lévy processes with the restriction that the increments (L(α)

t −L
(α)
s )s<t

have an α-stable distribution. Therefore, we introduce α-stable random variables.

Definition 2.3.
A random variable Z is called α-stable distributed, α ∈ (0, 2], if Z has the characteristic
function E(eizZ) = exp(ϕZ(z)), z ∈ R, with

ϕZ(z) =

−σ
α|z|α(1− iβ(sign(z)) tan

(
πα2
)

+ iµz, for α 6= 1,

−σ|z|(1 + iβ(sign(z)) log |z|
(

2
π

)
+ iµz, for α = 1,

z ∈ R,

and β ∈ [−1, 1], σ > 0 and µ ∈ R. The parameters α and σ are the index of stability and
scale parameter, respectively. We write Z ∼ Sα(σ, β, µ).

For α = 2, we obtain a normally distributed random variable with mean µ and variance
2σ2. So even though the scale parameter differs from the standard deviation in the 2-stable
case, we denote both parameters as σ. The context prevents confusion. Note that for α < 2
not all moments of Z exist. To be more precise

E|Z|j <∞ for 0 < j < α and E|Z|j =∞ for j ≥ α. (2.5)

Since we do not restrict ourselves to processes with finite first moments, we assume
that the increments are symmetrically distributed. Thereby, we obtain a condition which
corresponds to a centeredness condition for processes with existing first moments. Note
that for an α-stable random variable symmetry is equivalent to µ = 0 = β. In this setting,

lim
n→∞

nP(|Z| > n1/α) = Cασ
α

with

Cα =


1−α

Γ(2−α) cos(πα/2) , if α 6= 1
2
π , if α = 1

, (2.6)

see Property 1.2.15 of Samorodnitsky and Taqqu (1994), where more details on stable
distributions can be found as well. Consequently, the symmetric α-stable Lévy process
L(α) satisfies

L
(α)
t − L(α)

s ∼ Sα(σ(t− s)1/α, 0, 0), s < t,

for some scale parameter σ > 0 and stability parameter α ∈ (0, 2).
For more details relating to general CARMA processes, we refer to Brockwell and Lindner
(2009) and Brockwell (2001b).
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2.2. Multivariate CARMA processes with existing
second moments

We now extend the previous definitions to define m-dimensional MCARMA(p, q) pro-
cesses with finite second moments. Therefore, it is necessary to assume that the covari-
ance matrix ΣL of the driving Lévy process L = (Σ, ν, γ) exists. Equivalently, suppose∫
‖x‖≥1 ‖x‖2ν(dx) <∞. Then, by Example 25.11 of Sato (1999), the covariance matrix ΣL

is defined as
ΣL = E[L1L

>
1 ] =

∫
‖x‖≥1

xx>ν(dx) + Σ.

For this section, we assume

Assumption L1.
L := (Lt)t∈R is a centered Lévy process with positive definite covariance matrix ΣL.

Following the ideas of the previous section, we define the MCARMA(p, q) process for
p > q via a continuous-time linear state space model.

Definition 2.4 (stationary MCARMA(p, q) process).
Let Assumption L1 hold. For integers p > q let further be A1, . . . , Ap ∈ Rm×m, B0, . . . , Bq ∈
Rm×d. Define

A =


0 Im 0 . . . 0
· · · Im

−Ap −Ap−1 . . . . . . −A1

 ∈ Rmp×mp,

B = (β>1 . . . β>p )> ∈ Rmp×d,

βp−j = −1{0,...,q}(j)

p−j−1∑
i=1

Aiβp−j−i −Bq−j

 , j = 0, . . . , p− 1,

C = (Im 0 . . . 0) ∈ Rm×mp,

(2.7)

and assume that the eigenvalues of A have non-zero reals parts. Then, the stationary
solution (Yt)t∈R of the continuous-time linear state space model (2.2) with (A,B,C, L) is
called multivariate CARMA(p, q) process (MCARMA(p, q) process).

Note that by Proposition 3.12 of Marquardt and Stelzer (2007), the existence of the second
moment of the driving process is inherited by the MCARMA process. Strictly speaking,
Marquardt and Stelzer (2007) only considered MCARMA processes where d = m. However,
their definitions and results can be easily extended to processes whose dimension differs from
the dimension of the driving process. As in the univariate setting, the assumption that the
eigenvalues of A are a subset of R\{0}+ iR, yields that the processes given in Definition 2.4
exist and are strictly stationary, see Proposition 3.26 of Marquardt and Stelzer (2007). In
contrast to the univariate case, the existence of the second moment of the Lévy process
is necessary for the general definition of potentially non-causal processes. Alternatively,
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proposing that the eigenvalues of A have strictly negative real parts would enable us to
define multivariate heavy-tailed CARMA processes which are naturally causal. In this case,
it would be possible to loosen the moment condition for the Lévy process and assume the
weaker logarithmic condition

∫
‖x‖≥1 log(‖x‖)ν(dx) <∞, see Definition 3.20 of Marquardt

and Stelzer (2007). However, as in the univariate case, the MCARMA(p, q) process can be
interpreted as the stationary solution of a pth order differential equation. Given a state
space model (A,B,C, L), we define the matrix-valued autoregressive polynomial P and
moving average polynomial Q as

P (z) := Imz
p +A1z

p−1 + . . .+Ap,

Q(z) := B0z
q + . . .+Bq, z ∈ R,

for the A1, . . . , Ap ∈ Rm×m, B0, . . . , Bq ∈ Rm×d of (2.7). Then, the multivariate continuous-
time ARMA(p, q) can be interpreted as solution of the pth order differential equation

P (D)Yt = Q(D)DLt. (2.8)

Even though Definition 2.4 assumes matrices of a special structure Schlemm and Stelzer
(2012a) proved that the classes of causal MCARMA processes and of causal linear state
space models coincide under Assumption L1. This means, that any process (Yt)t∈R which
satisfies (2.2) for some A,B,C where A has only eigenvalues with negative real parts, is a
MCARMA process as well. Since the class of causal continuous linear state space models is
better suited for the purpose of estimation, we mostly use this representation. Conclusively,
note that two different decompositions (A1, B1, C1, L) and (A2, B2, C2, L) may lead to the
same state space model in the multivariate setting. This problem does not occur in the
univariate setting if we assume the controller canonical state space representation (2.3) and
fix c0 = 1. Therefore, we have to derive further conditions to avoid undesired redundancy
for multivariate processes later.

2.3. Discrete sampling

In our setting, statistical inference is done for some MCARMA(p, q) process which is
observed at a discrete-time grid with a fixed distance ∆ > 0 between the observations.
Therefore, we revisit the results of Schlemm and Stelzer (2012b) who already investigated
this setting for processes with existing second moments. Until further mentioning, we
assume Assumption L1.

Theorem 2.5 (Theorem 3.6 of Schlemm and Stelzer (2012b)).
Assume that (Yt)t∈R is the output process of the continuous-time state space model given in
(2.2). Then the sampled process

(
Y

(∆)
k

)
k∈Z

:= (Yk∆)k∈Z has the state space representation

Y
(∆)
k = CX

(∆)
k , X

(∆)
k = eA∆X

(∆)
k−1 +N

(∆)
k , k ∈ Z, (2.9)
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where
N

(∆)
k =

∫ k∆

(k−1)∆
eA(k∆−u)BdLu.

The sequence
(
N

(∆)
k

)
k∈Z

is i.i.d. with mean zero and covariance matrix

Σ(∆)
N =

∫ ∆

0
eAuBΣLB

>eA
>udu.

Furthermore, under the assumption that the eigenvalues of A have strictly negative real
parts, Y (∆)

k has the vector MA(∞) representation

Y
(∆)
k =

∞∑
j=0

ΦjN
(∆)
k−j , k ∈ Z,

where Φj = CeA∆j ∈ Rm×N .

In the following, ‖M‖ denotes the Frobenius norm of a matrixM of arbitrary dimensions.
However, it can often be replaced by any sub-multiplicative matrix norm.

Remark 2.6.

a) If E‖L1‖s < ∞, then the same arguments as in Marquardt and Stelzer (2007),
Proposition 3.30, lead to E‖N (∆)

1 ‖s < ∞. The sub-multiplicity of ‖ · ‖ and the
monotone convergence theorem imply

E‖Y (∆)
k ‖s ≤

∞∑
j=0
‖Φj‖sE‖N1‖s.

Therefore, E‖Y (∆)
k ‖s <∞ holds as well.

b) Under the assumption that the eigenvalues of A have strictly negative real parts,
the coefficients Φj of the polynomial Φ are exponentially decreasing which directly
implies

∞∑
s=0

sr‖Φs‖ <∞ for any r ∈ N0. (2.10)

Later, we need a special type of state space representation of the sampled process to
show the consistency of Whittle‘s estimate and to construct the adjusted Whittle estimator.
In view of this model, we have to bring the so called linear innovations up.

Definition 2.7. (linear innovations, see Schlemm and Stelzer Schlemm and Stelzer (2012b))
Let (Yk)k∈Z be a (discrete) Rm-valued stochastic process with finite second moments. The
linear innovations (εk)k∈Z of (Yk)k∈Z are defined by

εk = Yk − Prk−1 Yk,
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Prk = orthogonal projection onto span{Yν : −∞ < ν ≤ k},

where the closure is taken in the Hilbert space of square-integrable random variables with
inner product (X,Y )→ EX>Y.

Adjusted to our notation, Proposition 2.1 of Schlemm and Stelzer (2012b) gives the
following result, which implies that almost all sampled stationary linear state space models
have a vector MA(∞) representation in which the white noise are the linear innovations.

Theorem 2.8 (Proposition 2.1 of Schlemm and Stelzer (2012b)).
In the situation of Theorem 2.5 assume that the eigenvalues of A have strictly negative real
parts and ΣL is positive definite. Then, the following holds:

(a) The Riccati equation

Ω(∆) =eA∆Ω(∆)
(
eA∆

)>
+ Σ(∆)

N

−
(
eA∆Ω(∆)C>

) (
CΩ(∆)C>

)−1 (
eA∆Ω(∆)C>

)>
has a unique positive semidefinite solution Ω(∆).

(b) Let B be the backshift operator, i.e.,

BY
(∆)
k = Y

(∆)
k−1 ,

and
K(∆) =

(
eA∆Ω(∆)C>

) (
CΩ(∆)C>

)−1

be the Kalman gain matrix. Furthermore, define the polynomial Π as

Π(z) := Π(∆)(z) :=
(
Im − C

(
IN − (eA∆ −K(∆)C)z

)−1
K(∆)z

)
.

Then, the linear innovations are

ε
(∆)
k =

(
Im − C

(
IN − (eA∆ −K(∆)C)B

)−1
K(∆)B

)
Y

(∆)
k

= Y
(∆)
k −

∞∑
j=1

C(eA∆ −K(∆)C)j−1K(∆)Y
(∆)
k−j

= Π(∆)(B)Y (∆)
k .

Furthermore, the absolute value of any eigenvalue of eA∆ −K(∆)C is less than one
and Y (∆) := (Y (∆)

k )k∈Z has the moving average representation

Y
(∆)
k = ε

(∆)
k + C

∞∑
j=1

(
eA∆

)j−1
K(∆)ε

(∆)
k−j , k ∈ Z.
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(c) The covariance matrix V (∆) of the linear innovations (ε(∆)
k )k∈Z has the representation

V (∆) = CΩ(∆)C>.

If Ω(∆) is positive definite and C has full rank, V (∆) is invertible.

Remark 2.9.

(a) In the situation of Theorem 2.8

tr(V (∆)) = min
X∈Mk−1

E
[(
Y

(∆)
k −X

)> (
Y

(∆)
k −X

)]
,

where tr(V (∆)) denotes the trace of V (∆) andMk−1 := span
{
Y

(∆)
ν , ν ≤ k − 1

}
holds.

(b) If A has strictly negative real parts, then the sampled state space process is stable
which provides the representations of Theorem 2.8 (b). Thereby, Π(z) is invertible
for z ∈ C with |z| = 1 and

Π−1(z) := Π(∆)−1(z) =
(
Im + C

(
IN − eA∆z

)−1
K(∆)z

)
. (2.11)

In the case of an α-stable CARMA process, sampling properties were discovered by
García et al. (2011). For the sake of completeness, we state Proposition 3.1 of García et al.
(2011). Therefore, we have to introduce Proposition 2 of Brockwell et al. (2011) which
yields another representation for the continuous-time α-stable CARMA(p, q) process.

Proposition 2.10 (Proposition 2 of Brockwell et al. (2011)).
Assume that (Yt)t∈R is a (causal) symmetric α-stable CARMA(p, q) process with driving
process L(α) and assume further that the polynomials a and c have no common factors and
all zeros λ1, . . . , λp of the polynomial a are distinct. Then, (Yt)t∈R can be represented as a
sum of dependent and possibly complex-valued CAR(1) processes

Yt =
p∑
j=1

Y
(j)
t , t ∈ R,

where
Y

(j)
t = κj

∫ t

−∞
eλj(t−u)dL(α)

u , κj = b(λj)
a′(λj)

, j = 1, . . . , p.

Here a′ denotes the first derivative of a.

Note that the following result is adapted for the symmetric α-stable CARMA process.
The original result includes α-stable processes with β 6= 0.

Proposition 2.11 (Proposition 3.1 of García et al. (2011)).
Under the assumptions of Proposition 2.10, the following holds:
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a) For given ∆ > 0, the sampled process (Y (∆)
k )k∈Z has the representation

Y
(∆)
k =

p∑
j=1

Y
(j,∆)
k , k ∈ Z,

where the discrete-time processes (Y (j,∆)
k )k∈Z, j = 1, . . . , p, are obtained by sam-

pling the component CAR(1) processes (Y (1)
t )t∈R, . . . , (Y (p)

t )t∈R of Proposition 2.10
at spacing ∆. Since (Yt)t∈R is assumed to be strictly stationary by definition, we
consider

Y
(j,∆)
k = eλj∆Y j,∆

k−1 + Z
(j,∆)
k , k ∈ Z,

with white noise

Z
(j,∆)
k = κj

∫ k∆

(k−1)∆
eλj(k∆−u)dL(α)

u , k ∈ Z.

The random variables Z(j,∆)
k are Sα(σ|κj |

[∫∆
0 eαλj(∆−u)du

]1/α
, 0, 0)-distributed. For

fixed ∆, j but varying k, they are i.i.d., for fixed ∆, k but varying j they are dependent.

b) For given ∆ > 0 the sampled process (Y (∆)
k )k∈Z satisfies the equations

a
(∆)
D (B)Y (∆)

k =
p∏
j=1

(1− eλj∆B)Y (∆)
k = U

(∆)
k , k ∈ Z,

where
a

(∆)
D (x) =

p∏
j=1

(1− eλj∆x) = 1− φ1x− . . .− φpxp, x ∈ R.

The process (U (∆)
k )k∈Z has the representation

U
(∆)
k = W

(∆)
k,0 +W

(∆)
k,1 + . . .+W

(∆)
k,n−1, k ∈ Z,

where
W

(∆)
k,` =

p∑
j=1

η
(j,∆)
` Z

(j,∆)
k−`

and Z(j,∆)
k−` are as in a). For all k ∈ Z the vector (W (∆)

k,0 , . . . ,W
(∆)
k,p−1) has independent

components, which for ` = 0, . . . , p− 1 are Sα(σ(∆)
` , 0, 0)-distributed with

σ
(∆)
` = σ

(∫ ∆

0
|f (∆)
` (u)|αdu

)1/α

,

for f (∆)
` (u) =

∑p
j=1 η

(j,∆)
` κje

λj(∆−u) for 0 ≤ u ≤ ∆. The η(j,∆)
` have the representa-
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tion

η
(j,∆)
0 = 1, η

(j,∆)
1 = −

∑
r 6=j

eλr∆, η
(j,∆)
2 =

∑
r1,r2 6=j

′e(λr1+λr2 )∆,

η
(j,∆)
3 = −

∑
r1,r2,r3 6=j

′e(λr1+λr2+λr3 )∆, . . . , η
(j,∆)
p−1 = (−1)p−1e

∑
r 6=j λr∆,

where the sum
∑′ is taken over the different indices only.

c) The process (U (∆)
k )k∈Z is (p− 1)-dependent, and for all k ∈ Z the random variable

U
(∆)
k is Sα(σ(∆)

? , 0, 0)-distributed with

σ
(∆)
? =

p−1∑
`=0

(
σ

(∆)
`

)α1/α

.

2.4. Second order properties

Firstly, we assume Assumption L1. Later, we aim to estimate a general linear state space
model where the matrices A, B, C and the covariance matrix ΣL of the driving Lévy
process are parameterized. These parameters model the dependency structure of the
MCARMA process. Therefore, it naturally comes to mind, to construct an estimator based
on statistical figures which depict the dependency structure of the underlying process. From
the theoretical perspective, for the multivariate stationary discrete-time process (Zk)k∈Z
the most popular one is the autocovariance function ΓZ which is defined by

ΓZ(h) = Cov(Zh, Z0), h ∈ N0, ΓZ(h) = ΓZ(−h)>, h < 0.

In the same way, the definition can be extended to continuous-time processes. Doing a
Fourier transformation, let us leave the time domain and enter the frequency domain. As a
result, we obtain the spectral density.

Definition 2.12 (spectral density).
For a centered stationary discrete time series (Zk)k∈Z with an absolute summable autoco-
variance function ΓZ = (ΓZ(h))h∈Z the spectral density fZ is defined as

fZ(ω) = 1
2π

∑
h∈Z

ΓZ(h)e−ihω, ω ∈ [−π, π].

Vice versa, the autocovariance function can be represented as

ΓZ(h) =
∫ π

−π
fZ(ω)eihωdω, h ∈ Z. (2.12)

Obviously, the autocovariance function as well as the spectral density function are purely
theoretical measures. Therefore, we approximate them by their empirical counterparts, the
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sample autocovariance function and the periodogram, respectively. Based on a sample of
size n the autocovariance function of the centered stationary time series (Zk)k∈Z can be
estimated evidently by

Γn,Z(h) := 1
n

n−h∑
k=1

Zk+hZ
>
k , h ≥ 0, Γn,Z(h) := Γn,Z(−h)>, h < 0.

A convenient way to estimate the spectral density is the periodogram.

Definition 2.13. (periodogram)
For a sample Z1, . . . , Zn of n observations of a (real-valued) m-dimensional stationary time
series (Zk)k∈Z the periodogram In,Z : [−π, π]→ Rm×m is defined as

In,Z(ω) = 1
2πn

 n∑
j=1

Zje
−ijω

( n∑
k=1

Zke
ikω

)>
, ω ∈ [−π, π]. (2.13)

Considering

In,Z(ωj) = 1
2π

n−1∑
h=−n+1

Γn,Z(h)e−ihωj

for ωj = πj
n , j = −n+ 1, . . . , n, we see that the periodogram is just the Fourier transform

of the sample autocovariance function. Therefore, we get an obvious connection between
the periodogram and the spectral density. It is well known that the periodogram is not
a consistent estimator for the spectral density in the equidistantly sampled MCARMA
setting, see Theorem 3.1 of Fasen (2013). However, for a causal MCARMA process, the
sample autocovariance is strongly consistent. In the following, we denote the sample
autocovariance of (Y (∆)

k )k∈Z and (N (∆)
k )k∈Z of size n as Γn,Y and Γn,N , respectively. In

the same way, the corresponding autocovariances, spectral densities and periodograms are
named. Note that we often use small letters for the corresponding univariate counterparts.

Lemma 2.14.
Suppose Assumption L1 hold and that the eigenvalues of A have strictly negative real parts.
Then,

Γn,Y (h) a.s.−→ ΓY (h) ∀h ∈ Z

and
∑∞
h=−∞ ‖ΓY (h)‖ <∞.

Proof. Due to Proposition 3.34 of Marquardt and Stelzer (2007) the process (Yt)t∈R is
ergodic. Therefore, Theorem 2.5 and Theorem 4.3 of Krengel (2011) imply that the sampled
process

(
Y

(∆)
k

)
k∈Z

is ergodic as well. Moreover, by Proposition 3.13 of Marquardt and

Stelzer (2007) the autocovariance function Γ(c)
Y of the continuous-time process satisfies

Γ(c)
Y (h) = CeAhΣ(∆)

N C>,
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with Σ(∆)
N as defined in Theorem 2.5. Since the eigenvalues of A have strictly negative real

parts ∑
h∈Z
‖ΓY (h)‖ =

∑
h∈Z
‖Γ(c)

Y (∆h)‖ <∞.

Birkhoff‘s Ergodic Theorem now leads to

Γn,Y (h) a.s.−→ E
[
Y

(∆)
h Y

(∆)>
0

]
= ΓY (h) ∀ h ∈ Z.

Remark 2.15.
Similarly, one can show that in the situation of Lemma 2.14 the estimated autocovariance
of N (∆) as introduced in Remark 3.7 behaves in the same way, i.e.,

Γn,N (h) a.s.−→ ΓN (h), h ∈ Z.

Obviously, ΓN (h) = 0 for h 6= 0 and ΓN (0) = Σ(∆)
N holds.

Considering an i.i.d. sequence, the sample autocovariance even has an asymptotic normal
distribution.

Lemma 2.16.
Let (Zk)k∈Z be a N -dimensional i.i.d. sequence with E‖Z1‖4 <∞, and covariance matrix
ΣZ . Define

Γn,Z(h) = 1
n

n−h∑
j=1

Zj+hZ
>
j , n ≥ h ≥ 0,

Then, for fixed ` ∈ N,

√
n




vec

(
Γn,Z(0)

)
vec

(
Γn,Z(1)

)
...

vec
(
Γn,Z(`)

)

−


vec (ΣZ)
0
...

0




D−→ N (0,ΣΓZ (`)),

where

ΣΓZ (`) =


E[Z1Z

>
1 ⊗ Z1Z

>
1 ]− ΣZ ⊗ ΣZ 0N2×`N2

0`N2×N2 I` ⊗ ΣZ ⊗ ΣZ

 .

Proof. The proof is similar to the proof of Proposition 4.4 in Lütkepohl (2005) and is
therefore omitted.

The assumptions of Lemma 2.16 are obviously satisfied when considering an i.i.d. white
noise. In that case, we can also show that the supremum over the expectation of the
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centered squared norm of the sample autocovariance multiplied by the sample size is
bounded. Hereby, as always, C > 0 denotes a generic constant which may change from line
to line.

Lemma 2.17.
Under Assumption L1,

sup
j∈Z

nE
[∥∥∥Γn,N (j)− E

[
Γn,N (j)

]∥∥∥2
]
≤ C

holds.

Proof. On the one hand, we have

nE[‖Γn,N (0)− E[Γn,N (0)]‖2]

= nE

 N∑
s,t=1

∣∣∣Γn,N (0)[s, t]− E[Γn,N (0)[s, t]]
∣∣∣2


= n
N∑

s,t=1
E
[
Γn,N (0)[s, t]2

]
− E

[
Γn,N (0)[s, t]

]2

= n
N∑

s,t=1
E

 1
n2

n∑
j,k=1

(N (∆)
j N

(∆)>
j )[s, t](N (∆)

k N
(∆)>
k )[s, t]

− E

 1
n

n∑
j=1

(N (∆)
j N

(∆)>
j )[s, t]

2

=
N∑

s,t=1

(
E
[
(N (∆)

1 N
(∆)>
1 )[s, t]2

]
− E

[
(N (∆)

1 N
(∆)>
1 )[s, t]

]2)

=
N∑

s,t=1
Var

(
(N (∆)

1 N
(∆)>
1 )[s, t]

)
.

Since E
[
Γn,N (j)

]
= 0 for n > j 6= 0, we obtain for j > 0

nE[‖Γn,N (j)− E[Γn,N (j)]‖2]

= n
N∑

s,t=1
E
[
Γn,N (j)[s, t]2

]

= n
N∑

s,t=1
E

 1
n2

n−j∑
k,`=1

(N (∆)
k+jN

(∆)>
k )[s, t](N (∆)

`+jN
(∆)>
` )[s, t]


= n

N∑
s,t=1

E

 1
n2

n−j∑
k=1

(N (∆)
k+jN

(∆)>
k )[s, t]2


= n− j

n

N∑
s,t=1

E
[
(N (∆)

1+jN
(∆)>
1 )[s, t]2

]

≤
N∑

s,t=1
E
[
(N (∆)

1 N
(∆)>
2 )[s, t]2

]
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=
N∑

s,t=1
Var

(
(N (∆)

1 N
(∆)>
2 )[s, t]

)

and with similar calculations we obtain the same bound for j < 0. Therefore,

sup
j∈Z

nE
[∥∥∥Γn,N (j)− E

[
Γn,N (j)

]∥∥∥2
]

≤ max


N∑

s,t=1
Var

(
(N (∆)

1 N
(∆)>
2 )[s, t]

)
,

N∑
s,t=1

Var
(
(N (∆)

1 N
(∆)>
1 )[s, t]

) ≤ C.

Changing to the frequency domain, an application of Theorem 11.8.3 Brockwell and
Davis (1991) and Remark 2.9 already give a direct representation of the spectral density of
the sampled process. By means of the definition

Φ(x) :=
∞∑
j=0

Φjx
j , x ∈ C : |x| = 1,

the spectral density f (∆)
Y of Y (∆) has the representation

f
(∆)
Y (ω) = 1

2πΦ(e−iω)Σ(∆)
N Φ(eiω)>

= 1
2πC

(
eiωIN − eA∆

)−1
Σ(∆)
N

(
e−iωIN − eA

>∆
)−1

C>, ω ∈ [−π, π]. (2.14)

Alternatively, the same theorem and Theorem 2.8 (b) yield

f
(∆)
Y (ω) = Π−1(e−iω)V (∆)Π−1(eiω)>, ω ∈ [−π, π]. (2.15)

We furthermore have the representation

f
(∆)
Y (ω) = ΣL

2π

∫ ∆

0

∣∣∣∣∣∣
∞∑

j=−∞
g(u+ j∆)eiωj

∣∣∣∣∣∣
2

du

= ΣL

2π

∫ ∆

0

∣∣∣c>eAu(Ip − eA∆+iωIp)−1ep
∣∣∣2 du, ω ∈ [−π, π],

for univariate CARMA processes, see Fasen (2013), Example 2.4.
We now change to a heavy-tailed setting. Naturally, if second moments do not exist, it

is not possible to define the autocovariance function and the spectral density, respectively.
However, the sample autocovariance function and the periodogram can be defined nonethe-
less, even though it is questionable how to interpret them. In view of our previous results
and what follows, it would be desirable to obtain a similar property as the almost sure
convergence of Lemma 2.14 for a symmetric α-stable CARMA process. Fortunately, with
an appropriate normalization, an asymptotic result can be proven. However, in contrast to
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Lemma 2.14, the limit remains random.

Theorem 2.18.
Let Y be a symmetric α-stable CARMA process with kernel function
g(t) = c>eAtep1[0,∞)(t) as given in (2.4) and let γn,Y (h), h = −n + 1, . . . , n − 1, be
the sample autocovariance function. Then, for fixed m ∈ N and as n→∞,

1
n2/α−1

(
γn,Y (0), . . . , γn,Y (m)

)
D−→

∫ ∆

0

∞∑
j=−∞

g(∆j − s)2dL(α/2)
s , . . . ,

∫ ∆

0

∞∑
j=−∞

g(∆j − s)g(∆(j +m)− s)dL(α/2)
s

 ,
where L(α/2) = (L(α/2)

t )t≥0 is an α/2-stable Lévy process with

L
(α/2)
1 ∼ Sα/2

(
σ2
(
Cα/Cα/2

)2/α
, 1, 0

)
and the constants Cα and Cα/2 are defined as in (2.6).

To prove this result, we need a generalized version of Theorem 3 of Drapatz (2017).
Since the proof of the following proposition is mostly the same as the proof Theorem 3 of
Drapatz (2017), it is therefore omitted.

Proposition 2.19.
Let g1, g2 : R → R be bounded functions with g1, g2 ∈ Lδ(R) for some δ < min{α, 1} and
0 <

∫∞
−∞ |g1(s)g2(s)| ds < ∞. Suppose L(α) is a symmetric α-stable Lévy process with

α ∈ (0, 2) and L(α)
1 ∼ Sα(σ, 0, 0). Define the continuous-time MA processes

Y
[1]
t =

∫ ∞
−∞

g1(t− s)dL(α)
s and Y

[2]
t =

∫ ∞
−∞

g2(t− s)dL(α)
s , t ≥ 0.

Furthermore, Gg1,g2 : [0,∆]→ R is given as s→
∑∞
j=−∞ g1(∆j− s)g2(∆j− s) and suppose

Gg1,g2 ∈ Lα/2[0,∆]. Then, as n→∞,

1
n2/α

n∑
k=1

Y
[1]
k∆Y

[2]
k∆

D−→
∫ ∆

0
Gg1,g2(s)dL(α/2)

s ,

where L(α/2) is the α/2-stable Lévy process of Theorem 2.18.

Remark 2.20.
Note that ∫ ∆

0
Gg1,g2(s)dL(α/2)

s ∼ Sα/2(σg1,g2 , βg1,g2 , 0),

has an α/2-stable distribution with parameters

βg1,g2 =
∫∆

0 (G+
g1,g2(s))α/2 − (G−g1,g2(s))α/2ds∫∆

0 |Gg1,g2(s)|α/2ds
,
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(σg1,g2)α/2 = σαCα
Cα/2

∫ ∆

0
|Gg1,g2(s)|α/2ds,

see Property 1.2.3 and 3.2.2 of Samorodnitsky and Taqqu (1994). Here, G+
g1,g2(s) =

max{0, Gg1,g2(s)} and G−g1,g2(s) = max{0,−Gg1,g2(s)} denote the positive and negative
part of Gg1,g2(s).

Proof of Theorem 2.18.
Let c0, . . . , cm ∈ R. Then,

n

n2/α

(
c0γn,Y (0) + . . .+ cmγn,Y (m)

)
= 1

n2/α

c0

n∑
j=1

Y
(∆)2
j + . . .+ cm

n−m∑
j=1

Y
(∆)
j Y

(∆)
j+m


= 1

n2/α

 n∑
j=1

Y
(∆)
j

(
m∑
k=0

ckY
(∆)
k+j

)
−

n∑
j=n−m+1

m∑
k=n−j+1

ckY
(∆)
j Y

(∆)
k+j


=: J [1]

n + J [2]
n . (2.16)

We obtain for δ < α/2

E
∣∣∣J [2]
n

∣∣∣δ = E

∣∣∣∣∣∣n−2/α
n∑

j=n−m+1

m∑
k=n−j+1

ckY
(∆)
j Y

(∆)
k+j

∣∣∣∣∣∣
δ

≤ n−2δ/αmδ max
k=0,...,m

|ck|δE
∣∣∣Y (∆)

1 Y
(∆)

1+k

∣∣∣δ n→∞−→ 0.

Therefore, the second term in (2.16), J [2]
n , is negligible. For the first term in (2.16), J [1]

n ,
we define

Y
[1]
t :=

∫ ∞
−∞

m∑
k=0

ckg(t+ k∆− s)dL(α)
s and Y

[2]
t :=

∫ ∞
−∞

g(t− s)dL(α)
s , t ≥ 0.

Thereby, we have

m∑
k=0

ckY
(∆)
k+j =

∫ ∞
−∞

m∑
k=0

ckg((k + j)∆− s)dL(α)
s = Y

[1]
j∆ ,

Y
(∆)
j =

∫ ∞
−∞

g(j∆− s)dL(α)
s = Y

[2]
j∆ .

An application of Proposition 2.19 leads for n→∞ to

n

n2/α

m∑
k=0

ckγn,Y (k) = 1
n2/α

n∑
k=1

Y
[1]
k∆Y

(2)
k∆ + J [2]

n

D−→
∫ ∆

0

∞∑
j=−∞

(
m∑
k=0

ckg(∆(k + j)− s)g(∆j − s)
)
dL(α/2)

s
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=
m∑
k=0

∫ ∆

0

∞∑
j=−∞

ckg(∆(k + j)− s)g(∆j − s)dL(α/2)
s .

Cramér-Wold completes the proof. �



CHAPTER 3

Whittle estimation for MCARMA Processes

In this chapter, we investigate the Whittle estimator for an equidistantly sampled
MCARMA(p, q) process with existing second moments. We assume that the orders p
and q of the autoregressive and moving average polynomial, respectively, are fixed and
that the polynomials P and Q and the covariance matrix ΣL of the driving process have
to be estimated. In view of Chapter 2, we alternatively estimate the parameters of the
corresponding continuous-time linear state space model. We consider the parameterized
linear state space models (A(ϑ), B(ϑ), C(ϑ), L(ϑ))ϑ∈Θ for some parameter space Θ ⊂ Rr.
In general, we emphasize all dependencies on the parameter ϑ ∈ Θ by using notations
such as f (∆)

Y (·, ϑ),Φ(·, ϑ),Π(·, ϑ), . . .. In the following, we denote the true parameter as
ϑ0 and, for better readability, we do not carry it in the remaining part of this thesis,
i.e. f (∆)

Y (·),Φ(·),Π(·), . . . stand for f (∆)
Y (·, ϑ0),Φ(·, ϑ0),Π(·, ϑ0), . . . in all our parameterized

settings.
We start with the introduction of the Whittle estimator. To later derive the strong con-
sistency and the asymptotic normality of the procedure, we then present some results
concerning the identifiability of the sampled processes. Applying these findings yields our
setting. Finally we state and proof the strong consistency and the asymptotic normality
result.

3.1. The Whittle estimator

We turn towards the Whittle estimator. In 1951, this estimation procedure was firstly
introduced by Peter Whittle (1951) who searched for a simple approximation for the
Gaussian maximum likelihood method. His approach is based on the minimizing argument
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of the so-called Whittle function which measures the distance between the periodogram
and the spectral density. Over the years, the original procedure was adapted for different
settings and found various applications. In our setting, we define the Whittle function Wn

as

Wn(ϑ) = 1
2n

n∑
j=−n+1

[
tr
(
f

(∆)
Y (ωj , ϑ)−1In,Y (ωj)

)
+ log

(
det

(
f

(∆)
Y (ωj , ϑ)

)) ]
, ϑ ∈ Θ,

with ωj = πj
n for j = −n+ 1, . . . , n. Accordingly, the Whittle estimator is

ϑ̂(∆)
n := arg min

ϑ∈Θ
Wn(ϑ).

In this definition the terms log(det(f (∆)
Y (ωj , ϑ))) can be replaced by log(detV (∆)(ϑ)) where

V (∆)(ϑ) is the covariance matrix of the linear innovations of Theorem 2.8 corresponding
to the parameter ϑ. Thereby, the minimizing argument does not change, see Theorem
3’’’ of Chapter 3 of Hannan (2009) for a motivation. Therefore, if the covariance matrix
V (∆)(ϑ) of the linear prediction error does not depend on ϑ, we can neglect the penalty
term log(detV (∆)(ϑ)) completely since it then is constant for all ϑ. However, in the case
of state space models, V (∆)(ϑ) depends on ϑ and has to be computed additionally (cf.
Theorem 2.8). Conversely, for VARMA models, the Whittle function with penalty term
log(det Σe(ϑ)) of Dunsmuir and Hannan (1976) differs from our Whittle function. In their
case Σe is the covariance matrix of the white noise which is obviously independent of the
moving average and autoregressive polynomial, respectively.

3.2. Identifiability

As already mentioned, in the general multivariate setting, it is possible to obtain multiple
linear state space representations (A,B,C, L) of the same process. Furthermore, the
Whittle estimator is based on second order properties. Therefore, it is necessary that the
true process can be identified from its second order properties. Additionally, since we
only observe the continuous-time processes at a discrete-time grid, the so-called aliasing
effect might appear. Loosely speaking, aliasing describes the possibility to observe the
same discrete data from different continuous-time processes. Consequently, when aliasing
occurs, it is impossible to uniquely identify the generating continuous-time process from
just the discrete observations. This is a well-known problem when identifying parameters
from discrete-time data, see e.g. Hansen and Sargent (1983). Obviously, the ability to
uniquely identify the underlying process from discrete observations is necessary to estimate
the true parameter correctly. Consequently, we have to restrict our setting in a way which
renders a bijectiveness between the continuous-time state space models and the observable
discrete-time processes. Therefore, we revisit the results of Schlemm and Stelzer (2012b)
who already found conditions to avoid these problems. There are different approaches to
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determine the parametrization in a way to forgo multiple linear state space representations
of the continuous-time process. Naturally, it is advantageous to choose a setting which is
somewhat minimal. In our case, the minimality is referenced to the McMillan degree of
the state space model.

Definition 3.1.

a) Let H be an m× d-dimensional rational matrix function, i.e., the components H[s, t]
of H are rational functions of some variable z ∈ R for all s ∈ {1, . . .m}, t ∈ {1, . . . , d}.
A matrix triplet (A,B,C) is called an algebraic realization of H of dimension N if
H(z) = C(zIN −A)−1B for z ∈ R and A ∈ RN×N , B ∈ RN×d and C ∈ Rm×N .

b) Let H be a m × d-dimensional rational matrix function. A minimal realization of
H is an algebraic realization of dimension smaller than or equal to the dimension of
every other algebraic realization of H. The dimension of a minimal realization of H
is the McMillan degree of H.

Theorem 2.3.4 in Hannan and Deistler (1988) shows that assuming a minimal McMillan
degree guarantees the uniqueness of the state space representation up to a change of basis.
Hence, a fixed minimal McMillan degree reduces redundancies in the continuous-time model.
Additionally, assuming Assumption L1 and a minimal McMillan degree of all investigated
processes yield the positive definiteness of the covariance matrices Σ(∆)

N (ϑ), ϑ ∈ Θ, in (2.2).

Lemma 3.2 (Corollary 3.9 of Schlemm and Stelzer (2012b)).
If the triplet (A,B,C) is minimal of dimension N and Σ is positive definite, then the
N ×N matrix �Σ =

∫∆
0 eAuBΣB>eA>udu has full rank N .

We now consider a result which serves to eventually bypass the aliasing effect with a
practical assumption.

Lemma 3.3.
Assume that the matrices A1, A2 ∈ RN×N satisfy eA1∆ = eA2∆ for some ∆ > 0. If all
λ ∈ C which are either eigenvalues of A1 or A2 satisfy |=(λ)| < π/∆, then A1 = A2.

Finally, we do not only want to guarantee that the process can be identified from its
second-order properties, but we further want to identify it by the second-order properties
of its sampled process.

Definition 3.4.
Two stochastic processes are L2-observationally equivalent if their spectral densities are
the same. A family of continuous-time stochastic processes (Y (ϑ))ϑ∈Θ is identifiable from
the spectral density if, for every ϑ1 6= ϑ2, the two processes Y (ϑ1) and Y (ϑ2) are not
L2-observationally equivalent. It is ∆-identifiable from the spectral density for some
∆ > 0 if for every ϑ1 6= ϑ2 the two sampled processes Y (∆·, ϑ1) and Y (∆·, ϑ2) are not
L2-observationally equivalent.
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Imposing conditions adjusted to the previous results, it now suffices to assume ∆-
identifiability from the spectral density to forgo all identification difficulties.

Theorem 3.5 (Theorem 3.13 of Schlemm and Stelzer (2012b)).
Let Θ ⊂ Rr be a parameter space and ϑ→ (A(ϑ), B(ϑ), C(ϑ), L(ϑ)) be a parametrization
of the continuous-time state space model (2.2). Assume that for ϑ ∈ Θ the driving process
L(ϑ) is centered and has a positive definite covariance matrix. Assume further that for
ϑ ∈ Θ the eigenvalues of the matrix A(ϑ) have strictly negative real parts and are a
subset of {z ∈ C : −π/∆ < =(z) < π/∆} and that (A(ϑ), B(ϑ), C(ϑ)) is minimal with
McMillan degree N . Finally assume that the collection of output processes corresponding to
(A(ϑ), B(ϑ), C(ϑ), L(ϑ)) is identifiable from the spectral density. Then, it is ∆-identifiable
as well.

3.3. Setting

In view of the previous section, we work under the following assumptions.

Assumption A.
For all ϑ ∈ Θ the following holds:

(A1) The parameter space Θ is a compact subset of Rr.
(A2) L(ϑ) = (Lt(ϑ))t∈R is a centered Lévy process with positive definite covariance matrix

ΣL(ϑ).
(A3) The eigenvalues of A(ϑ) have strictly negative real parts.
(A4) The functions ϑ 7→ ΣL(ϑ), ϑ 7→ A(ϑ), ϑ 7→ B(ϑ) and ϑ 7→ C(ϑ) are continuous. In

addition, C(ϑ) has full rank.
(A5) The linear state space model (A(ϑ), B(ϑ), C(ϑ), L(ϑ)) is minimal with McMillan

degree N .
(A6) For any ϑ1, ϑ2 ∈ Θ with ϑ1 6= ϑ2 there exists an ω ∈ [−π, π] such that fY (ω, ϑ1) 6=

fY (ω, ϑ2), where fY (ω, ϑ) is the spectral density of Y (ϑ).
(A7) The spectrum of A(ϑ) ∈ RN×N is a subset of

{
z ∈ C : − π

∆ < =(z) < π
∆
}
.

Remark 3.6.

(a) As mentioned, Lemma 3.3 yields that the covariance matrix Σ(∆)
N (ϑ) has full rank

under Assumption (A2) and (A5). Furthermore, note that Assumptions (A2) and
(A3) allow us to calculate the linear innovations. In this case, the covariance matrix
V (∆)(ϑ) of the linear innovations is non-singular (cf. Lemma 3.14 in Schlemm and
Stelzer (2012b)) as well.

(b) Under Assumption A and representation (2.15) of the spectral density, the inverse
f

(∆)
Y (ω, ϑ)−1 of the spectral density exists and the mapping (ω, ϑ) 7→ f

(∆)
Y (ω, ϑ)−1 is

continuous.
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For the asymptotic normality of the Whittle estimator some further assumptions are
required. In view of what follows, we introduce an abridging notation of the gradient vector
and the Hessian matrix of some function. Namely, for some matrix function g(ϑ) in Rm×s

with ϑ in Rr, the gradient matrix with respect to the parameter vector ϑ is denoted as
∇ϑg(ϑ) = ∂ vec(g(ϑ))

∂ϑ ∈ Rms×r and ∇ϑg(ϑ0) is the shorthand for ∇ϑg(ϑ)|ϑ=ϑ0 . If g : Rr → R,
then ∇2

ϑg(ϑ) ∈ Rr×r denotes the Hessian matrix of g(ϑ).

Assumption B.

(B1) The true parameter value ϑ0 is in the interior of Θ.
(B2) E‖L1‖4 <∞.
(B3) The functions ϑ 7→ A(ϑ), ϑ 7→ B(ϑ), ϑ 7→ C(ϑ) and ϑ 7→ ΣL(ϑ) are three times

continuously differentiable.
(B4) For any c ∈ Cr, there exists an ω∗ ∈ [−π, π] such that ∇ϑf

(∆)
Y (ω∗, ϑ0)c 6= 0m2 .

Remark 3.7.
Under Assumption A and (B3) the mapping ϑ 7→ f

(∆)
Y (ω, ϑ) is three times continuously

differentiable due to representation (2.14) of the spectral density.

3.4. Strong consistency and asymptotic normality

Theorem 3.8.
Let Assumption A hold. Then, as n→∞,

ϑ̂(∆)
n

a.s.−→ ϑ0.

Theorem 3.9.
Let Assumptions A and B hold. Furthermore, let Σ∇W be defined as

Σ∇W = 1
π

∫ π

−π
∇ϑf

(∆)
Y (−ω, ϑ0)>

[
f

(∆)
Y (−ω)−1 ⊗ f (∆)

Y (ω)−1
]
∇ϑf

(∆)
Y (ω, ϑ0)dω

+ 1
16π4

[∫ π

−π

[
Φ(eiω)>f (∆)

Y (ω)−1 ⊗ Φ(e−iω)>f (∆)
Y (−ω)−1

]
∇ϑf

(∆)
Y (−ω, ϑ0)dω

]>
·
[
E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− 3Σ(∆)

N ⊗ Σ(∆)
N

]
·
[∫ π

−π

[
Φ(e−iω)>f (∆)

Y (−ω)−1 ⊗ Φ(eiω)>f (∆)
Y (ω)−1

]
∇ϑf

(∆)
Y (ω, ϑ0)dω

]
. (3.1)

and

Σ∇2W = 1
2π

∫ π

−π
∇ϑf

(∆)
Y (−ω, ϑ0)>

[
f

(∆)
Y (−ω)−1 ⊗ f (∆)

Y (ω)−1
]
∇ϑf

(∆)
Y (ω, ϑ0)dω. (3.2)

Then, as n→∞,
√
n
(
ϑ̂(∆)
n − ϑ0

) D−→ N (0,ΣW ),

where ΣW has the representation ΣW = [Σ∇2W ]−1Σ∇W [Σ∇2W ]−1.
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In contrast to the quasi maximum likelihood estimator of Schlemm and Stelzer (2012b),
the limit covariance matrix of the Whittle estimator has an analytic representation. It can
be used for the calculation of confidence bands.

Remark 3.10.
We want to compare our outcome with an analogue result for stationary discrete-time
VARMA(p, q) processes (Zn)n∈N of the form (1.1) with finite fourth moments. In our
setting we have the drawback that the autoregressive and the moving average polynomial
influence the covariance matrix Σ(∆)

N of (N (∆)
k )k∈N. In the setting of stationary VARMA(p, q)

processes of Dunsmuir and Hannan (1976) the covariance matrix Σe of the white noise
(en)n∈Z is not affected by the AR and MA polynomials. It was shown in Dunsmuir and
Hannan (1976) that under very general assumptions for d = m the resulting limit covariance
matrix of the Whittle estimator for the VARMA parameters has the representation

ΣVARMA
W =

[ 1
4π

∫ π

−π
∇ϑfZ(−ω, ϑ0)>

[
fZ(−ω)−1 ⊗ fZ(ω)−1

]
∇ϑfZ(ω, ϑ0)dω

]−1

= 2 · [ΣVARMA
∇2W ]−1,

which is simpler than our ΣW . This can be traced back to ΣVARMA
∇W = 2 · ΣVARMA

∇2W , which
is motivated on p. 51. In particular, for a Gaussian VARMA model, ΣVARMA

W is the inverse
of the Fisher information matrix.

Remark 3.11.

(a) Let the driving Lévy process be a Brownian motion. Then, the matrix Σ∇W reduces
to

Σ∇W = 1
π

∫ π

−π
∇ϑf

(∆)
Y (−ω, ϑ0)>

[
f

(∆)
Y (−ω)−1 ⊗ f (∆)

Y (ω)−1
]
∇ϑf

(∆)
Y (ω, ϑ0)dω

=2 · [Σ∇2W ]−1,

see Remark 3.19, and hence, ΣW = 2 · [Σ∇W ]−1 is the inverse of the Fisher information
matrix and corresponds to ΣVARMA

W as in the previously mentioned discrete-time
VARMA setting.

(b) Let d = m = N and C(ϑ) = Im. Then, the state space model is a multivariate
Ornstein-Uhlenbeck process (MCAR(1) process). In this example, Σ∇W = 2·[Σ∇2W ]−1

holds as well. Because of Φ(z, ϑ) =
∑∞
j=0 e

A(ϑ)∆jzj = (1− eA(ϑ)∆z)−1 = Π−1(z, ϑ),
the arguments are very similar to the arguments for VARMA models in Remark 3.10.

Remark 3.12.
For Gaussian state space processes

J =
[
2E
[(

∂

∂ϑi
ε

(∆)
1 (ϑ0)

)T
V (∆)−1

(
∂

∂ϑj
ε

(∆)
1 (ϑ0)

)]
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+ tr
((

∂

∂ϑi
V (∆)(ϑ0)

)
V (∆)−1

(
∂

∂ϑj
V (∆)(ϑ0)

)
V (∆)−1

)]
i,j=1,...,r

is the Fisher information matrix (cf. Schlemm and Stelzer (2012b)). Since W (ϑ) = L(ϑ)
due to Lemma 3.15, and ∇ϑf

(∆)
Y (ω, ϑ) is uniformly bounded by an integrated dominant, we

get by some straightforward applications of dominated convergence and some arguments of
the proof of Schlemm and Stelzer (2012b), Lemma 2.17, that

J [i, j] = limn→∞ E
[
∂
∂ϑi

∂
∂ϑj
Ln(ϑ0)

]
= ∂

∂ϑi
∂
∂ϑj

limn→∞ E[Ln(ϑ0)]

= ∂
∂ϑi

∂
∂ϑj

W (ϑ0) = limn→∞ E
[
∂
∂ϑi

∂
∂ϑj

Wn(ϑ0)
]

= Σ∇2W [i, j],

where Ln(ϑ) is the quasi-Gaussian likelihood function. Furthermore, Schlemm and Stelzer
(2012b), Lemma 2.17, show that if Assumption A holds and if there exists an j0 ∈ N such
that the ((j0 + 2)m2)× r-matrix

∇

 [
Ij0+1 ⊗K(∆)(ϑ0)> ⊗ C(ϑ0)

] [(
vec
(
eIN ∆))> (vec

(
eA(ϑ0)∆))> · · ·(vec

(
eA

j(ϑ0)∆
))>]>

vec
(
V (∆)(ϑ0)

)


has rank r, then the matrix J is positive definite. Thus, our Assumption (B4) can be
replaced by this condition.

3.5. Proofs of Theorem 3.8 and Theorem 3.9

3.5.1. Proof of the strong consistency

We start to prove some auxiliary results which we need for the proof of the consistency
of Whittle‘s estimator. The following proposition states that the Whittle function Wn

converges almost surely uniformly.

Proposition 3.13.
Let Assumptions (A1)–(A4) hold and

W (ϑ) := 1
2π

∫ π

−π
tr
(
f

(∆)
Y (ω, ϑ)−1f

(∆)
Y (ω)

)
+ log

(
det

(
f

(∆)
Y (ω, ϑ)

))
dω, ϑ ∈ Θ.

Then,

sup
ϑ∈Θ
|Wn(ϑ)−W (ϑ)| n→∞−→ 0 P-a.s.

Proof We divide Wn in two parts and investigate them separately. Therefore, define

W (1)
n (ϑ) := 1

2n

n∑
j=−n+1

tr
(
f

(∆)
Y (ωj , ϑ)−1In,Y (ωj)

)
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and
W (2)
n (ϑ) = 1

2n

n∑
j=−n+1

log
(
det

(
f

(∆)
Y (ωj , ϑ)

))
,

such that Wn(ϑ) = W
(1)
n (ϑ) + W

(2)
n (ϑ). Since (A1) and (A4) are satisfied, we can apply

Proposition A.6, which gives the uniform convergence

sup
ϑ∈Θ

∣∣∣∣W (2)
n (ϑ)− 1

2π

∫ π

−π
log

(
det

(
f

(∆)
Y (ω, ϑ)

))
dω

∣∣∣∣ n→∞−→ 0. (3.3)

It remains to prove the appropriate convergence of W (1)
n . Therefore, it is sufficient to show

that

sup
ϑ∈Θ

∥∥∥∥∥∥ 1
2n

n∑
j=−n+1

f
(∆)
Y (ωj , ϑ)−1In,Y (ωj)−

1
2π

∫ π

−π
f

(∆)
Y (ω, ϑ)−1f

(∆)
Y (ω)dω

∥∥∥∥∥∥ a.s.−→ 0 (3.4)

holds. We approximate f (∆)
Y (ωj , ϑ)−1 by the Cesàro sum of its Fourier series of size M

for M sufficiently large. For better readability, we denote the kth Fourier coefficient of
f

(∆)
Y (·, ϑ)−1 by (f−1(ϑ))
∧

k, i.e.,

(f−1(ϑ))
∧

k := 1
2π

∫ π

−π
f

(∆)
Y (ω, ϑ)−1e−ikωdω, k ∈ Z,

and define

qM (ω, ϑ) := 1
M

M−1∑
j=0

∑
|k|≤j

(f−1(ϑ))
∧

ke
ikω

 =
∑
|k|<M

(
1− |k|

M

)
(f−1(ϑ))
∧

ke
ikω

The inverse f (∆)
Y (ω, ϑ)−1 exists, is continuous and 2π-periodic in the first component. Thus,

an application of Theorem A.3 gives that for any ε > 0 there exists an M0(ε) ∈ N such that
for M ≥M0(ε)

sup
ω∈[−π,π]

sup
ϑ∈Θ

∥∥∥f (∆)
Y (ω, ϑ)−1 − qM (ω, ϑ)

∥∥∥ < ε. (3.5)

Let ε > 0. In view of (3.5), we get∥∥∥∥∥∥ 1
2n

n∑
j=−n+1

f
(∆)
Y (ωj , ϑ)−1In,Y (ωj)−

1
2n

n∑
j=−n+1

qM (ωj , ϑ)In,Y (ωj)

∥∥∥∥∥∥
≤ ε

2n

n∑
j=−n+1

‖In,Y (ωj)‖ . (3.6)

Since all matrix norms are equivalent, we replace the Frobenius norm by the 1-norm and
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obtain

ε

2n

n∑
j=−n+1

‖In,Y (ωj)‖ ≤
εC

2n

n∑
j=−n+1

m∑
k=1

m∑
`=1
|In,Y (ωj)[k, `]|. (3.7)

The representation (2.13) of the periodogram and the non-negativeness of any one dimen-
sional periodogram imply that a>In,Y (ωj)a = In,a>Y (ωj) ≥ 0 so that In,Y (ωj) is a positive
semi-definite and Hermitian matrix. Therefore, for k, ` ∈ {1, . . . ,m}, j ∈ {−n+ 1, . . . , n},

det
(
In,Y (ωj)[k, k] In,Y (ωj)[k, `]
In,Y (ωj)[`, k] In,Y (ωj)[`, `]

)
≥ 0,

which implies

|In,Y (ωj)[k, `]| ≤
√
In,Y (ωj)[k, k]In,Y (ωj)[`, `] ≤ In,Y (ωj)[k, k] + In,Y (ωj)[`, `]. (3.8)

Combining (3.6), (3.7), (3.8) and Lemma A.1 give for M ≥M0(ε)∥∥∥∥∥∥ 1
2n

n∑
j=−n+1

f
(∆)
Y (ωj , ϑ)−1In,Y (ωj)−

1
2n

n∑
j=−n+1

qM (ωj , ϑ)In,Y (ωj)

∥∥∥∥∥∥
≤ q

εC

2n

n∑
j=−n+1

m∑
k=1

m∑
`=1

[In,Y (ωj)[k, k] + In,Y (ωj)[`, `]]

≤ εCm

n

n∑
j=−n+1

m∑
k=1

In,Y (ωj)[k, k]

≤ 2εCm
m∑
k=1

Γn,Y (0)[k, k].

Since
∑m
k=1 Γn,Y (0)[k, k] a.s.−→

∑m
k=1 ΓY (0)[k, k] < ∞ due to Lemma 2.14, we obtain for

M ≥M0(ε) and n large

sup
ϑ∈Θ

∥∥∥∥∥∥ 1
2n

n∑
j=−n+1

(
f

(∆)
Y (ωj , ϑ)−1In,Y (ωj)

)
− 1

2n

n∑
j=−n+1

qM (ωj , ϑ)In,Y (ωj)

∥∥∥∥∥∥ ≤ εC
almost surely. Consequently, for the proof of (3.4) it is sufficient to show that

sup
ϑ∈Θ

∥∥∥∥∥∥ 1
2n

n∑
j=−n+1

qM (ωj , ϑ)In,Y (ωj)−
1

2π

∫ π

−π
f

(∆)
Y (ω, ϑ)−1f

(∆)
Y (ω)dω

∥∥∥∥∥∥ a.s.−→ 0. (3.9)

On the one hand, Lemma A.1 yields

1
2n

n∑
j=−n+1

qM (ωj , ϑ)In,Y (ωj)
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= 1
2π

∑
|k|<M

∑
|h|<n

(1− |k|
M

)
(f−1(ϑ))
∧

kΓn,Y (h)

 1
2n

n∑
j=−n+1

e−i(h−k)ωj


= 1

2π
∑
|k|<M

(
1− |k|

M

)
(f−1(ϑ))
∧

kΓn,Y (k)

a.s.−→ 1
2π

∑
|k|<M

(
1− |k|

M

)
(f−1(ϑ))
∧

kΓY (k) (3.10)

uniformly in ϑ, since (f−1(ϑ))
∧

k is uniformly bounded in ϑ for all k. The reason is that
f

(∆)
Y (ω, ϑ)−1 is continuous on the compact set [−π, π]×Θ and

sup
ϑ∈Θ
k∈Z

∥∥∥(f−1(ϑ))
∧

k

∥∥∥ = sup
ϑ∈Θ
k∈Z

∥∥∥∥ 1
2π

∫ π

−π
f

(∆)
Y (ω, ϑ)−1e−ikωdω

∥∥∥∥ ≤ max
ϑ∈Θ

max
ω∈[−π,π]

∥∥∥f (∆)
Y (ω, ϑ)−1

∥∥∥ .
On the other hand, due to (2.12), we get∥∥∥∥∥∥ 1

2π
∑
|k|<M

(
1− |k|

M

)
(f−1(ϑ))
∧

kΓY (k)− 1
2π

∫ π

−π
f

(∆)
Y (ω, ϑ)−1f

(∆)
Y (ω)dω

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1
2π

∑
|k|<M

(
1− |k|

M

)
(f−1(ϑ))
∧

k

∫ π

−π
f

(∆)
Y (ω)eikωdω − 1

2π

∫ π

−π
f

(∆)
Y (ω, ϑ)−1f

(∆)
Y (ω)dω

∥∥∥∥∥∥
=

∥∥∥∥ 1
2π

∫ π

−π

(
qM (ω, ϑ)− f (∆)

Y (ω, ϑ)−1
)
f

(∆)
Y (ω)dω

∥∥∥∥
≤ 1

2π

∫ π

−π

∥∥∥qM (ω, ϑ)− f (∆)
Y (ω, ϑ)−1

∥∥∥ ∥∥∥f (∆)
Y (ω)

∥∥∥ dω ≤ εC, (3.11)

where we used (3.5) and the continuity of f (∆)
Y (ω) for the last inequality. Combining (3.10)

and (3.11) gives (3.9). �

Obviously, it is necessary that ϑ0 is a global minimum of W to guarantee the consistency
of the Whittle estimator.

Proposition 3.14.
Let Assumptions (A1)–(A4) and (A6) hold. Then, W has a unique global minimum in ϑ0.

The proof is based on an alternative representation of W . Namely, the function W is
exactly the limit function of the quasi maximum likelihood estimator of Schlemm and
Stelzer (2012b).

Lemma 3.15.
Let Assumptions (A1)–(A4) hold and let ξ(∆)

k (ϑ) = Π(B, ϑ)Y (∆)
k with Π(z, ϑ) as given in

Theorem 2.8. Furthermore, define

L(ϑ) := E
[
tr
(
ξ

(∆)
1 (ϑ)>V (∆)(ϑ)−1ξ

(∆)
1 (ϑ)

)]
+ log(det(V (∆)(ϑ)))−m log(2π), ϑ ∈ Θ.
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Then, W (ϑ) = L(ϑ) for ϑ ∈ Θ.

Proof. In view of Theorem 2.8, we express the linear innovations as

ε
(∆)
k (ϑ) = Π(B, ϑ)Y (∆)

k (ϑ), k ∈ N,

and define the pseudo innovations as

ξ
(∆)
k (ϑ) := Π(B, ϑ)Y (∆)

k (ϑ0), k ∈ N.

An application of Theorem 11.8.3 of Brockwell and Davis (1991) leads to the spectral
densities of (ε(∆)

k (ϑ))k∈N and (ξ(∆)
k (ϑ))k∈N as

f (∆)
ε (ω, ϑ) = Π(e−iω, ϑ)f (∆)

Y (ω, ϑ)Π(eiω, ϑ)>, ω ∈ [−π, π],

f
(∆)
ξ (ω, ϑ) = Π(e−iω, ϑ)f (∆)

Y (ω)Π(eiω, ϑ)>, ω ∈ [−π, π],

respectively. Consequently,

1
2π

∫ π

−π
tr
(
f

(∆)
Y (ω, ϑ)−1f

(∆)
Y (ω)

)
dω

= 1
2π tr

(∫ π

−π
2πΠ(eiω, ϑ)>V (∆)(ϑ)−1Π(e−iω, ϑ)f (∆)

Y (ω)dω
)

= tr
(
V (∆)(ϑ)−1

∫ π

−π
f

(∆)
ξ (ω, ϑ)dω

)
= E

[
tr
(
ξ

(∆)
1 (ϑ)>V (∆)(ϑ)−1ξ

(∆)
1 (ϑ)

)]
holds. Finally,

1
2π

∫ π

−π
log

(
det

(
f

(∆)
Y (ω, ϑ)

))
dω = 1

2π

∫ π

−π
log

(
det

(
2πf (∆)

Y (ω, ϑ)
))
dω −m log(2π),

and an application of Theorem 3’’’ of Chapter 3 of Hannan (2009) results in

1
2π

∫ π

−π
log

(
det

(
2πf (∆)

Y (ω, ϑ)
))
dω −m log(2π) = log

(
det

(
V (∆)(ϑ)

))
−m log(2π),

which completes the proof.

Proof of Proposition 3.14 Considering Lemma 3.15 we get W (ϑ) = L(ϑ). Schlemm and
Stelzer (2012b), Lemma 2.10, proved that L has a unique global minimum in ϑ0 under
conditions which are fulfilled in our setting (see Lemma 2.3 and Lemma 3.14 of Schlemm
and Stelzer (2012b)). �

Proof of Theorem 3.8. Due to Proposition 3.13 and Proposition 3.14, we know that the
Whittle function Wn converges almost surely uniformly to W and that W has a unique
global minimum in ϑ0. It remains to show that the minimizing arguments of Wn converge
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almost surely to the minimizer of W . To that effect, we first prove

Wn(ϑ̂(∆)
n ) a.s.−→W (ϑ0) (3.12)

and deduce that for every neighborhood U of ϑ0 Whittle‘s estimate ϑ̂(∆)
n lies in U almost

surely for n large enough.

In view of Proposition 3.13, for all ε > 0 there exists some n0 ∈ N with

sup
ϑ∈Θ
|Wn(ϑ)−W (ϑ)| ≤ ε ∀ n ≥ n0 P-a.s. (3.13)

Therefore, using the definition of ϑ̂(∆)
n and Proposition 3.14, we get for n ≥ n0

Wn(ϑ̂(∆)
n ) ≤Wn(ϑ0) ≤W (ϑ0) + ε P-a.s. and

Wn(ϑ̂(∆)
n ) ≥W (ϑ̂(∆)

n )− ε ≥W (ϑ0)− ε P-a.s.

and hence,
sup
n≥n0

|Wn(ϑ̂(∆)
n )−W (ϑ0)| ≤ ε P-a.s.

follows. This gives the desired convergence (3.12). Now, define δ(U) := infϑ∈Θ\U W (ϑ)−
W (ϑ0) > 0 for any neighborhood U of ϑ0. The inequalities

P
(

lim
n→∞

ϑ̂(∆)
n = ϑ0

)
= P

(
∀ U ∃ n0(U) ∈ N : ϑ̂(∆)

n ∈ U ∀ n ≥ n0(U)
)

≥ P
(
∀ U ∃ n0(U) ∈ N : |Wn(ϑ̂(∆)

n )−W (ϑ0)| < δ(U)
2

and |Wn(ϑ̂(∆)
n )−W (ϑ̂(∆)

n )| < δ(U)
2 ∀ n ≥ n0(U)

)
= 1,

where the last equality follows from (3.12) and Proposition 3.13, complete the proof. �

3.5.2. Proof of the asymptotic normality

The proof of the asymptotic normality of the Whittle estimator is based on a Taylor
expansion of the gradient function ∇ϑWn around ϑ̂(∆)

n in ϑ0, i.e.,

√
n [∇ϑWn(ϑ0)] =

√
n
[
∇ϑWn(ϑ̂(∆)

n )
]
−
√
n(ϑ̂(∆)

n − ϑ0)>
[
∇2
ϑWn(ϑ∗n)

]
(3.14)

for an appropriate ϑ∗n ∈ Θ with ‖ϑ∗n − ϑ0‖ ≤ ‖ϑ̂(∆)
n − ϑ0‖. Since ϑ̂(∆)

n minimizes Wn

and converges almost surely to ϑ0, which is in the interior of Θ (Assumption (B1)),
∇ϑWn(ϑ̂(∆)

n ) = 0. Hence, in the case of an invertible matrix ∇2
ϑWn(ϑ∗n) we can rewrite

(3.14) and obtain

√
n(ϑ̂(∆)

n − ϑ0)> = −
√
n [∇ϑWn(ϑ0)]

[
∇2
ϑWn(ϑ∗n)

]−1
. (3.15)
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Therefore, we receive the asymptotic normality of the Whittle estimator from the asymptotic
behavior of the individual components in (3.15). First, we investigate the asymptotic
behavior of the Hessian matrix ∇2

ϑWn(ϑ∗n).

Proposition 3.16.
Let Assumptions (A1)–(A4) and (B3) hold and Σ∇2W be defined as in (3.2). Furthermore,
let (ϑ∗n)n∈N be a sequence in Θ with ϑ∗n

a.s.−→ ϑ0 as n→∞. Then, as n→∞,

∇2
ϑWn(ϑ∗n) a.s.−→ Σ∇2W .

Proof. Under the Assumptions (A1)–(A4) and (B3) the spectral density f (∆)
Y (ω, ϑ) and its

inverse f (∆)
Y (ω, ϑ)−1 are three times continuously differentiable in ϑ (see Remark 3.6 and

Remark 3.7). Furthermore,

∂2

∂ϑk∂ϑ`
tr
(
f

(∆)
Y (ω, ϑ)−1In(ω)

)
= tr

(
∂2

∂ϑk∂ϑ`

(
f

(∆)
Y (ω, ϑ)−1

)
In(ω)

)
, k, ` ∈ {1, . . . , r}.

Therefore, the proof of
sup
ϑ∈Θ

∥∥∥∇2
ϑWn(ϑ)−∇2

ϑW (ϑ)
∥∥∥ a.s.−→ 0

goes in the same way as the proof of Proposition 3.13. It remains to show that ∇2
ϑW (ϑ0) =

Σ∇2W . First, note that

∇2
ϑW (ϑ0) = 1

2π

∫ π

−π
∇2
ϑ tr(f (∆)

Y (ω, ϑ0)−1f
(∆)
Y (ω)) +∇2

ϑ log
(
det

(
f

(∆)
Y (ω, ϑ0)

))
dω. (3.16)

On the one hand,

1
2π

∫ π

−π
tr
(

∂2

∂ϑk∂ϑ`

(
f

(∆)
Y (ω, ϑ0)−1

)
f

(∆)
Y (ω)

)
dω

= 1
2π

∫ π

−π
tr
(

2f (∆)
Y (ω)−1

(
∂

∂ϑk
f

(∆)
Y (ω, ϑ0)

)
f

(∆)
Y (ω)−1

(
∂

∂ϑ`
f

(∆)
Y (ω, ϑ0)

)
−f (∆)

Y (ω)−1
(

∂2

∂ϑk∂ϑ`
f

(∆)
Y (ω, ϑ0)

))
dω (3.17)

holds. On the other hand, Jacobi’s formula leads to

∂2

∂ϑk∂ϑ`
log(det(f (∆)

Y (ω, ϑ0)))

= tr
(
−f (∆)

Y (ω)−1
(

∂

∂ϑk
f

(∆)
Y (ω, ϑ0)

)
f

(∆)
Y (ω)−1

(
∂

∂ϑ`
f

(∆)
Y (ω, ϑ0)

))
+ tr

(
f

(∆)
Y (ω)−1

(
∂2

∂ϑk∂ϑ`
f

(∆)
Y (ω, ϑ0)

))
. (3.18)
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Combining (3.16), (3.17), (3.18) and the property

vec
(
AH

)H (
BT ⊗ C

)
vec(D) = tr (BACD) (3.19)

for appropriate matrices A,B,C,D (see Brewer (1978), properties T2.4, T3.4 and T3.8)
gives

∇2
ϑW (ϑ0) = 1

2π

∫ π

−π
∇ϑf

(∆)
Y (−ω, ϑ0)>

[
f

(∆)
Y (−ω)−1 ⊗ f (∆)

Y (ω)−1
]
∇ϑf

(∆)
Y (ω, ϑ0)dω

= Σ∇2W .

Furthermore, we require that for large n the random matrix ∇2
ϑWn(ϑ∗n) is invertible.

Therefore, we show the positive definiteness of the limit matrix Σ∇2W .

Lemma 3.17.
Let Assumptions A and (B4) hold. Then, Σ∇2W is positive definite.

Proof. Let c ∈ Cr be fixed and ω∗ as in (B4). The continuity of f (∆)
Y (ω) and its regularity

imply for any ω in a neighborhood of ω∗ that∥∥∥(f (∆)
Y (−ω)−1/2 ⊗ f (∆)

Y (ω)−1/2
)
∇ϑf

(∆)
Y (ω, ϑ0)c

∥∥∥
2
> 0

where ‖ · ‖2 is the Euclidean norm. Consequently,

c>Σ∇2W c = 1
2π

∫ π

−π
c>∇ϑf

(∆)
Y (ω, ϑ0)H

[
f

(∆)
Y (−ω)−1 ⊗ f (∆)

Y (ω)−1
]
∇ϑf

(∆)
Y (ω, ϑ0)cdω

= 1
2π

∫ π

−π

∥∥∥(f (∆)
Y (−ω)−1/2 ⊗ f (∆)

Y (ω)−1/2
)
∇ϑf

(∆)
Y (ω, ϑ0)c

∥∥∥2

2
dω > 0.

Therefore, Σ∇2W is positive definite.

Next, we investigate the asymptotic behavior of the second term in (3.15). Since the
components of the score ∇ϑWn(ϑ0) can be written as an integrated periodogram, we first
derive the asymptotic behavior of the integrated periodogram and state the asymptotic
normality afterwards.

Proposition 3.18.
Let Assumptions (A2)–(A4) and (B2) hold. Suppose η : [−π, π]→ Cm×m is a symmetric
matrix-valued continuous function, i.e. η(ω) = η(−ω)>. Assume further that the Fourier
coefficients (η̂u)u∈Z of η satisfy

∑∞
u=−∞ ‖η̂u‖|u|1/2 <∞. Then, as n→∞,

1
2
√
n

n∑
j=−n+1

tr
(
η(ωj)In,Y (ωj)− η(ωj)f (∆)

Y (ωj)
) D−→ N (0,Ση),
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where

Ση = 1
π

∫ π

−π
tr
(
η(ω)f (∆)

Y (ω)η(ω)f (∆)
Y (ω)

)
dω

+ 1
16π4

∫ π

−π
vec

(
Φ(e−iω)>η(ω)>Φ(eiω)

)>
dω
(
E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
−3Σ(∆)

N ⊗ Σ(∆)
N

) ∫ π

−π
vec

(
Φ(eiω)>η(ω)Φ(e−iω)

)
dω.

The asymptotic behavior of the integrated periodogram is interesting for its own. In the
fifth chapter, we modify it and investigate a generalized version. Thereby, we can not only
derive the asymptotic normality of the Whittle estimator, but we also obtain the behavior
of some goodness-of-fit tests in the frequency domain.

Remark 3.19.
Let the driving Lévy process be a Brownian motion. Since the fourth moment of a centered
normal distribution is equal to three times its second moment and N (∆)

1 ∼N (0,Σ(∆)
N ), we get

E[N (∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1 ] = 3Σ(∆)

N ⊗Σ(∆)
N . Therefore, the matrix Ση in Proposition 3.18

reduces to

Ση = 1
π

∫ π

−π
tr
(
η(ω)f (∆)

Y (ω)η(ω)f (∆)
Y (ω)

)
dω,

which is for m = 1 equal to Ση = 1
π

∫ π
−π η(ω)2f

(∆)
Y (ω)2dω.

For the proof of Proposition 3.18 we require some auxiliary result.

Lemma 3.20.
Let Assumptions (A2)–(A4) hold and η : [−π, π]→ Cm×m be a symmetric matrix-valued
continuous function with Fourier coefficients (η̂k)k∈Z satisfying

∑∞
k=−∞ ‖η̂k‖ <∞. Then,

lim
n→∞

E

∣∣∣∣∣∣ 1
2
√
n

n∑
j=−n+1

tr
(
η(ωj)In,Y (ωj)− η(ωj)Φ(e−iωj )In,N (ωj)Φ(eiωj )>

)∣∣∣∣∣∣ = 0.

Proof. Define Rn(ω) = In,Y (ω)− Φ(e−iω)In,N (ω)Φ(eiω)> for ω ∈ [−π, π]. We get

Rn(ωj) = 1
2πn

(
n∑
k=1

∞∑
s=0

ΦsN
(∆)
k−s

)(
n∑
`=1

∞∑
t=0

ΦtN
(∆)
`−t

)>
e−i(k−`)ωj

− 1
2πn

(
n∑
k=1

∞∑
s=0

ΦsN
(∆)
k

)(
n∑
`=1

∞∑
t=0

ΦtN
(∆)
`

)>
e−i(k+s−`−t)ωj

= 1
2πn

 ∞∑
s=0

∞∑
t=0

Φs

 n∑
k=1

0∑
`=1−t

−
n∑
k=1

n∑
`=n−t+1

+
0∑

k=1−s

n∑
`=1

+
0∑

k=1−s

0∑
`=1−t

−
0∑

k=1−s

n∑
`=n−t+1

−
n∑

k=n−s+1

n∑
`=1
−

n∑
k=n−s+1

0∑
`=1−t

+
n∑

k=n−s+1

n∑
`=n−t+1


N

(∆)
k N

(∆)>
` e−i(k+s−`−t)ωj

)
Φ>t
)
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=:
8∑
i=1

R(i)
n (ωj).

Thus,

E

∣∣∣∣∣∣ 1
2
√
n

n∑
j=−n+1

tr (η(ωj)Rn(ωj))

∣∣∣∣∣∣ ≤
8∑
i=1

E

∣∣∣∣∣∣ 1
2
√
n

n∑
j=−n+1

tr
(
η(ωj)R(i)

n (ωj)
)∣∣∣∣∣∣ .

We have to show that these 8 components converge to zero. Since we can treat each
component similarly, we only give the detailed proof for the convergence of the first term.

Due to tr(A) ≤ ‖A‖1 for all quadratic matrices A, we get an upper bound for the
trace of any quadratic matrix. Once again, the equivalence of all matrix norms and
η(ωj) =

∑∞
u=−∞ η̂ue

iωju yield

E

∣∣∣∣∣∣ 1
2
√
n

n∑
j=−n+1

tr
(
R(1)
n (ωj)η(ωj)

)∣∣∣∣∣∣
≤ CE

∥∥∥∥∥∥
n∑

j=−n+1

1√
n

1
n

∞∑
s=0

∞∑
t=0

Φs

n∑
k=1

0∑
`=1−t

N
(∆)
k N

(∆)>
` Φ>t

∞∑
u=−∞

η̂ue
−i(k+s−`−t−u)ωj

∥∥∥∥∥∥
≤ C

1√
n

∞∑
s=0

∞∑
t=0
‖Φs‖

n∑
k=1

0∑
`=1−t

E‖N (∆)
1 ‖2‖Φt‖

∞∑
u=−∞

‖η̂u‖
1
n

∥∥∥∥∥∥
n∑

j=−n+1
e−i(k+s−`−t−u)ωj

∥∥∥∥∥∥ .
Due to (A2), E‖N (∆)

1 ‖2 <∞. Further, an application of Lemma A.1 gives

E

∣∣∣∣∣∣ 1
2
√
n

n∑
j=−n+1

tr
(
R(1)
n (ωj)η(ωj)

)∣∣∣∣∣∣ ≤ C
1√
n

∞∑
s=0
‖Φs‖

∞∑
t=0

t‖Φt‖
∞∑

u=−∞
‖η̂u‖

n→∞−→ 0.

This lemma helps to deduce Proposition 3.18, which can be seen as the main part of the
proof of the asymptotic normality of the Whittle estimator.

Proof of Proposition 3.18. Due to Lemma 3.20, we get

1
2
√
n

n∑
j=−n+1

tr
(
η(ωj)In,Y (ωj)− η(ωj)f (∆)

Y (ωj)
)

= 1
2
√
n

n∑
j=−n+1

{
tr
(
In,N (ωj)Φ(eiωj )>η(ωj)Φ(e−iωj )

)
− tr

(
η(ωj)f (∆)

Y (ωj)
)}

+ oP(1).

We define
q(ω) := Φ(eiω)>η(ω)Φ(e−iω), ω ∈ [−π, π],
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and approximate q by its Fourier series of degree M , namely,

qM (ω) =
∑
|k|≤M

q̂ke
ikω where q̂k = 1

2π

∫ π

−π
q(ω)e−ikωdω, k ∈ Z. (3.20)

The coefficients q̂k, k ∈ Z, satisfy

∞∑
k=−∞

‖q̂k‖|k|1/2

=
∞∑

k=−∞

∥∥∥∥ 1
2π

∫ π

−π
Φ(eiω)>η(ω)Φ(e−iω)e−ikωdω

∥∥∥∥ |k|1/2
=

∞∑
k=−∞

∥∥∥∥∥∥ 1
2π

∞∑
j=0

∞∑
`=0

∞∑
u=−∞

Φ>j η̂uΦ`

∫ π

−π
e−i(k−j+u+`)ωdω

∥∥∥∥∥∥ |k|1/2
≤

∞∑
j=0

∞∑
`=0

∞∑
u=−∞

‖Φj‖‖η̂u‖‖Φ`‖|j − u− `|1/2

≤ C
∞∑
j=0
‖Φj‖ (max{1, |j|})1/2

∞∑
u=−∞

‖η̂u‖ (max{1, |u|})1/2
∞∑
`=0
‖Φ`‖ (max{1, |`|})1/2

< ∞, (3.21)

and therefore
∑∞
k=−∞ ‖q̂k‖ <∞ as well. An application of Theorem A.2 leads to

qM (ω) M→∞−→ q(ω) uniformly in ω ∈ [−π, π].

Step 1: We show

lim
M→∞

lim sup
n→∞

P

 1√
n

∣∣∣∣∣∣
n∑

j=−n+1
tr(In,N (ωj)(q(ωj)− qM (ωj))

∣∣∣∣∣∣ > ε

 = 0 ∀ ε > 0. (3.22)

Consider

1√
n

n∑
j=−n+1

tr (In,N (ωj)(q(ωj)− qM (ωj)))

=
√
n

π

∑
|k|>M

tr

 n−1∑
h=−n+1

Γn,N (h)q̂k

 1
2n

n∑
j=−n+1

e−i(h−k)ωj

 . (3.23)

We investigate the terms with h = 0 and h 6= 0 separately. For h = 0 and n > M we get∣∣∣∣∣∣
√
n

π

∑
|k|>M

tr
(
Γn,N (0)q̂k1{∃z∈Z\{0} : k=2nz}

)∣∣∣∣∣∣ ≤ C
√
n‖Γn,N (0)‖

∑
|k|≥2n

‖q̂k‖
n→∞−→ 0 P-a.s.,

(3.24)

since Remark 2.15 and the continuous mapping theorem imply ‖Γn,N (0)‖ a.s.→ ‖Σ(∆)
N ‖. Now,
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we investigate the terms with h 6= 0. The independence of the sequence (N (∆)
k )k∈Z leads to

E
[
Γn,N (h)

]
= 0 for h 6= 0

and therefore,

E

√n ∑
|k|>M

tr

n−1∑
h=1

Γn,N (h) +
−1∑

h=−n+1
Γn,N (h)

 q̂k1{∃z∈Z : h=k+2nz}

 = 0. (3.25)

Due to (3.23)-(3.25) and the Tschebycheff inequality, for the proof of (3.22) it is sufficient
to show that

lim
M→∞

lim
n→∞

Var

√n ∑
|k|>M

tr

n−1∑
h=1

Γn,N (h) +
−1∑

h=−n+1
Γn,N (h)

 q̂k1{∃z∈Z : h=k+2nz}

 = 0.

(3.26)

First, property (3.19) and E
∥∥∥∥vec

(
Γn,N (h)

)
vec

(
Γn,N (h)

)>∥∥∥∥ ≤ C
n result in

Var

√n ∑
|k|>M

tr

n−1∑
h=1

Γn,N (h) +
−1∑

h=−n+1
Γn,N (h)

 q̂k1{∃z∈Z : h=k+2nz}


= Var

2
√
n
∑
|k|>M

tr
(
n−1∑
h=1

Γn,N (h)q̂k1{∃z∈Z : h=k+2nz}

)
= Var

2
√
n
n−1∑
h=1

vec

 ∑
|k|>M

q̂>k 1{∃z∈Z : h=k+2nz}

> (IN ⊗ IN ) vec
(
Γn,N (h)

)
≤ 4n

n−1∑
h=1

∥∥∥∥∥∥vec

 ∑
|k|>M

q̂>k 1{∃z∈Z : h=k+2nz}

∥∥∥∥∥∥
2

‖IN ⊗ IN‖2∥∥∥∥E [vec
(
Γn,N (h)

)
vec

(
Γn,N (h)

)>]∥∥∥∥
≤ C

n−1∑
h=1

∥∥∥∥∥∥
∑
|k|>M

q̂k1{∃z∈Z : h=k+2nz}

∥∥∥∥∥∥
2

≤ C

 ∑
|k|>M

‖q̂k‖

2
M→∞−→ 0.

Step 2: We show

1√
n

n∑
j=−n+1

(
tr (In,N (ωj)qM (ωj))− tr

(
η(ωj)f (∆)

Y (ωj)
))

=
√
n

π
tr

 M∑
h=−M

(
Γn,N (h)− ΓN (h)

)
q̂h

+ oP(1). (3.27)
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Let M > n. Then, due to Lemma A.7 and Parseval’s equality, we obtain

1√
n

n∑
j=−n+1

(
tr (In,N (ωj)qM (ωj))− tr

(
η(ωj)f (∆)

Y (ωj)
))

=
√
n

π
tr

 M∑
h=−M

Γn,N (h)q̂h

− √n
π

∫ π

−π
tr
(
η(ω)f (∆)

Y (ω)
)
dω

+
√
n

π

∫ π

−π
tr
(
η(ω)f (∆)

Y (ω)
)
dω − tr

 1√
n

n∑
j=−n+1

η(ωj)f (∆)
Y (ωj)


=
√
n

π
tr

 M∑
h=−M

Γn,N (h)q̂h

− √n
π

∫ π

−π
tr
(
η(ω)f (∆)

Y (ω)
)
dω + o(1). (3.28)

Taking ΓN (h) = 0N×N for h 6= 0 into account, we receive

√
n

π
tr

 M∑
h=−M

Γn,N (h)q̂h

− √n
π

∫ π

−π
tr
(
η(ω)f (∆)

Y (ω)
)
dω

=
√
n

π
tr

 M∑
h=−M

(
Γn,N (h)− ΓN (h)

)
q̂h


+
√
n

π

(
tr(ΓN (0)q̂0)−

∫ π

−π
tr
(
η(ω)f (∆)

Y (ω)
)
dω

)
. (3.29)

Using the representation f (∆)
Y (ω) = 1

2πΦ(e−iω)Σ(∆)
N Φ(eiω)> and q(ω) = Φ(eiω)>η(ω)Φ(e−iω)

for ω ∈ [−π, π], yield
√
n

π
tr (ΓN (0)q̂0)− tr

(∫ π

−π
η(ω)f (∆)

Y (ω)dω
)

=
√
n

π

∫ π

−π
tr
( 1

2πΣ(∆)
N q(ω)

)
− tr

(
η(ω)f (∆)

Y (ω)
)
dω

=
√
n

π

∫ π

−π
tr
(
η(ω) 1

2πΦ(e−iω)Σ(∆)
N Φ(eiω)> − η(ω)f (∆)

Y (ω)
)
dω = 0. (3.30)

Then, (3.28)-(3.30) result in (3.27).

Step 3: Next, we prove the asymptotic normality

√
n

2π tr

 M∑
h=−M

(
Γn,N (h)− ΓN (h)

)
q̂h

 D−→ N (0,Ση(M)), (3.31)

where Ση(M) is defined as

Ση(M) = 1
π2

M∑
h=1

tr
(
q̂hΣ(∆)

N q̂Hh Σ(∆)
N

)
+ 1

4π2 vec(q̂>0 )>
(
E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− Σ(∆)

N ⊗ Σ(∆)
N

)
vec(q̂H0 ).
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Therefore, we consider

√
n

2π tr

 M∑
h=−M

(
Γn,N (h)− ΓN (h)

)
q̂h


= 1
π

M∑
h=1

√
n tr

((
Γn,N (h)− ΓN (h)

)
q̂h
)

+
√
n

2π tr
((

Γn,N (0)− ΓN (0)
)
q̂0
)
. (3.32)

Writing

√
n tr

((
Γn,N (h)− ΓN (h)

)
q̂h
)

=
√
n vec(q̂>h )> vec

(
Γn,N (h)− ΓN (h)

)
,

an application of Lemma 2.16 leads to

√
n tr

((
Γn,N (h)− ΓN (h)

)
q̂h
) D−→ Nh,

where (Nh)h∈N0 is an independent centered normally distributed sequence of random vectors
with covariance matrices

ΣNh := vec(q̂>h )>
(
Σ(∆)
N ⊗ Σ(∆)

N

)
vec(q̂Hh ) = tr

(
q̂hΣ(∆)

N q̂Hh Σ(∆)
N

)
for h 6= 0

and

ΣN0 := vec(q̂>0 )>
(
E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− Σ(∆)

N ⊗ Σ(∆)
N

)
vec(q̂H0 ).

Finally,

√
n

2π tr

 M∑
h=−M

(
Γn,N (h)− ΓN (h)

)
q̂h

 D−→ N
(

0, 1
π2

M∑
h=1

tr
(
q̂hΣ(∆)

N q̂Hh Σ(∆)
N

)
+ 1

4π2 vec(q̂>0 )>
(
E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− Σ(∆)

N ⊗ Σ(∆)
N

)
vec(q̂H0 )

)
.

Step 4: We show

1
π2

M∑
h=1

tr
(
q̂hΣ(∆)

N q̂Hh Σ(∆)
N

)
+ 1

4π2 vec(q̂>0 )>
(
E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− Σ(∆)

N ⊗ Σ(∆)
N

)
vec(q̂H0 )

M→∞−→ 1
π

∫ π

−π
tr
(
η(ω)f (∆)

Y (ω)η(ω)f (∆)
Y (ω)

)
dω

+ 1
16π4

∫ π

−π
vec

(
Φ(e−iω)>η(ω)>Φ(eiω)

)>
dω(

E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− 3Σ(∆)

N ⊗ Σ(∆)
N

)
∫ π

−π
vec

(
Φ(eiω)>η(ω)Φ(e−iω)

)
dω. (3.33)
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Therefore, note that

1
π2

M∑
h=1

tr
(
q̂hΣ(∆)

N q̂Hh Σ(∆)
N

)
+ 1

4π2 vec(q̂>0 )>
(
E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− Σ(∆)

N ⊗ Σ(∆)
N

)
vec(q̂H0 )

M→∞−→ 1
π2

∞∑
h=1

tr
(
q̂hΣ(∆)

N q̂Hh Σ(∆)
N

)
+ 1

4π2 vec(q̂>0 )>
(
E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− Σ(∆)

N ⊗ Σ(∆)
N

)
vec(q̂H0 ).

But

1
2π

∞∑
h=−∞

tr
(
q̂hΣ(∆)

N q̂Hh Σ(∆)
N

)
= 1

4π2

∞∑
h=−∞

∞∑
`=−∞

tr
(
q̂hΣ(∆)

N q̂H` Σ(∆)
N

) ∫ π

−π
ei(h−`)ωdω

= 1
4π2

∫ π

−π
tr
(
q(ω)Σ(∆)

N q(ω)HΣ(∆)
N

)
dω

=
∫ π

−π
tr
(
η(ω)f (∆)

Y (ω)η(ω)Hf (∆)
Y (ω)

)
dω,

where we plugged in the definition of q in the last equality. Eventually, due to the
representation of q̂0, we receive

1
π2

∞∑
h=1

tr
(
q̂hΣ(∆)

N q̂Hh Σ(∆)
N

)
+ 1

4π2 vec(q̂>0 )>
(
E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− Σ(∆)

N ⊗ Σ(∆)
N

)
vec(q̂H0 )

= 1
π

∫ π

−π
tr
(
η(ω)f (∆)

Y (ω)η(ω)f (∆)
Y (ω)

)
dω + 1

16π4

∫ π

−π
vec

(
Φ(e−iω)>η(ω)>Φ(eiω)

)>
dω(

E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− 3Σ(∆)

N ⊗ Σ(∆)
N

) ∫ π

−π
vec

(
Φ(eiω)>η(ω)Φ(e−iω)

)
dω.

Finally, Step 3, Step 4 and a multivariate version of Problem 6.16 of Brockwell and Davis
(1991) give

√
n

2π tr

 M∑
h=−M

(
Γn,N (h)− ΓN (h)

)
q̂h

 D,n→∞−→ N (0,Ση(M)) D,M→∞−→ N (0,Ση).

Along with Step 1, Step 2 and Proposition 6.3.9 of Brockwell and Davis (1991), the state-
ment follows. �

Finally, we obtain the asymptotic behavior of the score function.

Proposition 3.21.
Let Assumptions (A2)–(A4) and (B2)–(B3) hold. Let Σ∇W be defined as in (3.1). Then,
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as n→∞,
√
n [∇ϑWn(ϑ0)]> D−→ N (0,Σ∇W ).

Proof The proof is based on the Cramér-Wold Theorem and Proposition 3.18. Therefore,
let λ = (λ1, . . . , λr)> ∈ Rr. We obtain

√
n [∇ϑWn(ϑ0)]λ

= 1
2
√
n

n∑
j=−n+1

∇ϑ
[
tr
(
f

(∆)
Y (ωj , ϑ0)−1In,Y (ωj)

)
+ log(det(f (∆)

Y (ωj , ϑ0)))
]
λ

= 1
2
√
n

n∑
j=−n+1

[
r∑
t=1

tr
(
−λtf (∆)

Y (ωj)−1
(
∂

∂ϑt
f

(∆)
Y (ωj , ϑ0)

)
f

(∆)
Y (ωj)−1In,Y (ωj)

)]

+ 1
2
√
n

n∑
j=−n+1

∇ϑ[tr(log(f (∆)
Y (ωj , ϑ0)))]λ.

We define the matrix function ηλ : [−π, π]→ Cm×m as

ηλ(ω) = −
r∑
t=1

λtf
(∆)
Y (ω)−1

(
∂

∂ϑt
f

(∆)
Y (ω, ϑ0)

)
f

(∆)
Y (ω)−1, ω ∈ [−π, π]. (3.34)

Furthermore,

tr
(
∂

∂ϑt
log

(
f

(∆)
Y (ω, ϑ0)

))
= tr

(
f

(∆)
Y (ω)−1

(
∂

∂ϑt
f

(∆)
Y (ω, ϑ0)

))
.

Then,

√
n [∇ϑWn(ϑ0)]λ = 1

2
√
n

n∑
j=−n+1

tr
(
ηλ(ωj)

(
In,Y (ωj)− f (∆)

Y (ωj)
))
.

Apparently, ηλ is two times continuously differentiable by Remark 3.7 and 2π-periodic. More-
over, every component of the Fourier coefficients ((̂ηλ)u)u∈Z of ηλ satisfies

∑∞
u=−∞ |(̂ηλ)u[k, `]||u|1/2 <

∞, k, ` ∈ {1, . . . ,m} (see Brockwell and Davis (1991), Exercise 2.22 applied to ηλ and its
derivative η′λ), and therefore,

∑∞
u=−∞ ‖(̂ηλ)u‖|u|1/2 < ∞ follows. Then, due to Proposi-

tion 3.18, we get as n→∞,

√
n [∇ϑWn(ϑ0)]λ D−→ N (0,Σ∇ϑWλ),

where

Σ∇ϑWλ = 1
π

∫ π

−π
tr
(
ηλ(ω)f (∆)

Y (ω)ηλ(ω)f (∆)
Y (ω)

)
dω

+ 1
16π4

∫ π

−π
vec

(
Φ(e−iω)>ηλ(ω)>Φ(eiω)

)>
dω(

E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− 3Σ(∆)

N ⊗ Σ(∆)
N

) ∫ π

−π
vec

(
Φ(eiω)>ηλ(ω)Φ(e−iω)

)
dω

=: Σλ,1 + Σλ,2 + Σλ,3.
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We investigate the three terms separately. With (3.19), the first term fulfills the represen-
tation

Σλ,1

= 1
π

∫ π

−π
tr
(
ηλ(ω)f (∆)

Y (ω)ηλ(ω)f (∆)
Y (ω)

)
dω

= 1
π

∫ π

−π
tr
((

r∑
t=1

λt
∂

∂ϑt
f

(∆)
Y (ω, ϑ0)

)
f

(∆)
Y (ω)−1

(
r∑
s=1

λs
∂

∂ϑs
f

(∆)
Y (ω, ϑ0)

)
f

(∆)
Y (ω)−1

)
dω

= λ>
[ 1
π

∫ π

−π

(
∇ϑf

(∆)
Y (−ω, ϑ0)

)> (
f

(∆)
Y (−ω)−1 ⊗ f (∆)

Y (ω)−1
)
∇ϑf

(∆)
Y (ω, ϑ0)

]
λ.

Similarly, we get the representation

Σλ,2

= λ>

16π4

[∫ π

−π

∫ π

−π
E
[
∇ϑf

(∆)
Y (−ω, ϑ0)>

(
f

(∆)
Y (−ω)−1Φ(eiω)⊗ f (∆)

Y (ω)−1Φ(e−iω)
)

(
N

(∆)
1 N

(∆)>
1

)
⊗
(
N

(∆)
1 N

(∆)>
1

)
(
Φ(e−iτ )>f (∆)

Y (−τ)−1 ⊗ Φ(eiτ )>f (∆)
Y (τ)−1

)
∇ϑf

(∆)
Y (τ, ϑ0)

]
dωdτ

]
λ

for the second term, and analogously

Σλ,3

= − 3λ>

16π4

[∫ π

−π

∫ π

−π
∇ϑf

(∆)
Y (−ω, ϑ0)>

(
f

(∆)
Y (−ω)−1Φ(eiω)Σ(∆)

N Φ(e−iτ )>f (∆)
Y (−τ)−1

)
⊗
(
f

(∆)
Y (ω)−1Φ(e−iω)Σ(∆)

N Φ(eiτ )>f (∆)
Y (τ)−1

)
∇ϑf

(∆)
Y (τ, ϑ0)dωdτ

]
λ

for the third term. �

Proof of Theorem 3.9. Since ϑ̂(∆)
n

a.s.−→ ϑ0 (see Theorem 3.8) and Σ∇2W is positive definite
(see Lemma 3.17) the conclusion follows from (3.15), Proposition 3.16 and Proposition 3.21.

Sketch of the proof of Remark 3.10
Let ΦZ be the polynomial of the (existing) VAR(∞) of the VARMA(p, q) process. Propo-
sition 3.18 can be formulated for VARMA processes. As in the proof of Theorem 3.9 we
have to plug in there for η the function ηλ as given in (3.34). Then, q̂0 in (3.20) has for
the VARMA process (Zn)n∈N the form

q̂0 =
∫ π

−π
−2π

r∑
t=1

λtΣ−1
e ΦZ(e−iω)−1

(
∂

∂ϑt
fZ(ω, ϑ0)

)
ΦZ(eiω)>−1Σ−1

e dω

= −Σ−1
e

∫ π

−π

r∑
t=1

λt
∂

∂ϑt
log

(
ΦZ(e−iω, ϑ0)

)
dω



52 Chapter 3. Whittle estimation for MCARMA Processes

−
∫ π

−π

(
r∑
t=1

λt
∂

∂ϑt
log

(
ΦZ(eiω, ϑ0)

))>
dω Σ−1

e .

If ΦZ is two times differentiable, the Leibniz rule yields

q̂0 =− Σ−1
e

r∑
t=1

λt
∂

∂ϑt

∫ π

−π
log

(
ΦZ(e−iω, ϑ0)

)
dω

−
[
r∑
t=1

λt
∂

∂ϑt

∫ π

−π
log

(
ΦZ(eiω, ϑ0)

)
dω

]>
Σ−1
e .

Similarly to the proof of Theorem 5.8.1 of Brockwell and Davis (1991), one can show that
the integrals are constant and therefore, that q̂0 = 0. For a more detailed approach, we
refer to Dunsmuir and Hannan (1976). �



CHAPTER 4

The adjusted Whittle estimator

In this chapter, we solely consider state space models where Y (ϑ) and L(ϑ) are one-
dimensional for every ϑ ∈ Θ, i.e., A(ϑ) ∈ RN×N , B(ϑ) ∈ RN×1 and C(ϑ) ∈ R1×N . This
includes, in particular, univariate CARMA processes, see Section 2.1. When considering
light-tailed processes, we assume that the variance parameter σ2

L := ΣL > 0 of the driving
Lévy process does not depend on ϑ and has not to be estimated. In this context, we
consider an adjusted Whittle estimator which takes into account that we do not have to
estimate the variance. In some settings, such an adjustment is useful for the estimation of
processes with non-existing variance. For example, Mikosch et al. (1995) estimated the
parameters of ARMA models in discrete time where the white noise has a symmetric stable
distribution and obtained desirable properties. Actually, our hope is that the adaption
yields good results for the estimation of α-stable CARMA models. We therefore start
with the construction of an estimator which is independent of the variance of the driving
process. Subsequently, we derive its asymptotic behavior in two different settings. First,
the considered processes are assumed to have finite second moments. We see that the
estimator then behaves as desired. Unfortunately, we find out that those properties can
not be carried out to a general setting in which the considered processes are symmetric
α-stable CARMA processes.

4.1. Motivation

We now adapt the Whittle function in a way which makes it independent of the variance
of the driving Lévy process. Therefore, we use the representation of the spectral density in
(2.15) which depends on Π−1(·, ϑ) and V (∆)(ϑ). Although the variance σ2

L goes linearly
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in Ω(∆)(ϑ) and V (∆)(ϑ), both K(∆)(ϑ) and Π(·, ϑ) do not depend on σ2
L anymore. The

second summand of the Whittle function Wn is removed and the first term is adjusted so
that we obtain the adjusted Whittle function

W (A)
n (ϑ) = π

n

n∑
j=−n+1

|Π(eiωj , ϑ)|2In,Y (ωj) = V (∆)(ϑ)
2n

n∑
j=−n+1

f
(∆)
Y (ωj , ϑ)−1In,Y (ωj).

(4.1)

The corresponding minimizer

ϑ̂(∆,A)
n = arg min

ϑ∈Θ
W (A)
n (ϑ)

is the adjusted Whittle estimator.

4.2. Adjusted Whittle estimation for CARMA processes
with finite second moments

4.2.1. Setting

Since the estimation procedure is different to that of the previous chapter, we also have to
adapt Assumption A.

Assumption Ã.
Let Assumptions (A1)–(A5) and (A7) hold. Furthermore, assume

(Ã6) For any ϑ1, ϑ2 ∈ Θ, ϑ1 6= ϑ2, there exists some z ∈ C with |z| = 1 and Π(z, ϑ1) 6=
Π(z, ϑ2).

It is needless to say that conditions as those for the function ϑ → σ2
L are fulfilled

naturally. In addition to Remark 3.6, which remains mostly applicable, we stress that,
under Assumption Ã, Π−1 as defined in (2.11) exists for all ϑ ∈ Θ and that the mapping
(ω, ϑ)→ Π−1(eiω, ϑ) is continuous.

For the asymptotic normality of the adjusted Whittle estimator we have to adjust
Assumption B.

Assumption B̃.
Let Assumptions (B1)-(B3) hold. Furthermore, assume

(B̃4) For any c ∈ Cr there exists an ω∗ ∈ [−π, π] such that ∇ϑ|Π(eiω∗ , ϑ0)|−2c 6= 0.

Remark 4.1.
Under Assumption Ã and Assumption B̃ the mapping ϑ → Π(eiω, ϑ) is three times
continuously differentiable. Similarly to Lemma 3.17, (B̃4) guarantees the invertibility of

Σ∇2W (A) := V (∆)

2π

∫ π

−π
∇ϑ log

(
|Π(eiω, ϑ0)|−2

)>
∇ϑ log

(
|Π(eiω, ϑ0)|−2

)
dω. (4.2)
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4.2.2. Consistency and asymptotic normality

Theorem 4.2.
Let Assumption Ã hold. Then, as n→∞,

ϑ̂(∆,A)
n

a.s.−→ ϑ0.

The proof follows the same steps as the proof of the consistency of the Whittle estimator
in Theorem 3.8.

Theorem 4.3.
Let Assumption Ã and B̃ hold. Further, let Σ∇2W (A) be defined as in (4.2) and

Σ∇W (A) = V (∆)2

π

∫ π

−π
∇ϑ log

(
|Π(eiω, ϑ0)|−2

)>
∇ϑ log

(
|Π(eiω, ϑ0)|−2

)
dω

+ 1
4π2

[∫ π

−π
∇ϑ|Π(eiω, ϑ0)|2>

[
Φ(eiω)⊗ Φ(e−iω)

]
dω

]
·
[
E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− 3Σ(∆)

N ⊗ Σ(∆)
N

]
·
[∫ π

−π
∇ϑ|Π(eiω, ϑ0)|2>

[
Φ(e−iω)⊗ Φ(eiω)

]
dω

]>
.

Then, as n→∞,
√
n
(
ϑ̂(∆,A)
n − ϑ0

) D−→ N (0,ΣW (A)),

where ΣW (A) has the representation ΣW (A) = [Σ∇2W (A) ]−1Σ∇W (A) [Σ∇2W (A) ]−1.

Remark 4.4.
For the one-dimensional Ornstein-Uhlenbeck process, for which m = d = N = 1 and
C(ϑ) = B(ϑ) = 1 holds, the limit covariance matrix ΣW (A) of Theorem 4.3 reduces due to
Remark 4.8 and Theorem 3’’’, Chapter 3, of Hannan (2009) to

ΣW (A) = 4π
[∫ π

−π
∇ϑ log

(
|Π(eiω, ϑ0)|−2

)>
∇ϑ log

(
|Π(eiω, ϑ0)|−2

)
dω

]−1

= 4π
[∫ π

−π
∇ϑ log(f (∆)

Y (ω, ϑ0))>∇ϑ log(f (∆)
Y (ω, ϑ0))dω

− 1
2π

(∫ π

−π
∇ϑ log(f (∆)

Y (ω, ϑ0))dω
)> (∫ π

−π
∇ϑ log(f (∆)

Y (ω, ϑ0))dω
)]−1

.

Due to Remark 3.11 (b)

ΣW = 2 · [Σ∇2W ]−1 = 4π
[∫ π

−π
∇ϑ log(f (∆)

Y (ω, ϑ0))>∇ϑ log(f (∆)
Y (ω, ϑ0))dω

]−1

and hence, ΣW (A) ≥ ΣW . Thus, the adjusted Whittle estimator has a higher variance
than the Whittle estimator. Let ϑ0 < 0 be the zero of the AR polynomial in the CAR(1)
model, i.e., A(ϑ0) = ϑ0. Simple calculations show that ΣW (A) = e−2ϑ0 − 1 which is equal
to the asymptotic variance of the maximum likelihood estimator of Brockwell and Lindner
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(2019). However, it is not possible to make this conclusion for general CARMA processes.
There exist CARMA processes for which the adjusted Whittle estimator has a different
asymptotic variance than the maximum likelihood estimator of Brockwell and Lindner
(2019).

4.2.3. Proofs

Proof of Theorem 4.2

The proof of Theorem 4.2 is similar to the proof of Theorem 3.8. Therefore, we simply
adapt the parts which are not the same, namely Proposition 3.13 and Proposition 3.14.
We start by stating that W (A)

n converges almost surely uniformly to

W (A)(ϑ) :=
∫ π

−π
|Π(eiω, ϑ)|2f (∆)

Y (ω)dω

which can be shown in the same way as the uniform convergence ofW (1)
n in Proposition 3.13.

Proposition 4.5.
Let Assumptions (A1)–(A4) hold. Then, as n→∞,

sup
ϑ∈Θ
|W (A)

n (ϑ)−W (A)(ϑ)| n→∞−→ 0 P-a.s.

Proposition 4.6.
Let Assumptions (A1)–(A4) and (Ã6) hold. Then, W (A) has a unique minimum in ϑ0.

Proof. Let ϑ 6= ϑ0. Due to the definition of the linear innovations and Assumption (Ã6),
we have

V (∆) = E
[
ε

(∆) 2
k

]
= E

[(
Π(B)Y (∆)

k

)2
]

< E
[(

Π(B, ϑ)Y (∆)
k

)2
]

=
∫ π

−π
|Π(eiω, ϑ)|2f (∆)

Y (ω)dω = W (A)(ϑ),

where for the second last equality we used Theorem 11.8.3 of Brockwell and Davis (1991)
as well. Furthermore, V (∆) = E[(Π(B)Y (∆)

k )2] = W (A)(ϑ0) holds.

Proof of Theorem 4.3

The proof of the asymptotic normality of the adjusted Whittle estimator is also similar to
the proof of the asymptotic normality of the original Whittle estimator. We start to prove
an adapted version of Proposition 3.18.

Proposition 4.7.
Let Assumptions (A2)–(A4) and (B2) hold. Suppose η : [−π, π] → C is a symmetric
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function with Fourier coefficients (η̂u)u∈Z satisfying
∑∞
u=−∞ |η̂u||u|1/2 <∞ and∫ π

−π

∣∣∣Π−1(eiω)
∣∣∣2 η(ω)dω = 0.

Then, as n→∞,
π√
n

n∑
j=−n+1

η(ωj)In,Y (ωj)
D−→ N (0,Ση),

where

Ση = 4π
∫ π

−π
η(ω)2f

(∆)
Y (ω)2dω + 1

4π2

∫ π

−π
η(ω) vec

(
Φ(e−iω)>Φ(eiω)

)>
dω

·
(
E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− 3Σ(∆)

N ⊗ Σ(∆)
N

) ∫ π

−π
η(ω) vec

(
Φ(eiω)>Φ(e−iω)

)
dω.

Proof. Note that

√
n

∫ π

−π
f

(∆)
Y (ω)η(ω)dω =

√
nV (∆)

2π

∫ π

−π

∣∣∣Π−1(eiω)
∣∣∣2 η(ω)dω = 0.

Therefore, an application of Lemma A.7 gives

π√
n

n∑
j=−n+1

η(ωj)In,Y (ωj) = π√
n

n∑
j=−n+1

η(ωj)
(
In,Y (ωj)− f (∆)

Y (ωj)
)

+ o(1)

and Proposition 3.18 leads to the statement.

Remark 4.8.
For an Ornstein-Uhlenbeck process, Ση reduces to

Ση = 4π
∫ π

−π
η(ω)2f

(∆)
Y (ω)2dω,

since Π−1(eiω, ϑ) = Φ(eiω, ϑ) for all (ω, ϑ) ∈ [−π, π]×Θ implies∫ π

−π
η(ω) vec

(
Φ(e−iω)>Φ(eiω)

)>
dω =

∫ π

−π

∣∣∣Π−1(eiω)
∣∣∣2 η(ω)dω = 0.

Proposition 4.9.
Let Assumptions (A2)–(A4), (Ã6) and (B2)–(B3) hold. Then, as n→∞,

√
n
[
∇ϑW (A)

n (ϑ0)
]> D−→ N (0,Σ∇W (A)).

Proof. Similar to the proof of Proposition 3.21, we make use of the Cramér-Wold Theorem.
For λ = (λ1, . . . , λr)> ∈ Rr, we get

√
n
[
∇ϑW (A)

n (ϑ0)
]
λ = π√

n

n∑
j=−n+1

r∑
t=1

λt
∂

∂ϑt

∣∣∣Π(eiωj , ϑ0)
∣∣∣2 In,Y (ωj)



58 Chapter 4. The adjusted Whittle estimator

= π√
n

n∑
j=−n+1

r∑
t=1

λt
∂

∂ϑt

(
f

(∆)
Y (ω, ϑ0)−1V

(∆)(ϑ0)
2π

)
In,Y (ωj).

We define ηλ by

ηλ(ω) =
r∑
t=1

λt
∂

∂ϑt

(
f

(∆)
Y (ω, ϑ0)−1V

(∆)(ϑ0)
2π

)
, ω ∈ [−π, π],

and obtain∫ π

−π
ηλ(ω)

∣∣∣Π−1(eiω)
∣∣∣2 dω

=
∫ π

−π

r∑
t=1

λt

 ∂
∂ϑt

V (∆)(ϑ0)
2π f

(∆)
Y (ω)−1 −

∂
∂ϑt

f
(∆)
Y (ω, ϑ0)

f
(∆)
Y (ω, ϑ0)2

V (∆)(ϑ0)
2π

 ∣∣∣Π−1(eiω)
∣∣∣2 dω

=
[
2π∇ϑ log(V (∆)(ϑ0))−

∫ π

−π
∇ϑ log(f (∆)

Y (ω, ϑ0))dω
]
λ.

Under Assumption (B3), the Leibniz rule and Theorem 3’’’, Chapter 3, of Hannan (2009)
can be applied, which results in[

2π∇ϑ log(V (∆)(ϑ0))−
∫ π

−π
∇ϑ log(f (∆)

Y (ω, ϑ0))dω
]
λ

= ∇ϑ
[
2π log(V (∆)(ϑ0))− 2π log(V (∆)(ϑ0)) + 2π log(2π)

]
λ = 0.

As in Proposition 3.21, this transformation leads to the applicability of Proposition 4.7.
Therefore, we get

√
n
[
∇ϑW (A)

n (ϑ0)
]
λ
D−→ N (0,Σ∇W (A)λ)

with

Σ∇W (A)λ

= 4π
∫ π

−π
ηλ(ω)2f

(∆)
Y (ω)2dω + 1

4π2

∫ π

−π
ηλ(ω) vec

(
Φ(e−iω)>Φ(eiω)

)>
dω(

E
[
N

(∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1

]
− 3Σ(∆)

N ⊗ Σ(∆)
N

) ∫ π

−π
ηλ(ω) vec

(
Φ(eiω)>Φ(e−iω)

)
dω.

The representation ηλ(ω) =
[
∇ϑ|Π(eiω, ϑ0)|2

]
λ completes the proof.

To prove Theorem 4.3, we need an analogue result to Proposition 3.16. Since the
following proposition can be shown completely analogously, the proof will be restricted to
the transformation of the limit matrix.

Proposition 4.10.
Let Assumptions (A1)–(A4),(Ã6) and (B3) hold. Furthermore, let (ϑ∗n)n∈N be a sequence
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in Θ with ϑ∗n
a.s.−→ ϑ0 as n→∞. Then, as n→∞,

∇2
ϑW

(A)
n (ϑ∗n) a.s.−→ Σ∇2W (A) .

Proof. Some straightforward calculation yields

Σ∇2W (A) =
∫ π

−π

[
∇2
ϑ|Π(eiω, ϑ0)|2

]
f

(∆)
Y (ω)dω.

Theorem 3’’’ in Chapter 3 of Hannan (2009) states

V (∆)(ϑ) = 2π exp
( 1

2π

∫ π

−π
log(f (∆)

Y (ω, ϑ0))dω
)
.

Along with (2.15) and the Leibniz rule this give the representation

Σ∇2W (A)

=
∫ π

−π
∇2
ϑ

[
V (∆)(ϑ0)

2π f
(∆)
Y (ω, ϑ0)−1

]
f

(∆)
Y (ω)dω

= ∇2
ϑV

(∆)(ϑ0)− 2∇ϑV (∆)(ϑ0)>
( 1

2π

∫ π

−π
∇ϑ log(f (∆)

Y (ω, ϑ0))dω
)

−V
(∆)

2π

∫ π

−π
∇2
ϑ log(f (∆)

Y (ω, ϑ0))dω

+V (∆)

2π

∫ π

−π
∇ϑ log(f (∆)

Y (ω, ϑ0))>∇ϑ log(f (∆)
Y (ω, ϑ0))dω

= V (∆)

2π

∫ π

−π
∇ϑ log(f (∆)

Y (ω, ϑ0))>∇ϑ log(f (∆)
Y (ω, ϑ0))dω

−V (∆)
( 1

2π

∫ π

−π
∇ϑ log(f (∆)

Y (ω, ϑ0))dω
)> ( 1

2π

∫ π

−π
∇ϑ log(f (∆)

Y (ω, ϑ0))dω
)

= V (∆)

2π

∫ π

−π
∇ϑ log(|Π(eiω, ϑ0)|−2)>∇ϑ log(|Π(eiω, ϑ0)|−2)dω.

The proof of Theorem 4.3 now matches the proof of Theorem 3.9, where Proposition 3.21
is replaced by Proposition 4.9 and Proposition 3.16 is replaced by Proposition 4.10.

4.3. Adjusted Whittle estimation for α-stable CARMA
processes

The topic of this section is the adjusted Whittle estimation of the parameters of symmetric
α-stable CARMA processes. There are several arguments for the conjecture that the
estimator might converge:

- The adjusted Whittle estimator for light-tailed CARMA processes is strongly consis-
tent and asymptotically normally distributed by Theorem 4.2 and Theorem 4.3.
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- In several simulations for symmetric α-stable CARMA processes as, e.g., in the setup
of García et al. (2011) (see Section 6.1), it seems that the adjusted Whittle estimator
converges to the true parameter.

- In the context of ARMA processes the ideas of Whittle estimation for ARMA
processes with finite second moments could be transferred to ARMA processes with
infinite second moments (see Mikosch et al. (1995)). Since equidistant sampled
CARMA processes with finite second moments have a weak ARMA representation,
see Theorem 2.8, it is plausible that similar results hold for the CARMA setting.

However, primary the last argument also yields a reason for the hypothesis that the adjusted
Whittle estimator might not be consistent. Namely, by Proposition 2.11, the sampled
α-stable CARMA process does not exhibit a weak ARMA representation in general. In
fact, we will actually see that the proposed estimation procedure is not suited for parameter
estimation of these processes. As an exception, only the Ornstein-Uhlenbeck process can
be estimated consistently.
Therefore, we assume:

Assumption L2.
The driving process L(α) of the CARMA process is a symmetric α-stable Lévy process with
L

(α)
1 ∼ Sα(σ, 0, 0) for some σ > 0, α ∈ (0, 2),

and that Y is a symmetric α-stable CARMA process with kernel function g(t) =
c>eAtep1[0,∞)(t) as given in (2.4). In analogy to (4.1) for light-tailed CARMA processes,
for symmetric α-stable CARMA processes the appropriately normalized adjusted Whittle
function is

W (α)
n (ϑ) := π

n2/α

n∑
j=−n+1

|Π(eiωj , ϑ)|2In(ωj), ϑ ∈ Θ,

and accordingly the adjusted Whittle estimator is

ϑ̂(∆,α)
n := arg min

ϑ∈Θ
W (α)
n (ϑ).

Theorem 4.11.
Assume Assumption Ã with the second moment condition (A2) replaced by Assumption L2.
Suppose further (B1) and (B3). Define

W (α)(ϑ) := 1
2π

∫ ∆

0

∫ π

−π
|Π(eiω, ϑ)|2

∣∣∣∣∣∣
∞∑

j=−∞
g(∆j − s)e−ijω

∣∣∣∣∣∣
2

dω

 dL(α/2)
s ,

where L(α/2) = (L(α/2)
t )t≥0 is an α/2-stable Lévy process with

L
(α/2)
1 ∼ Sα/2(σ2

(
Cα/Cα/2

)2/α
, 1, 0)
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and the constants Cα and Cα/2 are defined as in (2.6). Then, as n→∞,

(W (α)
n (ϑ))ϑ∈Θ

D−→ (W (α)(ϑ))ϑ∈Θ in (C(Θ), ‖ · ‖∞),

where C(Θ) is the space of continuous functions on Θ with the supremum norm ‖ · ‖∞.

Proof. We approximate |Π(eiωj , ϑ)|2 by the Cesàro sum of its Fourier series of size M for
M sufficiently large. Define

(
|Π(ϑ)|2

)∧
k :=

(
|Π(ei·, ϑ)|2

)∧
k := 1

2π

∫ π

−π
|Π(eiω, ϑ)|2e−ikωdω,

qM (ω, ϑ) := 1
M

M−1∑
j=0

∑
|k|≤j

(
|Π(ϑ)|2

)∧
ke
ikω,

 =
∑
|k|<M

(
1− |k|

M

) (
|Π(ϑ)|2

)∧
ke
ikω

and thereby

W
(α)
M,n(ϑ) := π

n2/α

n∑
j=−n+1

qM (ωj , ϑ)In,Y (ωj), ϑ ∈ Θ.

Let ε1 > 0. A conclusion of Proposition 3.21 is that there exists an M0(ε1) ∈ N such that
for M ≥M0(ε1)

sup
ω∈[−π,π]

sup
ϑ∈Θ
|qM (ω, ϑ)− |Π(eiω, ϑ)|2| < ε1. (4.3)

Similar arguments as in the proof of Proposition 3.13 yield

sup
ϑ∈Θ

∣∣∣W (α)
n (ϑ)−W (α)

M,n(ϑ)
∣∣∣ ≤ ε1

n2/α−1γn,Y (0) for M ≥M0(ε1).

Due to Theorem 2.18

1
n2/α−1γn,Y (0) D−→

∫ ∆

0

∞∑
j=−∞

g(∆j − s)2dL(α/2)
s as n→∞.

Therefore, we have for any ε2 > 0

lim
M→∞

lim sup
n→∞

P
(

sup
ϑ∈Θ

∣∣∣W (α)
n (ϑ)−W (α)

M,n(ϑ)
∣∣∣ > ε2

)
= 0. (4.4)

Furthermore, representation (2.13) gives

W
(α)
M,n(ϑ)

=
∑
|k|<M

(1− |k|
M

) (
|Π(ϑ)|2

)∧
k

n−2/α+1 ∑
|h|<n

γn,Y (h)

 1
2n

n∑
j=−n+1

ei(k−h)ωj


=

∑
|k|<M

(
1− |k|

M

) (
|Π(ϑ)|2

)∧
kn
−2/α+1γn,Y (k). (4.5)
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We define

W
(α)
M (ϑ) :=

∑
|k|<M

(
1− |k|

M

) (
|Π(ϑ)|2

)∧
k

∫ ∆

0

∞∑
j=−∞

g(∆(j + k)− s)g(∆j − s)dL(α/2)
s . (4.6)

Due to Assumption (B3) and the definition of Π, there exists a constant C > 0 such that
for any δ > 0

sup
|ϑ1−ϑ2|<δ
ϑ1,ϑ2∈Θ,k∈Z

∣∣∣(|Π(ei·, ϑ1)|2
)∧
k −

(
|Π(ei·, ϑ2)|2

)∧
k

∣∣∣
= sup
|ϑ1−ϑ2|<δ
ϑ1,ϑ2∈Θ,k∈Z

∣∣∣∣ 1
2π

∫ π

−π

(
|Π(eiω, ϑ1)|2 − |Π(eiω, ϑ2)|2

)
eikωdω

∣∣∣∣
≤ max
|ϑ1−ϑ2|<δ
ϑ1,ϑ2∈Θ

max
ω∈[−π,π]

||Π(eiω, ϑ1)|2 − |Π(eiω, ϑ2)|2| ≤ Cδ.

This means that (
(
|Π(ϑ)|2

)∧
k)ϑ∈Θ is uniformly continuous. By Theorem 2.18, we have the

joint convergence of the random vector (γn,Y (−M + 1), . . . , γn,Y (M − 1)) implying with
the representations (4.5), (4.6) and the continuous mapping theorem that

(W (α)
M,n(ϑ))ϑ∈Θ

D−→ (W (α)
M (ϑ))ϑ∈Θ in (C(Θ), ‖ · ‖∞). (4.7)

Furthermore,

W
(α)
M (ϑ)

=
∫ ∆

0

∑
|k|<M

(
1− |k|

M

) (
|Π(ϑ)|2

)∧
k

∞∑
j=−∞

g(∆(j + k)− s)g(∆j − s)dL(α/2)
s

=
∫ ∆

0

∑
|k|<M

(
1− |k|

M

) (
|Π(ϑ)|2

)∧
k

∞∑
j,`=−∞

g(∆j − s)g(∆`− s)
[ 1

2π

∫ π

−π
e−i(j+k−`)ωdω

]
dL(α/2)

s

= 1
2π

∫ ∆

0

∫ π

−π
qM (ω, ϑ)

∣∣∣∣∣∣
∞∑

j=−∞
g(∆j − s)e−ijω

∣∣∣∣∣∣
2

dω

 dL(α/2)
s .

By this,

W
(α)
M (ϑ)−W (α)(ϑ)

= 1
2π

∫ ∆

0

∫ π

−π

[
qM (ω, ϑ)− |Π(eiω, ϑ)|2

] ∣∣∣∣∣∣
∞∑

j=−∞
g(∆j − s)e−ijω

∣∣∣∣∣∣
2

dω

 dL(α/2)
s

holds. Since the process L(α/2) is positive and increasing we obtain

sup
ϑ∈Θ
|W (α)

M (ϑ)−W (α)(ϑ)|
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≤ 1
2π

∫ ∆

0

∫ π

−π
sup
ϑ∈Θ

∣∣∣qM (ω, ϑ)− |Π(eiω, ϑ)|2
∣∣∣
∣∣∣∣∣∣
∞∑

j=−∞
g(∆j − s)e−ijω

∣∣∣∣∣∣
2

dω

 dL(α/2)
s

=: W̃
(α/2)
M .

Note that by Property 3.2.2 of Samorodnitsky and Taqqu (1994), W̃ (α/2)
M ∼ Sα/2(σM , βM , µM )

where βM = 1, µM = 0 and

σ
α/2
M = σαCα

Cα/2

∫ ∆

0

 1
2π

∫ π

−π
sup
ϑ∈Θ

∣∣∣qM (ω, ϑ)− |Π(eiω, ϑ)|2
∣∣∣
∣∣∣∣∣∣
∞∑

j=−∞
g(∆j − s)e−ijω

∣∣∣∣∣∣
2

dω


α/2

ds.

Due to Assumption (A3) there exists a constant C > 0 such that
(∑∞

j=0

∥∥∥eA(∆j−s)
∥∥∥)2

< C

for any s ∈ [0,∆]. Thus,

∫ ∆

0

∫ π

−π

∣∣∣∣∣∣
∞∑

j=−∞
g(∆j − s)e−ijω

∣∣∣∣∣∣
2

dω


α/2

ds

≤
∫ ∆

0

∫ π

−π
‖c‖2‖ep‖2

 ∞∑
j=0

∥∥∥eA(∆j−s)
∥∥∥
2

dω


α/2

ds

< ∞.

A conclusion of this and (4.3) is that σα/2M
M→∞−→ 0 and hence, the characteristic function

ϕ
W̃
α/2
M

of W̃ (α/2)
M converges pointwise to ϕ

W̃α/2 ≡ 1. An application of Lévys continuity

theorem results then in W̃ (α/2)
M

P−→ 0 as M →∞. Finally,

sup
ϑ∈Θ
|W (α)

M (ϑ)−W (α)(ϑ)| P−→ 0 as M →∞ (4.8)

as well. In view of (4.4)-(4.8), Theorem 3.2 of Billingsley (1968) completes the proof.

Corollary 4.12.
Let the assumptions of Theorem 4.11 hold. Define Gϑ,ϑ0 : [0,∆]→ R as

Gϑ,ϑ0(u) = 1
2π

∫ π

−π

[
|Π(eiω, ϑ)|2 − |Π(eiω, ϑ0)|2

] ∣∣∣∣∣∣
∞∑

j=−∞
g(∆j − u)e−ijω

∣∣∣∣∣∣
2

dω.

Then,

W (α)(ϑ)−W (α)(ϑ0) ∼ Sα/2(σϑ,ϑ0 , βϑ,ϑ0 , 0)
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is an α/2-stable random variable with parameters

βϑ,ϑ0 =
∫∆

0 (G+
ϑ,ϑ0

(s))α/2 − (G−ϑ,ϑ0
(s))α/2ds∫∆

0 |Gϑ,ϑ0(s)|α/2ds
,

σ
α/2
ϑ,ϑ0

= σαCα
Cα/2

∫ ∆

0
|Gϑ,ϑ0(s)|α/2ds.

4.3.1. Whittle estimation for symmetric α-stable Ornstein-Uhlenbeck
processes

An Ornstein-Uhlenbeck process Yt(ϑ) =
∫ t
−∞ e

ϑ(t−s)dL
(α)
s , t ≥ 0, sampled equidistantly has

the AR(1) representation

Y
(∆)
k (ϑ) = eϑ∆Y

(∆)
k−1(ϑ) + ξ

(∆)
k (ϑ), k ∈ Z,

where ξ(∆)
k (ϑ) =

∫ k∆
(k−1)∆ eϑ(k∆−s) dL

(α)
s , k ∈ N, is an i.i.d. symmetric α-stable sequence.

Since the distribution of the white noise ξ(∆)
k (ϑ) depends on ϑ, the theory of Mikosch et al.

(1995) can not be applied directly to estimate ϑ in this setting even though we have an
AR(1) representation. Thus, in this subsection we derive the consistency of the Whittle
estimator for symmetric α-stable Ornstein-Uhlenbeck processes.

Proposition 4.13.
Let Θ ⊆ (−∞, 0) be compact. Consider the family (Yt(ϑ))ϑ∈Θ with Yt(ϑ) =

∫ t
−∞ e

ϑ(t−s)dL
(α)
s ,

t ≥ 0, of symmetric α-stable Ornstein-Uhlenbeck processes. Then, as n→∞,

W (α)
n (ϑ) D−→WOU (ϑ)S∗α/2 in (C(Θ), ‖ · ‖∞),

where S∗α/2 is a positive α/2-stable random variable and

WOU (ϑ) = 1
2π

∫ π

−π
|1− eϑ∆+iω|2|1− eϑ0∆+iω|−2 dω, ϑ ∈ Θ.

Proof. The Ornstein-Uhlenbeck process Y (ϑ) has the kernel function gϑ(t) = eϑt1[0,∞)(t)
and the transfer function Π(z, ϑ) = 1− eϑ∆z. Therefore, an application of Theorem 4.11
yields as n→∞,

W (α)
n (ϑ) D−→ 1

2π

∫ ∆

0

∫ π

−π
|Π(eiω, ϑ)|2

∣∣∣∣∣∣
∞∑

j=−∞
gϑ0(∆j − s)e−ijω

∣∣∣∣∣∣
2

dω

 dL(α/2)
s

= 1
2π

∫ ∆

0

∫ π

−π
|1− eϑ∆+iω|2

∣∣∣∣∣∣
∞∑
j=1

eϑ0(∆j−s)e−ijω

∣∣∣∣∣∣
2

dω

 dL(α/2)
s

= 1
2π

∫ ∆

0

∫ π

−π
|1− eϑ∆+iω|2

∣∣∣∣∣∣e−ϑ0s

 ∞∑
j=0

eϑ0∆je−ijω − 1

∣∣∣∣∣∣
2

dω

 dL(α/2)
s
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= 1
2π

∫ π

−π
|1− eϑ∆+iω|2|1− eϑ0∆+iω|−2 dω

∫ ∆

0
e2ϑ0(∆−s)dL(α/2)

s

in (C(Θ), ‖ · ‖∞). Define S∗α/2 :=
∫∆

0 e2ϑ0(∆−s)dL
(α/2)
s . Due to Property 3.2.2 of Samorod-

nitsky and Taqqu (1994)

S∗α/2 ∼ Sα/2

(σαCα
Cα/2

∫ ∆

0
eαϑ0sds

)2/α

, 1, 0


which implies that S∗α/2 is positive (see Proposition 1.2.11 of Samorodnitsky and Taqqu
(1994)).

Proposition 4.14.
Let the assumptions of Proposition 4.13 hold. Then, WOU has a unique minimum in ϑ0.

Proof. Proposition 4.6 implies that under the Assumptions (A1), (A3), (A4) and (Ã6)

WOU (ϑ0) = 1 < 1
2π

∫ π

−π

∣∣Π(eiω, ϑ)
∣∣2

|Π(eiω, ϑ0)|2
dω = WOU (ϑ) for ϑ 6= ϑ0.

Hence, ϑ0 is indeed the unique minimum.

Theorem 4.15.
Let the assumptions of Proposition 4.13 hold. Then, as n→∞,

ϑ̂(∆,α)
n

P−→ ϑ0.

Proof. Proposition 4.13 and Skorokhods representation theorem give that there exists a
probability space with processes (W ∗n(ϑ))ϑ∈Θ and (W ∗(ϑ))ϑ∈Θ having the same distributions
as (W (α)

n (ϑ))ϑ∈Θ and (W (α)(ϑ))ϑ∈Θ, respectively, with

sup
ϑ∈Θ
|W ∗n(ϑ)−W ∗(ϑ)| a.s.−→ 0, n→∞.

With the same arguments as in the proof of Theorem 3.8, we can show that the minimizing
arguments ϑ̂∗n and ϑ̂∗0 of (W ∗n(ϑ))ϑ∈Θ and (W ∗(ϑ))ϑ∈Θ, respectively, satisfy, as n→∞,

ϑ∗n
a.s.−→ ϑ0,

which then implies ϑ̂(∆,α)
n

D−→ ϑ0. Since ϑ0 is a constant, convergence in distribution
implies convergence in probability.

4.3.2. Whittle estimation for general symmetric α-stable CARMA
processes

Theorem 4.16.
Consider the setting of Theorem 4.11 for a symmetric α-stable CARMA(p,q) process with
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p ≥ 2. Then, in general, the limit function W (α) of the Whittle function does not have a
unique minimum in ϑ0 and hence, the Whittle estimator is not consistent.

Proof. A necessary condition for the Whittle function W (α) to have a unique minimum in
ϑ0 is that W (α)(ϑ)−W (α)(ϑ0) is a positive random variable for ϑ 6= ϑ0 and, hence βϑ,ϑ0

as defined in Corollary 4.12 is equal to 1.
However, this is not the case in general as can be seen in Example 4.17 and Example 4.18,

which implies that the Whittle estimator is in general not consistent.

Example 4.17.
We tackle the question, whether it is possible to find a model where βϑ,ϑ0 is not equal to 1
for some ϑ 6= ϑ0. Therefore, we consider symmetric 1.5-stable CARMA(2,0) processes with
autoregressive and moving average polynomial

aϑ(z) = z2 − (ϑ− 2)z − 2ϑ and cϑ(z) = ϑ− 2,

respectively. These CARMA processes have the state space representation

dXt(ϑ) = A(ϑ)Xt(ϑ) dt+ e2 dL3/2
t and Yt(ϑ) := c(ϑ)>Xt(ϑ), t ≥ 0,

where

A(ϑ) =
(

0 1
2ϑ ϑ− 2

)
and c(ϑ)> = (ϑ− 2, 0).

Let the true parameter be ϑ0 = −3. The behavior of βϑ,ϑ0 as defined in Corollary 4.12,
the behavior of the non-normalized positive part

β+
ϑ,ϑ0

:=
∫ ∆

0
(G+

ϑ,ϑ0
(s))α/2ds

and the negative part

β−ϑ,ϑ0
:=
∫ ∆

0
(G−ϑ,ϑ0

(s))α/2ds,

respectively, are plotted as functions of ϑ for α = 1.5 in Figure 4.1. As one can see,
β−ϑ,ϑ0

> 0 for all ϑ ∈ (−∞,−3) ∪ (−3,−2), and hence, βϑ,ϑ0 < 1. Of course, this holds
independent of the choice of α. Thus, W (α)(ϑ)−W (α)(ϑ0) is not a strictly positive random
variable for ϑ ∈ (−∞,−3) ∪ (−3,−2) and hence, has not almost surely a unique minimum
in ϑ0. Especially, βϑ,ϑ0 → 0.8 for ϑ→ −∞ in the case α = 1.5.

Example 4.18.
In view of Example 3.3 of García et al. (2011), we consider CARMA(2,1) processes
with the parametrization (2.3) and a1(ϑ) = ϑ1, a2(ϑ) = ϑ2 and c0(ϑ) = ϑ3, c1(ϑ) = 1,
ϑ = (ϑ1, ϑ2, ϑ3) ∈ Θ. The kernel function gϑ in (2.4) has the representation

gϑ(t) = (ϑ3 − λ+(ϑ))√
ϑ2

1 − 4ϑ2
e−λ

+(ϑ)t − (ϑ3 − λ−(ϑ))√
ϑ2

1 − 4ϑ2
e−λ

−(ϑ)t, t ≥ 0,



4.3. Adjusted Whittle estimation for α-stable CARMA processes 67

−12 −10 −8 −6 −4 −2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ϑ

βϑ
ϑ 0

−12 −10 −8 −6 −4 −2

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30
0.

00
35

ϑ
βϑ

ϑ 0
−

−12 −10 −8 −6 −4 −2

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

ϑ

βϑ
ϑ 0

+

Figure 4.1.: Behavior of βϑ,ϑ0 , β
−
ϑ,ϑ0

and β+
ϑ,ϑ0

in the CARMA(2, 0) model of Example 4.17.
We set βϑ0,ϑ0 = 0 to guarantee that βϑ,ϑ0 is continuous.

with λ+(ϑ) = ϑ1+
√
ϑ2

1−4ϑ2
2 and λ−(ϑ) = ϑ1−

√
ϑ2

1−4ϑ2
2 . As in García et al. (2011), the true

parameter is chosen as
ϑ0 = (1.9647, 0.0893, 0.1761).

Therefore, the kernel function is

gϑ0(t) ≈ 0.0692e−0.0465t + 0.9307e−1.9181t, t ≥ 0,

which is non-negative and we take α = 1.5. In this setting, we calculate βϑ,ϑ0 as a function
of the components ϑ1, ϑ2 and ϑ3, respectively, where we fix the other two variables. Then
the functions βϑ,ϑ0 , β

−
ϑ,ϑ0

and β+
ϑ,ϑ0

are plotted in Figure 4.2. In all three cases, the plots
show that β−ϑ,ϑ0

> 0 for some ϑ 6= ϑ0 implying βϑ,ϑ0 < 1. Therefore, if we only allow a
single parameter to vary, the Whittle estimator converges to a function which has not an
unique minimum in the true parameter. Hence, the Whittle estimator is not consistent.
Again this statement is independent of the choice of α.
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Figure 4.2.: Behavior of βϑ,ϑ0 , β
−
ϑ,ϑ0

and β+
ϑ,ϑ0

in the CARMA(2, 1) model of Example 4.18
where ϑ originates from ϑ0 when we fix two components and vary the third
one. We set βϑ0,ϑ0 = 0 to guarantee that βϑ,ϑ0 is continuous.



CHAPTER 5

The integrated periodogram

Looking back to Section 3.5, the asymptotic normality of the integrated periodogram is a
main part of the proof of the asymptotic normality of the Whittle estimator. Furthermore,
as mentioned in Dahlhaus (1988) and Klüppelberg and Mikosch (1996), many spectral
goodness-of-fit test statistics are based on the integrated periodogram as well. Consequently,
from practical point of view, even though the asymptotic normality of the Whittle estimator
is already derived, a functional central limit theorem for the integrated periodogram is
desirable to obtain the limit behavior of the test statistics. Therefore, we define the
function-indexed normalized integrated periodogram

En(g) :=
√
n

∫ π

−π
g(ω)

(
In,Y (ω)− 1

2πΦ(e−iω)Σ(∆)
N Φ(eiω)>

)
dω

=
√
n

∫ π

−π
g(ω)

(
In,Y (ω)− f (∆)

Y (ω)
)
dω.

Assume that a central limit theorem holds for a function class Gm. Then, to conclude
the limit behavior of statistical indices of interest such as the spectral goodness-of-fit
test statistics, Gm has to consist of appropriate functions. Therefore, to directly derive
asymptotic results for various different applications, including rich enough sets of functions
is essential. We start this chapter by introducing three different sets of conditions under
which a functional central limit theorem for the trace of the function-indexed normalized
integrated periodogram holds. Obviously, it is a limitation to only consider a functional
limit theorem for the trace. However, for most practical applications it is sufficient. Our
resulting settings are rich enough to directly conclude the asymptotic distribution of some
applications. Consequently, we first state the main result of this chapter and then present
the limit behavior of the spectral goodness-of-fit tests. Even though we already investigated
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the Whittle estimator in detail in Chapter 3, we also sketch how to quickly derive its
asymptotic normality with focus on the functional central limit theorem. Finally, the proofs
are given.

5.1. A functional central limit theorem

In this chapter, we always investigate the trace of the process En indexed by subsets of
2π-periodic integrable functions. Therefore, we define

Hm := {g : [−π, π]→ Cm×m | g(π) = g(−π), ‖g‖m <∞},

where the norm ‖ · ‖m is defined by

‖g‖2m = 1
2π

∫ π

−π
‖g(x)‖2dx.

The corresponding metric is then given by dm(f, g) = ‖f − g‖m for f, g ∈ Hm. In view of
what follows, we also consider the N -dimensional counterparts

HN := {g : [−π, π]→ CN×N |g(π) = g(−π), ‖g‖N <∞}

along with the norm and metric defined by

‖g‖2N = 1
2π

∫ π

−π
‖g(x)‖2dx and dN (f, g) = ‖f − g‖N ,

respectively. However, we now mainly turn to the behavior of the trace of En in the metric
space (C(Gm), ‖ · ‖∞), where C(Gm) is the space of univariate continuous functions on the
index function set Gm ⊂ Hm and ‖ · ‖∞ is the norm defined by

‖F‖∞ = sup
g∈Gm

|F (g)|.

Additionally, we state a set of conditions which guarantees the convergence of the trace of
En in a linear space, namely in (Gs′m, ‖ · ‖Gs′m) where

Gs′m = {F : Gsm → Cm×m | F linear } with ‖F‖Gs′m = sup
g∈Gsm
‖g‖Gsm≤1

‖F (g)‖.

All in all, we start with the specification of various index classes to lay the foundations for
the central limit theorem. Thereby, inter alia, we consider totally bounded spaces with
different restrictions. Note that a metric space (G, d) is totally bounded iff its covering
numbers

N(ε,G, d) := inf{u| ∃g1, . . . , gu ∈ G : inf
i=1,...,u

d(g − gi) ≤ ε ∀g ∈ G}
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are finite for every ε > 0. Furthermore, it is necessary to assume that the set Gm is
permissible to guarantee that the supremum over the uncountable many measurable
functions is measurable, see as well Pollard (1984), Appendix C.

Definition 5.1 (permissible, Definition 1 of Appendix C of Pollard (1984)).
Let (Ω,A,P) be a probability space and (S,S) be a measure space. Let further F =
{f(·, t)| t ∈ T}, where T is a separable metric space with Borel σ-field B(T ) and

a) the functions f(·, ·) ∈ F are S ⊗ B(T )-measurable as functions from S ⊗ T into Rm,

b) T is an analytic subset of a compact metric space T (from which it inherits its metric
and Borel σ-field).

Then, F is called permissible.

In the following, we strengthen the Lévy process assumption by assuming existing fourth
moments. Since all settings assume the MCARMA process to be causal and that C has
full rank, we suppose

Assumption L3.
Assumption L1 holds with E‖L1‖4 <∞. Furthermore, C has full rank and the eigenvalues
of A have strictly negative real parts.

In view of what follows, we define the `th Fourier coefficient of some function f as f̂`.
We additionally suppose:

Assumption C.
Assume that Gm is permissible and supg∈Gm ‖g‖m <∞. Let further one of the following
sets of conditions hold:

(C1) For some s > 1/2 define

Gm := Gsm := {g ∈ Hm | ‖g‖Gsm <∞}

with
‖g‖2Gsm =

∑
`∈Z

(1 + |`|)2s‖
(
g(·)Φ(e−i·)

)∧
`‖

2.

(C2) Suppose (Gm, ‖ · ‖m) is totally bounded. Define for f, g ∈ Gm

d
(k)
Φ (f, g) = sup

2k≤j<2k+1
dj,Φ(f, g), k ∈ N0, (5.1)

where
dj,Φ(f, g) = j‖

(
Φ(ei·)>(f − g)(·)Φ(e−i·)

)∧
j
‖N for j ∈ N.

Assume that, for some β ∈ (0, 2) the covering number N(ε,Gm, d(k)
Φ ) satisfies

N(ε,Gm, d(k)
Φ ) ≤ C(1 + (2k/ε)β), ∀ε ∈ (0, 1), k ∈ N0.
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(C3) The driving process (Lt)t∈R satisfies E‖L1‖j ≤ Kj for all j ∈ N and some K > 0
which is independent of j. Furthermore, suppose (Gm, ‖ · ‖m) is pointwise bounded
and totally bounded with ∫ 1

0
log(N(ε,Gm, dm))2dε <∞.

Finally, assume that there exists a g̃ ∈ Gm with ‖g(x)‖ ≤ ‖g̃(x)‖ for all g ∈ Gm and
x ∈ [−π, π].

Remark 5.2.

a) Under Assumption C, d(k)
Φ as defined in (5.1) is a metric for k ≥ 0.

b) The condition concerning the functional space in (C1) is structurally different than
the ones concerning the functional spaces in (C2) and (C3) and can not be compared
to the second and third one. However, if we consider index functions g where the
component functions g[i, j], i, j ∈ {1, . . . ,m}, form Vapnik-Chervonenkis classes
(VC-classes), the condition of (C1) is not satified in general. But those classes
satisfy the conditions of (C2) and (C3), see Example 3.9 of Can et al. (2010) for the
univariate case and condition (C2), and Example 3.1 of Dahlhaus (1988) for (C3).
Even though Can et al. (2010) considered only univariate index functions, the ideas of
their Example 3.9 can be transferred to coherent sets of multivariate index functions.
The inclusion of the VC-classes is necessary to guarantee that the goodness-of-fit tests
of Section 5.2 are included in the setting. Whereas the functional space condition
in (C3) is weaker than the one in (C2), Assumption (C3) requires that all moments
of the driving Lévy process exist and are appropriately bounded. Therefore, under
(C3), the conditions concerning the driving process are stronger than under (C2).

c) Note that by Theorem A.5, Parsevals equality can be carried out to the multi-
variate case with the Frobenius norm. Along with supω∈[−π,π] ‖Φ(eiω)‖ ≤ C and
supg∈Gm ‖g‖m <∞, this implies

sup
g∈Gm

∑
h∈Z

∥∥∥∥ 1
2π

∫ π

−π
Φ(eiω)>g(ω)Φ(e−iω)e−ihωdω

∥∥∥∥2

= sup
g∈Gm

∑
h∈Z

∥∥∥∥(Φ(ei·)>g(·)Φ(e−i·)
)∧
h

∥∥∥∥2

= sup
g∈Gm

1
2π

∫ π

−π

∥∥∥Φ(eiω)>g(ω)Φ(e−iω)
∥∥∥2
dω ≤ C sup

g∈Gm
‖g‖2m <∞.

Therefore, under the Assumptions L3 and C, the limit process of Theorem 5.3 is
well-defined. The same arguments yield

sup
g∈Gm

∑
h∈Z
‖
(
g(·)Φ(ei·)

)∧
h‖

2 <∞. (5.2)
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Theorem 5.3.
Suppose Assumption L3 and C hold. Then, under (C2) or (C3),

tr(En) D−→ tr(E) in (C(Gm), ‖ · ‖∞),

whereas, under (C1) the convergence holds in (Gs′m, ‖ · ‖Gs′m). The limit process tr(E) is
defined by

tr(E(g)) = tr
(
W0
2π

∫ π

−π
Φ(eiω)>g(ω)Φ(e−iω)dω

)
+ tr

( ∞∑
h=1

Wh

2π

∫ π

−π
Φ(eiω)>(g(ω) + g(−ω)>)Φ(e−iω)e−ihωdω

)

and Wi, i ∈ N0, are independent Gaussian random matrices with

vec(W0) ∼ N (0,E[N (∆)
1 N

(∆)>
1 ⊗N (∆)

1 N
(∆)>
1 ]− Σ(∆)

N ⊗ Σ(∆)
N )

and
vec(Wi) ∼ N (0,Σ(∆)

N ⊗ Σ(∆)
N ), i ∈ N.

Remark 5.4.

a) In case of a Brownian motion driven MCARMA(p, q) process, the limit process tr(E)
of Theorem 5.3 can be represented by

tr(E(g)) = tr

∑
h∈Z

W̃h

4π

∫ π

−π
Φ(eiω)>(g(ω) + g(−ω)>)Φ(e−iω)e−ihωdω


where (W̃h)h∈Z is an i.i.d. sequence with W̃1 ∼W1.

b) The limit process tr(E) is a centered Gaussian process with covariance function
defined by

Cov(tr(E(g1)), tr(E(g2)))

= 1
4π

∫ π

−π
tr
(
f

(∆)
Y (ω)(g1(ω) + g1(−ω)>)Hf (∆)

Y (ω)(g2(ω) + g2(−ω)>)
)
dω

+ vec
( 1

2π

∫ π

−π
Φ(eiω)>g1(ω)Φ(e−iω)dω

)H (
E[N (∆)

1 N
(∆)>
1 ⊗N (∆)

1 N
(∆)>
1 ]

−3Σ(∆)
N ⊗ Σ(∆)

N

)
vec

( 1
2π

∫ π

−π
Φ(eiω)>g2(ω)Φ(e−iω)dω

)
,

see Section 5.3. Again, in the Brownian motion driven case, this reduces to

Cov(tr(E(g1)), tr(E(g2)))

= 1
4π

∫ π

−π
tr
(
f

(∆)
Y (ω)(g1(ω)> + g1(−ω))f (∆)

Y (ω)(g2(ω) + g2(−ω)>)
)
dω.
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5.2. Applications

5.2.1. The Whittle estimator

We revisit the problem of parameter estimation with the Whittle estimator. In this section,
we define the Whittle function as

W (?)
n (ϑ) = 1

2π

∫ π

−π
tr
(
f

(∆)
Y (ω, ϑ)−1In,Y (ω)

)
+ log

(
det

(
f

(∆)
Y (ω, ϑ)

))
dω.

The minimizing argument ϑ̂(?)
n = arg minϑ∈ΘW

(?)
n (ϑ) is the Whittle estimator. Obviously,

this estimator is asymptotically equivalent to the one defined in Chapter 3 which justifies that
we give it the same name. Slightly stricter assumptions are necessary to apply Theorem 5.3
to obtain the asymptotic normality of the Whittle estimator. Again, we consider an
equidistantly sampled parameterized MCARMA(p, q) process with fixed 0 ≤ q < p. As
before, we let Assumptions A and B hold and we furthermore assume:

(W1) For every ϑ ∈ Θ, E‖L1(ϑ)‖j ≤ K(ϑ)j where K(ϑ) > 0 is a positive constant which
depends on ϑ but is independent of j.

(W2) The eigenvalues of A(ϑ) are distinct for every ϑ ∈ Θ.

(W3) { ∂
∂ϑi

f
(∆)
Y (·, ϑ)−1 : ϑ ∈ Θ} and { ∂2

∂ϑi∂ϑj
f

(∆)
Y (·, ϑ)−1 : ϑ ∈ Θ} satisfy Assumption

(C1), (C2) or (C3) for i, j ∈ {1, . . . , r}.

(W4) For the gradient vector and the Hessian matrix of W (?)
n the order of integration and

differentiation can be interchanged, i.e.,

∇ϑW (?)
n (ϑ) = 1

2π

∫ π

−π
∇ϑ

(
tr
(
f

(∆)
Y (ω, ϑ)−1In,Y (ω)

)
+ log

(
det

(
f

(∆)
Y (ω, ϑ)

)))
dω

and

∇2
ϑW

(?)
n (ϑ) = 1

2π

∫ π

−π
∇2
ϑ

(
tr
(
f

(∆)
Y (ω, ϑ)−1In,Y (ω)

)
+ log

(
det

(
f

(∆)
Y (ω, ϑ)

)))
dω

hold.

Now, we can directly conclude the asymptotic normality of the Whittle estimator by
the following observations: By Theorem 3.8 of Fasen-Hartmann and Scholz (2021), the
sampled processes Y (∆)(ϑ) have weak VARMA representations. Note that A(ϑ) has to
have distinct eigenvalues to apply this theorem. Therefore, the corresponding inverse
spectral densities form a finite-dimensional vector space and which gives that the sets
Gm[i, j] := {f (∆)

Y (·, ϑ)−1[i, j]|ϑ ∈ Θ} are VC-classes. Furthermore, as before, Assumption
(A4) implies that f (∆)

Y (·)−1 is continuous on the compact set [−π, π]×Θ which yields

max
ϑ∈Θ

max
ω∈[−π,π]

‖f (∆)
Y (ω, ϑ)−1‖ ≤ C.
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Consequently, a measurable envelope function exists and we can apply Lemma 2.25 of
Pollard (1984). Therefore, Assumption (C3) holds. An application of Theorem 5.3 gives

sup
ϑ∈Θ

√
n

∣∣∣∣W (?)
n (ϑ)− 1

2π

∫ π

−π
tr
(
f

(∆)
Y (ω, ϑ)−1f

(∆)
Y (ω)

)
+ log

(
det

(
f

(∆)
Y (ω, ϑ)

))
dω

∣∣∣∣ D−→ 0.

As in the original proof of the asymptotic normality of the Whittle estimator, a Taylor
expansion of order one yields

√
n(ϑ̂(?)

n − ϑ0)> = −
√
n∇ϑW (?)

n (ϑ0)
[
∇2
ϑW

(?)
n (ϑ′n)

]−1
,

for ‖ϑ′n − ϑ0‖ ≤ ‖ϑ̂(?)
n − ϑ0‖. Since Assumptions (W3) and (W4) hold, two applications of

Theorem 5.3 and ϑ′n
a.s.→ ϑ0 complete the proof. Obviously, these considerations need the

consistency of ϑ̂(?)
n which can be proven as in Theorem 3.8 as well as the invertibility of

the matrix ∇2
ϑW

(?)
n (ϑ∗n) which is given by Lemma 3.17.

Remark 5.5.
If we consider univariate CARMA processes or the class of MCAR(1) processes, the
assumptions can be weakened. Namely, it is possible to omit the moment condition of the
driving process (W1) and replace (W2) by

(W̃2) { ∂
∂ϑi

f
(∆)
Y (·, ϑ)−1 : ϑ ∈ Θ} and { ∂2

∂ϑi∂ϑj
f

(∆)
Y (·, ϑ)−1 : ϑ ∈ Θ} satisfy Assumption (C1)

or (C2) for i, j ∈ {1, . . . , r}.

For the proof, define the set of index functions Gm = {f (∆)
Y (·, ϑ)−1|ϑ ∈ Θ}.

Case 1: univariate CARMA(p, q) processes:
The spectral densities f (∆)

Y (·, ϑ), ϑ ∈ Θ, are symmetric. Therefore, an application of the
Cauchy-Schwarz inequality and (2.10) yield

∑
`∈Z

(1 + |`|)2s
∥∥∥∥(f (∆)

Y (·, ϑ)−1Φ(e−i·)
)∧
`

∥∥∥∥2

=
∑
`∈Z

(1 + |`|)2s

∥∥∥∥∥∥ 1
2π

∫ π

−π
f

(∆)
Y (ω, ϑ)−1

∞∑
j=1

Φje
−iω(j+`)dω

∥∥∥∥∥∥
2

=
∑
`∈Z

(1 + |`|)2s

∥∥∥∥∥∥
∞∑

j=0,j=−`

1
2π

∫ π

−π
f

(∆)
Y (ω, ϑ)−1dωΦj

∥∥∥∥∥∥
2

≤ C
∑
`∈Z

(1 + |`|)2s
∞∑

j=0,j=−`

1
(1 + |j|)4s

∥∥∥∥ 1
2π

∫ π

−π
f

(∆)
Y (ω, ϑ)−1dω

∥∥∥∥2
<∞.

Consequently, Assumption (C1) holds.
Case 2: MCAR(1) processes:
Notice that Φ−1(·, ϑ) exists and has the representation Φ−1(x, ϑ) = (IN − eA(ϑ)∆x).
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Therefore,

∑
`∈Z

(1 + |`|)2s
∥∥∥∥(f (∆)

Y (·, ϑ)−1Φ(e−i·)
)∧
`

∥∥∥∥2

=
∑
`∈Z

(1 + |`|)2s

∥∥∥∥∥∥ 1
2π

∫ π

−π

∞∑
j=0

(
Σ(∆)−1
N − eA(ϑ)>∆Σ(∆)−1

N eiω

−Σ(∆)−1
N eA(ϑ)∆e−iω + eA(ϑ)>∆Σ(∆)−1

N eA(ϑ)∆
)

Φje
−iω(j+`)dω

∥∥∥2
.

Again, the integral vanishes for ` /∈ {−j − 1,−j,−j + 1}. Consequently, the same ideas as
in the first case imply that (C1) holds.
The same reasoning as before now yields the asymptotic normality in both cases.

5.2.2. Goodness-of-fit tests

In this section, we investigate the behavior of some empirical goodness-of-fit test statis-
tics which are based on the integrated periodogram. Note that by Example 3.9 of
Can et al. (2010), the set of indicator functions satisfies the function class condition
of (C2). Since supω∈[−π,π] ‖f

(∆)
Y (ω)−1‖ ≤ C holds, minor adaptions yield that {λ ∈ [−π, π] :

1{· ≤ λ}f (∆)
Y (·)−1} satisfies the conditions for a fixed spectral density f (∆)

Y as well. Conse-
quently, the asymptotic behavior of the subsequent test statistics follows from an application
of Theorem 5.3 and the continuous mapping theorem.

Corollary 5.6.
Let Assumption C hold and let Wi, W̃i, i ∈ Z, be the Gaussian random matrices of
Theorem 5.3 and Remark 5.4 a). Then:

a) The Grenander-Rosenblatt statistic converges in distribution, i.e.,

√
n sup
x∈[−π,π]

∣∣∣∣tr(∫ x

−π
In,Y (ω)− 1

2πΦ(e−iω)Σ(∆)
N Φ(eiω)>dω

)∣∣∣∣
D−→ sup

x∈[−π,π]

∣∣∣∣tr(W0
2π

∫ x

−π
Φ(eiω)>Φ(e−iω)dω

)

+ tr
( ∞∑
h=1

Wh

2π

(∫ x

−π
Φ(eiω)>Φ(e−iω)e−ihωdω +

∫ π

−x
Φ(eiω)>Φ(e−iω)e−ihωdω

))∣∣∣∣∣ .
If the driving process is a Brownian motion, the limit process has the representation

sup
x∈[−π,π]

∣∣∣∣∣∣tr
 ∞∑
h=−∞

W̃h

4π

(∫ x

−π
Φ(eiω)>Φ(e−iω)e−ihωdω

+
∫ π

−x
Φ(eiω)>Φ(e−iω)e−ihωdω

))∣∣∣∣ .
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b) The Cramér-von Mises statistic converges in distribution, i.e.,

n

∫ π

−π
tr
(∫ x

−π
In,Y (ω)− 1

2πΦ(e−iω)Σ(∆)
N Φ(eiω)>dω

)2
dx

D−→
∫ π

−π
tr
(
W0
2π

∫ x

−π
Φ(eiω)>Φ(e−iω)dω

+
∞∑
h=1

Wh

2π

(∫ x

−π
Φ(eiω)>Φ(e−iω)e−ihωdω +

∫ π

−x
Φ(eiω)>Φ(e−iω)e−ihωdω

))2

dx.

If the driving process is a Brownian motion, the limit process has the representation

∫ π

−π
tr

 ∞∑
h=−∞

W̃h

4π

(∫ x

−π
Φ(eiω)>Φ(e−iω)e−ihωdω

+
∫ π

−x
Φ(eiω)>Φ(e−iω)e−ihωdω

))2
dx.

c) The test statistic of Dahlhaus (1988), Example 3.4, converges in distribution, i.e.,
√
n√
m

sup
x∈[−π,π]

∣∣∣∣∫ x

−π
tr
(
In,Y (ω)f (∆)

Y (ω)−1
)
dω − (x+ π)m

∣∣∣∣
D−→ sup

x∈[−π,π]

∣∣∣∣tr( W0
2π
√
m

∫ x

−π
Φ(eiω)>f (∆)

Y (ω)−1Φ(e−iω)dω
)

+ tr
( ∞∑
h=1

Wh

2π
√
m

(∫ x

−π
Φ(eiω)>f (∆)

Y (ω)−1Φ(e−iω)e−ihωdω

+
∫ π

−x
Φ(eiω)>f (∆)

Y (ω)−1Φ(e−iω)e−ihωdω
))∣∣∣∣ .

If the driving process is a Brownian motion, the limit process has the representation

sup
x∈[−π,π]

∣∣∣∣∣∣tr
 ∞∑
h=−∞

W̃h

4π
√
m

(∫ x

−π
Φ(eiω)>f (∆)

Y (ω)−1Φ(e−iω)e−ihωdω

+
∫ π

−x
Φ(eiω)>f (∆)

Y (ω)−1Φ(e−iω)e−ihωdω
))∣∣∣∣ .

d) The Cramér-von Mises statistic with self-normalization converges in distribution, i.e.,

n

m

∫ π

−π

(∫ x

−π
tr
(
In,Y (ω)f (∆)

Y (ω)−1
)
dω − (x+ π)m

)2
dx

D−→ 1
m

∫ π

−π

(
tr
(
W0
2π

∫ x

−π
Φ(eiω)>f (∆)

Y (ω)−1Φ(e−iω)dω
)

+ tr
( ∞∑
h=1

Wh

2π

(∫ x

−π
Φ(eiω)>f (∆)

Y (ω)−1Φ(e−iω)e−ihωdω

+
∫ π

−x
Φ(eiω)>f (∆)

Y (ω)−1Φ(e−iω)e−ihωdω
)))2

dx.
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If the driving process is a Brownian motion, the limit process has the representation

1
m

∫ π

−π

tr

 ∞∑
h=−∞

W̃h

4π

(∫ x

−π
Φ(eiω)>f (∆)

Y (ω)−1Φ(e−iω)e−ihωdω

+
∫ π

−x
Φ(eiω)>f (∆)

Y (ω)−1Φ(e−iω)e−ihωdω
)))2

dx.

Remark 5.7.

a) Consider the class of MCAR(1) processes and the test statistics of Corollary 5.6 part
c) and d). Note that m = N . For Wi i ∈ N0, defined as in Theorem 5.3,

Z0 := tr(W0Σ(∆)−1
N ) ∼ N

(
0,E

[
tr
(
N

(∆)
1 N

(∆)>
1 Σ(∆)−1

N N
(∆)
1 N

(∆)>
1 Σ(∆)−1

N

)]
−m

)
,

and Zi := tr(WiΣ(∆)−1
N ) ∼ N (0,m) , i ∈ N,

hold by properties T2.4, T3.4 and T3.8 of Brewer (1978). By the Karhunen-Loève
expansion,

√
2
∞∑
h=1

sin(πhx)
hπ

Nh, Nh
iid∼ N (0, 1),

is a Brownian bridge on [0, 1]. Therefore, the process (G(x))x∈[−π,π] with

G(x) = x+ π√
m

Z0 +
∞∑
h=1

2 sin(hx)
h
√
m

Zh, x ∈ [−π, π],

is a centered Gaussian process with covariance function

ΣG(s, t) = Var(Z0)(t+ π)(s+ π)
m

+ 2 (s(sign(t)π − t)) , 0 ≤ |s| ≤ |t|.

Accordingly, the limit processes have the representations

sup
x∈[−π,π]

|G(x)| and
∫ π

−π
G(x)2dx,

respectively. In case of the Brownian motion driven MCAR(1) process, Z0 ∼ N (0, 2m),
which implies that the limit distributions are independent of parameters of A.

b) Several spectral goodness-of-fit tests were already investigated for ARMA processes.
By Section 6.2.6 of Priestley (1981), the limit distribution of the Grenander-Rosenblatt
statistic for ARMA processes with normally distributed white noise is similar to
ours. In contrast, the convergence rate and limit distributions of the goodness-of-fit
statistics of Corollary 5.6 differ from ours when the ARMA process is assumed to
be α-stable. It should be noted, that the term corresponding to W0 vanishes in that
case, see Section 4 of Klüppelberg and Mikosch (1996).
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5.3. Proof of Theorem 5.3

We now prove Theorem 5.3. As a first step, we prove a central limit theorem like Theorem 5.3
but with (Y (∆)

k )k∈Z replaced by the white noise sequence (N (∆)
k )k∈Z as introduced in

Theorem 2.5 and adapted sets of index functions. Then, we show that the error which
occurs by approximating the original process by the white noise process is sufficiently small.

5.3.1. The functional central limit theorem for the white noise
process

We introduce the assumptions concerning the function-indexed periodogram of the white
noise process which correspond to those of Assumption C.

Assumption N.
Assume that GN is permissible. Either of the following conditions hold:

(N1) Define for some s > 1/2

GN := GsN := {g ∈ HN : ‖g‖GsN <∞}

where
‖g‖2GsN :=

∑
`∈Z

(1 + |`|)2s‖ĝ`‖2.

(N2) Assume that the set GN satisfies supg∈GN ‖g‖N < ∞. For f, g ∈ GN and j ∈ N we
define

dj(f, g) = j‖f̂j − ĝj‖

and thereby
d(k)(f, g) = sup

2k≤j<2k+1
dj(f, g).

Then, let for some β ∈ (0, 2) the covering number N(ε,GN , d(k)) satisfy

N(ε,GN , d(k)) ≤ C(1 + (2k/ε)β), ∀ε ∈ (0, 1), k ∈ N0.

(N3) Suppose that the driving process (Lt)t∈R satisfies E‖L1‖j ≤ Kj for some K > 0 and
j ∈ N. Furthermore, let (GN , dN ) be pointwise bounded and totally bounded with

∫ 1

0
log(N(ε,GN , dN ))2dε <∞.

Finally, assume that there exists g̃ ∈ GN with ‖g(x)‖ ≤ ‖g̃(x)‖ for all g ∈ GN .

For the white noise process, we consider a setting which is more general. Namely, under
(N2) and (N3), we investigate a multivariate process in the space (C(GN ), ‖ · ‖N,∞) where
C(GN ) is the space of complex-valued N ×N -dimensional continuous functions on GN and
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‖ · ‖N,∞ is defined by
‖F‖N,∞ = sup

g∈GN
‖F (g)‖.

In the same way, the space (C(Gm), ‖ · ‖m,∞) is defined. Under the condition (N1), we
again consider weak convergence in a linear space. Therefore, we define

Gs′N = {F : GsN → CN×N | F linear } with ‖F‖Gs′N = sup
g∈GsN
‖g‖Gs

N
≤1

‖F (g)‖.

Theorem 5.8.
Let Assumption L3 and N hold. Define

En,N (g) :=
√
n

∫ π

−π
g(ω)

(
In,N (ω)− 1

2πΣ(∆)
N

)
dω.

Then, if (N2) or (N3) hold,

En,N
D−→ EN in (C(GN ), ‖ · ‖N,∞),

whereas, under (N1) the process converges in (G′N‖ · ‖Gs′N ). The process EN is defined by

EN (g) = 1
2π

∫ π

−π
g(ω)W0dω +

∞∑
h=1

1
2π

∫ π

−π
g(ω)Whe

−ihω + g(ω)W>h eihωdω

with Wi, i ∈ N0, as in Theorem 5.3.

It is well known, that a sequence of probability measures in some Banach space converges
weakly if it is tight in the weak topology and if the finite dimensional distributions
converge. Therefore, we first prove the convergence in distribution of the finite dimensional
distributions of En,N under the conditions of Theorem 5.8.

Convergence of the finite dimensional distributions

Lemma 5.9.
Let Assumption N hold and E‖L1‖4 <∞. Then, for all k ∈ N, g1, . . . , gk ∈ GN

(En,N (g1), . . . , En,N (gk))
D−→ (EN (g1), . . . , EN (gk)).

Proof. By construction, GN is a linear space. Therefore, for fixed k ∈ N, g1, . . . , gk ∈ GN
and c1 . . . , ck in R, c1g1 + . . .+ ckgk ∈ GN . By Cramér-Wold, it is sufficient to prove

En,N (g) D−→ EN (g)
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for fixed g ∈ GN . Note that∥∥∥∥√n ∫ π

−π
g(ω)

(
In,N (ω)− 1

2πΣ(∆)
N

)
dω

∥∥∥∥
=

∥∥∥∥∥∥√n
∫ π

−π

∑
`∈Z

ĝ`e
iω`

 1
2πn

n∑
j,k=1

N
(∆)
j N

(∆)>
k e−iω(j−k) − 1

2πΣ(∆)
N

 dω
∥∥∥∥∥∥

=

∥∥∥∥∥∥ 1√
n

n∑
j,k=1

ĝj−kN
(∆)
j N

(∆)>
k −

√
nĝ0Σ(∆)

N

∥∥∥∥∥∥
=

∥∥∥∥∥∥ 1√
n

n∑
k=1

n−k∑
c=1−k

ĝcN
(∆)
c+kN

(∆)>
k −

√
nĝ0Σ(∆)

N

∥∥∥∥∥∥
=

∥∥∥∥∥ 1√
n

n−1∑
c=1

n−c∑
k=1

ĝcN
(∆)
c+kN

(∆)>
k + 1√

n

n∑
k=1

ĝ0
(
N

(∆)
k N

(∆)>
k − Σ(∆)

N

)

+ 1√
n

−1∑
c=1−n

n∑
k=1−c

ĝcN
(∆)
c+kN

(∆)>
k

∥∥∥∥∥∥
=

∥∥∥∥∥∥√n
n−1∑
c=1−n

ĝc
(
Γn,N (c)− E[Γn,N (c)]

)∥∥∥∥∥∥ . (5.3)

Therefore,

En,N (g) =
√
nĝ0(Γn,N (0)− Σ(∆)

N ) +
√
n

(
n−1∑
h=1

ĝhΓn,N (h) + ĝ−hΓn,N (h)>
)

holds. We fix an upper bound for h, say M , to apply Lemma 2.16. Thus, we have

√
nĝ0(Γn,N (0)− Σ(∆)

N ) +
√
n

M∑
h=1

(
ĝhΓn,N (h) + ĝ−hΓn,N (h)>

)
D−→ ĝ0W0 +

M∑
h=1

(
ĝhWh + ĝ−hW

>
h

)
,

where Wj , j = 0, . . . , h, are the Gaussian random matrices as defined in Theorem 5.8. In
view of Proposition 6.3.9 of Brockwell and Davis (1991), it remains to prove

lim
M→∞

lim sup
n→∞

P

∥∥∥∥∥∥√n
n−1∑

h=M+1
ĝhΓn,N (h) + ĝ−hΓn,N (h)>

∥∥∥∥∥∥ > ε

 = 0. (5.4)

Tschebycheffs inequality leads to

P

∥∥∥∥∥∥√n
n−1∑

h=M+1
ĝhΓn,N (h) + ĝ−hΓn,N (h)>

∥∥∥∥∥∥ > ε


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≤ n

ε2E


∥∥∥∥∥∥

n−1∑
h=M+1

ĝhΓn,N (h) + ĝ−hΓn,N (h)>
∥∥∥∥∥∥

2
 .

Since (N (∆)
k )k∈Z is i.i.d., Γn,N (h) and Γn,N (j) are uncorrelated for h 6= j. We therefore get

E


∥∥∥∥∥∥

n−1∑
h=M+1

(
ĝhΓn,N (h) + ĝ−h

)
Γn,N (h)>

∥∥∥∥∥∥
2


=
n−1∑

h=M+1
E
[∥∥∥ĝhΓn,N (h) + ĝ−hΓn,N (h)>

∥∥∥2
]

≤ 2
n−1∑

h=M+1

(
‖ĝh‖2 + ‖ĝ>−h‖2

)
E
[
‖Γn,N (h)‖2

]
.

We obtain

E
[
n‖Γn,N (h)‖2

]
= 1
n

N∑
s,t=1

n−h∑
k,`=1

E
[
N

(∆)
k+hN

(∆)>
k N

(∆)
`+hN

(∆)>
` [s, t]

]
≤ n− h

n
K, (5.5)

where K is a constant which is independent of h. On the other hand, Parsevals equality
yields for s, t ∈ {1, . . . , N}

∑
h∈Z
|ĝh[s, t]|2 =

∫ π

−π
|g(x)[s, t]|2dx.

Since
∫ π
−π ‖g(x)‖2dx <∞ due to g ∈ HN the proof is completed.

Tightness

To prove Theorem 5.8 it remains to show the tightness of (En,N )n∈N under the different
conditions. We do separate investigations for (N1), (N2) and (N3), respectively. For the
set (N1) we make use of Proposition 2.2 of Bharucha-Reid and Römisch (1985) which
gives a criterion for proving the tightness. Therefore, we need the definitions of uniform
boundedness and flat concentration of a sequence of measures (Pn)n∈N on a separable
Banach space (S, d). By Definition 2.1 of Bharucha-Reid and Römisch (1985) (Pn)n∈N is
called uniformly bounded iff for all ε > 0 there exists a constant K(ε) with

inf
n∈N

Pn({x ∈ S | ‖x‖ ≤ K(ε)}) ≥ 1− ε.

The sequence of measures (Pn)n∈N is called flatly concentrated iff for all ε, δ > 0 there
exists a finite-dimensional subspace L ⊂ S with

inf
n∈N

Pn({x ∈ S | d(x, L) ≤ δ}) ≥ 1− ε.
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Proposition 5.10 (Proposition 2.2 of Bharucha-Reid and Römisch (1985)).
Let S be a separable Banach space and P(S) the set of all probability measures on (S,B(S)).
A sequence (Pn)n∈N ∈ P(S) is tight if and only if (Pn)n∈N is uniformly bounded and flatly
concentrated.

Following the ideas of Bardet et al. (2008), we now show the tightness in the space
(Gs′N , ‖ · ‖Gs′N ).

Lemma 5.11.
Suppose (N1) holds. Then, the sequence (En,N )n∈N is tight in (G′N‖ · ‖Gs′N ).

Proof. In view of Proposition 5.10, we show that (PEn,N )n∈N is uniformly bounded and
flatly concentrated. For the uniform boundedness we have to prove that for every ε > 0
there exists some K = K(ε) such that

inf
n∈N

P(‖En,N‖Gs′N ≤ K) ≥ 1− ε. (5.6)

Note that by representation (5.3) the equivalences

‖En,N‖Gs′N ≤ K ⇐⇒ sup
g∈GsN
‖g‖Gs

N
≤1

‖En,N (g)‖ ≤ K

⇐⇒ sup
g∈GsN
‖g‖Gs

N
≤1

∥∥∥∥√n ∫ π

−π
g(ω)

(
In,N (ω)− 1

2πΣ(∆)
N

)
dω

∥∥∥∥ ≤ K

⇐⇒ sup
g∈GsN
‖g‖Gs

N
≤1

∥∥∥∥∥∥√n
n−1∑

h=1−n
ĝh
(
Γn,N (h)− E[Γn,N (h)]

)∥∥∥∥∥∥ ≤ K

hold. An application of the Cauchy-Schwarz inequality yields for g with ‖g‖GsN ≤ 1

∥∥∥∥∥∥√n
n−1∑

h=1−n
ĝh
(
Γn,N (h)− E[Γn,N (h)]

)∥∥∥∥∥∥
≤
√
nC

n−1∑
h=1−n

‖ĝh‖ (1 + |h|)s
∥∥∥Γn,N (h)− E[Γn,N (h)]

∥∥∥ (1 + |h|)−s

≤ C

√√√√n n−1∑
h=1−n

∥∥∥Γn,N (h)− E[Γn,N (h)]
∥∥∥2

(1 + |h|)−2s,

so that by Tschebycheffs inequality and
∑
h∈Z(1 + |h|)−2s ≤ C,

P

 sup
g∈GsN
‖g‖Gs

N
≤1

‖En,N (g)‖ ≤ K

 ≥ 1− P

 sup
g∈GsN
‖g‖Gs

N
≤1

‖En,N (g)‖ > K


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≥ 1−
C suph∈Z nE

[∥∥∥Γn,N (h)− E
[
Γn,N (h)

]∥∥∥2
]

K2 ,

holds. Since

sup
h∈Z

nE
[∥∥∥Γn,N (h)− E

[
Γn,N (h)

]∥∥∥2
]
≤ C

see (2.17), we find a K such that (5.6) is satisfied.
For the flat concentration, we have to show that for every ε > 0 and every δ > 0 there
exists a finite-dimensional subspace L ⊂ Gs′N such that

inf
n∈N

P(dGs′N (En,N , L) ≤ δ}) ≥ 1− ε.

By Markov’s inequality

P
(
dGs′N (En,N , L) ≤ δ}

)
≥ 1−

E[dGs′N (En,N , L)]
δ

.

Since
E[dGs′N (En,N , L)] = E

[
inf
P∈L
‖En,N − P‖Gs′N

]
= E ‖PrL⊥(En,N )‖GS′N ,

where PrL⊥ is the orthogonal projection onto L⊥, we prove that E ‖PrL⊥(En,N )‖GS′N can
be made arbitrary small by choosing L appropriately. Therefore, we choose a sequence
Lk ⊂ Gs′N with

E
∥∥∥PrL⊥

k
(En,N )

∥∥∥
Gs′N

= E

 sup
g∈GsN
‖g‖Gs

N
≤1

‖PrL⊥
k

(En,N )(g)‖

 k→∞−→ 0. (5.7)

For k ∈ N we define Lk as the linear subspace generated by (e`)|`|≤k where e` is defined by
e`(g) = ĝ`. For (5.7), it is sufficient to show that

E

 sup
g∈GsN , ‖g‖GsN

≤1

ĝj=0,|j|≤k

‖En,N (g)‖2

 k→∞−→ 0.

We use representation (5.3) and the ideas above and obtain

sup
g∈GsN , ‖g‖GsN

≤1

ĝj=0,|j|≤k

‖EN,n(g)‖2 = sup
g∈GsN , ‖g‖GsN

≤1

ĝj=0,|j|≤k

∥∥∥∥∥∥√n
∑

n>|h|>k
ĝh
(
Γn,N (h)− E[Γn,N (h)]

)∥∥∥∥∥∥
2

≤ nC
∑

n>|h|>k

∥∥∥Γn,N (h)− E[Γn,N (h)]
∥∥∥2

(1 + |h|)−2s.
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Property (2.17) and
∑
|h|>k(1 + |h|)−2s k→∞−→ 0 yield the assertion.

Lemma 5.12.
Let Assumption (N2) hold. Then, (En,N )n∈N is tight in (C(GN ), ‖ · ‖N,∞).

Proof. By representation (5.3), we have to prove that for every ε > 0 there exists some
constant K > 0 such that

P

 sup
g∈GN

∥∥∥∥∥∥√n
n−1∑

h=1−n
ĝh
(
Γn,N (h)− E[Γn,N (h)]

)∥∥∥∥∥∥ > K

 ≤ ε ∀n ∈ N.

We prove some stronger condition. Namely, we show that for every ε, δ > 0 there exist M ,
ε1, ε2 > 0 with ε1 + ε2 ≤ ε and K > 0 such that

P

 sup
g∈GN

∥∥∥∥∥∥√n
M−1∑

h=−M+1
ĝh
(
Γn,N (h)− E[Γn,N (h)]

)∥∥∥∥∥∥ > K

 ≤ ε1

and P

 sup
g∈GN

∥∥∥∥∥∥√n
∑

M≤|h|≤n−1
ĝh
(
Γn,N (h)− E[Γn,N (h)]

)∥∥∥∥∥∥ > δ

 < ε2 ∀n ∈ N.

Note that for fixed M ∈ N, we have by the Cauchy-Schwarz inequality

sup
g∈GN

∥∥∥∥∥∥√n
M−1∑

h=−M+1
ĝh
(
Γn,N (h)− E[Γn,N (h)]

)∥∥∥∥∥∥
2

≤ sup
g∈GN

 M−1∑
h=−M+1

‖ĝh‖2
 M−1∑

h=−M+1

∥∥∥√n (Γn,N (h)− E[Γn,N (h)]
)∥∥∥2

 .
Since Lemma 2.16 implies the tightness of

(∑M−1
h=−M+1

∥∥∥√n(Γn,N (h)− E[Γn,N (h)])
∥∥∥2
)
n∈N

,

we obtain for ε > 0

P

 sup
g∈GN

∥∥∥∥∥∥√n
M−1∑

h=−M+1
ĝh
(
Γn,N (h)− E[Γn,N ]

)∥∥∥∥∥∥ ≤ K
 ≥ 1− ε ∀n ∈ N

for fixed M and some K > 0. Therefore, it suffices to show

lim
M→∞

lim sup
n→∞

P

 sup
g∈GN

∥∥∥∥∥∥
∑

n−1≥|h|≥M
ĝhΓn,N (h)

∥∥∥∥∥∥ > δ

 = 0 ∀δ > 0 (5.8)

to prove the tightness of (En,N )n∈N. Since

P

 sup
g∈GN

∥∥∥∥∥∥
∑

n−1≥|h|≥M
ĝhΓn,N (h)

∥∥∥∥∥∥ > ε

 ≤ P
(

sup
g∈GN

∥∥∥∥∥
n−1∑
h=M

ĝhΓn,N (h)
∥∥∥∥∥ > ε

2

)
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+ P

 sup
g∈GN

∥∥∥∥∥∥
−M∑

h=−n+1
ĝhΓn,N (h)

∥∥∥∥∥∥ > ε

2

 ,
we prove

lim
M→∞

lim sup
n→∞

P
(

sup
g∈GN

∥∥∥∥∥
n−1∑
h=M

ĝhΓn,N (h)
∥∥∥∥∥ > ε

)
= 0 ∀ε > 0.

The convergence

lim
M→∞

lim sup
n→∞

P

 sup
g∈GN

∥∥∥∥∥∥
−M∑

h=−n+1
ĝhΓn,N (h)

∥∥∥∥∥∥ > ε

 = 0 ∀ε > 0

can be shown in the same way. As in the proof of Theorem 3.7 of Can et al. (2010), we
assume that n and M are of the forms M = 2a, n = 2b+1 for some a < b to ease the
notation. We have

P
(

sup
g∈GN

∥∥∥∥∥
n−1∑
h=M

ĝhΓn,N (h)
∥∥∥∥∥ > ε

)
≤

b∑
k=a

P

 sup
g∈GN

∥∥∥∥∥∥
2k+1−1∑
h=2k

ĝhΓn,N (h)

∥∥∥∥∥∥ > εk

 (5.9)

where εk = 2−θk for some θ > 0 with ε/(b− a+ 1) > 2−θ. For k ≥ 0, let (εk,`)k∈N,`≥0 be
the array of positive numbers defined by εk,` = 2−γ1`−γ2k for γ1 >

2
2−β and 1 + γ2 >

1+2θ
2−β .

Then, for k ∈ N0, let u := uk,0 := N(εk,0,GN , d
(k)
N ) and g(1), . . . , g(u) ∈ GN with

sup
g∈GN

min
j=1,...,u

d
(k)
N (g, g(j)) < εk,0.

We have

P

 sup
g∈GN

∥∥∥∥∥∥
2k+1−1∑
h=2k

ĝhΓn,N (h)

∥∥∥∥∥∥ > εk


≤ P

 sup
g∈GN

min
j=1,...,u

∥∥∥∥∥∥
2k+1−1∑
h=2k

(
ĝh − g(j)
∧

h

)
Γn,N (h)

∥∥∥∥∥∥ > εk
2


+P

 max
j=1,...,u

∥∥∥∥∥∥
2k+1−1∑
h=2k

g(j)
∧

hΓn,N (h)

∥∥∥∥∥∥ > εk
2


≤ P

 sup
g∈GN

min
j=1,...,u

∥∥∥∥∥∥
2k+1−1∑
h=2k

(
ĝh − g(j)
∧

h

)
Γn,N (h)

∥∥∥∥∥∥ > εk
2


+

u∑
j=1

P

∥∥∥∥∥∥
2k+1−1∑
h=2k

g(j)
∧

hΓn,N (h)

∥∥∥∥∥∥ > εk
2



≤ P

 sup
g∈GN

d
(k)
N (f,g)≤εk,0

∥∥∥∥∥∥
2k+1−1∑
h=2k

(
ĝh − f̂h

)
Γn,N (h)

∥∥∥∥∥∥ > εk
2


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+u sup
g∈GN

P

∥∥∥∥∥∥
2k+1−1∑
h=2k

ĝhΓn,N (h)

∥∥∥∥∥∥ > εk
2

 .
By induction and since for fixed n ∈ N

P

 sup
g∈GN

d
(k)
N (f,g)≤εk,`

∥∥∥∥∥∥
2k+1−1∑
h=2k

(
ĝh − f̂h

)
Γn,N (h)

∥∥∥∥∥∥ > εk
2`+1



≤ P

 sup
g∈GN

d
(k)
N (f,g)≤εk,`

2k+1−1∑
h=2k

∥∥∥Γn,N (h)
∥∥∥ ∥∥∥ĝh − f̂h∥∥∥ > εk

2`+1


≤ E

 1
2k

2k+1−1∑
h=2k

∥∥∥Γn,N (h)
∥∥∥
 εk,`
εk

2`+1 `→∞−→ 0,

we obtain

P

 sup
g∈GN

∥∥∥∥∥∥
2k+1−1∑
h=2k

ĝhΓn,N (h)

∥∥∥∥∥∥ > εk


≤ N(εk,0,GN , d

(k)
N ) sup

g∈GN
P

∥∥∥∥∥∥
2k+1−1∑
h=2k

ĝhΓn,N (h)

∥∥∥∥∥∥ > εk
2


+

∞∑
`=1

N(εk,`,GN , d
(k)
N ) sup

f,g∈GN
d

(k)
N (f,g)≤εk,`−1

P

∥∥∥∥∥∥
2k+1−1∑
h=2k

(
f̂h − ĝh

)
Γn,N (h)

∥∥∥∥∥∥ > εk
2`+1

 .(5.10)

The first term on the right hand-side can be treated similar to (5.4). For the sum, note
that Tschbeycheffs inequality and the independence of (N (∆)

j )j∈Z yield for k ∈ N0

∞∑
`=1

N(εk,`,GN , d
(k)
N ) sup

f,g∈GN
d

(k)
N (f,g)≤εk,`−1

P

∥∥∥∥∥∥
2k+1−1∑
h=2k

(
f̂h − ĝh

)
Γn,N (h)

∥∥∥∥∥∥ > εk
2`+1



≤
∞∑
`=1

N(εk,`,GN , d
(k)
N ) sup

f,g∈GN
d

(k)
N (f,g)≤εk,`−1

22`+2

ε2
k

2k+1−1∑
h=2k

E
[∥∥∥Γn,N (h)

∥∥∥2
] ∥∥∥f̂h − ĝh∥∥∥2

≤ C
∞∑
`=1

N(εk,`,GN , d
(k)
N )22`+2

ε2
k

2k+1−1∑
h=2k

ε2
k,`−1
h2

≤ C
∞∑
`=1

N(εk,`,GN , d
(k)
N )22`+2

ε2
k

1
2k ε

2
k,`−1. (5.11)
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Then, (5.9)-(5.11), Assumption (N2) and εk = 2−Θk give

P
(

sup
g∈GN

∥∥∥∥∥
n−1∑
h=M

ĝhΓn,N (h)
∥∥∥∥∥ > ε

)

≤
b∑

k=a

∞∑
`=1

N(εk,`,GN , d
(k)
N ) sup

f,g∈GN
d

(k)
N (f,g)≤εk,`−1

P

∥∥∥∥∥∥
2k+1−1∑
h=2k

(
f̂h − ĝh

)
Γn,N (h)

∥∥∥∥∥∥ > εk
2`+1



≤ C
b∑

k=a

∞∑
`=1

N(εk,`,GN , d
(k)
N )22`+2

ε2
k

1
2k ε

2
k,`−1

≤ C
b∑

k=a

∞∑
`=1

1 + 2kβ

εβk,`

 22`+2

ε2
k

1
2k ε

2
k,`−1

≤ C

 b∑
k=a

2−k+2Θk
∞∑
`=1

22`+2ε2
k,`−1 +

b∑
k=a

2−k+2Θk+kβ
∞∑
`=1

22`+2 ε
2
k,`−1

εβk,`

 .
Taking the limits yields

lim
a→∞

lim
b→∞

 b∑
k=a

2−k+2Θk
∞∑
`=1

22`+2ε2
k,`−1 +

b∑
k=a

2−k+2Θk+kβ
∞∑
`=1

22`+2 ε
2
k,`−1

εβk,`


= lim
a→∞

lim
b→∞

(
b∑

k=a
2−k+2Θk

∞∑
`=1

22`+22−2γ1(`−1)2−2γ2k

+
b∑

k=a
2−k+2Θk+kβ

∞∑
`=1

22`+2 2−2γ1(`−1)2−2γ2k

2−βγ1`2−βγ2k

)

= lim
a→∞

lim
b→∞

(
b∑

k=a
2−k+2Θk−2γ2k

∞∑
`=1

22`+2−2γ1(`−1)

+
b∑

k=a
2−k+2Θk+kβ−2γ2k+βγ2k

∞∑
`=1

22`+2 2−2γ1(`−1)

2−βγ1`

)
=0,

which completes the proof.

Lemma 5.13.
Let Assumption (N3) hold. Then, (En,N )n∈N is tight in (C(GN ), ‖ · ‖N,∞).

Proof. The assertion follows from Theorem 2.5 of Dahlhaus (1988). Note that by

∫ 1

0
log(N(ε,Gm, dm)2/ε)2dε <∞

⇐⇒
∫ 1

0
4 log(N(ε,Gm, dm))2 − 4 log(ε) log(N(ε,Gm, dm)) + log(ε)2dε <∞

⇐⇒
∫ 1

0
log(N(ε,Gm, dm))2dε <∞
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our entropy condition is equivalent to the entropy condition therein. Thereby, the second
equivalence follows from

∫ 1
0 log(ε)2dε = 2 and the Cauchy-Schwarz inequality. Furthermore,

Lemma 2.2 of Dahlhaus (1988) can be proven similar to Lemma 5.7 (ii) of Dahlhaus and
Polonik (2009). Therefore, the cumulant spectra assumption of Dahlhaus (1988) can be
exchanged by E[‖N (∆)

1 ‖k] < K̃k where K̃ > 0. Due to E[‖L1‖k] ≤ Kk, this follows in the
same way as in Lemma 3.15 of Schlemm and Stelzer (2012b).

Theorem 5.8 now follows from Lemma 5.9, Lemma 5.11, Lemma 5.12 and Lemma 5.13.

5.3.2. Proof of Theorem 5.3

To deduce Theorem 5.3 from Theorem 5.8, we have to check that the error which is made by
approximating the periodogram of the sampled process by the periodogram of the sampled
white noise is sufficiently small. For g ∈ Gm, we define

En,R(g) :=
√
n

∫ π

−π
g(ω)

(
In,Y (ω)− Φ(e−iω)In,N (ω)Φ(eiω)>

)
dω.

In the following, we can interchange summation, integration and taking the expectation
since all the necessary integrals and expectations exist. Therefore, we do so without further
references.

Lemma 5.14.
Let the assumptions of Theorem 5.3 hold. Then, under (C1), En,R

P−→ 0 in (Gs′m, ‖ · ‖Gs′m).
Under (C2) or (C3), En,R

P−→ 0 in (C(Gm), ‖ · ‖m,∞) holds.

Proof. Define Rn(ω) = In,Y (ω)− Φ(e−iω)In,N (ω)Φ(eiω)> for ω ∈ [−π, π]. We get

Rn(ω) = 1
2πn

(
n∑
k=1

∞∑
r=0

ΦrN
(∆)
k−r

)(
n∑
`=1

∞∑
t=0

ΦtN
(∆)
`−t

)>
e−i(k−`)ω

− 1
2πn

(
n∑
k=1

∞∑
r=0

ΦrN
(∆)
k

)(
n∑
`=1

∞∑
t=0

ΦtN
(∆)
`

)>
e−i(k+r−`−t)ωj

= 1
2πn

 ∞∑
r=0

∞∑
t=0

Φr

 0∑
k=1−r

0∑
`=1−t

−
n∑
k=1

n∑
`=n−t+1

+
0∑

k=1−r

n∑
`=1
−

0∑
k=1−r

n∑
`=n−t+1

+
n∑

k=n−r+1

n∑
`=n−t+1

−
n∑

k=n−r+1

n∑
`=1

+
n∑
k=1

0∑
`=1−t

−
n∑

k=n−r+1

0∑
`=1−t


N

(∆)
k N

(∆)>
` e−i(k+r−`−t)ωΦ>t

)
=:

8∑
i=1

R(i)
n (ω).

Thus, we show that

sup
g∈Gm

∥∥∥∥√n ∫ π

−π
g(ω)R(i)

n (ω)dω
∥∥∥∥ P−→ 0 and
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sup
g∈Gsm
‖g‖Gsm≤1

∥∥∥∥√n ∫ π

−π
g(ω)R(i)

n (ω)dω
∥∥∥∥ P−→ 0, i = 1, . . . , 8,

respectively, hold depending on the imposed conditions. By symmetry, the proofs for
i = 6, 7, 8 are the same as those for i = 2, 3, 4 respectively. Note that the proofs for i = 4, 5
are based on the same ideas as the one for i = 1 and the case i = 3 goes very similar to the
case of i = 2. Consequently, we only investigate the terms corresponding to i = 1, 2.
As a first step we consider the case i = 1 which can be shown for either set of conditions in
the same way:

sup
g∈Gm

∥∥∥∥√n ∫ π

−π
g(ω)R(1)

n (ω)dω
∥∥∥∥

= sup
g∈Gm

∥∥∥∥∥∥ 1√
n

∫ π

−π

1
2π

∞∑
r=0

∞∑
t=0

0∑
k=1−r

0∑
`=1−t

∞∑
u=−∞

ĝuΦrN
(∆)
k N

(∆)>
` Φ>t e−iω(k+r−`−t−u)dω

∥∥∥∥∥∥
= sup

g∈Gm

∥∥∥∥∥∥ 1√
n

∞∑
r=0

∞∑
t=0

0∑
`=1−t

−`−t+r∑
u=−`−t+1

ĝuΦrN
(∆)
`+t+u−rN

(∆)>
` Φ>t

∥∥∥∥∥∥
= sup

g∈Gm

∥∥∥∥∥∥ 1√
n

∞∑
r=0

∞∑
t=0

0∑
`=1−t

r∑
u=1

ĝu−`−tΦrN
(∆)
u−rN

(∆)>
` Φ>t

∥∥∥∥∥∥
≤ sup

g∈Gm

1√
n

∞∑
r=0

∞∑
t=0

0∑
`=1−t

r∑
u=1
‖Φr‖‖N (∆)

u−r‖‖N
(∆)
` ‖‖Φt‖‖ĝu−`−t‖

≤ sup
g∈Gm

1√
n

∞∑
r=0

∞∑
t=0

r∑
u=1
‖Φr‖‖Φt‖‖N (∆)

u−r‖

√√√√ 0∑
`1=1−t

‖N (∆)
`1
‖2

0∑
`2=1−t

‖ĝu−`2−t‖2

≤ C√
n

∞∑
r=0
‖Φr‖(r + 1)

∞∑
t=0

√
t+ 1‖Φt‖

 1
1 + r

0∑
u=1−r

‖N (∆)
u ‖

√√√√ 1
t+ 1

0∑
`1=1−t

‖N (∆)
`1
‖2

P−→ 0, as n→∞.

Thereby, we used the assumption supg∈Gm ‖g‖
2
m <∞ along with

∑∞
r=0(1 + r)‖Φr‖ <∞,

see (2.10), and the strong law of large numbers, in particular

1
1 + r

0∑
u=1−r

‖N (∆)
u ‖ a.s.→ E‖N (∆)

1 ‖.

Next, we investigate i = 2.
Case 1: Under (C1), we again only consider appropriately normalized functions, i.e., we
prove ‖

√
n
∫ π
−π ·R

(2)
n (ω)dω‖Gs′m

P−→ 0. The Cauchy-Schwarz inequality yields

‖
√
n

∫ π

−π
·R(2)

n (ω)dω‖Gs′m
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= sup
g∈Gsm
‖g‖Gsm≤1

∥∥∥∥√n ∫ π

−π
g(ω)R(2)

n (ω)dω
∥∥∥∥

= sup
g∈Gsm
‖g‖Gsm≤1

∥∥∥∥∥∥ 1√
n

∫ π

−π

1
2π

∞∑
r=0

∞∑
t=0

n∑
k=1

n∑
`=n+1−t

∞∑
u=−∞

ĝuΦrN
(∆)
k N

(∆)>
` Φ>t e−iω(k+r−`−t−u)dω

∥∥∥∥∥∥
= sup

g∈Gsm
‖g‖Gsm≤1

∥∥∥∥∥∥ 1√
n

∞∑
t=0

n∑
`=n+1−t

∞∑
r=0

n+r−t−`∑
u=1+r−t−`

ĝuΦrN
(∆)
`+t+u−rN

(∆)>
` Φ>t

∥∥∥∥∥∥
= sup

g∈Gsm
‖g‖Gsm≤1

∥∥∥∥∥∥ 1√
n

∞∑
t=0

n∑
`=n+1−t

n−`−t∑
u=1−`−t

∞∑
r=0

ĝu+rΦrN
(∆)
`+u+tN

(∆)>
` Φ>t

∥∥∥∥∥∥
≤ sup

g∈Gsm
‖g‖Gsm≤1

1√
n

∞∑
t=0

n∑
`=n+1−t

n−`−t∑
u=1−`−t

∥∥∥∥∥
∞∑
r=0

ĝu+rΦrN
(∆)
`+u+tN

(∆)>
` Φ>t

∥∥∥∥∥
≤ sup

g∈Gsm
‖g‖Gsm≤1

∞∑
t=0

n∑
`=n+1−t

1√
n

 n−`−t∑
u1=1−`−t

(1 + |u1|)2s
∥∥∥∥∥
∞∑
r=0

ĝu1+rΦr

∥∥∥∥∥
2
1/2

 n−`−t∑
u2=1−`−t

(1 + |u2|)−2s
∥∥∥N (∆)

`+u2+tN
(∆)>
` Φ>t

∥∥∥2
1/2

≤ sup
g∈Gsm
‖g‖Gsm≤1

∞∑
t=0

n∑
`=n+1−t

1√
n

 ∞∑
u1=−∞

(1 + |u1|)2s
∥∥∥∥∥
∞∑
r=0

ĝu1+rΦr

∥∥∥∥∥
2
1/2

 n−`−t∑
u2=1−`−t

(1 + |u2|)−2s
∥∥∥N (∆)

`+u2+tN
(∆)>
` Φ>t

∥∥∥2
1/2

≤
∞∑
t=0

n∑
`=n+1−t

 1
n

n−`−t∑
u2=1−`−t

(1 + |u2|)−2s
∥∥∥N (∆)

`+u2+tN
(∆)>
` Φ>t

∥∥∥2
1/2

≤ 1√
n

max
k=1,...,n

‖N (∆)
k ‖

∞∑
t=0
‖Φt‖

0∑
`=1−t

‖N (∆)
` ‖

 n−`−t∑
u2=1−`−t

(1 + |u2|)−2s

1/2

,

where we used that

‖g‖2Gsm =
∑
u∈Z

(1 + |u|)2s
∥∥∥∥∥
∞∑
t=0

ĝu+tΦt

∥∥∥∥∥
2

≤ 1.

Therefore, since
∑∞
u2=−∞(1+|u2|)−2s <∞,

∑∞
t=0 ‖Φt‖|t| <∞, 1

t

∑n
`=n+1−t ‖N

(∆)
` ‖ = OP(1)

and

P
(

1√
n

sup
k=1,...,n

‖N (∆)
k ‖ ≥ ε

)
≤ 1− (1− P(‖N (∆)

1 ‖ > ε
√
n)n
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≤ 1−
(

1− E[‖N (∆)
1 ‖4]

ε4n2

)n
n→∞−→ 0,

the second term converges as desired.
Case 2: Under (C2) and (C3), the space (Gm, ‖ ·‖m) is totally bounded. Therefore, we can
approximate the supremum over the potentially uncountable many functions in Gm by one
of finitely many functions. Namely, let δ > 0. Then, there exists v ∈ N and g1, . . . , gv ∈ Gm
such that supg∈Gm minj=1,...,v dm(g, gj) < δ. Therefore, for fixed δ > 0 and appropriately
chosen g1, . . . , gv, we can approximate the first error term by

sup
g∈Gm

∥∥∥∥√n ∫ π

−π
g(ω)R(2)

n (ω)dω
∥∥∥∥

=

∥∥∥∥∥∥
√
n

2π

∫ π

−π
g(ω)Φ(e−iω)

∞∑
t=0

n∑
k=1

n∑
`=n+1−t

N
(∆)
k N

(∆)>
` Φ>t e−i(k−`−t)ωdω

∥∥∥∥∥∥
≤ sup

g∈Gm
min

j=1,...,v

∥∥∥∥√n ∫ π

−π
(g(ω)− gj(ω))R(2)

n (ω)dω
∥∥∥∥+ max

j=1,...,v

∥∥∥∥√n ∫ π

−π
gj(ω)R(2)

n (ω)dω
∥∥∥∥

≤ sup
g∈Gm

min
j=1,...,v

√
n

∫ π

−π

∥∥∥R(2)
n (ω)

∥∥∥ ‖g(ω)− gj(ω)‖ dω + max
j=1,...,v

∥∥∥∥√n ∫ π

−π
gj(ω)R(2)

n (ω)dω
∥∥∥∥

≤
√
n

(∫ π

−π

∥∥∥R(2)
n (ω)

∥∥∥2
dω

)1/2
sup
g∈Gm

min
j=1,...,v

(∫ π

−π
‖g(ω)− gj(ω)‖2 dω

)1/2

+ max
j=1,...,v

∥∥∥∥√n ∫ π

−π
gj(ω)R(2)

n (ω)dω
∥∥∥∥

≤
√
δ

(
n

∫ π

−π

∥∥∥R(2)
n (ω)

∥∥∥2
dω

)1/2
+ max
j=1,...,v

∥∥∥∥√n ∫ π

−π
gj(ω)R(2)

n (ω)dω
∥∥∥∥ .

Since δ can be chosen arbitrary small, we have to prove

n

∫ π

−π
‖R(2)

n (ω)‖2dω = OP(1),
∥∥∥∥√n ∫ π

−π
g(ω)R(2)

n (ω)dω
∥∥∥∥ = oP(1) for any g ∈ Gm.

(5.12)

On the one hand, we have

E
[
n

∫ π

−π
‖R(2)

n (ω)‖2dω
]

=
N∑

S,T=1
E

n ∫ π

−π

1
4π2n2

∞∑
r1,r2=0

∞∑
t1,t2=0

n∑
k1,k2=1

0∑
`1=n+1−t1

n∑
`2=n+1−t2

Φr1N
(∆)
k1

N
(∆)>
`1

Φ>t1 [S, T ]Φr2N
(∆)
k2

N
(∆)>
`2

Φ>t2 [S, T ]eiω(k1+r1−`1−t1−k2−r2+`2+t2)dω
]

=
N∑

S,T=1

∫ π

−π

1
4π2n

∞∑
r1,r2=0

∞∑
t1,t2=0

n∑
k1,k2=1

n∑
`1=n+1−t1

0∑
`2=n+1−t2

Φr1E
[
N

(∆)
k1

N
(∆)>
`1

Φ>t1 [S, T ]Φr2N
(∆)
k2

N
(∆)>
`2

]
Φ>t2 [S, T ]eiω(k1+r1−`1−t1−k2−r2+`2+t2)dω
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=
N∑

S,T=1

∫ π

−π

1
4π2n

∞∑
r1,r2=0

∞∑
t1,t2=0

n∑
k=1

n∑
`=n+1−min{t1,t2}

Φr1E
[
N

(∆)
k N

(∆)>
`

Φ>t1 [S, T ]Φr2N
(∆)
k N

(∆)>
`

]
Φ>t2 [S, T ]eiω(r1−t1−r2+t2)dω

+
N∑

S,T=1

∫ π

−π

1
4π2n

∞∑
r1,r2=0

∞∑
t1,t2=0

n∑
k=max{1,n+1−t1}

n∑
`=max{1,n+1−t2},

` 6=k

Φr1E
[
N

(∆)
1 N

(∆)>
1

]

Φ>t1 [S, T ]Φr2E
[
N

(∆)
1 N

(∆)>
1

]
Φ>t2 [S, T ]eiω(r1−t1−r2+t2)dω

+
N∑

S,T=1

∫ π

−π

1
4π2n

∞∑
r1,r2=0

∞∑
t1,t2=0

n∑
k=max{1,n+1−t2}

n∑
`=max{1,n+1−t1},

` 6=k

Φr1E
[
N

(∆)
k N

(∆)>
`

Φ>t1 [S, T ]Φr2N
(∆)
` N

(∆)>
k

]
Φ>t2 [S, T ]eiω(2k−2`+r1−t1−r2+t2)dω

≤
N∑

S,T=1

1
2πn

( ∞∑
r=0
‖Φr‖

)2 ∞∑
t1,t2=0

(t1 + 1)‖Φt1‖(t2 + 1)‖Φt2‖

1
(t1 + 1)(t2 + 1)


n∑

`=n+1−min{t1,t2}

n∑
k=1

+2
n∑

k=max{1,n+1−t1}
`=max{1,n+1−t2},

`6=k

E
[
‖N (∆)

k ‖2‖N (∆)
` ‖2

]

≤ C.

On the other hand, we have∥∥∥∥√n ∫ π

−π
g(ω)R(2)

n (ω)dω
∥∥∥∥

≤

∥∥∥∥∥∥ 1
2π
√
n

∫ π

−π
g(ω)

n−1∑
t=0

n−t∑
k=1

n∑
`=1+n−t

Φ(e−iω)N (∆)
k N

(∆)>
` Φ>t e−iω(k−`−t)dω

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1
2π
√
n

∫ π

−π
g(ω)

n∑
t=0

n∑
k=n+1−t

n∑
`=1+n−t

Φ(e−iω)N (∆)
k N

(∆)>
` Φ>t e−iω(k−`−t)dω

∥∥∥∥∥∥
+

∥∥∥∥∥ 1
2π
√
n

∫ π

−π
g(ω)

∞∑
t=n+1

n∑
k=1

n∑
`=1

Φ(e−iω)N (∆)
k N

(∆)>
` Φ>t e−iω(k−`−t)dω

∥∥∥∥∥
=: R

(2)
n,1 +R

(2)
n,2 +R

(2)
n,3.

We investigate the terms separately. For the first one, the independency of (N (∆)
k )k∈Z, the

Cauchy-Schwarz inequality and (5.2) yield

E
[(
R

(2)
n,1

)2
]

= E

 1
4π2n

∥∥∥∥∥∥
∫ π

−π

n−1∑
k=1

n∑
`=1+k

n−k∑
t=1+n−`

g(ω)Φ(e−iω)N (∆)
k N

(∆)>
` Φ>t e−iω(k−`−t)

∥∥∥∥∥∥
2

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= 1
4π2n

n−1∑
k=1

n∑
`=1+k

E


∥∥∥∥∥∥
∫ π

−π

n−k∑
t=1+n−`

g(ω)Φ(e−iω)N (∆)
k N

(∆)>
` Φ>t e−iω(k−`−t)

∥∥∥∥∥∥
2


≤ C

n

n−1∑
k=1

n∑
`=1+k

 n−k∑
t1=1+n−`

‖Φt1‖2t21

 n−k∑
t2=1+n−`

t−2
2

∥∥∥∥∫ π

−π
g(ω)Φ(e−iω)e−iω(k−`−t2)dω

∥∥∥∥2


≤ C

n

n−1∑
k=1

n∑
`=1+k

 n−k∑
t1=1+n−`

‖Φt1‖2t21

 n−k∑
t2=1+n−`

t−2
2

∥∥∥∥∫ π

−π
g(ω)Φ(e−iω)e−iω(k−`−t2)dω

∥∥∥∥2


≤ C

n

n−1∑
k=1

n∑
`=1+k

 n−k∑
t1=1+n−`

‖Φt1‖2t21


 n−k+`∑
t2=1+n

(t2 − `)−2
∥∥∥∥∫ π

−π
g(ω)Φ(e−iω)e−iω(k−t2)dω

∥∥∥∥2


≤ C

n

n−1∑
k=1

n−k∑
t1=1

n∑
`=1+n−t1

‖Φt1‖2t21

 ∞∑
t2=1

t−2
2

∥∥∥∥∫ π

−π
g(ω)Φ(e−iω)e−iω(k−t2−n)dω

∥∥∥∥2


≤ C

n

( ∞∑
t=0
‖Φt‖2t3

) ∞∑
t=1

1
t2

∞∑
k=−∞

∥∥∥(g(·)Φ(e−i·)
)∧
k

∥∥∥2

≤ C

n
. (5.13)

For the second one, consider

E
[(
R

(2)
n,2

)2
]

≤ 1
4π2n

E


∥∥∥∥∥∥
n∑
k=1

n∑
`=1

n∑
t=1+n−min{k,`}

∫ π

−π
g(ω)Φ(e−iω)N (∆)

k N
(∆)>
` Φ>t e−iω(k−`−t)

∥∥∥∥∥∥
2


≤ 1
4π2n

n∑
k=1

n∑
`=1

E


∥∥∥∥∥∥

n∑
t=1+n−min{k,`}

∫ π

−π
g(ω)Φ(e−iω)N (∆)

k N
(∆)>
` Φ>t e−iω(k−`−t)

∥∥∥∥∥∥
2


+ 1
4π2n

∥∥∥∥∥∥
n∑
k=1

n∑
t=1+n−k

∫ π

−π
g(ω)Φ(e−iω)Σ(∆)

N Φ>t eiωt
∥∥∥∥∥∥

2

+
N∑

S,T=1

1
4π2n

n∑
k=1

n∑
`=1
6̀=k

n∑
t1,t2=1+n
−min{k,`}

E
[∫ π

−π
g(ω)Φ(e−iω)N (∆)

k N
(∆)>
` Φ>t1 [S, T ]e−iω(k−`−t1)dω

∫ π

−π
g(ω)Φ(eiω)N (∆)

` N
(∆)>
k Φ>t2 [S, T ]e−iω(k−`+t2)dω

]

≤ C

n

n∑
k=1

n∑
`=1

 n∑
t=1+n
−min{k,`}

1
t2

∥∥∥∥∫ π

−π
g(ω)Φ(e−iω)e−iω(k−`−t)

∥∥∥∥2


 n∑

t=1+n
−min{k,`}

‖Φt‖2t2


+ C

n

 n∑
t=1

n∑
k=1−t+n

‖Φt‖2
( n∑

t=1

∥∥∥∥∫ π

−π
g(ω)Φ(e−iω)eiωt

∥∥∥∥2
)
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+ C

n

n∑
k=1

n∑
`=1
6̀=k

n∑
t1,t2=1+n
−min{k,`}

∥∥∥∥∫ π

−π
g(ω)Φ(e−iω)e−iω(k−`−t1)dω

∥∥∥∥ ‖Φt1‖

∥∥∥∥∫ π

−π
g(ω)Φ(eiω)e−iω(k−`+t2)dω

∥∥∥∥ ‖Φt2‖

≤ C

n

n∑
k=1

n∑
`=1

(
n+∑̀
t=1+n

1
(t− `)2

∥∥∥(g(·)Φ(e−i·)
)∧
k−t

∥∥∥2
) n∑

t=1+n−min{k,`}
‖Φt‖2t2


+ C

n

(
n∑
t=1

t‖Φt‖2
)(

n∑
t=1

∥∥∥g(·)Φ(e−i·)
∧

−t

∥∥∥2
)

+ C

n
max
t∈Z

∥∥∥(g(·)Φ(e−i·)
)∧
t

∥∥∥+ max
t∈Z

∥∥∥(g(·)Φ(ei·)
)∧
t

∥∥∥ n∑
t1,t2=1

t1‖Φt1‖t2‖Φt2‖

≤ C

n
,

where in the last inequality we used similar arguments as in (5.13),∥∥∥(g(·)Φ(ei·)
)∧
t

∥∥∥ ≤ C and
∥∥∥(g(·)Φ(e−i·)

)∧
t

∥∥∥ ≤ C ∀t ∈ Z.

The convergence of R(2)
n,3 can be proven similarly.

Proof of Theorem 5.3
Note that the representation

tr (En(g)) = tr
(
En,N (Φ(ei·)>g(·)Φ(e−i·)) + En,R(g)

)
holds. Due to Lemma 5.14, En,R

P−→ 0 in (C(Gm), ‖ · ‖m) and (Gs′m, ‖ · ‖Gs′m), respectively. It
suffices to show, that tr(En,N (Φ(ei·)>g(·)Φ(e−i·))) converges weakly inthe appropriate space
under therespective assumptions by an application of the continuous mapping theorem.
Therefore, define GN := {Φ(ei·)>g(·)Φ(e−i·) : g ∈ Gm} ⊂ HN .
Under (C1)

‖g̃‖GsN =
∑
`∈Z

(1 + |`|)2s‖
(
Φ(ei·)>g(·)Φ(e−i·)

)∧
`
‖2

≤ C
∑
k∈Z

1
|k|+ 1

∑
`∈Z

(1 + |`|)2s‖
(
Φ(ei·)>g(·)

)∧
`+k
‖2
 <∞

holds.
Under (C2), the covering numbers N(ε, d(k)

N ,GN ) satisfy N(ε, d(k)
N ,GN ) = N(ε, d(k)

m,Φ,Gm)
for all k ∈ Z.
Under (C3) the boundedness ‖Φ(ei·)‖ ≤ C implies for g̃ ∈ GN and for some g ∈ Gm
‖g‖m = C‖g̃‖N and therefore, N(ε,GN , dN ) ≤ N(Cε,Gm, dm) for fixed ε > 0.
Consequently, an application of Theorem 5.8 yields the assertion under each set of condi-
tions. �
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Proof of Remark 5.4 a)
Note that tr(E) is centered. Consider the Fourier coefficients

(
(̂gj)h

)
h∈Z

of

gj(·) = Φ(ei·)>
(
gj(·) + gj(−·)>

)
Φ(e−i·) for j = 1, 2. Then, since (Wh)h∈N is i.i.d. and the

sum is well-defined, we obtain with (3.19)

Cov
(

tr
( ∞∑
h=1

Wh(̂g1)h

)
, tr
( ∞∑
h=1

Wh(̂g2)h

))

= Cov
( ∞∑
h=1

vec
(

(̂g1)
T

h

)T
vec(Wh),

∞∑
h=1

vec
(

(̂g2)
>
h

)>
vec(Wh)

)

=
∞∑
h=1

(
vec

(
(̂g1)

T

h

))T (
Σ(∆)
N ⊗ Σ(∆)

N

)
vec

(
(̂g2)Hh

)
=

∞∑
h=1

tr
(

Σ(∆)
N (̂g1)

H

h Σ(∆)
N (̂g2)h

)
= 1

2
∑
h∈Z

tr
(

Σ(∆)
N (̂g1)

H

h Σ(∆)
N (̂g2)h

)
− 1

2 tr
(

Σ(∆)
N (̂g1)

H

0 Σ(∆)
N (̂g2)0

)

= 1
4π

∑
h∈Z

∑
`∈Z

tr
(

Σ(∆)
N (̂g1)

H

` Σ(∆)
N (̂g2)h

)∫ π

−π
ei(h−`)ωdω − 1

2 tr
(

Σ(∆)
N (̂g1)

H

0 Σ(∆)
N (̂g2)0

)

= 1
4π

∫ π

−π
tr
(

Σ(∆)
N

2π Φ(eiω)>(g1(ω) + g1(−ω)>)HΦ(e−iω)

Σ(∆)
N

2π Φ(eiω)>(g2(ω) + g2(−ω)>)Φ(e−iω)
)
dω − 1

2 tr
(

Σ(∆)
N (̂g1)

H

0 Σ(∆)
N (̂g2)0

)
= 1

4π

∫ π

−π
tr
(
f

(∆)
Y (ω)(g1(ω) + g1(−ω)>)Hf (∆)

Y (ω)(g2(ω) + g2(−ω)>)
)
dω

− vec
( 1

2π

∫ π

−π
Φ(eiω)>g1(ω)Φ(e−iω)dω

)H (
Σ(∆)
N ⊗ Σ(∆)

N

)
vec

( 1
π

∫ π

−π
Φ(eiω)>g2(ω)Φ(e−iω)dω

)
.

Thereby, and since W0 is independent from (Wh)h∈N,

Cov(tr(E(g1), tr(E(g2)))

= 1
4π

∫ π

−π
tr
(
f

(∆)
Y (ω)(g1(ω) + g1(−ω)>)Hf (∆)

Y (ω)(g2(ω) + g2(−ω)>)
)
dω

− 2 vec
( 1

2π

∫ π

−π
Φ(eiω)>g1(ω)Φ(e−iω)dω

)H (
Σ(∆)
N ⊗ Σ(∆)

N

)
vec

( 1
2π

∫ π

−π
Φ(eiω)>g2(ω)Φ(e−iω)dω

)
+ vec

( 1
2π

∫ π

−π
Φ(eiω)>g1(ω)Φ(e−iω)dω

)H
(
E[N (∆)

1 N
(∆)>
1 ⊗N (∆)

1 N
(∆)>
1 ]− Σ(∆)

N ⊗ Σ(∆)
N

)
vec

( 1
2π

∫ π

−π
Φ(eiω)>g2(ω)Φ(e−iω)dω

)
= 1

4π

∫ π

−π
tr
(
f

(∆)
Y (ω)(g1(ω) + g1(−ω)>)Hf (∆)

Y (ω)(g2(ω) + g2(−ω)>)
)
dω

+ vec
( 1

2π

∫ π

−π
Φ(eiω)>g1(ω)Φ(e−iω)dω

)H
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(
E[N (∆)

1 N
(∆)>
1 ⊗N (∆)

1 N
(∆)>
1 ]− 3Σ(∆)

N ⊗ Σ(∆)
N

)
vec

( 1
2π

∫ π

−π
Φ(eiω)>g2(ω)Φ(e−iω)dω

)
holds. The assertion follows. Note that a Gaussian process is uniquely defined by its
expectation function and covariance function.





CHAPTER 6

Simulation study

In this chapter, we investigate the applicability of the theoretical results of Chapter 3-
Chapter 5 for finite sample sizes via simulations. First, we start with a comparison of
different estimation procedures in various settings. We distinguish between multivariate
CARMA processes with finite second moments, univariate CARMA processes with finite
second moments and univariate α-stable CARMA processes. In the case of estimating the
parameters of multivariate CARMA processes, we introduce a parametrization under which
Assumption A holds. Since most of those conditions were assumed to guarantee identifia-
bility of the underlying processes, they are a necessary prerequisite for other estimation
procedures in a sampled MCARMA setting as well. We then compare the performances of
the Whittle estimator and the quasi maximum likelihood estimator of Schlemm and Stelzer
(2012b) in a bivariate setting. For this, we first introduce the procedure and revisit some
basic properties. In the univariate setting, we compare the Whittle estimator, the adjusted
Whittle estimator and the quasi maximum likelihood estimator under the assumption of
existing second moments. In view of Section 4.3, the adjusted Whittle estimator might
not be suitable for estimation when we suppose that the second moments of the driving
process do not exist and the underlying process is not of order (p, q) = (1, 0). However, we
also consider the procedure in this setting and additionally investigate the behavior of the
estimator of García et al. (2011). To the best of our knowledge, this estimator is the only
one which was proposed for parameter estimation in a general α-stable setting.
Finally, we also examine the Grenander-Rosenblatt test statistic and the Cramér-von Mises
test statistic. In particular, we compare the empirical quantiles in different settings to
the corresponding theoretical one. Thereby, we determine the quantiles by Monte-Carlo
simulations. The quantiles of the limit processes of the statistics are then used to do some
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testing under the hypothesis of a correctly specified process and under various alternatives.
For the alternatives, we simulate data which is generated by distributions correspond-
ing to spectral densities different from the one is plugged in in the test statistics. We
conclude this chapter with a bootstrap variant of the tests for a univariate CARMA(2,1)
setting. The background for doing so is that the limit processes in Corollary 5.6 generally
depend on the 4th moments of the driving process. In applications, the distribution of
the Lévy process is not known. Obviously, we then also have no knowledge about its 4th
moments. This problem can be bypassed by solely approximating it by the given data.
In particular, based on the observed process, we use the Whittle procedure to estimate
the parameters of the generating process and then simulate a fixed number of samples
to approximate the desired moment by the empirical counterpart. As we will see, this
approach yields a testing procedure which depicts nice properties in a small simulation study.

6.1. Parameter estimation

6.1.1. Parametrization in the multivariate setting

As already mentioned in Section 2.2, it is generally possible to obtain the same process by
two different causal stationary linear state space models (A1, B1, C1, L) and (A2, B2, C2, L).
We aim to just consider L2-observationally different processes with distinguishable sampled
processes. Therefore, we already introduced Assumption (A4)− (A7) which, along with
the causality Assumption (A3), guarantee the desired identifiability. To implement these
assumptions, we now present a parametrization for which the conditions are satisfied.
Therefore, we introduce the transfer function of a minimal system (A,B,C, L).

Definition 6.1.
Let (A,B,C, L) be a linear state space model. The rational matrix function H : R→ Rm×d

with H(z) = C(zIN −A)−1B is called transfer function.

By Schlemm and Stelzer (2012a), Section 3.2, two minimal systems (A1, B1, C1, L) and
(A2, B2, C2, L) are observationally equivalent, if they create the same transfer function.
Consequently, we can identify linear state space models by their transfer functions if we
assume their McMillan degree to be minimal. The following results are from Section 4.1 of
Schlemm and Stelzer (2012b). They investigated the quasi maximum likelihood estimator
in a similar setting and were therefore already confronted with our problem. We explicitly
restate them since they are essential to derive the exact parametrization for the subsequent
simulations.

Theorem 6.2 (Bernstein (2005), Theorem 4.7.5).
Let H be a m× d-dimensional rational matrix function of rank `. Then, there exist matrix
functions S1 and S2 with polynomial entries and constant determinant of dimensions m×m
and d× d, respectively, with H = S1MS2. Denoting the `-dimensional diagonal matrix with
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diagonal elements (ai)i=1,...,` as diag(ai)i=1,...,`,the function M is an m × d-dimensional
function with

M =
(

diag (εi/ψi)i=1,...,` 0`×d−`
0m−`×` 0m−`×d−`

)
,

with monic polynomials ε1, . . . , ε`, ψ1, . . . , ψ`. These polynomials are uniquely determined
by H and satisfy:

(i) the polynomials εi and ψi have no common roots for each i ∈ {1, . . . , `},

(ii) the polynomial εi ◦ ψi+1 divides the polynomial εi+1 ◦ ψ.

(S1,M, S2) is called the Smith-McMillan decomposition of H.

We now define the Kronecker indices of the polynomial H as η = (η1, . . . , ηm) ∈
Nm. Thereby, η1, . . . , η` denote the degrees of the polynomials ψ in the Smith-McMillan
decomposition of H and ηi = 0 for ` < i ≤ m. It should be mentioned that the McMillan
degree of some rational matrix function equals the sum over its Kronecker indices. We
furthermore define ηi,j = min{ηi + 1{i>j}, ηj} and are now able to approach the desired
parametrization.

Theorem 6.3 (Echelon state space representation, Guidorzi (1975), Section 3).
Let H be an m × d-dimensional rational matrix function with Kronecker indices η =
(η1, . . . , ηm). Then, a unique realization (A,B,C) of H of dimension N =

∑`
i=1 ηi is given

by the following structure:

(i) The matrix A = (Aij)i,j=1,...m ∈ RN×N is a block matrix with blocks Aij ∈ Rηi,ηj

given by

Aij =


0 . . . . . . . . . . . . 0
...

...

0 . . . . . . . . . . . . 0
αij,1 . . . αij,ηi,j 0 . . . 0

+ δi,j


0
... Iηi−1

0
0 . . .

 ,

(ii) B is an unrestricted N × d dimensional real matrix,

(iii) if ηi > 0, for i = 1, . . .m, then

C =


1 0 . . . 0

... 0 0 . . . 0
...
...

0(m−1)×η1

... 1 0 . . . 0
...
... 0(m−1)×ηm

... 0(m−2)×η2

...
... 1 0 . . . 0

 ,
where 0i×j denotes the i× j-dimensional =-matrix.

In general, components of η could be 0. Then, the corresponding row of C would also
freely vary. However, this case is not relevant for our chosen settings. In view of the formal
differential equation representation (2.8) of the process, we obtain the polynomials P and
Q and therefore an equivalent MCARMA representation by the next result.
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Theorem 6.4 (Echelon MCARMA realization, Guidorzi (1975), Section 3).
Let H be an m× d-dimensional rational matrix function with Kronecker indices η. Assume
that (A,B,C) is a realization of H which is parameterized as in Theorem 6.3. Then, a unique
left matrix fraction description P−1Q of H is given by P (z) = (P (z)[i, j])i,j=1,...,m, Q(z) =
(Q(z)[i, j])i=1,...,m,j=1,...,d, where

P (z)[i, j] = δi,jz
ηi −

ηi,j∑
k=1

αij,kz
k−1, Q(z)[i, j] =

ηi∑
k=1

κ[η1 + . . .+ ηi−1 + k, j]zk−1

and the coefficient κ[i, j] is the [i, j]th entry of the matrix K = TB. The matrix T =
(Tij)i,j=1,...,m ∈ RN×N is a block matrix with blocks Tij ∈ Rηi×ηj given by



−αij,2 . . . −αij,ηi,j 0 . . . 0
... . .

. ...

−αij,ηi,j
...

0
...

...
...

0 . . . . . . . . . . . . 0


+ δi,j



0 0 . . . . . . 0 1
0 0 . . . . . . 1 0
...

... . .
. ...

...
...

... . .
. ...

...

0 1 . . . . . . 0 0
1 0 . . . . . . 0 0


.

Note that the orders of the polynomials P and Q satisfy p = max{η1, . . . , ηd} and
0 ≤ q ≤ p − 1. As it is, this parametrization does not guarantee identifiability since
there is an orthogonal invariance in the spectral factorization of the rational matrix
functions, see Theorem 3.5 of Schlemm and Stelzer (2012b). Therefore, we have to assume
a normalization condition as H(0) = H0 where H0 is an m× d-dimensional matrix. There
are many possibilities for choosing H0. When d = m it is an often used condition to set
H0 = −Id. Independent of the choice of H0, we then have to determine which parameters
are free and which are functionally dependent on those. Following Schlemm and Stelzer
(2012a), we keep the αij,k as free parameters and fix some of the entries of B. More
precisely, replacing the [η1 + . . . ηi−1 + 1, t]th entry of K by the [i, j]th entry of the matrix
−(αst,1)s,tH0 makes some entries of B functionally dependent, since B = T−1K holds. The
resulting parametrization with H0 = −I2 is the one which we choose in all simulations
of 2-dimensional CARMA processes. By Schlemm and Stelzer (2012b), the canonical
state space representations and canonical MCARMA realizations are as in Table 6.1 and
Table 6.2.

6.1.2. Estimation of MCARMA processes with existing second
moments

In our multivariate simulations, we compare the behavior of the Whittle estimator to the
performance of the quasi maximum likelihood estimator (QMLE) of Schlemm and Stelzer
(2012b). For univariate processes with existing second moments, we also investigate the
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η A B C

(1,1)
(
ϑ1 ϑ2
ϑ3 ϑ4

) (
ϑ1 ϑ2
ϑ3 ϑ4

) (
1 0
0 1

)

(1,2)

 ϑ1 ϑ2 0
0 0 1
ϑ3 ϑ4 ϑ5


 ϑ1 ϑ2

ϑ6 ϑ7
ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7

 (
1 0 0
0 1 0

)

(2,1)

 0 1 0
ϑ1 ϑ2 ϑ3
ϑ4 ϑ5 ϑ6


 ϑ7 ϑ8
ϑ1 + ϑ2ϑ7 ϑ3 + ϑ2ϑ8
ϑ4 + ϑ5ϑ7 ϑ6 + ϑ5ϑ8

 (
1 0 0
0 0 1

)

(2,2)


0 1 0 0
ϑ1 ϑ2 ϑ3 ϑ4
0 0 0 1
ϑ5 ϑ6 ϑ7 ϑ8


 ϑ9 ϑ10

ϑ1 + ϑ4ϑ11 + ϑ2ϑ9 ϑ3 + ϑ2ϑ10 + ϑ4ϑ12
ϑ11 ϑ12

ϑ5 + ϑ8ϑ11 + ϑ6ϑ9 ϑ7 + ϑ6ϑ10 + ϑ8ϑ12

 (
1 0 0 0
0 0 1 0

)

Table 6.1.: Canonical state space realizations (A,B,C) of rational transfer functions with
normalization H0 = −I2 and different Kronecker indices η.

η P (z) Q(z) (p, q)

(1,1)
(
z − ϑ1 −ϑ2
−ϑ3 z − ϑ4

) (
ϑ1 ϑ2
ϑ3 ϑ4

)
(1,0)

(1,2)
(
z − ϑ1 −ϑ2
−ϑ3 z2 − ϑ4z − ϑ5

) (
ϑ1 ϑ2

ϑ6z + ϑ3 ϑ7z + ϑ5

)
(2,1)

(2,1)
(
z2 − ϑ1z − ϑ2 −ϑ3
−ϑ4z − ϑ5 z − ϑ6

) (
ϑ7z + ϑ2 ϑ8z + ϑ3

ϑ5 ϑ6

)
(2,1)

(2,2)
(
z2 − ϑ1z − ϑ2 −ϑ3z − ϑ4
−ϑ5z − ϑ6 z2 − ϑ7z − ϑ8

) (
ϑ9z + ϑ2 ϑ10z + ϑ4
ϑ11z + ϑ6 ϑ12z + ϑ8

)
(2,1)

Table 6.2.: Canonical MCARMA realizations (P,Q) of rational transfer functions with
normalization H0 = −I2 and different Kronecker indices η. The order of the
polynomials is denoted as (p, q).

behavior of the adjusted Whittle estimator. Before presenting our simulation studies, the
QMLE has to be introduced.

The quasi maximum likelihood estimator

The quasi maximum likelihood procedure for equidistantly sampled stationary continuous-
time linear state space models is based on similar ideas as in the discrete-time setting.
In a VARMA setting, Kalman filtering yields the linear innovations and their covariance
matrices. Those are then taken to construct the log-likelihood function, see (11.5.4) of
Brockwell and Davis (1991). In the same way, we approach our MCARMA setting. First,
by Theorem 2.5, the sampled processes have an MA(∞) representation where the white
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noise are the linear innovations. More precisely, considering the parameterized setting with
appropriate assumptions, we have for every ϑ ∈ Θ by Theorem 2.8

ε
(∆)
k (ϑ) = Π(B, ϑ)Y (∆)

k (ϑ).

However, when estimating the true parameter, we only observe the sampled process
corresponding to ϑ0. Therefore, plugging in some different parameter yields the sequence
of the pseudo-innovations, which we already considered in the proof of Proposition 3.14:

ξ
(∆)
k (ϑ) = Π(B, ϑ)Y (∆)

k (ϑ0), k ∈ Z.

Obviously, this sequence coincides with the linear innovations for ϑ = ϑ0 and generally
differs otherwise. However, since we just observe a sample Y (∆)

1 , . . . , Y
(∆)
n of size n and

therefore do not have the full history of Y (∆), the pseudo-innovations can not be calculated.
Consequently, we have to approximate them. In view of the state space representation

X̂
(∆)
k (ϑ) =

(
eA(ϑ)∆ −K(∆)(ϑ)C(ϑ)

)
X̂

(∆)
k−1(ϑ) +K(∆)(ϑ)Y (∆)

k−1 ,

ξ
(∆)
k (ϑ) = Y

(∆)
k (ϑ)− C(ϑ)X̂(∆)

k (ϑ), k ∈ Z,

we adapt the pseudo-innovations by fixing an initial value X̂(∆)
1 (ϑ) = X̂

(∆)
init (ϑ). In our

simulations, we choose X̂(∆)
init ≡ 0 but we could alternatively use a sample from the stationary

distribution of the state process X(ϑ) or take any other deterministic value. Finally, we
define the quasi likelihood function

Ln(ϑ) = 1
n

n∑
k=1

d log(2π) + log(det(V (∆)(ϑ))) + ξ
(∆)
k (ϑ)>V (∆)(ϑ)−1ξ

(∆)
k (ϑ).

Hence, the quasi maximum likelihood estimator ϑ∗n is obtained by minimizing Ln, i.e.,

ϑ∗n = arg min
ϑ∈Θ
Ln(ϑ).

Note that Ln(ϑ) originates from the Gaussian likelihood of ϑ by exchanging the pseudo-
innovations by the approximate pseudo-innovations and taking −2/n times the logarithm.
This is where the name of the quasi maximum likelihood estimator originates.

Simulations

We simulate continuous-time state space models with an Euler-Maruyama scheme for
differential equations with initial value X(0) = Y (0) = 0 and step size 0.01. Using ∆ = 1
and the interval [0, 500], we therefore get n1 = 500 discrete observations. Furthermore, we
investigate how the results change qualitatively when we consider the intervals [0, 2000] and
[0, 5000], which imply n2 = 2000 and n3 = 5000 observations, respectively. In each sample,
we use 500 replicates. We investigate the estimation procedure based on two different
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driving Lévy processes. Since the Brownian motion is the most common Lévy process, we
examine Whittle‘s estimator based on a Brownian motion. As a second case, we analyze its
performance based on a bivariate normal-inverse Gaussian (NIG) Lévy process, which is
often used in modeling stochastic volatility or stock returns, see Barndorff-Nielsen (1997).
The resulting increments of this process are characterized by the density

f(x, µ, α, β, δNIG,∆NIG) = δNIG
2π

(1 + αg(x))
g(x)3 exp(δNIGκ+ β>x− αg(x)), x ∈ R2,

with
g(x) =

√
δ2
NIG + 〈x− µ,∆NIG(x− µ)〉, κ2 = α2 − 〈β,∆NIGβ〉 > 0.

Thereby, β ∈ R2 is a symmetry parameter, δNIG ≥ 0 is a scale parameter and the positive
definite matrix ∆NIG models the dependency between the two components of the bivariate
Lévy process (Lt)t∈R. We set µ = −(δNIG∆NIGβ)/κ to guarantee that the resulting
Lévy process is centered, see, e.g., Øigård et al. (2005) or Barndorff-Nielsen (1997) for
more details. For better comparability of the Brownian motion driven case and the NIG
Lévy-driven case, we choose the parameters of the NIG Lévy process in a way that the
resulting covariance matrices of both the Lévy processes are the same.
In the multivariate setting, we consider bivariate MCARMA(2,1) processes of the form

dXt(ϑ) = A(ϑ)Xt(ϑ)dt+B(ϑ)dLt(ϑ) and Yt(ϑ) = C(ϑ)Xt(ϑ), t ≥ 0,

with

A(ϑ) =


ϑ1 ϑ2 0
0 0 1
ϑ3 ϑ4 ϑ5

 , B(ϑ) =


ϑ1 ϑ2

ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ6 + ϑ5ϑ7

 ,
C(ϑ) =

(
1 0 0
0 1 0

)
, ΣL(ϑ) =

(
ϑ8 ϑ9

ϑ9 ϑ10

)
.

This is the parametrization which is given in Table 6.1 and the representations of the
corresponding AR polynomial P and MA polynomial Q are by Table 6.2

P (z) =
(
z − ϑ1 −ϑ2

−ϑ3 z2 − ϑ4z − ϑ5

)
, Q(z) =

(
ϑ1 ϑ2

ϑ6z + ϑ3 ϑ7z + ϑ5

)
.

Furthermore, we get the order (2, 1) of the MCARMA process from there as well. In our
example, the true parameter value is

ϑ
(1)
0 = (−1,−2, 1,−2,−3, 1, 2, 0.4751,−0.1622, 0.3708).

Note that the last three parameters are the variance parameters of the driving process and
are chosen this way to obtain nice parameters for the NIG Lévy process parametrization.
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In particular, we rely on the parameters

δ
(1)
NIG = 1, α(1) = 3, β(1) = (1, 1)T , ∆(1)

NIG =
(

5/4 −1/2
−1/2 1

)

to generate this process. The estimation results are summarized in Table 6.3 and Table 6.4
for the Brownian motion driven model and the NIG driven model, respectively. The
consistency can be observed in all simulations, namely the bias and the standard deviations
are decreasing for increasing sample size for the Whittle estimator and the quasi maximum
likelihood estimator. The performance of the estimators is very similar.

In addition, we investigate bivariate MCAR(1) processes for both the Brownian motion
and the NIG driven setting. The parametrization of the MCAR(1) model is again given in
Table 6.1 and it is

A(ϑ) =
(
ϑ1 ϑ2

ϑ3 ϑ4

)
= B(ϑ), C(ϑ) =

(
1 0
0 1

)
, ΣL(ϑ) =

(
ϑ5 ϑ6

ϑ6 ϑ7

)
.

We choose the parameter

ϑ
(2)
0 = (1,−2, 3,−4, 0.7513,−0.3536, 0.3536).

The results of this simulation study are summarized in Table 6.5 and Table 6.6, respectively.
Likewise, as for the MCARMA(2,1) model in Table 6.3 and Table 6.4, the Whittle estimator
and the QMLE converge very fast. To see whether the estimation procedures work for
small sample sizes, we also investigate the Whittle estimator and the quasi maximum
likelihood estimator for n4 = 50 in the MCARMA(2, 1) and the MCAR(1) settings. The
results are in Table 6.7. As before, the procedures behave similarly. However, they work
well and are therefore also suited for small sample sizes.

Additionally, in the MCAR(1) setting, we use the parameter

ϑ
(3)
0 = (−0.01, 0, 7,−1, 0.7513,−0.3536, 0.3536).

The background is that then one eigenvalue of A(ϑ(3)
0 ) is close to zero. An eigenvalue equal

to zero results in a non-stationary MCARMA process. Table 6.8 shows the results for this
setting for n2 = 2000, and both the Brownian motion and the NIG driven model. The
Whittle estimator and the QMLE estimate the parameters very well. But it is striking that
the bias of several parameters of the QMLE even vanishes.

Since we introduced an alternative estimator for the univariate setting, we perform an
additional simulation study concerning one dimensional CARMA processes. In accordance
to Assumption Ã, the variance parameter σ2

L of the Lévy process is fixed in this study and
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n1 = 500
Whittle QMLE

ϑ0 mean bias std. mean bias std.
-1 -0.9969 0.0031 0.0325 -1.0012 0.0012 0.0572
-2 -2.0218 0.0218 0.0582 -2.0128 0.0128 0.0689
1 0.9980 0.0020 0.0520 1.0075 0.0075 0.0722
-2 -2.0498 0.0498 0.1060 -1.9797 0.0203 0.0758
-3 -2.9840 0.0160 0.0498 -2.9913 0.0087 0.0907
1 1.0062 0.0062 0.1309 0.8034 0.1966 0.3896
2 1.9983 0.0017 0.0532 2.0036 0.0036 0.0768

0.4751 0.4746 0.0005 0.0407 0.4693 0.0048 0.0691
-0.1622 -0.1629 0.0007 0.0134 -0.1624 0.0002 0.0405
0.3708 0.3706 0.0002 0.0064 0.3712 0.0004 0.0328

n2 = 2000
Whittle QMLE

ϑ0 mean bias std. mean bias std.
-1 -0.9970 0.0030 0.0155 -0.9957 0.0043 0.0260
-2 -2.0062 0.0062 0.0252 -2.0047 0.0047 0.0350
1 0.9909 0.0091 0.0266 1.0038 0.0038 0.0399
-2 -2.0394 0.0394 0.0501 -2.0122 0.0122 0.0481
-3 -2.9857 0.0143 0.0371 -3.0350 0.0350 0.0583
1 1.0775 0.0775 0.1030 0.9572 0.0428 0.2583
2 2.0033 0.0033 0.0205 2.0452 0.0452 0.0463

0.4751 0.4731 0.0020 0.0092 0.4719 0.0032 0.0321
-0.1622 -0.1620 0.0002 0.0059 -0.1632 0.0010 0.0197
0.3708 0.3708 0 0.0037 0.3731 0.0023 0.0167

n3 = 5000
Whittle QMLE

ϑ0 mean bias std. mean bias std.
-1 -1.0028 0.0028 0.0172 -0.9960 0.0040 0.0174
-2 -1.9954 0.0146 0.0041 -2.0059 0.0059 0.0196
1 0.9972 0.0028 0.0133 1.0052 0.0052 0.0268
-2 -2.0202 0.0202 0.0210 -2.0043 0.0043 0.0284
-3 -3.0091 0.0091 0.0441 -3.0013 0.0013 0.0261
1 1.0585 0.0585 0.0409 1.0253 0.0253 0.1249
2 2.0109 0.0109 0.0318 2.0479 0.0479 0.0346

0.4751 0.4759 0.0008 0.0100 0.4735 0.0016 0.0200
-0.1622 -0.1652 0.0030 0.0088 -0.1634 0.0012 0.0135
0.3708 0.3904 0.0196 0.0079 0.3727 0.0019 0.0109

Table 6.3.: Estimation results for a Brownian motion driven bivariate MCARMA(2,1)
process with parameter ϑ(1)

0 .

has not to be estimated. We consider a CARMA(2,1) model where

A(ϑ) =
(

0 1
ϑ1 ϑ2

)
, B(ϑ) =

(
ϑ3

ϑ1 + ϑ2ϑ3

)
and C(ϑ) = (1 0).
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n1 = 500
Whittle QMLE

ϑ0 mean bias std. mean bias std.
-1 -0.9555 0.0445 0.1559 -0.9651 0.0349 0.1854
-2 -1.8822 0.1178 0.2653 -1.6978 0.3022 0.3452
1 0.8746 0.1254 0.1888 1.1479 0.1479 0.2526
-2 -2.0981 0.0981 0.2273 -2.0066 0.0066 0.2962
-3 -3.1833 0.1833 0.2517 -3.0578 0.0578 0.4076
1 1.0533 0.0533 0.3614 1.0272 0.0272 1.2301
2 2.0461 0.0461 0.5710 2.0490 0.0490 1.6673

0.4751 0.4992 0.0241 0.1061 0.4645 0.0106 0.8220
-0.1622 -0.1520 0.0102 0.1130 -0.1669 0.0047 0.3317
0.3708 0.4100 0.0392 0.1081 0.3748 0.0040 0.6100

n2 = 2000
Whittle QMLE

ϑ0 mean bias std. mean bias std.
-1 -1.0351 0.0351 0.1224 -0.9673 0.0327 0.0243
-2 -1.8779 0.1221 0.1894 -1.0564 0.0426 0.0713
1 0.9457 0.0543 0.2620 1.1331 0.1331 0.1214
-2 -1.9586 0.0414 0.2573 -1.9494 0.0506 0.0827
-3 -3.1682 0.1682 0.2238 -3.1990 0.1990 0.4911
1 1.1234 0.1234 0.3120 1.1720 0.1720 0.5933
2 2.0842 0.0842 0.4842 2.0432 0.0432 0.1817

0.4751 0.5010 0.0259 0.1000 0.5237 0.0486 0.2726
-0.1622 -0.1740 0.0118 0.0992 -0.0856 0.0766 0.1413
0.3708 0.3908 0.0200 0.0758 0.3220 0.0488 0.0049

n3 = 5000
Whittle QMLE

ϑ0 mean bias std. mean bias std.
-1 -1.0238 0.0238 0.1182 -0.9844 0.0156 0.0194
-2 -1.9954 0.0046 0.2048 -2.0139 0.0139 0.0246
1 0.9942 0.0058 0.1517 1.0102 0.0102 0.0299
-2 -2.2202 0.2202 0.2210 -2.0043 0.0043 0.0284
-3 -3.0104 0.0104 0.2463 -3.0015 0.0015 0.2291
1 1.0585 0.0585 0.2409 1.0655 0.0655 0.1347
2 2.1169 0.1169 0.0866 2.0400 0.0400 0.0355

0.4751 0.4855 0.0104 0.1180 0.4737 0.0018 0.0206
-0.1622 -0.1682 0.0060 0.0408 -0.1634 0.0012 0.0145
0.3708 0.3908 0.0200 0.0842 0.3730 0.0022 0.0139

Table 6.4.: Estimation results for a NIG driven bivariate MCARMA(2,1) process with
parameter ϑ(1)

0 .

Note that this parametrization differs slightly from the one introduced in Equation (2.3).
However, since the output process Y (ϑ) of this minimal state space model is of dimension



6.1. Parameter estimation 109

n1 = 500
Whittle QMLE

ϑ0 mean bias std. mean bias std.
1 1.0018 0.0018 0.0301 1.0045 0.0045 0.0362
-2 -2.0063 0.0063 0.0321 -2.0068 0.0068 0.0357
3 2.9966 0.0034 0.0399 3.0055 0.0055 0.0604
-4 -3.9980 0.0020 0.0399 -4.0019 0.0019 0.0565

0.7513 0.7543 0.0030 0.0516 0.7522 0.0009 0.0923
-0.3536 -0.3573 0.0037 0.0463 -0.3531 0.0005 0.0674
0.3536 0.3685 0.0149 0.0510 0.3704 0.0168 0.0714

n2 = 2000
Whittle QMLE

ϑ0 mean bias std. mean bias std.
1 1.0035 0.0035 0.0150 1.0039 0.0039 0.0181
-2 -2.0067 0.0067 0.0165 -2.0066 0.0066 0.0192
3 2.9991 0.0009 0.0192 3.0021 0.0021 0.0286
-4 -3.9987 0.0013 0.0223 -4.0003 0.0003 0.0302

0.7513 0.7532 0.0019 0.0257 0.7514 0.0001 0.0401
-0.3536 -0.3603 0.0067 0.0248 -0.3574 0.0038 0.0352
0.3536 0.3675 0.0139 0.0280 0.3706 0.0170 0.0376

n3 = 5000
Whittle QMLE

ϑ0 mean bias std. mean bias std.
1 1.0042 0.0042 0.0101 1.0050 0.0050 0.0117
-2 -2.0062 0.0062 0.0106 -2.0074 0.0074 0.0111
3 -2.9996 0.0004 0.0114 3.0021 0.0021 0.0169
-4 -3.9965 0.0035 0.0158 -4.0013 0.0013 0.0196

0.7513 0.7537 0.0024 0.0173 0.7549 0.0036 0.0258
-0.3536 -0.3596 0.0060 0.0166 -0.3559 0.0023 0.0201
0.3536 0.3663 0.0027 0.0169 0.3693 0.0157 0.0200

Table 6.5.: Estimation results for a Brownian motion driven bivariate MCAR(1) process
with parameter ϑ(2)

0 .

one, the order of the AR polynomial p is equal to N = 2 and the order of the MA
polynomial is q = p− 1 = 1. This confirms that we really have a CARMA(2, 1) process. In
our simulation study the true parameter is

ϑ
(4)
0 = (−2,−2,−1).

The simulation results for the Brownian motion driven and the NIG driven CARMA(2,1)
process are given in Table 6.9 and Table 6.10, respectively. For all sample sizes, the
Whittle estimator and the QMLE behave very similar and give excellent estimation results.
Whereas for small sample sizes the adjusted Whittle estimator is remarkably worse, for
increasing sample sizes it performs much better and seems to converge. This behavior
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n1 = 500
Whittle QMLE

ϑ0 mean bias std. mean bias std.
1 0.9905 0.0095 0.0407 0.9806 0.0194 0.0460
-2 -1.9871 0.0129 0.0531 -2.0038 0.0038 0.0579
3 2.9920 0.0080 0.0579 2.9240 0.0760 0.0842
-4 -3.9409 0.0591 0.1027 -3.9918 0.0082 0.0894

0.7513 0.7281 0.0232 0.1869 0.7125 0.0388 0.0568
-0.3536 -0.3366 0.0170 0.0302 -0.3251 0.0285 0.0497
0.3536 0.3381 0.0155 0.0335 0.3182 0.0354 0.0486

n2 = 2000
Whittle QMLE

ϑ0 mean bias std. mean bias std.
1 0.9916 0.0084 0.0261 0.9839 0.0161 0.0316
-2 -1.9892 0.0110 0.0321 -2.0072 0.0072 0.0320
3 2.9797 0.0203 0.0416 2.9377 0.0623 0.0576
-4 -3.9700 0.0300 0.0767 -4.0051 0.0051 0.0561

0.7513 0.7489 0.0024 0.1392 0.7210 0.0303 0.0351
-0.3536 -0.3603 0.0067 0.0241 -0.3224 0.0312 0.0312
0.3536 0.3417 0.0119 0.0224 0.3352 0.0184 0.0300

n3 = 5000
Whittle QMLE

ϑ0 mean bias std. mean bias std.
1 0.9952 0.0048 0.0186 0.9810 0.0190 0.0240
-2 -1.9890 0.0110 0.0253 -2.0086 0.0086 0.0289
3 2.9789 0.0211 0.0365 2.9341 0.0659 0.0478
-4 -3.9849 0.0151 0.0611 -4.0064 0.0064 0.0516

0.7513 0.7500 0.0013 0.0749 0.6912 0.0601 0.0428
-0.3536 -0.3600 0.0064 0.0148 -0.3412 0.0124 0.0237
0.3536 0.3499 0.0037 0.0201 0.3208 0.0328 0.0238

Table 6.6.: Estimation results for a NIG driven bivariate MCAR(1) process with parameter
ϑ

(2)
0 .

corresponds to the theoretical results of Section 4.2.
We also considered a CAR(3) process in the univariate setting.
For the univariate CAR(3) processes with parametrization

A(ϑ) =


0 1 0
0 0 1
ϑ1 ϑ2 ϑ3

 , B(ϑ) =


0
0
ϑ1

 , C(ϑ) = (1 0 0).

and
ϑ

(5)
0 = (−6,−11,−6),

we once again choose the Brownian motion and the NIG Lévy process as driving processes.
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The results are documented in Table 6.11 and Table 6.12. They correspond to the results
of Table 6.9 and Table 6.10, respectively for CARMA(2,1) processes.

6.1.3. Estimation of α-stable CARMA processes

We now leave the light-tailed setting and investigate the performance of the adjusted
Whittle estimator for finite samples in the α-stable setting. Since we compare it with
the behavior of the estimator introduced in García et al. (2011), we quickly revisit the
procedure which was presented therein.

The estimator of García et al. (2011)

The estimator of García et al. (2011) is based on an indirect approach. Denoting the zeros
of the AR(p) polynomial a as λ1, . . . , λp which are assumed to be distinct and defining
a

(∆)
D (z) =

∏p
j=1(1 − eλj∆z), we have by Proposition 2.11 that the sampled process Y (∆)

satisfies the equation

a
(∆)
D (B)Y (∆)

k = U
(∆)
k , k ∈ N, (6.1)

where (U (∆)
k )k∈N is a (p− 1)-dependent sequence. For CARMA processes with finite second

moments, (U (∆)
k )k∈N is a MA(p− 1) process such that Y (∆) is an ARMA(p, p− 1) process

with an uncorrelated but not independent white noise, see Proposition 3 of Brockwell et al.
(2011). García et al. (2011) proposed to fit an ARMA(p, p− 1) model to the observations
Y

(∆)
1 , . . . , Y

(∆)
n by standard maximum likelihood estimation for Gaussian ARMA models.

The estimated autoregressive part of that ARMA model in discrete time is denoted by â(∆)
D

and the estimated moving average part is ĉ(∆)
D . The logarithmic zeros of â(∆)

D divided by −∆
are then estimators λ̂1, . . . , λ̂p for the zeros λ1, . . . , λp of a. Hence, we obtain an estimator
â for the autoregressive polynomial a. In a final step, the MA polynomial c of the CARMA
process is determined. Therefore the parameter ϑ = (ϑ1, ϑ2) is divided in two parts
where ϑ1 models the AR coefficients and ϑ2 the MA coefficients of the CARMA process.
Now the autocorrelation function ρ(MA)

â,ϑ2
of â(∆)

D (B)Y (∆)(ϑ̂1, ϑ2) and the autocorrelation

function ρ(MA)
ĉ
(∆)
D

of a discrete-time moving average process with moving average polynomial

ĉ
(∆)
D is calculated and ϑ̂2 is derived numerically as solution of ρ(MA)

â
(∆)
D ,ϑ̂2

(k) = ρ
(MA)
ĉ
(∆)
D

(k) for
k = 1, . . . , q.

Simulations

To simulate α-stable CARMA processes, we also use an Euler-Maruyama scheme for
differential equations with initial value Y0 = 0 and step size 0.01. As before, we set ∆ = 1
as the distance between the discrete observations and α = 1.5 for the stable index of
the driving symmetric α-stable Lévy process. Again, we investigate the behavior of the
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adjusted Whittle estimator and the estimator of García et al. (2011) for n = 500, 2000, 5000
based on 500 replications.
As a first example, we simulate an Ornstein-Uhlenbeck process with ϑ0 = −1. The resulting
sample mean, bias and sample standard deviation are given in Table 6.13. It seems that
both the adjusted Whittle estimator and the estimator of García et al. (2011) converge to
the true value. For the adjusted Whittle estimator this is consistent with Theorem 4.15.
To compare the behavior in the heavy-tailed setting with the behavior in the light-tailed
setting, we present the simulation results of a study where we use for the driving Lévy
process of the Ornstein-Uhlenbeck model a Brownian motion. The results are given in
Table 6.14. As we can see, the behavior of the Whittle estimator and the behavior of the
estimator of García et al. (2011) are similar for the light-tailed and for the heavy-tailed
Ornstein-Uhlenbeck process.

Next, we simulate the CARMA(2,0) process of Example 4.17. Accordingly, the true value
is ϑ0 = −3. The results are given in Table 6.15. As already argued in Example 4.17 the
adjusted Whittle estimator is not a consistent estimator in this situation. This is confirmed
by the simulation study. For n = 5000 the bias and standard deviation are even higher
than for n = 2000. The estimator of García et al. (2011) behaves even worse. On the
one hand, the bias and standard deviation of García et al. (2011) are quite high and not
decreasing with increasing sample size. On the other hand, the estimation procedure of
García et al. (2011) stops for every sample size for more than 1/5th of the replications. This
can be traced back to an inadequate estimate of the zero of the AR polynomial, namely
the real part of the estimated zero of the AR polynomial is less than 0 which means that
the logarithm of this zero is not defined.
Finally, we investigate the CARMA(2,1) process of Example 4.18, see Table 6.16. Our

simulation results show the same findings as García et al. (2011); both estimators perform
very well in this parameter setting. However, most of the time there is one parameter
which has a slightly higher bias or standard deviation such that it is not apparent if the
estimator is converging. Indeed, for the adjusted Whittle estimator we already showed
in Example 4.18 that this is not the case and we guess that the same holds true for the
estimator of García et al. (2011), although at the first view this seems to contradict the
simulation study. But from the behavior of βϑ,ϑ0 in Figure 4.2 we know that only in a small
neighborhood of ϑ0, the random variables W (α)(ϑ)−W (α)(ϑ0) are not positive and outside
this neighborhood they are positive with probability one because βϑ,ϑ0 = 1. Although
W (α)(ϑ) has not a unique minimum in ϑ0, ϑ0 is close to the minimum of W (α)(ϑ). Thus,
the Whittle estimator is close to the true value ϑ0 as well.
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MCARMA(2,1)
normal Whittle QMLE
ϑ0 mean bias std. mean bias std.
-1 -0.9592 0.0408 0.0978 -1.0034 0.0034 0.1900
-2 -1.9436 0.0564 0.1411 -2.0007 0.0007 0.2164
1 1.0649 0.0649 0.2217 1.0370 0.0370 0.2014
-2 -1.8407 0.1593 0.2411 -1.9200 0.0800 0.2568
-3 -2.9698 0.0302 0.1601 -3.0540 0.0540 0.3301
1 1.1332 0.1332 0.2357 0.6574 0.3426 0.4765
2 2.0029 0.0029 0.1098 1.9746 0.0254 0.2461

0.4751 0.4826 0.0075 0.0889 0.4521 0.0230 0.2248
-0.1622 -0.1619 0.0003 0.0565 -0.1623 0.0001 0.1416
0.3708 0.3583 0.0125 0.0467 0.3606 0.0102 0.0963
NIG Whittle QMLE
ϑ0 mean bias std. mean bias std.
-1 -0.9729 0.0271 0.1909 -0.9684 0.0316 0.2236
-2 -1.7647 0.2353 0.2479 -1.6184 0.3816 0.3417
1 0.9311 0.0689 0.1804 1.0670 0.0670 0.4061
-2 -1.7890 0.2110 0.2684 -1.8875 0.1125 0.3455
-3 -3.0537 0.0537 0.1427 -3.1586 0.1586 0.4754
1 0.9512 0.0488 0.1641 0.6770 0.3230 0.8610
2 1.8434 0.1566 0.1475 1.5463 0.4537 0.8284

0.4751 0.4389 0.0362 0.1496 0.6328 0.1577 0.2349
-0.1622 -0.1220 0.0402 0.0504 0.0055 0.1677 0.1296
0.3708 0.2970 0.0738 0.0724 0.3061 0.0647 0.1644

MCAR(1)
normal Whittle QMLE
ϑ0 mean bias std. mean bias std.
1 0.9880 0.0120 0.1237 0.9939 0.0061 0.1162
-2 -2.0270 0.0270 0.1208 -2.0064 0.0064 0.1155
3 3.0031 0.0031 0.1394 2.9957 0.0043 0.1384
-4 -4.0631 0.0631 0.1872 -4.0058 0.0058 0.1887

0.7513 0.7261 0.0252 0.1664 0.7329 0.0184 0.2106
-0.3536 -0.3179 0.0357 0.1425 -0.3175 0.0361 0.1522
0.3536 0.3987 0.0451 0.1426 0.3883 0.0347 0.1654
NIG Whittle QMLE
ϑ0 mean bias std. mean bias std.
1 0.9916 0.0084 0.1099 0.9782 0.0218 0.1301
-2 -2.0266 0.0266 0.1010 -1.9847 0.0153 0.1424
3 -2.9731 0.0269 0.1089 2.9690 0.0310 0.1797
-4 -3.9993 0.0007 0.2148 -3.9971 0.0029 0.2368

0.7513 0.4721 0.2792 0.2222 0.1926 0.5587 0.1597
-0.3536 -0.1976 0.1560 0.1349 0.0443 0.3979 0.1424
0.3536 0.4588 0.1052 0.1431 0.2195 0.1341 0.1383

Table 6.7.: Estimation results for bivariate MCARMA(2,1) and MCAR(1) processes with
parameter ϑ(1)

0 and ϑ
(2)
0 , respectively. The sample size is n4 = 50 in all

simulations.
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Brownian motion driven, n2 = 2000
Whittle QMLE

ϑ0 mean bias std. mean bias std.
-0.01 -0.0099 0.0001 0.0005 -0.0103 0.0003 0
0 0 0 0 0 0 0.1891
7 6.9245 0.0755 0.0853 7 0 0.0012
-1 -1.0442 0.0442 0.1915 -1 0 0.0019

0.7513 0.8574 0.1061 0.2193 0.7513 0 0.0031
-0.3536 -0.3492 0.0044 0.0587 -0.3535 0.0001 0.0013
0.3536 0.7958 0.4422 0.4160 0.3536 0 0.0005

NIG driven, n2 = 2000
Whittle QMLE

ϑ0 mean bias std. mean bias std.
-0.01 -0.0125 0.0025 0.0534 -0.099 0.0001 0.0001
0 -0.0084 0.0084 0.0507 0 0 0.1805
7 7.0137 0.0137 0.1081 7 0 0.0180
-1 -0.8731 0.1269 0.1354 -1 0 0.0049

0.7513 1.4557 0.7045 0.0959 0.7513 0 0.0027
-0.3536 0.1189 0.4724 0.1675 -0.3536 0 0.0017
0.3536 0.7397 0.3862 0.0524 0.3535 0.0001 0.0008

Table 6.8.: Estimation results for a bivariate MCAR(1) process with parameter ϑ(3)
0 close

to the non-stationary case.

n1 = 500
Whittle adjusted Whittle QMLE

ϑ0 mean bias std. mean bias std. mean bias std.
-2 -2.0951 0.0951 0.7766 3.1063 1.1063 3.4195 -2.0880 0.0880 0.7628
-2 -2.0482 0.0482 0.6500 -2.9233 0.9233 2.9957 -2.0449 0.0449 0.5889
-1 -0.9731 0.0269 0.1186 -0.9028 0.0972 0.3710 -0.9729 0.0271 0.1779

n2 = 2000
Whittle adjusted Whittle QMLE

ϑ0 mean bias std. mean bias std. mean bias std.
-2 -2.0204 0.0204 0.0755 -2.0816 0.0816 1.0399 -2.0015 0.0015 0.1926
-2 -1.9975 0.0025 0.0637 -2.0732 0.0732 0.9199 -1.9948 0.0052 0.1466
-1 -0.9933 0.0067 0.0547 -0.9965 0.0035 0.1267 -0.9993 0.0007 0.0674

n3 = 5000
Whittle adjusted Whittle QMLE

ϑ0 mean bias std. mean bias std. mean bias std.
-2 -2.0046 0.0046 0.0117 -1.9854 0.0146 0.0860 -2.0068 0.0068 0.0997
-2 -1.9914 0.0086 0.0149 -1.9840 0.0160 0.0821 -1.9942 0.0058 0.0772
-1 -1.0004 0.0004 0.0153 -1.0070 0.0070 0.0488 -1.0009 0.0009 0.0408

Table 6.9.: Estimation results for a Brownian motion driven CARMA(2,1) process with
parameter ϑ(4)

0 .
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n1 = 500
Whittle adjusted Whittle QMLE

ϑ0 mean bias std. mean bias std. mean bias std.
-2 -2.3278 0.3278 1.7598 -3.0174 1.0174 3.2090 -2.3175 0.3175 1.0862
-2 -2.2612 0.2612 1.4892 -2.8550 0.8550 2.8684 -2.2047 0.2047 0.8023
-1 -0.9855 0.0145 0.1652 -0.9445 0.0555 0.3376 -0.9243 0.0757 0.2938

n2 = 2000
Whittle adjusted Whittle QMLE

ϑ0 mean bias std. mean bias std. mean bias std.
-2 -2.0261 0.0261 0.1038 -1.9996 0.0004 0.5351 -2.0122 0.0122 0.2526
-2 -1.9977 0.0023 0.0784 -1.9988 0.0012 0.4552 -2.0034 0.0034 0.1845
-1 -0.9968 0.0032 0.0607 -1.0153 0.0153 0.0961 -1.0037 0.0037 0.0848

n3 = 5000
Whittle adjusted Whittle QMLE

ϑ0 mean bias std. mean bias std. mean bias std.
-2 -2.0138 0.0138 0.0575 -1.9842 0.0158 0.0902 -1.9938 0.0062 0.1093
-2 -1.9948 0.0052 0.0466 -1.9866 0.0134 0.0825 -1.9917 0.0083 0.0906
-1 -0.9991 0.0009 0.0339 -1.0097 0.0097 0.0508 -1.0059 0.0059 0.0415

Table 6.10.: Estimation results for a NIG driven CARMA(2,1) process with parameter
ϑ

(4)
0 .

n1 = 500
Whittle adjusted Whittle QMLE

ϑ0 mean bias std. mean bias std. mean bias std.
-6 -5.9230 0.0770 0.2074 -6.2266 0.2266 0.6347 -6.4357 0.4357 1.3266
-11 -10.839 0.1610 0.4119 -11.276 0.2759 0.9351 -11.607 0.6067 1.6706
-6 -5.8267 0.1733 0.3585 -6.0575 0.0575 0.4800 -6.3039 0.3039 1.2821

n2 = 2000
Whittle adjusted Whittle QMLE

ϑ0 mean bias std. mean bias std. mean bias std.
-6 -5.9886 0.0114 0.1117 -6.0410 0.0410 0.2391 -6.0549 0.0549 0.4510
-11 -10.934 0.0664 0.2372 -11.068 0.0680 0.4126 -11.042 0.0422 0.6005
-6 -5.8855 0.1145 0.1755 -5.9460 0.0540 0.1924 -5.9542 0.0458 0.4464

n3 = 5000
Whittle adjusted Whittle QMLE

ϑ0 mean bias std. mean bias std. mean bias std.
-6 -5.9856 0.0144 0.0884 -6.0455 0.0455 0.1444 -5.9861 0.0139 0.1120
-11 -10.934 0.0665 0.1471 -11.0349 0.0349 0.1298 -10.926 0.0741 0.1877
-6 -5.9123 0.0877 0.1262 -5.9303 0.0697 0.1104 -5.8937 0.1063 0.1406

Table 6.11.: Estimation results for a Brownian motion driven CAR(3) process with ϑ(5)
0 .
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n1 = 500
Whittle adjusted Whittle QMLE

ϑ0 mean bias std. mean bias std. mean bias std.
-6 -5.9449 0.0551 0.4322 -5.9238 0.0762 0.4799 -6.8247 0.8247 1.9413
-11 -10.922 0.0778 0.5765 -10.905 0.0951 0.6813 -12.186 1.1860 2.3377
-6 -5.8492 0.1508 0.3455 -5.8000 0.2000 0.4239 -6.6137 0.6137 1.6559

n2 = 2000
Whittle adjusted Whittle QMLE

ϑ0 mean bias std. mean bias std. mean bias std.
-6 -5.9611 0.0389 0.1287 -6.0737 0.0737 0.3438 -6.01035 0.1035 0.6401
-11 -10.901 0.0989 0.2590 -11.050 0.0504 0.4832 -11.105 0.1053 0.8271
-6 -5.8879 0.1121 0.1988 -5.9692 0.0308 0.2175 -6.0036 0.0036 0.5522

n3 = 5000
Whittle adjusted Whittle QMLE

ϑ0 mean bias std. mean bias std. mean bias std.
-6 -6.0313 0.0313 0.0825 -6.0622 0.0622 0.1883 -6.0087 0.0087 0.2748
-11 -10.888 0.1118 0.1274 -11.035 0.0345 0.1490 -10.954 0.0459 0.3830
-6 -5.9110 0.0190 0.0885 -5.8438 0.1562 0.2144 -5.9164 0.0836 0.2513

Table 6.12.: Estimation results for a NIG driven CAR(3) process with parameter ϑ(5)
0 .

adjusted Whittle, α = 1.5
n = 500 n = 2000 n = 5000

ϑ0 mean bias std. mean bias std. mean bias std.
−1 -1.0132 0.0132 0.1118 -1.0082 0.0082 0.0528 -1.0071 0.0071 0.0367

Estimator of García et al., α = 1.5
n = 500 n = 2000 n = 5000

ϑ0 mean bias std. mean bias std. mean bias std.
−1 -1.0162 0.0162 0.1018 -0.9948 0.0052 0.0522 -0.9942 0.0058 0.0333

Table 6.13.: Estimation results for a symmetric 1.5-stable Ornstein-Uhlenbeck process with
parameter ϑ0 = −1.
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adjusted Whittle, α = 2
n = 500 n = 2000 n = 5000

ϑ0 mean bias std. mean bias std. mean bias std.
-1 -1.0143 0.0143 0.1183 -1.0082 0.0082 0.0528 -1.0002 0.0002 0.0349

Estimator of García et al., α = 2
n = 500 n = 2000 n = 5000

ϑ0 mean bias std. mean bias std. mean bias std.
-1 -1.0007 0.0007 0.1133 -1.0011 0.0011 0.0568 -1.0012 0.0012 0.0351

Table 6.14.: Estimation results for a Brownian motion driven Ornstein-Uhlenbeck process
with parameter ϑ0 = −1.

adjusted Whittle, α = 1.5
n = 500 n = 2000 n = 5000

ϑ0 mean bias std. mean bias std. mean bias std.
−3 -3.4762 0.4762 1.2741 -3.2902 0.2902 0.9367 -3.3002 0.3002 0.9568

Estimator of García et al., α = 1.5
n = 500 n = 2000 n = 5000

ϑ0 mean bias std. mean bias std. mean bias std.
-3 -3.2473 0.2473 1.2220 -3.8184 0.8164 1.1089 -4.0770 1.0770 0.9238

Table 6.15.: Estimation results for the symmetric 1.5-stable CARMA(2,0) process of Ex-
ample 4.17.

adjusted Whittle, α = 1.5
n = 500 n = 2000 n = 5000

ϑ0 mean bias std. mean bias std. mean bias std.
1.9647 1.9520 0.0127 0.0516 1.9592 0.0055 0.0321 2.0069 0.0422 1.1890
0.0893 0.1031 0.0138 0.0377 0.0940 0.0047 0.0224 0.0987 0.0094 0.0288
0.1761 -0.0144 0.1905 0.1836 -0.0389 0.215 0.1681 0.1735 0.0026 0.0224

Estimator of García et al., α = 1.5
n = 500 n = 2000 n = 5000

ϑ0 mean bias std. mean bias std. mean bias std.
1.9647 2.0947 0.1300 0.4480 2.0138 0.0491 0.2405 2.0036 0.0389 0.1543
0.0893 0.1462 0.0569 0.2160 0.0939 0.0046 0.0323 0.0930 0.0037 0.0300
0.1761 0.2196 0.0435 0.1333 0.1877 0.0116 0.0487 0.1920 0.0159 0.0484

Table 6.16.: Estimation results for the symmetric 1.5-stable CARMA(2,1) process of Ex-
ample 4.18.



118 Chapter 6. Simulation study

6.2. Goodness-of-fit tests

Our final simulation study has two major purposes. As before, we want to find out if
the theoretical results can be observed for finite sample sizes. In view of general testing
procedures, it would be desirable if the quantiles of the test statistics are similar to
the quantiles of the limit processes for small or moderate sample sizes. Therefore, we
first investigate how the empirical and limit quantiles of the spectral goodness-of-fit test
statistics behave. Subsequently, we use the quantiles of the limit process to construct
some tests. These will then be applied in different scenarios. In the following, we focus on
the Grenander-Rosenblatt and the Cramér-von Mises statistic. As before, we start with
investigating their behavior in the case of a univariate CARMA(2,1) process defined by

dXt = AXtdt+BdLt and Yt = CXt, t ≥ 0,

with

A =
(

0 1
−1 −1

)
, B =

(
−1
0

)
, C =

(
1 0

)
, ΣL = 1.

and a bivariate Ornstein-Uhlenbeck process with

A =
(
−1 −0.5
1 −1

)
= B, C = I2 = ΣL.

As in all the preceding simulations, the processes are simulated with an Euler-Maruyama
scheme with initial values Y (0) = X(0) = 0, step size 0.01 and observation distance ∆ = 1.
Again, we take the Brownian motion and the normal-inverse Gaussian process as driving
processes. The estimation results for finite sample size are based on 5000 replicates each,
whereas the estimation results corresponding to the limit process are based on 10.000
replicates. For each setting, we compute the empirical quantiles to α = 0.9, 0.95, 0.975
and α = 0.99. The results of the CARMA(2,1) settings can be found in Table 6.17, those
of the MCAR(1) settings in Table 6.18. Furthermore, for the Brownian motion driven
CARMA(2,1) process, four sample paths of the Grenander-Rosenblatt and Cramér-von
Mises statistic with added 95% quantile are made, see Figure 6.1 and Figure 6.2.

As we can see, the quantiles of the test statistics are really similar to those of the
limit process even for small sample sizes in all investigated settings. We now consider
the hypothesis that the data originates from a process with the spectral density which is
plugged in in the test statistic. Under the hypothesis, it is to expect that the corresponding
level α-test behaves as desired. Therefore, we do some testing to the 5% level. For
both underlying processes and both test statistics, we investigate the behavior under the
hypothesis. In the CARMA(2,1) setting, we also consider the test statistics when the data
is generated by various CARMA(2,1) processes but the spectral density remains the same.
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Paths of the CvM statistic and 95% quantile for the CARMA(2,1) process

Figure 6.1.: Paths of the Cramér-von Mises statistic with underlying CARMA(2,1) process

Namely, we consider the parametrization of before, i.e.

A =
(

0 1
ϑ1 ϑ2

)
, B =

(
ϑ3

ϑ1 + ϑ2ϑ3

)
, C =

(
1 0

)
, ΣL = 1

and choose as alternative generating processes the processes defined by the parameters

(C1) ϑ = (−1,−2, 1), (C2) ϑ = (−2,−3, 5), (C3) ϑ = (−1,−2,−3),

(C4) ϑ = (−2,−1, 2), (C5) ϑ = (−0.5,−0.5, 1), (C6) ϑ = (−0.5,−1,−1).

In the same way, we consider the parametrization

A =
(
ϑ1 ϑ2

ϑ3 ϑ4

)
= B, C = I2 = ΣL

in the MCAR(1) setting and take the parameters

(M1) ϑ = (−1,−0.5, 0.5,−1), (M2) ϑ = (−1, 0, 0,−1),

(M3) ϑ = (−1,−2, 1,−1), (M4) ϑ = (−1,−0.5, 1,−2)
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Paths of the GR statistic and 95% quantile for the CARMA(2,1) process

Figure 6.2.: Paths of the Grenander-Rosenblatt statistic with underlying CARMA(2,1)
process

to generate data under different alternatives. The results are in Table 6.19 and Table 6.20.
As suspected, in the correct specified setting, the statistics hold the given level for most
sample sizes. Under the alternatives, the statistics reject quite often for moderate sample
sizes and detect every alternative with certainty for n = 1000 and higher. Based on the
simulations, it is not possible to say if the Cramér-von Mises or the Grenander-Rosenblatt
statistic is favorable since their performances are qualitatively similar. Finally, since
the limit statistics depend on the true parameter, we also do a bootstrap test in the
CARMA(2,1) settings. More precisely, given a fixed sample, we estimate the parameters A,
B and C of the state space model with the Whittle estimation procedure of Chapter 3.
The estimates Â, B̂, Ĉ are then used to generate a sample N̂ (∆)

1 , . . . , N̂
(∆)
500 of the estimated

white noise process. Eventually, based on 1000 samples we estimate the quantiles of the
limit process where Wi, i ∈ N0 replaced by Ŵi, i ∈ N0 with

vec
(
Ŵk

)
∼ N

0, 1
n

n∑
j=1

N̂
(∆)
j N̂

(∆)>
j ⊗ 1

n

n∑
j=1

N̂
(∆)
j N̂

(∆)>
j

 , k ∈ N,
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CARMA(2,1) process
Grenander-Rosenblatt statistic

Normal distribution NIG distribution
n 90% 95% 97.5% 99% 90% 95% 97.5% 99%
50 2.8654 3.3713 3.9420 5.1020 2.7852 3.2047 3.5637 4.3470
100 2.9009 3.3557 3.9185 4.5609 2.8851 3.4118 3.9302 4.6944
200 2.9459 3.4778 3.8956 4.5802 3.0007 3.5462 4.0324 4.6067
500 2.9825 3.5225 3.9959 4.5224 3.0478 3.5056 3.9494 4.4670
1000 2.9753 3.4740 3.9439 4.6561 3.0240 3.5188 3.9614 4.4840
2500 2.9986 3.5068 4.0009 4.5487 3.0253 3.6052 4.0868 4.6110
limit 2.9040 3.4263 3.9305 4.5133 2.9455 3.4609 3.9637 4.5547

Cramér-von Mises statistic
Normal distribution NIG distribution

n 90% 95% 97.5% 99% 90% 95% 97.5% 99%
50 20.5368 27.9626 38.5060 60.4273 18.7985 24.8263 31.4444 45.8557
100 19.4151 26.8832 37.4596 49.8628 19.4187 27.5602 37.9928 54.0262
200 19.9334 28.5887 36.2754 49.8312 20.7667 29.3701 39.2179 52.0016
500 20.2071 29.3122 38.6322 49.8635 21.1896 29.0540 38.1886 49.7864
1000 20.0263 28.3322 37.3100 51.0001 20.8816 28.6483 37.5922 52.7372
2500 20.3190 27.8820 38.3735 51.2512 21.3228 30.5439 40.3677 52.6218
limit 19.7667 27.8781 37.7293 48.4942 20.6293 28.9460 37.9811 51.1914

Table 6.17.: Empirical quantiles of the Grenander-Rosenblatt and the Cramér-von Mises
statistics for the CARMA(2, 1) process. The estimation results to the limit
process are denoted as “limit”.

and

vec
(
Ŵ0
)
∼N

0, 1
n

n∑
j=1

(
N̂

(∆)
j N̂

(∆)>
j ⊗ N̂ (∆)

j N̂
(∆)>
j

)
− 1
n2

n∑
j=1
k=1

(
N̂

(∆)
j N̂

(∆)>
j

)
⊗
(
N̂

(∆)
k N̂

(∆)>
k

).
Since the procedure is computationally expensive, we only use the sample sizes n =
50, 100, 200 and do 500 replicates in each setting. The findings are in Table 6.21. It is
remarkable, that under the hypothesis, the test hardly rejects. Furthermore, under the
alternatives the bootstrap procedure behaves even better than the original test. This is an
unexpected but pleasant finding.
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MCAR(1) process
Grenander-Rosenblatt statistic

Normal distribution NIG distribution
n 90% 95% 97.5% 99% 90% 95% 97.5% 99%
50 3.0535 3.5157 3.8073 4.5385 3.0735 3.6421 4.3578 5.18897
100 3.0929 3.6552 4.1876 4.6781 3.1855 3.7608 4.2405 4.8650
200 3.1211 3.6824 4.2016 4.9505 3.2628 3.8365 4.3261 5.1105
500 3.1439 3.7339 4.1935 4.7652 3.1961 3.7491 4.2584 4.9095
1000 3.1946 3.7512 4.2244 4.8877 3.3017 3.8345 4.4087 5.1175
2500 3.1256 3.7995 4.2733 4.8794 3.3735 3.9468 4.4847 5.0303
limit 3.1593 3.7113 4.2966 4.8712 3.2938 3.9441 4.4129 5.0938

Cramér-von Mises statistic
Normal distribution NIG distribution

n 90% 95% 97.5% 99% 90% 95% 97.5% 99%
50 20.2115 27.0517 31.3571 41.4468 21.4855 30.8772 45.0900 64.1383
100 21.6175 30.8035 40.8099 51.0412 22.7657 31.8846 42.3185 55.4154
200 21.5474 30.4375 41.0050 57.3692 23.6207 33.0851 44.0739 60.8951
500 21.8753 30.9503 39.9908 52.7037 22.3696 31.9319 41.7223 56.2380
1000 22.3494 31.5963 41.2221 56.5119 23.7143 33.2557 44.7966 61.1908
2500 22.8001 32.1742 41.7642 55.0025 24.1312 33.9940 44.2733 60.1516
limit 22.6324 32.1829 42.8200 56.2604 23.4122 33.6122 43.9967 59.7828

Table 6.18.: Empirical quantiles of the Grenander-Rosenblatt and the Cramér-von Mises
statistics for the MCAR(1) process. The estimation results to the limit process
are denoted as “limit”.
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CARMA(2,1) process
Grenander-Rosenblatt statistic

Normal distribution
n T (C1) (C2) (C3) (C4) (C5) (C6)
50 3.34 50.40 100 100 100 40.98 5.50
100 3.16 94.4 100 100 100 66.16 20.02
200 3.32 100 100 100 100 90.16 48.12
500 3.82 100 100 100 100 99.90 92.36
1000 3.50 100 100 100 100 100 100
2500 5.50 100 100 100 100 100 100

NIG distribution
50 2.88 39.36 100 100 100 37.86 3.22
100 2.48 91.26 100 100 100 63.86 14.14
200 2.92 100 100 100 100 89.38 41.20
500 2.54 100 100 100 100 99.92 88.96
1000 2.54 100 100 100 100 100 100
2500 5.60 100 100 100 100 100 100

Cramér-von Mises statistic
Normal distribution

n T (C1) (C2) (C3) (C4) (C5) (C6)
50 4.78 65.12 100 100 100 43.90 11.02
100 4.98 97.02 100 100 100 68.38 27.30
200 5.20 100 100 100 100 90.62 55.62
500 5.60 100 100 100 100 100 94.52
1000 5.30 100 100 100 100 100 100
2500 5.68 100 100 100 100 100 100

NIG distribution
50 3.78 63.70 100 100 100 41.88 9.64
100 4.20 96.46 100 100 100 67.62 25.08
200 5.30 100 100 100 100 90.68 54.22
500 5.04 100 100 100 100 99.90 93.80
1000 4.90 100 100 100 100 100 100
2500 5.50 100 100 100 100 100 100

Table 6.19.: Percentages of rejection for the test statistics in the CARMA(2,1) settings
based on 5000 replications and the significance level α = 0.05. Thereby,
“T” stands for the correct specified model whereas “(C1)-(C6)” denote the
misspecifications in the CARMA(2,1) setting.



124 Chapter 6. Simulation study

MCAR(1) process
Grenander-Rosenblatt statistic

Normal distribution NIG distribution
n T (M1) (M2) (M3) (M4) T (M1) (M2) (M3) (M4)
50 6.02 23.76 73.94 100 24.78 2.92 13.31 49.68 100 14.44
100 6.86 45.84 97.30 100 42.42 3.92 31.64 88.90 100 29.88
200 6.80 76.40 100 100 70.46 4.30 64.64 100 100 60.78
500 7.94 99.10 100 100 97.56 3.78 97.94 100 100 98.60
1000 7.72 100 100 100 100 4.46 100 100 100 100
2500 5.65 100 100 100 100 5.06 100 100 100 100

Cramér-von Mises statistic
Normal distribution NIG distribution

n T (M1) (M2) (M3) (M4) T (M1) (M2) (M3) (M4)
50 3.64 17.98 67.68 100 21.34 4.68 14.74 55.60 100 16.26
100 4.20 39.60 96.08 100 38.12 4.90 32.74 80.98 100 31.38
200 4.50 71.40 100 100 66.34 5.22 63.88 100 100 55.52
500 4.56 98.66 100 100 96.76 4.94 97.40 100 100 92.66
1000 4.88 100 100 100 100 5.40 100 100 100 100
2500 5.00 100 100 100 100 5.40 100 100 100 100

Table 6.20.: Percentages of rejection for the test statistics in the MCAR(1) settings based on
5000 replications and the significance level α = 0.05. Thereby, “T” stands for
the correct specified model whereas “(M1)-(M4)” denote the misspecifications
in the CARMA(2,1) setting.

CARMA(2,1) process
Grenander-Rosenblatt

Normal distribution NIG distribution
n T (C1) (C2) T (C1) (C2)
50 0 81.60 90.20 0.20 99.60 56.60
100 2.40 100 99.80 0 100 100
200 0 100 100 0 100 100

Cramér-von Mises
Normal distribution NIG distribution

n T (C1) (C2) T (C1) (C2)
50 0.80 77.60 92.8 0 88.40 40.40
100 2.0 100 100 0.40 100 96.8
200 2.0 100 100 1.20 100 100

Table 6.21.: Percentages of rejection for the Bootstrap version of the test statistics based
on 500 replications and the significance level α = 0.05. Thereby, “T” stands for
the correct specified model whereas “(C1)-(C2)” denote the misspecifications
in the CARMA(2,1) setting.



CHAPTER 7

Conclusion and outlook

The main focus of this thesis was to investigate estimation procedures for discretely ob-
served Lévy-driven causal MCARMA processes. We achieved to prove that the Whittle
estimator has desirable asymptotic properties under weak identifiability conditions and
under the assumption that the driving process has existing fourth moments. In contrast,
the quasi maximum likelihood estimator which might be seen as the only yet investigated
alternative, needs a slightly stronger moment condition to work. A further advantage of
the Whittle estimator is that the covariance matrix of the limit distribution has a known
analytical representation and can be computed in theory. This gives the opportunity to
build confidence bands which might be used for different reasons. For example, testing
could be done. Not only are the performances of the Whittle estimator and the quasi
maximum likelihood estimator really similar for finite sample sizes, they are also quite good
for small and moderate sample sizes. Consequently, another useful estimation procedure
for equidistantly observed light-tailed Lévy-driven MCARMA processes was found.
For univariate processes, we then adapted the estimator to obtain a procedure which is
independent of the variance of the driving process. Motivated by Mikosch (1991) who
proved that a Whittle estimator depicts desirable asymptotic properties in a heavy-tailed
ARMA setting, we had the hope to thereby construct an estimator which is suited for
parameter estimation in a symmetric α-stable CARMA setting. Unfortunately, this did
not turn out to be true. Even though we were able to show that the adjusted Whittle
estimator is also strongly consistent and asymptotically normally distributed in a setting
in which the fourth moment of the driving process exists, the results can not be carried out
to a general stable setting. Just for the class of symmetric α-stable Ornstein-Uhlenbeck
processes, the estimator is consistent. However, for this setting, there are already some
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suitable estimation procedures like the ones presented in Fasen and Fuchs (2013b), Hu
and Long (2007), Hu and Long (2009), Ljungdahl and Podolskij (2020), Zhang and Zhang
(2013). Accordingly, our findings for heavy-tailed parameter estimation are disenchanting.
Additionally, considerations in the light-tailed Ornstein-Uhlenbeck setting and the sim-
ulation studies suggest that albeit the estimator is asymptotically normally distributed
for light-tailed processes, it is inferior to the quasi maximum likelihood estimator and the
original Whittle estimator. Consequently, we would not recommend using this estimator at
all since the alternatives probably perform better.
Returning to the problem of parameter estimation for α-stable CARMA processes, we
conclude that a suitable estimation procedure has to be found in future. Therefore, this
problem remains open for further investigations. There are also many more directions for
potential research relating to parameter estimation. Considering classes which are related
to the class of MCARMA processes, one could investigate the Whittle estimator for sampled
cointegrated MCARMA processes and for sampled (causal) CARMA random fields. For
both classes, there is only little research done in the context of parameter estimation based
on the sampled processes. Similar as in the MCARMA case, solely the quasi maximum
likelihood estimator has already been investigated for the sampled cointegrated MCARMA
process, see Fasen-Hartmann and Scholz (2019). For the sampled CARMA random fields,
a least-squares approach is the only yet investigated estimation procedure, see Klüppelberg
and Pham (2019). Furthermore, the Whittle estimator could also be considered in the
context of MCARMA processes with light tails which are sampled with high-frequency or
when the MCARMA process is sampled irregularly.
In the second part of the thesis, we investigated the normalized function-indexed peri-
odogram for the sampled light-tailed MCARMA process in different settings. Mainly,
we derived a functional central limit theorem for a broad class of index functions. A
direct application of this result enabled us to obtain the limit behavior of various spectral
goodness-of-fit test statistics. In case of a heavy-tailed ARMA process, Klüppelberg and
Mikosch (1996) already proved a central limit theorem for the integrated periodogram
indexed by a class of indicator functions and concluded the asymptotic behavior of the
spectral goodness-of-fit test statistics in a similar manner. Their limit distributions differ
from the ones which are obtained in the MCARMA setting. However, for the Grenander-
Rosenblatt statistic, our limit distribution corresponds to the one which is obtained when
considering Gaussian ARMA processes, see Section 6.2.6 of Priestley (1981). Although
we just contemplated the statistics under the assumption of a correct specified setting, we
also simulated misspecified processes and did some testing. The corresponding tests are
good even for small sample sizes. Since the limit processes depend on the fourth moment
of the driving Lévy process, we also implemented a Bootstrap procedure to bypass the
necessity of knowing the distribution of this process. In our small simulation study, this
procedure depicted a nice performance. However, we did not investigate it mathematically.
This might also be a topic for future research. Additionally, it would be of interest to see
how an appropriately normalized function-indexed periodogram behaves in a heavy-tailed
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(M)CARMA setting, in a cointegrated (M)CARMA setting or in a CARMA random field
setting. In particular, it is an open question if our results can be carried out to a heavy-
tailed setting at all. Obviously, since the dependency structure in the sampled heavy-tailed
setting leads to problems in the case of the Whittle estimator, it is questionable if there is
any normalization under which desirable results can be derived in a heavy-tailed setting.
Furthermore, our central limit theorem is based on spectral analysis. Therefore, nice
results for spectral goodness-of-fit test statistics were obtained, but there are many open
topics in the field of testing for MCARMA processes like goodness-of-fit tests in the time
domain. The obvious connection between MCARMA processes and the class of (V)ARMA
processes makes these problems not only interesting for the sake of theoretical knowledge.
We also expect there to be a high interest for future investigations from diverse scientific
applications.





APPENDIX A

Analytical foundations

A.1. Fourier analysis

The frequency domain plays a fundamental part in this thesis: the estimators of Chapter 3
and Chapter 4 and the normalized integrated periodogram of Chapter 5 are all based
on the distance between the spectral density of the sampled process and its empirical
counterpart, the periodogram. Since the spectral density is just the Fourier transform of
the autocovariance function, it is obviously helpful to get familiar with the basics of Fourier
analysis. Therefore, we now state the Fourier analytical fundamentals which are needed in
this thesis. The first property that we prove, can be seen as a foundation of most of our
proofs of Chapter 3 and Chapter 4. It also clarifies why the (adjusted) Whittle estimator
is based on the frequencies {−π(n−1)

n , . . . , π}.

Lemma A.1.
Let h ∈ Z. Then

1
2n

n∑
j=−n+1

e−ihωj = 1{∃z∈Z: h=2zn}.

Proof. If h is an even multiple of n, say h = 2zn for some z ∈ Z, e−i2πz = 1 implies

1
2n

n∑
j=−n+1

e−ihωj = 1
2n

n∑
j=−n+1

e−i2πz = 1.

We prove that the sum vanishes otherwise. Therefore,

e−
ihπj
n = e−

ihπj
n
−2πhi = e−

ihπ(j+2n)
n
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implies

n∑
j=−n+1

e−
ihπj
n =

0∑
j=−n+1

e−
ihπj
n +

n∑
j=1

e−
ihπj
n =

0∑
j=−n+1

e−
ihπ(j+2n)

n +
n∑
j=1

e−
ihπj
n

=
2n∑
j=1

e−
ihπj
n =

2n−1∑
j=0

e−
ihπj
n =

1−
(
e−

ihπj
n

)2n

1− e−
ihπj
n

= 0.

We now introduce results which show that an appropriate approximation of the Fourier
series exhibit useful convergence properties.

Theorem A.2.
Let g : [−π, π]→ C be continuous. Define

ĝk := 1
2π

∫ π

−π
g(ω)e−ikωdω and qM (ω) =

∑
|k|≤M

ĝke
ikω.

Suppose that
∑
|k|≤n |ĝk| converges. Then

sup
ω∈[−π,π]

|qM (ω)− g(ω)| M→∞−→ 0.

Proof. Körner (1989), Theorem 3.1.

The assumptions of the previous result are quite strong. If we replace the truncated
Fourier series by its Cesàro sum, we receive an approximation which exhibits uniform
convergence without assuming that the Fourier coefficients are absolute summable. This
result is known as Fejérs Theorem. Since we want to approximate a parameterized function
in Chapter 3 and Chapter 4, we have to adjust Fejérs Theorem to a setting which allows a
dependency on a second parameter.

Theorem A.3 (Fejérs Theorem, adjusted to a parametrized setting).
Let Θ be a compact parameter space and g be a continuous real-valued function on [−π, π]×Θ.
Then, the Fourier series of g is Cesàro summable at every point of [−π, π] for any ϑ ∈ Θ.
Further, define the Fourier coefficients ĝk(ϑ) = 1

2π
∫ π
−π g(ω, ϑ)e−ikωdω and

qM (ω, ϑ) = 1
M

M−1∑
j=0

∑
|k|≤j

ĝk(ϑ)eikω
 =

∑
|k|<M

(
1− |k|

M

)
ĝk(ϑ)eikω.

Then
lim
M→∞

sup
ω∈[−π,π]

sup
ϑ∈Θ
|qM (ω, ϑ)− g(ω, ϑ)| = 0.

Proof. The proof is similar to the proof of Theorem 2.11.1 of Brockwell and Davis (1991).
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We first define the Fejér Kernel KM by

KM (y) = 1
2πM

M−1∑
j=0

∑
|k|≤j

e−iky.

The kernel has the properties

a) KM (y) ≥ 0,

b) KM (·) has period 2π,

c) KM (·) is even,

d)
∫ π
−πKM (y)dy = 1,

e) for each δ > 0,
∫ δ
−δKM (y)dy → 1, as M →∞,

see, e.g., Brockwell and Davis (1991), p. 71. By defining g(x, ϑ) = g(x+ 2π, ϑ), x ∈ R, ϑ ∈
Θ, we can represent qM as

qM (ω, ϑ) = 1
M

M−1∑
j=0

∑
|k|≤j

1
2π

∫ π

−π
g(x, ϑ)e−ikxdxeikω


=
∫ π

−π
g(x, ϑ)

 1
2πM

M−1∑
j=0

∑
|k|≤j

e−ik(x−ω)

 dx
=
∫ π

−π
g(ω − y, ϑ)KM (y)dy.

We denote the distance between the Cesàro sum of degree M and g as ∆M (·, ·). In view of
property d), we obtain

∆M (ω, ϑ) =
∣∣∣∣∫ π

−π
g(ω − y, ϑ)KM (y)dy − g(ω, ϑ)

∣∣∣∣
=
∣∣∣∣∫ π

−π
(g(ω − y, ϑ)− g(ω, ϑ))KM (y)dy

∣∣∣∣ .
Let ε > 0. Since [−π, π]×Θ is compact and since g is continuous, g is uniformly continuous
on [−π, π]×Θ. By definition, g(ω, ·) is 2π-periodic for any ϑ ∈ Θ. Therefore, g is uniformly
continuous on R×Θ. Hence, we can find a δ such that

sup
(ω,ϑ)∈R×Θ

|g(ω − y, ϑ)− g(ω, ϑ)| < ε, if |y| < δ.

A decomposition of ∆M and property d) yield

∆M (ω, ϑ) ≤
∣∣∣∣∣
∫

[−π,π]\[−δ,δ]
(g(ω − y, ϑ)− g(ω, ϑ))KM (y)dy

∣∣∣∣∣
+
∣∣∣∣∣
∫ δ

−δ
(g(ω − y, ϑ)− g(ω, ϑ))KM (y)dy

∣∣∣∣∣
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≤ sup
(ω,ϑ)∈R×Θ

|g(ω − y, ϑ)− g(ω, ϑ)|
(

1−
∫ δ

−δ
KM (y)dy

)
+ ε

M→∞−→ ε.

Remark A.4.
If we investigate the Cesàro sum of a Fourier series of a matrix-valued continuous function
g : [−π, π]×Θ→ RN×N defined by

qM (ω, ϑ) := 1
M

M−1∑
j=0

∑
|k|≤j

g(ϑ)
∧

ke
ikω

 , where g(ϑ)
∧

k := 1
2π

∫ π

−π
g(ω, ϑ)e−ikωdω,

Fejérs Theorem gives the uniform convergence of each component of qM to g on [−π, π]×Θ.
Since g consists of finite components, qM also converges to g uniformly. Obviously, the
same holds true for any matrix-valued continuous 2π periodic function g : R×Θ→ RN×N

Similarly, we can transfer Theorem A.2 to matrix-valued functions.

Finally, we often use Parsevals equality in various settings. We introduce a multivariate
version which obviously includes the original univariate variant. Note that it is essential to
use the Frobenius norm and that the result does not hold when we choose an arbitrary
norm.

Theorem A.5 (Parsevals equlality for multivariate functions).
Let g : [−π, π] → Rj×k satisfy

∫ π
−π ‖g(ω)‖2dω < ∞. Define the Fourier coefficients ĝ` =

1
2π
∫ π
−π g(ω)e−i`ωdω. Then,

1
2π

∫ π

−π
‖g(ω)‖2dω =

∑
`∈Z
‖ĝ`‖2.

Proof. The assertion directly follows from the representations

1
2π

∫ π

−π
‖g(ω)‖2dω =

j∑
s=1

k∑
t=1

1
2π

∫ π

−π
|g(ω)[s, t]|2dω,

∑
`∈Z
‖ĝ`‖2 =

j∑
s=1

k∑
t=1

∑
`∈Z
|g[s, t]
∧

`|
2,

and Parsevals equality for univariate functions, see for example Theorem 3.4.1 of Simon
(2015).

A.2. Rate of convergence of the integral approximation

To prove the uniform convergence of the Whittle function, it is necessary to guarantee that
the deterministic part of the Whittle function converges uniformly.
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Proposition A.6.
Let Θ be a compact parameter space and let g : [−π, π] × Θ → C be differentiable in
ω ∈ [−π, π] for all ϑ ∈ Θ. Assume further that ∂

∂ωg is continuous in (ω, ϑ) ∈ [−π, π]×Θ.
Then,

sup
ϑ∈Θ

∣∣∣∣∣∣ 1
2n

n∑
j=−n+1

g(ωj , ϑ)−
∫ π

−π
g(ω, ϑ)dω

∣∣∣∣∣∣ n→∞−→ 0.

Proof. Since the assertion is equivalent to

sup
ϑ∈Θ

∣∣∣∣∣∣
n∑

j=−n+1

(
g(ωj , ϑ)(ωj − ωj−1)−

∫ ωj

ωj−1
g(ω, ϑ)dω

)∣∣∣∣∣∣ n→∞−→ 0,

we show
lim
n→∞

n∑
j=−n+1

sup
ϑ∈Θ

∣∣∣∣∣g(ωj , ϑ)(ωj − ωj−1)−
∫ ωj

ωj−1
g(ω, ϑ)dω

∣∣∣∣∣ = 0

which therefore implies the statement. With an application of the mean value theorem, we
obtain for some ξj(ϑ) ∈ [ωj−1, ωj ]

n∑
j=−n+1

sup
ϑ∈Θ

∣∣∣∣∣g(ωj , ϑ)(ωj − ωj−1)−
∫ ωj

ωj−1
g(ω, ϑ)dω

∣∣∣∣∣
=

n∑
j=−n+1

sup
ϑ∈Θ

∣∣∣∣πn (g(ωj , ϑ)− g(ξj(ϑ), ϑ))
∣∣∣∣

≤ sup
j=−n+1,...,n

sup
ϑ∈Θ

π |(g(ωj , ϑ)− g(ξj(ϑ), ϑ))| .

Again, the mean value theorem yields for some ξ̃j(ϑ) with |ξ̃j(ϑ)− ωj | ≤ |ξj(ϑ)− ωj |

sup
ϑ∈Θ

sup
j=−n+1,...,n

π |(g(ωj , ϑ)− g(ξj(ϑ), ϑ))| ≤ sup
ϑ∈Θ

sup
j=−n+1,...,n

π2

n

∣∣∣∣ ∂∂ωg(ξ̃j(ϑ), ϑ)
∣∣∣∣ .

The compactness of [−π, π]×Θ and the continuity of ∂
∂ωg complete the proof.

Since the main results of Chapter 3 and Chapter 4 make use of the normalizing factor
√
n, it is necessary to prove that any investigated sum which converges to an appropriate

integral also converges when multiplied with
√
n.

Lemma A.7.
Let g : [−π, π]→ C be continuously differentiable. Then,

1√
n

n∑
j=−n+1

g(ωj)−
√
n

π

∫ π

−π
g(ω)dω n→∞−→ 0

holds.
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Proof. In view of the equivalences

n∑
j=−n+1

g(ωj)(ωj − ωj−1) n→∞−→
∫ π

−π
g(ω)dω

⇐⇒
n∑

j=−n+1
g(ωj)(ωj − ωj−1)−

n∑
j=−n+1

∫ ωj

ωj−1
g(ω)dω n→∞−→ 0

⇐⇒
n∑

j=−n+1
(g(ωj)− g(ξj))

π

n
n→∞−→ 0,

for some ξj ∈ [ωj−1, ωj ], j = −n+ 1, . . . , n, it suffices to show

n∑
j=−n+1

(g(ωj)− g(ξj))
π√
n
n→∞−→ 0

for any ξj ∈ [ωj−1, ωj ], j = −n+ 1, . . . , n. Thus, since g is continuously differentiable∣∣∣∣∣∣
n∑

j=−n+1
(g(ωj)− g(ξj))

π√
n

∣∣∣∣∣∣ ≤
n∑

j=−n+1
C|ωj − ξj |

π√
n
≤ Cπ2

n∑
j=−n+1

1
n3/2

n→∞−→ 0

completes the proof.



Notation

Symbols

1{A} indicator function of the set A

C set of complex numbers

Γ Gamma function

B(A) Borel σ-algebra of a set A

B, D backshift operator, differential operator

C positive constant with context-depending value

N,N0,Z,R,R+ set of natural numbers, set of natural numbers and 0, set of whole
numbers, set of real numbers, set of positive real numbers

∇ϑg(ϑ), ∇ϑg(ϑ0) ∇ϑg(ϑ) = ∂ vec(g(ϑ))
∂ϑ , ∇ϑg(ϑ0) = ∇ϑg(ϑ)|ϑ=ϑ0

PrL orthogonal projection onto L

D−→ convergence in distribution

P−→ convergence in probability

a.s.−→ almost sure convergence

P,E,Var,Cov probability, expectation, variance and covariance

<(z),=(z) real and imaginary part of a complex valued z

σ standard deviation parameter if EX2 <∞ and scale parameter for an
α-stable distribution with α < 2, repectively

ΣX covariance matrix of a random vector X
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sign(z) sign(z) = 1{z>0} − 1{z<0}

f̂k kth Fourier coefficient of the function f

A[s, t] (s, t)th-component of the matrix A

A⊗B Kronecker product of A and B

A>, AH transpose of A, conjugate transpose of A

eA, log(A) matrix exponential of A, matrix logarithm of A

f+, f− positive and negative part of f

g′, ∇2
ϑg(ϑ) first derivative and Hessian matrix of a univariate function g

IN N -dimensional identity matrix

oP(1), OP(1) a term which converges to 0 in probability, a term which is tight

Sα(σ, β, µ) α-stable random variable with stability index α, scale parameter σ
skewness parameter β and location parameter µ

det(A), tr(A) determinant of A, trace of a quadratic matrix A

diag(ai)k diagonal matrix of dimension k with diagonal entries a1, . . . , ak

Specific variables

(ε(∆)
k )k∈Z linear innovations of the sampled process

(A,B,C, L) state space representation of a process

(N (∆)
k )k∈Z white noise in the CMA(∞) representation of the sampled process

∆ distance between observations

f
(∆)
Y spectral density of the sampled process

Gm, GN index function sets of Chapter 5

Γn,Y , γn,Y ,Γn,N sample autocovariance of Y (∆)
1 , . . . Y

(∆)
n in the multivariate and univari-

ate settings, sample autocovariance of N (∆)
1 , . . . , N

(∆)
n

ϑ,Θ parameter, parameter space

ϑ̂
(∆)
n , ϑ̂

(∆,star)
n , ϑ̂

(∆,A)
n , ϑ∗n Whittle estimator of Chapter 3 and Section 5.2, adjusted Whittle

estimator, quasi maximum likelihood estimator

In,Y , In,N periodogram of Y (∆)
1 , . . . Y

(∆)
n , periodogram of N (∆)

1 , . . . , N
(∆)
n

L Lévy process
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m, d,N, r dimensions of Y, L,N (∆) and Θ

p, q orders of the autoregressive and moving average polynomial of the
MCARMA/VARMA representation

P,Q, a, c autoregressive and moving average polynomials of the multivariate and
univariate CARMA representation

V (∆) covariance matrix of the linear innovations of the sampled process

Y (∆) sampled process

List of abbreviations

(M)CARMA (multivariate) continuous-time autoregressive moving average process

(V)ARMA (vector) autoregressive moving average process

i.i.d. independent and identically distributed

NIG normal inverse Gaussian

QMLE quasi maximum likelihood estimator

VC Vapnik–Chervonenkis
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