Chemical Recycling - State of play
 VCI - Webinar, April 13, 2021

Dieter Stapf

$\mathrm{H}-\mathrm{Br}$

Plastics Production and Plastics Waste Generation

[million t / a]	EU $28+$ 2* *	Germany**
Plastics production	61.8	19.9
Plastics consumption	51.2	12.6
Plastic waste	29.1	6.2
- Landfill	7.2	<0.1
- Energy recovery	12.4	3.2
- Recycling	9.4 (export 1.8)	2.9 (export: 0.6)

*) Lindner,C. et al., Circular Economy of Plastics 2018 EU-28+2, Conversio Market \& Strategy GmbH, Mainaschaff (2019)
${ }^{* *}$) Lindner,C., Schmitt, J., Stoffstrombild Kunststoffe in Deutschland 2017, Conversio Market \& Strategy GmbH, Mainaschaff (2018)

Recycling Processes for Mixed Plastic Waste and Key Products

Chemical processes
> New product

applied to:
standard thermoplastics
> Mixed wastes, composite materials

Examples of Plastic Waste Produced

WEEE = Waste of Electrical and Electronic Equipment LWP = Light Weight Packaging Waste
CTIS = Compound Thermal Insulation System

Case: Recycling of Light Weight Packaging Waste
 Comparison of Recovery Routes

Primary Plastic Production:

\wedge

LWP Waste Recycling Routes Compared to Primary Plastics Production of HDPE

Recycling scenario	$\begin{gathered} \text { Cost } \\ {\left[€ / \mathrm{kg}_{\text {Input }}\right]} \end{gathered}$	CED [MJ/kg Input	GWP $\left[\mathrm{kgCO}_{2} \mathrm{e} / \mathrm{kg}_{\text {Input }}\right.$	Overall Carbon Recycled
Mechanical, 42\% yield	-0.16	-18.1	0.2	42\%
Mechanical, 22\% yield	-0.08	-6.9	0.6	22\%
Chemical recycling	-0.24	-15.9	0.3	59\%
Combined recycling, mech. 42\%	-0.29	-30.1	-0.2	74\%
Combined recycling, mech. 22%	-0.25	-23.1	0.0	66\%

[^0]THINKTANK
INDUSTRIELLE
RESSOURCEN-
STRATEGIEN

Conclusions

Comparison of the production of plastics from fossil raw materials with the combined mechanical / chemical recycling of post-consumer waste, taking into account energy recovery

- Costs: Economic attractiveness of both, mechanical and chemical recycling
- Energy: Mechanical and chemical recycling perform similar; advantageous over crude oil based products
- CO_{2} emissions: Mechanical and chemical recycling perform similar; at high recycling rates advantegous over crude oil based products
- Recycling quotas can be achieved through a combination of mechanical and chemical recycling

Chemical Recycling - State of play

Team KIT:

Institute for Industrial Production: Frank Schultmann, Christoph Stallkamp, Justus Steins, Rebecca Volk
Institute for Technical Chemistry: Hans Leibold, Niklas Netsch, Frank Richter, Dieter Stapf, Manuela Wexler, Savrina P. Yogish, Michael Zeller

Study funded by:

[^0]: Volk,R., et al., Techno-economic Assessment and Comparison of Different Plastic Recycling Pathways - a German Case Study, accepted for publication in Journal of Industrial Ecology, 2021

