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Abstract. Beads are widely used to stiffen sheet metal components subjected to bending loads. 

Often, these bead-stiffened parts are used in product variants that differ significantly in the 

amount of acting loads. Lamination of unidirectional carbon fibre reinforced plastic (UD-CFRP) 

on the top flange area of individual beads represents a method for further increasing weight-

specific stiffness: By varying the number of plies, a specifically configured component is 

obtained for each of the load cases. As a result, no changes to the forming tools are necessary 

and a minimum amount of the UD-CFRP material is required. In this work, a complete 

manufacturing process for a fibre reinforced bead was developed: First, a bead cross section 

geometry with an adapted top flange area to accommodate the UD-CFRP plies was designed 

and stamped into pre-stretched sheet samples of DX56 steel. Subsequently, the suitability of 

several surface pre-treatment processes to achieve sufficient bond strength of the composite 

bead was experimentally investigated and the UD-CFRP plies were applied by lamination. Final 

bending tests quantified the achievable stiffening effect of the investigated bead variants, 

showing a significant increase of the maximum supportable load compared to the standard non-

reinforced cross-section. 

1.  Introduction 

In order to meet customer-specific requirements, products appear in multiple variants, often showing 

high mass differences. For example, in the automotive industry these can amount to more than 500 kg 

within a series [1]. A uniform design of individual product components with respect to the peak-loaded 

variant leads to over-dimensioning of the lower-loaded variants, which counteracts cost and lightweight 

design objectives. One possible solution is to create variants at the component level. When sheet metal 

forming processes are used, however, cost-intensive adjustments to the forming tools are necessary. 

This makes the design variants uneconomical, especially for parts with low volumes [2]. For 

components subjected predominantly to bending loads, a hybrid material approach for generating cost-
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effective manufacturable component variants is investigated: First, a beaded base component is created. 

Subsequently, load-specific component variations can be derived by locally applying a variable number 

of plies of unidirectional carbon fibre reinforced plastic (UD-CFRP) to the bead cross section. 

2.  State of the art 

The insertion of beads represents a method of structural lightweight design and an extensive analysis 

of various bead patterns was performed in [3]. The magnitude of the reinforcing effect depends both on 

the geometrical parameters of the bead cross-section as well as on the arrangement of the beads in the 

component. For the resulting topology optimization problem, a method was developed that couples a 

bead optimization based on main bending stress trajectories with forming simulation to determine bead 

patterns while considering manufacturability [4]. With regard to the design of reinforced hybrid beads, 

the anisotropic mechanical properties of FRP impact the stiffening effect. For long fibre reinforced 

plastic injection moulded components, the influence on the stiffness of beads resulting from a specific 

determination of the fibre orientations has already been shown [5]. In addition, hybrid sheet metal 

components that combine sheet metal and FRP are already being used in the automotive and aerospace 

industry. For example, the hybrid material GLARE (glass fibre reinforced aluminium) that consists of 

alternating layers of aluminium foil and glass fibre laminate is used for the fuselage of passenger aircraft 

[6]. In order to prepare the lamination of fibre reinforced plastic onto metal sheets, various surface pre-

treatments can be performed on the metal sheet. The objective is to improve the resulting bond strength 

by increasing the effective surface area. An overview of the mechanisms influencing adhesion and a 

description of the processes used such as sand blasting, plasma etching and application of adhesion 

promoters are detailed in [7]. 

3.  Approach 

The aim of this work is to show the manufacturability of the reinforced hybrid beads and to verify the 

predicted reinforcement effect for different reinforcement variants. For this purpose, a complete chain 

of the design and manufacturing process is implemented: To accommodate the local UD-CFRP-

reinforcement, a matched trapezoidal bead is designed based on analytical considerations and stamped 

into pre-stretched sheets. Subsequently, several surface pre-treatment processes for achieving sufficient 

bond strength of the hybrid component are compared experimentally. Finally, the achievable increase 

in bending stiffness is quantified in three-point bending tests. 

Analytical principle of the reinforcing effect due to hybrid beads 

According to Bernoulli's elastic beam theory, the bending stiffness of a profiled beam is the product of 

the modulus of elasticity 𝐸 and the area moment of inertia 𝐼. By analogy, the insertion of beads in sheet 

metal components leads to an increase of the bending stiffness in the direction of the bead axis that 

results from the increase in the area moment of inertia. For a trapezoidal bead stamped into a sheet with 

the modulus of elasticity 𝐸sheet, to which reinforcements made of an UD-FRP material with the 

modulus of elasticity 𝐸UD−FRP in the direction of the fibres are applied locally, a total bending stiffness 

(𝐸 · 𝐼)total is obtained against a static bending load acting on the bead for an arbitrary given coordinate 

system, cf. Figure 1: 

 

 (𝐸 · 𝐼)𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑠ℎ𝑒𝑒𝑡 · (𝐼𝑠ℎ𝑒𝑒𝑡,𝐺𝐶 + 𝐼𝑠ℎ𝑒𝑒𝑡,𝑆𝑡𝑒𝑖𝑛𝑒𝑟) + 𝐸𝑈𝐷−𝐹𝑅𝑃 · (𝐼𝑈𝐷−𝐹𝑅𝑃,𝐺𝐶 + 𝐼𝑈𝐷−𝐹𝑅𝑃,𝑆𝑡𝑒𝑖𝑛𝑒𝑟)   (1) 

 

For both components, the area moment of inertia consists of a portion 𝐼GC around the respective area’s 

geometric centre (𝐺𝐶) with vertical position 𝑧GC and a portion 𝐼Steiner according to the parallel axis 

theorem (Steiner's theorem): 

 𝐼𝐺𝐶 = ∫ 𝑧2 𝑑𝐴
 

𝐴
 (2) 
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 𝐼𝑆𝑡𝑒𝑖𝑛𝑒𝑟 = (𝑧𝐺𝐶 − 𝑧𝑁𝐹)2 · 𝐴 (3) 

 

𝑧𝑁𝐹 denotes the vertical position of the neutral fibre (NF) of the hybrid bead and 𝐴 denotes the cross 

section of the respective component: 

 

   𝑧𝑁𝐹 =
𝐸𝑠ℎ𝑒𝑒𝑡·∫ 𝑧 𝑑𝐴

 

𝐴𝑠ℎ𝑒𝑒𝑡
+𝐸𝑈𝐷−𝐹𝑅𝑃·∫ 𝑧 𝑑𝐴

 

𝐴𝑈𝐷−𝐹𝑅𝑃

𝐸𝑠ℎ𝑒𝑒𝑡∗𝐴𝑠ℎ𝑒𝑒𝑡+𝐸𝑈𝐷−𝐹𝑅𝑃·𝐴𝑈𝐷−𝐹𝑅𝑃
 = 

𝐸𝑠ℎ𝑒𝑒𝑡·𝑧𝐺𝐶,𝑠ℎ𝑒𝑒𝑡·𝐴𝑠ℎ𝑒𝑒𝑡+𝐸𝑈𝐷−𝐹𝑅𝑃·𝑧𝐺𝐶,𝑈𝐷−𝐹𝑅𝑃·𝐴𝑈𝐷−𝐹𝑅𝑃

𝐸𝑠ℎ𝑒𝑒𝑡·𝐴𝑠ℎ𝑒𝑒𝑡+𝐸𝑈𝐷−𝐹𝑅𝑃·𝐴𝑈𝐷−𝐹𝑅𝑃
  (4) 

 

For a fixed quantity of UD-CFRP, the Steiner portion can be increased as a contribution to lightweight 

design targets. For this purpose, the UD-CFRP reinforcement is positioned as far from the neutral fibre 

as possible. In the bead geometry, the top flange area was therefore selected as the location of the 

reinforcement, as shown in Figure 1. When the fibres in CFRP are subjected to compressive loads, 

micro-buckling can occur. Because of this, the hybrid material GLARE is used in aircraft construction 

in the areas of the fuselage that are predominantly loaded by tensile forces [8]. Thus, for components 

loaded by static bending loads, it emerges as a design guideline to align the beads in such a way that 

the top flange area laminated with the UD-CFRP is loaded by tensile stresses along the bead axis. The 

resulting stress profile through the cross section is plotted for the two subcomponents in Figure 1. 

 
Figure 1. Load case of the hybrid bead with the top flange area loaded by tensile stresses under static 

three-point bending load due to the force F.  

Design and manufacturing of the basic bead 

In a first step of the experimental implementation, a trapezoidal bead cross section geometry to be 

stamped was designed. In order to increase the bonding surface of the UD-CFRP, a channel-shaped 

recess was brought into the top flange area. In addition, this structure in conjunction with the UD-CFRP 

increases the buckling stiffness of the top flange area, allowing wider beads to be used. The maximum 

bead height that can be achieved is limited by the occurrence of tearing during bead stamping. 

Therefore, a pronounced stiffening effect results when a sheet material with high formability and thus 

a high achievable bead height is combined with a reinforcing material with a high modulus of elasticity. 

With regard to lightweight design targets for beaded components, its formability must also be taken into 

account in addition to the density of the sheet material. In the following investigations, the sheet material 

DX56+Z100 was therefore selected as a galvanized deep-drawing steel that exhibits good formability, 

with a sheet thickness of 1 mm and a zinc coating thickness of 7 µm. This is also widely used for the 

production of car body parts and is therefore of industrial relevance for the variant designs under 

consideration. In the sheet metal components to be provided with beads described as the application 

target, the sheet is subjected to pre-stretching by the die and blank holder geometry before the actual 

stamping of the bead. Depending on the local extent of the pre-stretching, different heights of the 

individual beads can therefore be produced. The influence of different pre-strain states on the stamping 

of beads has already been investigated using both a numerical simulation model and experimentally in 
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[8]: For this purpose, the forming tool geometry developed in [9] was used to generate different pre-

strain states and was supplemented with inserts for the subsequent stamping of the bead. Thereby, the 

strain state in the sheet metal area in which the bead is stamped can be defined by adjusting the blank 

geometry. This approach was adopted and two inserts, marked in colour in Figure 2(a) and (b), were 

inserted into the tool geometry according to [9] to form the bead geometry. For the subsequent 

production of the beads, the blank geometries shown in Figure 2(d) and (e) were selected. The 

manufacturability with regard to tear formation was verified by means of a finite element simulation 

model of the entire forming process in Autoform R8, as shown in Figure 2(c). Using a Dieffenbacher 

DXU 320 B double-acting hydraulic press, the production of the beads was possible without the 

occurrence of tearing for both of the used blank geometries. 

 

 
Figure 2. Sectionals views (a) and (b) of the upper and lower die of the forming tool with colour marked 

inserts (blue/green) for bead creation from the CAD model. Isometric view of the sheet geometry with 

the centrally inserted bead generated from the Autoform simulation model (c) compared to the 

manufactured parts (d and e). 

Surface pre-treatment to enhance bond strength of the hybrid beads 

For the hybrid beads, the goal was defined as achieving such a high bond strength that delamination at 

the bond interface would not be the limiting failure mechanism under an applied bending load. Instead, 

failure within the UD-CFRP or plastic deformation of the sheet would occur beforehand. In order to 

achieve this, several possible processes were experimentally applied to the top flange area of the 

stamped beads: chemical etching with hydrochloric acid and nitric acid, sandblasting with two different 

configurations and two types of laser structuring. The acids were present in 10 % aqueous (hydrochloric 

acid) and 10 % alcoholic (nitric acid) solutions, and exposure times of 90 s and 300 s were investigated. 

Sandblasting was investigated on a SAPI T-REX 140 using corundum sand as the blasting medium and 

both pressure blasting and injector blasting were performed with an approximate processing time of 

30 s. The laser radiation was used to generate a triple bi-directional and a circular beam oscillation 

surface pattern according to two of the strategies detailed in [10]. A single-mode fibre laser IPG YLR 

3000-SM was used for both methods. For the structuring of the top flange area of the bead, a time span 

of 11.6 s for the triple bi-directional pattern and 2.1 s for the circular beam oscillation pattern was 

required. Following the surface treatment, a Keyence VK-X100 confocal 3D laser scanning microscope 

was used to image the surface structure and to measure the surface roughness of the manufactured 

variants. Compared to the untreated reference configuration, the surface structures shown in Figure 3 

and the effect on the mean arithmetic height (Sa) shown in Figure 4 were obtained. The standard 

deviation for the error indicators was calculated from three measurements for each bar. The smallest 

effect on the surface roughness was achieved with chemical etching. Therefore, only the other two 

process types were used for the subsequent investigations. For the two laser structuring processes, a 

similarly pronounced effect on Sa as in [10] was obtained for the DX56 steel used here. For 

sandblasting, a stronger effect can be seen with the pressure blasting variant in comparison with the 

injection blasting variant. 

 a 

c 

d b e 
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Figure 3. Images of the sheet surface 

after laser structuring (a: circular 

beam oscillation, b: triple bi-

directional) and after sandblasting (c: 

pressure blasting, d: injector blasting) 

generated on a confocal laser 

microscope at 10x magnification

 

 
Figure 4. Mean arithmetic height Sa according to ISO 25178 after surface pre-treatment processing. 

Manufacturing of the hybrid beads 

In the next step, several variants of the hybrid bead were manufactured. Therefore, UD-CFRP was 

laminated onto the surface-pre-treated top flange area of the formed beads. In an initial series of tests, 

reinforcement by vacuum-assisted resin infusion was performed on one sample of both of the two sand-

blasted bead variants to investigate the general feasibility of the laminating process. For this purpose, 

the Sigrafil C T50-4.0/240-E10 fibres and a matrix composed of the Ebalta AH 140 epoxy resin with 

the Ebalta TC 90-2 hardener were used. In a second series, with regard to subsequent industrial 

applications, pre-impregnated fibre bundles were deposited using an AFP (automated fibre placement)-

unit and then laminated onto the laser-structured beads. In this case, Hexcel AS7 fibres were used with 

the Hexcel 8552 epoxy resin matrix. In order to be able to compare the influence of different 

reinforcement variants on achievable stiffness, 3 plies with a material-specific nominal cured ply 

thickness of 0.35 mm were used for the hand-laminated beads and one specimen with 4 plies and two 

specimens with 12 plies with a nominal cured ply thickness of 0.13 mm were used for the AFP-based 

variant in each case.  

For both production variants, multi-stage cleaning of the pre-treated sheet surface was conducted 

before lamination: First, an ultrasonic bath with propanol as the ambient medium was performed for 

5 min, followed by another 5 min ultrasonic bath with acetone, and then rinsing with deionised water. 

In the next step, the difference between the two variants is that for the first variant, only the fibres are 

S
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m
] 

d 

c 

6 mm 6 mm 

b a 
1 mm 

1 mm 



40th International Deep-Drawing Research Group Conference (IDDRG 2021)
IOP Conf. Series: Materials Science and Engineering 1157  (2021) 012093

IOP Publishing
doi:10.1088/1757-899X/1157/1/012093

6

 

 

 

 

 

 

 

applied and the resin-hardener mixture infiltrates the fibres later after the vacuum has been built up, 

while in the second variant, the pre-impregnated fibres are applied directly onto the sheet. For a possible 

implementation of the hybrid beads in industrially manufactured components, the shorter cycle time 

and the higher degree of automation achievable represent advantages for the latter variant. After a 

subsequent vacuum build-up in a foil pocket applied around the laminated area, 24 hours of initial cure 

at room temperature and 16 hours post-cure at 80 °C were performed for the first variant. For the second 

production variant, a curing procedure with a stepped temperature increase to a maximum at 180 °C 

with a duration of 150 minutes was performed. In total, the two processes were able to produce the 

hybrid beads, whose cross sections are shown in Figure 5(a) and (b). In Figure 5(c) and (d), the 

characteristic microstructure at the interface of the two components due to the sand blasting and laser 

structuring surface pre-treatments can be seen.  

   
Figure 5. Micrographs of the specimen cross sections, created after performing the three-point bending 

tests, cf. section 5: Manual laminated, 3 plies, pressure blasted sheet surface (a), AFP-based-laminate, 

12 plies, laser structured surface (circular beam oscillation) (b). Detail of the interface between sheet 

metal and UD-CFRP for pressure-blasted (c) and laser-structured (circular beam oscillation) sheet 

surface (d). 

4.  Experimental quantification 

The three-point bending test was chosen to quantify the achievable additional stiffening effect of the 

manufactured configurations of UD-CFRP. The loading condition in this test is analogous to the loading 

of a bead aligned along the principal bending stress direction in the sheet metal components defined as 

the application target. For this purpose, the bead was cut out of the formed base surface with a length 

of 225 mm and a width of 78 mm. With this geometry, the bending tests were performed on a 

ZwickRoell 1484 universal testing machine with the specimen orientation shown in Figure 6, so that 

tensile stresses act in the top flange area of the bead (cf. Figure 1). The distance between the two lower 

cuboid supports was 120 mm, the radius of the upper centre punch was 11 mm and the punch was 

moving at a speed of 10 mm/min during the testing procedure. Figure 7 shows the force-displacement 

curves for a non-reinforced reference geometry, two beads reinforced with hand laminate and three 

beads reinforced with the fibres deposited in the AFP process. The supportable load increases for both 

manufacturing variants: For the manual laminated variant, an increase in the maximum force by 18.8 %, 

and for the AFP-version using 12 plies, an increase of 6.14 % compared to the non-reinforced reference 

configuration. In the force-displacement measurements, a stepped decrease in force occurs for the 

specimens reinforced with 12 plies and those reinforced with 3 plies, corresponding to two damage 

mechanisms occurring in the UD-CFRP. Failure of the UD-CFRP layer occurred both for the hand-

laminated specimens, which were pre-treated with the two sandblasting processes, and for the AFP 

specimens, which were pre-treated with the two laser processes, by fibre breakage after the sheet had 

already undergone significant plastic deformation. For the bead reinforced with 4 plies, fibre breakage 

of the UD-CFRP occurred only in the edge area, which is elevated due to the bead geometry. This 

behaviour is in agreement with the assumption that strain increases with greater vertical distance from 

the neutral fibre. In the case of the AFP specimens, a cohesive failure due to detachment of individual 

UD-CFRP plies can additionally be seen, which also initiated after the onset of plastic deformation of 

the sheet. However, a thin UD-CFRP layer on the sheet surface shows that also no adhesive failure 

occurs at the interface between sheet and UD-CFRP for the pre-treatment with laser structuring. The 

use of an additional adhesion promoter, such as a diamond-like carbon (DLC)-layer used by [9] for 

joining hybrid sheets, can thus be dispensed with for both surface pre-treatment processes.

5 mm 5 mm 50 µm 50 µm 

a b c d 
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Figure 6. Test performance of  

the three-point bending test. 

 

5.  Summary and Outlook 

The feasibility of stiffening beaded components with UD-carbon fibres in the top flange area was 

demonstrated for the DX56/UD-CFRP material combination. Thus, the maximum force in the three-

point bending test for the variant could be increased using both the manual laminated and the AFP-

based manufacturing processes. By utilizing the parallel axis theorem and the anisotropic material 

properties of the UD fibres, a stiffening effect was achieved with a relatively small amount of CFRP. 

This allows the material and manufacturing costs for lamination to be kept within reasonable limits in 

an industrial implementation. Furthermore, the additional stiffening correlates with the number of 

applied UD-CFRP plies, thus fulfilling a necessary condition to produce load-specific component 

variants. Both the sandblasting and laser structuring processes were able to achieve sufficient bond 

strength between the sheet and the UD-CFRP, which can prevent early delamination of the hybrid bead 

at low applied forces. The shortest processing times were achieved with the laser structuring processes. 

The following steps are necessary to enable transferability to industrial applications: The results 

regarding the reinforcing effect of the UD-CFRP should be coupled with the optimization method 

developed by [4] to determine load specific, locally reinforced bead patterns. Furthermore, an 

application of the beads with automated, direct lamination of the fibres onto the formed sheet metal 

component should be investigated experimentally to further reduce manufacturing time. In addition, the 

procedure can be adapted to various UD fibre reinforced materials, such as glass or aramid fibre 

reinforced plastic. This means that the design of the component variants may also take into account the 

specific target costs accepted for weight saving in various fields of application. A desired stiffening 

effect can predictably be achieved with this approach with glass fibres compared to carbon fibres at 

lower additional cost, but with a higher component mass. 
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point bending test. 
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