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Abstract
In this note we prove that the sine-Gordon breather is the only quasimonochromatic

breather in the context of nonlinear wave equations in RN .

Mathematics Subject Classification 35J05 � 35J60 � 35L05 � 35L70

1 Introduction

Breathers are time-periodic and spatially localized patterns that describe the propagation of

waves. The most impressive solution of this kind is the so-called sine-Gordon breather for

the 1D sine-Gordon equation

ottu� oxxuþ sinðuÞ ¼ 0 in R� R:

It is given by the explicit formula

u�ðx; tÞ ¼ 4 arctan
m sinðxtÞ
x coshðmxÞ

� �
for ðx; tÞ 2 R� R; ð1Þ

where the parameters m;x[ 0 satisfy m2 þ x2 ¼ 1. It is natural to ask if other real-valued

breather solutions exist. We shall address this question in the broader context of more

general nonlinear wave equations of the form

ottu� Du ¼ gðuÞ in RN � R; ð2Þ

where the space dimension N 2 N and the nonlinearity g : R ! R are arbitrary.

The existence of radially symmetric breather solutions for the cubic Klein-Gordon

equation gðzÞ ¼ �m2zþ z3; m[ 0 in three spatial dimensions was established in [13].

These real-valued solutions are only weakly localized in the sense that they satisfy uð�; tÞ 2
LqðRNÞ for some q 2 ð2;1Þ but uð�; tÞ 62 L2ðRNÞ. In [10] infinitely many weakly localized
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breathers were found for nonlinearities QðxÞjujp�2u where Q lies in a suitable Lebesgue

space and p[ 2 is chosen suitably depending on Q as well as the space dimension N� 2.

Up to now, nothing is known about the existence of strongly localized breathers of Eq. (2)

satisfying uð�; tÞ 2 L2ðRNÞ for almost all t 2 R and N� 2, see however [11] for a an

existence result for semilinear curl-curl equations for N ¼ 3. In the case N ¼ 1 strongly

localized breather solutions different from the sine-Gordon breather have been found for

nonlinear wave equations of the form

sðxÞottu� uxx þ qðxÞu ¼ f ðx; uÞ ðx 2 RÞ

where the coefficient functions s, q are discontinuous and periodic, see [7, Theorem 1.3]

and [1, Theorem 1.1]. Given the discontinuity of s, q it must be expected that these

breathers are not twice continuously differentiable. To sum up, the existence of smooth and

strongly localized breather solutions of Eq. (2) different from the sine-Gordon breather is

not known. Still for N ¼ 1 there are nonexistence results by Denzler [4] and Kowalczyk

et al. [9] dealing with small perturbations of the sine-Gordon equation respectively small

odd breathers (not covering the even sine-Gordon breather). We are not aware of any other

mathematically rigorous existence or nonexistence results for Eq. (2).

One of the main obstructions for the construction of localized breathers is polychro-

maticity. Indeed, plugging in an ansatz of the form uðx; tÞ ¼
P

k2Z ukðxÞeikt with uk ¼ u�k

one ends up with infinitely many equations of nonlinear Helmholtz type that typically do

not possess strongly localized solutions, see for instance [8, Theorem 1a]. For this reason

the solutions obtained in [10, 13] are only weakly localized. On the other hand, a purely

monochromatic ansatz like uðx; tÞ ¼ sinðxtÞpðxÞ cannot be successful either provided that

g is not a linear function. In view of the formula (1) for the sine-Gordon breather we

investigate whether quasimonochromatic breathers exist.

Definition 1 We call the function u : RN � R ! R a quasimonochromatic breather if

uðx; tÞ ¼ FðsinðxtÞpðxÞÞ ðx 2 RN ; t 2 RÞ

for some x 2 R n f0g and nontrivial functions F 2 C2ðRÞ; p 2 C2ðRNÞ such that Fð0Þ ¼ 0

and pðxÞ ! 0 as jxj ! 1.

We show that in one spatial dimension the sine-Gordon breather is, up to translation and

dilation, the only one for (2) and that no such breathers exist in higher dimensions as long

as g does not act like a linear function. In fact, to rule out L1-small solutions of linear

wave equations, we assume that g : R ! R is not a linear function near zero, i.e., that there

is a nontrivial interval I � R containing 0 with the property that there is no b 2 R such that

gðzÞ ¼ bz for all z 2 I.

Theorem 1 Assume N 2 N and that g : R ! R is not a linear function near zero.

(i) In the case N� 2 there is no quasimonochromatic breather solution of (2).
(ii) In the case N ¼ 1 each quasimonochromatic breather solution of (2) is of the form

uðx; tÞ ¼ ju�ðx� x0; tÞ for x0 2 R, m;x; j 2 R n f0g and u� as in (1). The

nonlinearity then satisfies gðzÞ ¼ �ðm2 þ x2Þj sinðj�1zÞ whenever jzj\2pjjj.

We stress that our result holds regardless of any smoothness assumption on g nor any kind

of growth condition at 0 or infinity. Moreover, our considerations are not limited to small
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perturbations of u� or small breathers in whatever sense. Following the proof of Theorem 1

one also finds that quasimonochromatic breathers of wave equations on any open set

X(RN with homogeneous Dirichlet conditions

ottu� Du ¼ gðuÞ in X� R; u ¼ 0 on oX� R ð3Þ

with profile functions p 2 C2ðXÞ do not exist either (even if N ¼ 1) provided that g is not a
linear function near zero. We will comment on this fact at the end of this paper. As a

consequence, we find that Rabinowitz’ C2ð½0; 1� � RÞ-solutions of the 1D wave equation

from [12, Theorem 1.6] are not of quasimonochromatic type. This might be true as well for

the solutions from [2, 3], but here our argument does not apply in a direct way since the

solutions are not known to be twice continuously differentiable up to the boundary.

For completeness we briefly comment on the linear case gðzÞ ¼ bz, b 2 R. Then the

profile function p of any given quasimonochromatic breather of (2) satisfies the linear

elliptic PDE �Dp� ðx2 þ bÞp ¼ 0 in RN .

For b\� x2 there are positive, radially symmetric and exponentially decaying solu-

tions p, see [5, Theorem 2]. In the case b[ � x2;N� 2 one can find radial as well as non-

radial solutions of the associated Helmholtz equation all of which have infinitely many

nodal domains and satisfy jpðxÞj þ jrpðxÞjJjxj
1�N
2 in a suitable integrated sense, see [14,

Theorem 1] respectively [8, Theorem 1a]. For b[ � x2;N ¼ 1 all solutions are linear

combinations of sin and cos so that breather solutions do not exist. So we see that the

picture is already quite complete in the case of linear wave equations.

2 Proof of Theorem 1

In the following let uðx; tÞ ¼ FðsinðxtÞpðxÞÞ be a solution of (2) with g as in the Theorem.

Plugging in this ansatz we get for all x 2 RN such that pðxÞ 6¼ 0,

ottuðx; tÞ ¼ �x2 sinðxtÞpðxÞF0ðsinðxtÞpðxÞÞ þ x2 cosðxtÞ2pðxÞ2F00ðsinðxtÞpðxÞÞ
¼ �x2zF0ðzÞ þ x2ðpðxÞ2 � z2ÞF00ðzÞ;

Duðx; tÞ ¼ sinðxtÞDpðxÞF0ðsinðxtÞpðxÞÞ þ sinðxtÞ2jrpðxÞj2F00ðsinðxtÞpðxÞÞ

¼ DpðxÞ
pðxÞ zF0ðzÞ þ jrpðxÞj2

pðxÞ2
z2F00ðzÞ;

where z ¼ sinðxtÞpðxÞ 2 ½�kpk1;þkpk1�. This and (2) imply for x 2 RN ; z 2 R such that

pðxÞ 6¼ 0; z 2 ½�kpk1;þkpk1�

gðFðzÞÞ þ x2zF0ðzÞ þ x2z2F00ðzÞ ¼ pðxÞ2x2F00ðzÞ � DpðxÞ
pðxÞ zF0ðzÞ � jrpðxÞj2

pðxÞ2
z2F00ðzÞ:

ð4Þ

If F was linear on ½�kpk1;þkpk1�, then g would have to be linear on the nontrivial

interval I :¼ fFðzÞ : jzj 	 kpk1g as well. Since the latter is not the case by assumption, we

know that z7!z2F00ðzÞ does not vanish identically on that interval. Multiplying (4) with

p(x) and choosing z according to z2F00ðzÞ 6¼ 0 we find that p does not change sign. Indeed,

if pðx�Þ 6¼ 0 and R[ 0 is the smallest radius such that p has a fixed sign in the open ball

BRðx�Þ, then Hopf’s Lemma [6, Lemma 3.4] implies jrpj[ 0 on oBRðx�Þ. But then (4)
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implies that Dp is unbounded on oBRðx�Þ, which contradicts p 2 C2ðRNÞ. Hence, p does

not change sign and we will without loss of generality assume that p is positive. So (4)

holds for all x 2 RN and all z 2 ½�kpk1; kpk1� and standard elliptic regularity theory

gives p 2 C1ðRNÞ.
Differentiating (4) with respect to xi we get

oiðpðxÞ2Þx2F00ðzÞ � oi
DpðxÞ
pðxÞ

� �
zF0ðzÞ � oi

jrpðxÞj2

pðxÞ2

 !
z2F00ðzÞ ¼ 0: ð5Þ

Since p2 is non-constant, we infer that F satisfies an ODE of the form

F00ðzÞ ¼ �l2z
x2 þ l1z2

F0ðzÞ ðjzj 	 kpk1; l1 2 R; l2 2 R n f0gÞ: ð6Þ

Here, l2 6¼ 0 is due to the fact that F is not a linear function. Each nontrivial solution of

such an ODE satisfies F0ðzÞ 6¼ 0 for almost all z 2 ½�kpk1; kpk1�. Combining (5) and (6)

we thus infer

�oiðpðxÞ2Þ
l2x

2z

x2 þ l1z2
� oi

DpðxÞ
pðxÞ

� �
zþ oi

jrpðxÞj2

pðxÞ2

 !
l2z

3

x2 þ l1z2
¼ 0:

Since (6) holds for all i 2 f1; . . .;Ng and z 2 ½�kpk1; kpk1�, we get

�l1oi
DpðxÞ
pðxÞ

� �
þ l2oi

jrpðxÞj2

pðxÞ2

 !
¼ 0;

�l2oiðpðxÞ2Þ � oi
DpðxÞ
pðxÞ

� �
¼ 0:

Since l2 6¼ 0 we can find k1; k2 2 R such that

�l1
Dp
p

þ l2
jrpj2

p2
¼ �k2l1 þ k1l2; �l2p

2 � Dp
p

¼ �k2:

This implies

jrpj2 ¼ k1p
2 � l1p

4; �Dpþ k2p ¼ l2p
3: ð7Þ

We now use (7) and the positivity of p to show that p is radially symmetric about its

maximum point x0 2 RN . We concentrate on the case N� 2 since the claim for N ¼ 1

follows from the fact that x 7!uðx0 þ xÞ and x7!uðx0 � xÞ solve the same initial value

problem. Since p vanishes at infinity, we must have k1 � 0 and, since p does not change

sign, k2 � 0, see [14, Theorem 1]. Moreover, p attains its maximum at some point x0 2 RN

with pðx0Þ[ 0; jrpðx0Þj ¼ 0;Dpðx0Þ	 0. This and (7) implies k1; l1 [ 0 as well as

l2 � 0. So we know that (7) holds for

k1; l1 [ 0; k2; l2 � 0:

In the case k2 [ 0 Theorem 2 from [5] implies the radial symmetry about x0, so we are left
with the case k2 ¼ 0.
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So let use assume k2 ¼ 0. Liouville’s Theorem implies that l2 ¼ 0 is impossible, so we

have l2 [ 0 in this case. Define a :¼ 1� l2
l1
2 ð�1; 1Þ. In the case a 2 ð0; 1Þ the function

wðxÞ :¼ pðxÞa satisfies

�Dw ¼ �aðDpÞpa�1 � aða� 1Þjrpj2pa�2¼ð7Það1� aÞk1w:

In view of að1� aÞk1 [ 0 Theorem 1 from [14] implies that w has infinitely many nodal

domains, which contradicts the positivity of w. So this case cannot occur. In the case

a 2 ð�1; 0Þ radial symmetry about x0 follows once more from [5, Theorem 2], so it

remains to discuss the case a ¼ 0, i.e., l1 ¼ l2. Then wðxÞ :¼ logðpðxÞÞ satisfies

�Dw ¼ �ðDpÞp�1 þ jrpj2p�2¼ð7Þk1w

and we find as above that w has to change sign infinitely many times, which is a contra-

diction. So we have shown that p is radially symmetric about x0 also in the case k2 ¼ 0.

So we have

pðxÞ ¼ p0ðjx� x0jÞ where p00ðrÞ
2 ¼ k1p0ðrÞ2 � l1p0ðrÞ4; p00ð0Þ ¼ 0:

Solving this ODE gives

p0ðrÞ ¼
A

coshðmrÞ where k1 ¼ m2; l1 ¼ m2A�2

for some A[ 0;m 6¼ 0. So �Dpþ k2p ¼ l2p
3 can only hold for N ¼ 1 as well as k2 ¼ m2,

l2 ¼ 2m2A�2. Plugging these values into (6) and solving the ODE we get from

Fð0Þ ¼ 0;F 6
 0

FðzÞ ¼ 4j arctan
mz

Ax

� �
for some j 2 R n f0g:

This implies that the breather solution is given by

uðx; tÞ ¼ FðsinðxtÞpðxÞÞ ¼ FðsinðxtÞp0ðjx� x0jÞÞ ¼ ju�ðx� x0; tÞ

for u� as in (1). So have proved the nonexistence of such breathers for N� 2 from claim

(i) and the uniqueness statement from claim (ii).

To see that this solution formula determines the nonlinearity g, we combine (6) and (7)

to get

pðxÞ2x2F00ðzÞ � DpðxÞ
pðxÞ zF0ðzÞ � jrpðxÞj2

pðxÞ2
z2F00ðzÞ ¼ m2ðm2z2 � A2x2Þ

m2z2 þ A2x2
F0ðzÞz:

So (4) implies

gðFðzÞÞ ¼ �x2zF0ðzÞ � x2z2F00ðzÞ þ m2ðm2z2 � A2x2Þ
m2z2 þ A2x2

F0ðzÞz

¼ ðm2 þ x2Þðm2z2 � A2x2Þ
m2z2 þ A2x2

zF0ðzÞ

¼ 4Amjxðm2 þ x2Þðm2z2 � A2x2Þz
ðm2z2 þ A2x2Þ2

:
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Plugging in z ¼ Ax
m tanð y

4jÞ for jyj\2pjjj we get FðzÞ ¼ y and hence

gðyÞ ¼
4A2x2jðm2 þ x2ÞðA2x2 tanð y

4jÞ
2 � A2x2Þ tan y

4j

� �
ðA2x2 tan y

4j

� �2þA2x2Þ2

¼
4jðm2 þ x2Þðtan y

4j

� �2�1Þ tanð y
4jÞ

ðtanð y
4jÞ

2 þ 1Þ2

¼ 4jðm2 þ x2Þ sin
y

4j

� �2
� cos

y

4j

� �2� �
sin

y

4j

� �
cos

y

4j

� �

¼ �2jðm2 þ x2Þ cos y

2j

� �
sin

y

2j

� �

¼ �jðm2 þ x2Þ sin y

j

� �
:

h

Remark 1

(i) We explain why nonlinear quasimonochromatic breathers of (3) with profile

functions p 2 C2ðXÞ do not exist on open sets X(RN . The arguments presented

above reveal that any such breather is given by functions F, p as in Definition 1

such that for all x 2 X; pðxÞ 6¼ 0; jzj 	 kpk1 we have as in (4)

gðFðzÞÞ þ x2zF0ðzÞ þ x2z2F00ðzÞ ¼ pðxÞ2x2F00ðzÞ � DpðxÞ
pðxÞ zF0ðzÞ � jrpðxÞj2

pðxÞ2
z2F00ðzÞ:

Now fix z 2 ð�kpk1; kpk1Þ such that z2F00ðzÞ 6¼ 0 and choose x� 2 X such that

pðx�Þ 6¼ 0. Let R[ 0 be largest possible such that |p| is positive in the open ball

BRðx�Þ � X. By the homogeneous Dirichlet boundary condition, we know

R	 dist ðx�; oXÞ\1 and that p vanishes on oBRðx�Þ. So the same argument as in

the above proof (Hopf’s Lemma) shows that jDpj is unbounded on BRðx�Þ, a
contradiction. As a consequence, such a profile function cannot exist and we

obtain the nonexistence of quasimonochromatic breathers for (3).

(ii) In our proof we did not use the assumption pðxÞ ! 0 as jxj ! 1 when we proved

that |p| is positive. As a consequence, each profile function p of a solution

uðx; tÞ ¼ FðsinðxtÞpðxÞÞ of (2) has a fixed sign regardless of its behaviour at

infinity. Similarly, (7) holds without this hypothesis. So we conclude that any

profile function p 2 C2ðRNÞ of a quasimonochromatic breather is a positive

solution of (7) provided that the nonlinearity g is not a linear function on the

interval fFðzÞ : jzj 	 kpk1g. Notice also that the assumption Fð0Þ ¼ 0 is not used

either.

(iii) Our notion of a quasimonochromatic breather does not allow for the solutions

uðx; tÞ ¼ u�ðx1; tÞ (x 2 RN), which are localized only with respect to one spatial

direction.

Accordingly, our nonexistence result for N � 2 is false under the weaker

requirement
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sup
x02RN�1

jpðx1; x0Þj ! 0 as x1 ! 1: ð8Þ

One may conjecture that the solutions uðx; tÞ ¼ u�ðx � h; tÞ for h 2 SN�1 � RN are

the only quasimonochromatic breathers that are localized in some spatial direc-

tion. This open problem bears some similarity to the Gibbon’s Conjecture or de

Giorgi Conjecture about the classification of monotone solutions of the Allen-

Cahn equation Duþ u ¼ u3 in RN that we recast in our setting below.

Conjecture 1 Let N 2 N;N � 2 and let p 2 C2ðRNÞ be a solution of (7) for some
k1; k2; l2; l2 2 R that satisfies (8). Then there are c;m; z 2 R such that

pðxÞ ¼ c
coshðmðx1 � zÞÞ :

Conjecture 2 Let N 2 N;N � 2 and let p 2 C2ðRNÞ be a solution of (7) for some

k1; k2; l2; l2 2 R that satisfies o1pðxÞx1\0 for all x 2 RN such that x1 6¼ 0. Then there are
c;m[ 0 such that

pðxÞ ¼ c
coshðmx1Þ

:
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