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a b s t r a c t 

Large-scale electrophysiological simulations to obtain electrocardiograms (ECG) carry the potential to pro- 

duce extensive datasets for training of machine learning classifiers to, e.g., discriminate between different 

cardiac pathologies. The adoption of simulations for these purposes is limited due to a lack of ready-to- 

use models covering atrial anatomical variability. 

We built a bi-atrial statistical shape model (SSM) of the endocardial wall based on 47 segmented human 

CT and MRI datasets using Gaussian process morphable models. Generalization, specificity, and compact- 

ness metrics were evaluated. The SSM was applied to simulate atrial ECGs in 100 random volumetric 

instances. 

The first eigenmode of our SSM reflects a change of the total volume of both atria, the second the asym- 

metry between left vs. right atrial volume, the third a change in the prominence of the atrial appendages. 

The SSM is capable of generalizing well to unseen geometries and 95% of the total shape variance is cov- 

ered by its first 24 eigenvectors. The P waves in the 12-lead ECG of 100 random instances showed a 

duration of 109 . 7 ± 12 . 2 ms in accordance with large cohort studies. The novel bi-atrial SSM itself as 

well as 100 exemplary instances with rule-based augmentation of atrial wall thickness, fiber orientation, 

inter-atrial bridges and tags for anatomical structures have been made publicly available. 

This novel, openly available bi-atrial SSM can in future be employed to generate large sets of realistic 

atrial geometries as a basis for in silico big data approaches. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

A wide range of machine learning approaches have already 

een proposed for classifying cardiovascular pathologies based on 

he 12-lead electrocardiogram (ECG) ( Hannun et al., 2019; Perez Al- 

ay et al., 2020; Strodthoff et al., 2020 ). Since the ECG is a 

ost-effective, non-invasive and commonly available tool in clin- 

cal practice, it is particularly desirable to identify and diagnose 

ardiac pathologies only based on the ECG and without the need 

f further expensive imaging techniques or invasive procedures. 

owever, the training of such classifiers requires a large, balanced, 

nd reliably labeled dataset. Oftentimes, not all of these prereq- 

isites are met when using clinically recorded data. Additionally, 

xpert annotations are commonly relied upon to generate the 

round truth labels describing the underlying pathologies for clin- 

cal datasets coming along with inter- and intra-observer variabili- 
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ies significantly affecting the reliability of the ground truth labels 

 Hannun et al., 2019 ). 

These limitations call for simulated synthetic ECG as a source 

or large, representative and well controlled datasets. These 

atasets can be used to directly deduce diagnostic criteria visu- 

lly ( Andlauer et al., 2018 ) or to train machine learning classifiers 

o discriminate between different cardiac diseases and healthy in- 

ividuals ( Andlauer et al., 2018 ). The advantage of using simulated 

ver clinical data lies not only in the precisely known ground truth 

f the underlying pathology that was defined for the simulation, 

ut also in the possibility to generate a virtually infinite amount of 

ignals for each pathology class. 

Nevertheless, atrial, ventricular and thoracic geometrical models 

re needed for conducting electrophysiological simulations to ob- 

ain the 12-lead ECG. In this regard, statistical shape models (SSM) 

llow to compile a wide range of realistic geometries that repre- 

ent the variability observed in the cohort used to build the SSM. 

hile SSMs of the human ventricles ( Bai et al., 2015 ) and torsos

 Pishchulin et al., 2017 ) exist and are publicly available, an open 

hape model of both atria covering all relevant anatomical struc- 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ures for EP simulations (atrial body, appendages, PVs) is still lack- 

ng to the best of our knowledge. 

Different statistical atlases of the human whole heart anatomy 

 Ecabert et al., 2008; Hoogendoorn et al., 2013; Lötjönen et al., 

004; Ordas et al., 2007; Unberath et al., 2015; Zhuang et al., 

010 ) have been constructed for segmentation of magnetic reso- 

ance (MR) or computed tomography (CT) images by means of ac- 

ive shape modeling approaches. However, those models are usu- 

lly built based on a small number of sample segmentations or 

ere not made publicly available. Furthermore, different SSMs of 

nly the left atrium (LA) have been presented in various studies 

ither for the purpose of simulations ( Corrado et al., 2020 ) or for

haracterizing changes in shape of the LA ( Bieging et al., 2018; 

ates et al., 2014; Depa et al., 2010; Varela et al., 2017 ) in pa-

ients with atrial fibrillation. These LA models are built based on 

 solid number of instances, but lack the right atrium (RA) and of- 

en also the left atrial appendage (LAA). However, these anatomical 

tructures are not only indispensable for the use case of ECG sim- 

lations. They are also of particular importance when investigat- 

ng the mechanisms of typical atrial flutter in the RA or bi-atrial 

utter and fibrillation. Additionally, the LAA is highly relevant for 

tudies examining blood clot formation causing stroke ( Masci et al., 

019 ), LAA occlusion as potential therapy ( Aguado et al., 2019 ) and

he role of the LAA in the onset and maintenance of atrial fib- 

illation ( Nishimura et al., 2019 ). Due to the lack of ready-to-use 

odels of the atria, a bi-atrial SSM would cater the need of gener- 

ting geometrical atrial models representing inter-subject anatom- 

cal variability. These could be employed to gain a comprehensive 

nderstanding of the underlying mechanisms of the onset and per- 

etuation of re-entrant activity during atrial flutter and fibrillation 

ot only in personalized computer models but also in a large pa- 

ient cohort. Thus, including the shape of the RA in the model as 

ell as making the bi-atrial SSM available to the community, en- 

bles large-scale simulation of atrial signals. Although the focus 

f this paper is the application of the SSM for ECG simulations, 

ts field of application is not limited to this particular use case. 

he bi-atrial model can also be exploited for other in silico ap- 

roaches like continuum-mechanics and fluid simulations. Further- 

ore, active shape modeling approaches using the novel bi-atrial 

SM could facilitate automated segmentation of the atria from CT 

r MRI datasets. 

In this work, we built an SSM of both atria from manual seg- 

entations of 47 MR and CT scans. Furthermore, we propose a 

orkflow to generate a volumetric atrial model based on instances 

f the SSM. A major added value of our study for the community 

s the provision of the bi-atrial SSM under the creative commons 

icense CC-BY 4.0 together with 100 exemplary volumetric models 

erived from it including fiber orientation, inter-atrial bridges, ma- 

erial tags and solutions to Laplace’s equation ( Nagel et al., 2021 ). 

. Material and methods 

The geometric representation as well as the variation in shape 

mong a set of individual three dimensional objects can be de- 

cribed by SSMs. Point distribution models ( Cootes et al., 1995 ) are 

he most common subclass of SSMs and require a vectorized point- 

ased representation s n of any individual geometry �n comprising 

consistently sampled surface points [ x n , y n , z n ] 
T : 

 n = [ x n, 1 , y n, 1 , z n, 1 , . . . , x n,M 

, y n,M 

, z n,M 

] T . (1)

Assuming that the spatial variations of the surface points follow 

 multivariate normal distribution, a compact representation of the 

ean and covariance matrix describing the shape variations can 

e obtained by applying a principal component analysis (PCA) to 

he observations s . In this way, all N individual shapes � can be 
2 
epresented by a linear combination of N − 1 basis functions v : 

 n = s + 

N−1 ∑ 

k =1 

r n,k ·
√ 

σ 2 
k 

· v k (2) 

ith s being the mean shape vector as well as σ and v represent- 

ng the eigenvalues and eigenvectors of the covariance matrix, re- 

pectively. r n,k represent the weighting coefficients for the individ- 

al eigenvectors. To obtain this parametric representation of the 

hape variations from clinical MRI or CT data, a number of pre- 

rocessing steps have to be performed: i) segmenting the images, 

referably in a (semi-)automatic manner, ii) rigidly aligning the re- 

ulting shapes in space, iii) establishing a dense correspondence 

etween the individual shapes to obtain the shape vectors s C that 

ere then subject to PCA. 

.1. Dataset 

Three independent multi-center, multi-vendor databases ( Karim 

t al., 2013; 2018; Tobon-Gomez et al., 2015 ) were used to build 

he SSM. Their properties are summarized in Table 1 . The images 

riginate either from healthy subjects or from patients suffering 

rom atrial fibrillation. Since all of the challenges focused on the 

egmentation of the LA, 23 of the originally available images had 

o be excluded due to an incomplete capture of the inferior right 

trial body or an inadequate signal to noise ratio. Since we relied 

n a PCA description for representing the atrial shape variability 

ith which only continuous changes of vertex locations are repre- 

entable, only subjects with 4 pulmonary veins (PVs) were consid- 

red. The number of PVs attached to a subject’s atrium is discrete 

nd the absence or the presence of an additional PV is not charac- 

erized by a continuous transition which is why only data samples 

f patients with 4 PVs were included in this study. According to 

arom et al. (2004) , this PV configuration is representative for the 

ajority of the population with 71% and 86% of all subjects in their 

tudy exhibiting two ostia on the right and left side of the LA body, 

espectively. 

.2. Segmentation 

In order to obtain the individual instances of both atria, a semi- 

utomatic segmentation of the blood pool representing the endo- 

ardial surface of the left and the right atrium from MR and CT im- 

ges was performed using CemrgApp ( Razeghi et al., 2020 ). 2D re- 

ion growing in several selected slices as well as 3D interpolation 

ere applied to each image stack. To reduce the impact of noise or 

mage artefacts on the segmentation outcome, details were manu- 

lly corrected. 

Fig. 1 shows examples of incorrect segmentation results due to 

nsufficient region growing performance (left column) and 3D in- 

erpolation (middle column) that made a manual correction indis- 

ensable. Automated segmentation with region growing especially 

ailed in 2D planes where both, the LA and the left ventricle are 

isible, because the mitral valve shows the same image intensity 

s the LA and the left ventricle. Therefore, a cutting plane between 

trium and ventricle was inserted manually. The drawbacks of 3D 

nterpolation are particularly affecting the areas around the PVs 

here the interpolated surface tends to close small gaps between 

he PVs and the atrial body. For 20 images in dataset 2, a segmen- 

ation of the LA was provided. However, the LAA was truncated in 

lose proximity to the left atrial body ( Tobon-Gomez et al., 2015 ) 

n these segmentations. Since we aimed at incorporating the vari- 

bility of the LAA shape in our model, the LA segmentations of 

ataset 2 were adapted to include the full volume of the LAA as 

hown in Fig. 1 (right column). The resulting segmentations were 

xported as triangular meshes. 
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Table 1 

Summary of datasets used to generate the statistical shape model. 

Dataset Source Number of subjects Voxel resolution 

1 Left atrium segmentation challenge 30 MRI 1.25 x 1.25 x 2.7 mm 

( Tobon-Gomez et al., 2015 ) 

2 Left atrium fibrosis and scar segmentation challenge 8 MRI 1.25 x 1.25 x 2.5 mm 

( Karim et al., 2013 ) 1.4 x 1.4 x 1.4 mm 

3 Left atrial wall thickness challenge 9 CT 0.8 x 1 x 0.4 mm 

( Karim et al., 2018 ) 

Fig. 1. Segmentation inaccuracy due to different automated segmentation methods. 

The different rows represent the axial, sagittal and the coronal plane, respectively. 

The images in the left, middle and right column show the segmentation errors due 

to region growing, 3D interpolation and a partly excluded LAA in the ground truth 

data colored in red, respectively. The green contours mark the manual corrections 

tailored to the correction of inaccurately found automated segmentations. (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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.3. Rigid alignment 

After segmenting the individual instances �n of the atria, the 

esulting isosurfaces exported from CemrgApp were rigidly aligned 

n space to avoid a representation of translation and rotation pa- 

ameters in the eigenmodes of the SSM. This was performed auto- 

atically by means of the iterative closest point (ICP) algorithm 

hat provides a solution to the orthogonal Procrustes problem 

 Chen and Medioni, 1992 ). Surface-to-surface distances were calcu- 

ated with the vtkDistancePolyDataFilter (Kitware, Clifton Park, New 

ork, USA) between each pair of individual instances �n . The refer- 

nce template was chosen as the surface holding the lowest mean 

istance to all other instances. In each iteration i , candidate corre- 

pondences [ ̂ x n , ̂  y n , ̂  z n ] 
T 
R,i 

between a target mesh �n and the refer- 

nce mesh �R were found by attributing to each node in �n the 

oint with the smallest Euclidean distance in �R . Procrustes anal- 

sis was then used to estimate the linear transformation T i – con- 

isting of rotation and translation – which yields the best match of 

he candidate correspondence points [ ̂ x n , ̂  y n , ̂  z n ] 
T 
R,i 

with the refer- 

nce points [ x R , y R , z R ] 
T . After applying the estimated transforma-

ion T i to the points in mesh �n : 

 

n, i +1 = T i · ˜ �n,i , with 

˜ �n, 0 = �n (3) 
3 
ew candidate correspondences [ ̂ x n , ̂  y n , ̂  z n ] 
T 
R,i +1 

are recursively 

ound between the transformed mesh 

˜ �n, i +1 and �R at each itera- 

ion i and used for solving the Procrustes problem. If after several 

ecursive calls of the function, either the maximum number of 150 

terations is exceeded or the convergence criterion is fulfilled, an 

ptimal transformation matrix for the alignment of both shapes �n 

nd �R is found resulting in a set of N rigidly aligned shapes �A . 

.4. Establishment of correspondence 

Each aligned individual instance n comprises M n surface points 

 x A 
n, 1 

, y A 
n, 1 

, z A 
n, 1 

, . . . , x A 
n,M n 

, y A 
n,M n 

, z A 
n,M n 

] T . In order to describe the

ariations in shape of the aligned instances �A by means of a 

oint distribution model, correspondence between the vertex IDs 

mong all individual shapes have to be established. Establishing 

orrespondence requires to retrieve concordant points in all shapes 
A , so that the N aligned shapes are not only represented by 

he same amount of surface points M but also that each point 

 x A n,m 

, y A n,m 

, z A n,m 

] with a specific ID m represents the same anatom-

cal landmark in any arbitrary shape n . For this purpose, we used 

aussian process morphable models (GPMM) ( Luthi et al., 2018 ) 

nd ScalismoLab ( Bouabene et al., 2020 ) to subject a reference 

hape �A 
R 

to a generic deformation in such a way that the de- 

ormed shape ˜ �A 
R,n 

matches the individual aligned shape �A 
n in the 

est possible way. This process then yields a set �C of aligned 

hapes that are characterized by homologous, corresponding sur- 

ace points. For this process, we defined three independent generic 

eformations by Gaussian process (GP) models. Gaussian kernels 

escribed the similarity between two distinct points x and x ′ : 

 (x , x 

′ ) = s · exp 

(
− (x − x 

′ ) 2 
l 2 

)
(4) 

ere approximated by the leading eigenfunctions of their 

arhunen-Loéve expansion as described in Luthi et al. (2018) . They 

ere further employed to fit the orientation of the left and right 

ulmonary veins (LPV, RPV), the atrial body, as well as the left and 

he right atrial appendages (LAA, RAA). The separation into three 

ifferent models (atrial body, appendages, PVs) served two differ- 

nt purposes. On the one hand, we were able to account for the 

igh anatomical variability of the appendages by allowing smaller 

nter-dependencies spanning between the points located on the 

ppendages. On the other hand, the generic model varying the 

oints located on the PVs was designed such that only the orien- 

ation of the PV ostia but not their length was affected. We used 

uilt-in functions of Scalismo ( Bouabene et al., 2020 ) to succes- 

ively fit the three anatomical regions of each aligned observation 

A 
n with a custom PV model and a generic deformation for the ap- 

endages and the atrial body. The optimization problem of fitting 

he GP model ˜ �A 
R,n 

to the individual aligned shapes �A 
n was solved 

sing the Registration built-in class in Scalismo with an L-BFGS op- 

imization minimizing the mean squared error between the vertex 

oordinates of the deformed model ˜ �A 
R,n 

and the target shape �A 
n . 

o accurately fit the PVs, a kernel representing the orientation of 

he four PVs in anterior-posterior direction in its first four eigen- 

ectors was constructed ( Fig. 2 ). This custom kernel was built by 



C. Nagel, S. Schuler, O. Dössel et al. Medical Image Analysis 74 (2021) 102210 

Fig. 2. Morphable model for establishing correspondence at the PVs. The arrows 

indicate the movement of the respective vertices in the model for a variation of the 

four leading eigenvectors by −3 σ and +3 σ . The LA body and the RA shape are not 

affected by this PV model and are visualized in a semi-transparent manner. 
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Fig. 3. Example of one randomly generated instance with a homogeneous wall 

thickness from two different views. The models on the left represent the anatomi- 

cal labels and the inserted inter-atrial bridges. The fiber orientations are visualized 

on the models in the right column. 
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anually moving each of the four PVs of the reference shape �A 
R 

in 

wo different directions at a time using Meshmixer (Autodesk, San 

afael, CA, USA). Disabling the mesh refinement option during this 

rocess ensured that the resulting eight shapes differed from one 

nother only in their PV orientation and were in correspondence. 

herefore, they could directly be applied to construct the custom 

V model ( Fig. 2 ). We intentionally did not fit the length of the PVs

ince this quantity highly depends on the segmentation approach 

nd does therefore not represent a proper observed anatomical 

ariation considering the heterogeneous input data used in this 

tudy. A low rank approximation of a GP model was realized us- 

ng the LowRankGaussianProcess class in Scalismo with an empiri- 

ally chosen variance of s b = 50 , l b = 40 at points representing the

eneral atrial body ( b) and s a = 20 , l a = 20 at the appendages to

ccount for the higher anatomical variability in the appendage ( a ) 

egions. 

.5. Shape model construction 

The vertices at the distal parts of the superior and inferior caval 

eins, the coronary sinus, the PVs, as well as the mitral valve and 

he tricuspid valve were discarded from the N aligned shape vec- 

ors in correspondence s C to limit the model creation to atrial com- 

onents relevant for electrophysiological simulations. Applying a 

CA to these cut shape vectors in correspondence s C yields their 

ean shape s and N − 1 basis functions v along with their respec- 

ive variances σ 2 . In this way, an exact reconstruction of any indi- 

idual shape instance �C 
n is feasible by determining the coefficients 

 n in Eq. 2 with a standard least squares estimation. Furthermore, 

dditional arbitrary variation shapes �v ar in the span of the N − 1 

asis vectors v can be derived by varying r . Under the assumption 

hat the values of r are normally distributed among the observed 

nstances �C 
n , keeping r in the interval [ −3 , +3] N−1 yields realistic 

rtificially generated shapes within the empirically observed vari- 

bility. 

.6. Construction of volumetric meshes 

The bi-atrial SSM represents the mean shape of the atrial endo- 

ardial surface and the variation of all point coordinates in space 

o that any arbitrary variation mesh �v ar can be derived from it. 

owever, a volumetric model of the atria, including inter-atrial 
4 
ridges, anatomical labels and fiber orientations is required to per- 

orm electrophysiological simulations and to obtain realistic body 

urface P waves. We therefore developed a workflow to fully au- 

omatically create a volumetric model based on an arbitrary en- 

ocardial surface. Since a segmentation of the epicardial surface 

rom conventional MR images is usually not feasible due to an 

nsufficient spatial resolution and a limited signal to noise ratio, 

he epicardial surface was augmented in a postprocessing step as- 

uming a homogeneous atrial wall thickness. To approximate the 

picardial surface, the endocardial surface of the variation mesh 

v ar was dilated by 3 mm ( Whitaker et al., 2016 ) at each point

long the normal direction calculated as the mean of the adja- 

ent triangle normals. Both surfaces were merged and intersec- 

ions and holes between epi- and endocardium were corrected 

nd closed automatically using the iso2mesh toolbox ( Tran et al., 

020 ). The closed surface was afterwards remeshed using Instant 

eshes ( Jakob et al., 2015 ) and transformed into a volumetric 

etrahedral mesh with an average edge length of 1 mm using 

msh ( Geuzaine and Remacle, 2009 ). Contact and integrity be- 

ween left and right atrium were preserved by duplicating the epi- 

ardial nodes belonging to the septum in regions where the left 

nd the right epicardial surfaces spatially overlapped.The affected 

ndocardial nodes were subsequently moved in negative direction 

f the surface normals to ensure a homogeneous wallthickness of 

 mm. The algorithms described by Piersanti et al. (2021) and 

achter et al. (2015) were used to automatically augment the 

odels with Bachmann’s bundle, a coronary sinus and an upper 

nd middle posterior inter-atrial connection between the LA and 

A as well as myocardial fiber orientation and anatomical labels. 

he augmented anatomical structures are visualized in Fig. 3 . The 

nly manual input required for augmenting the volumetric geom- 

try with the aforementioned structures consists of 4 seed points 

efining the tips of the appendages and landmarks for the Bach- 

ann’s bundle connection. They were defined once on the mean 

hape and were tracked through the deformations for any arbitrary 

ariation mesh. In this way, it was ensured that the seed points 

ere consistently chosen among all variation meshes. 

.7. Parameterization of electrophysiological simulations 

100 random instances were derived from the bi-atrial SSM by 

rawing the eigenvector coefficients r of Eq. 2 from a Gaussian 

istribution in the [-3, +3] σ range. A fast marching ( Loewe et al., 
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Table 2 

Conduction velocity (CV) along the transversal fiber direction in mm/s and 

anisotropy ratios (AR) in different atrial regions. 

Atrial Region CV T (mm/s) AR 

Right atrium 739 2.11 

Left atrium 946 2.11 

Inter-atrial connections 1093 3.36 

Valve rings 445 2.11 

Pectinate muscles 578 3.78 

Crista Terminalis 607 3.0 

Inferior isthmus 722 1 
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019; Sethian, 1996 ) simulation was carried out for solving the 

ikonal equation on these 100 geometries to obtain the spread 

f electrical activation and derive local electrical activation times 

LATs) for each node. This sinus rhythm activation was initiated 

rom a sinus node exit site located at the junction of the superior 

aval vein and the RAA ( Loewe et al., 2016 ). The atrial wall was

eparated into seven different anatomical regions: regular right 

nd left atrium, inter-atrial connections, valve rings, pectinate mus- 

les, crista terminalis and inferior isthmus. The conduction veloci- 

ies along the fiber directions and the anisotropy ratios in the dif- 

erent regions were chosen as reported previously ( Loewe et al., 

016 ) and are given in Table 2 . 

The transmembrane voltage distribution on the atrial 

urfaces was obtained by shifting a pre-computed 

ourtemanche et al. (1998) action potential in time according 

o the calculated LATs as proposed by ( Kahlmann et al., 2017 ). 

he ECG forward problem to derive the body surface potentials 

rom the transmembrane distribution on the heart was solved by 

eans of the boundary element method ( Stenroos et al., 2007 ). 

onsidering computational cost, the surface bounding the heart 

as sampled at a resolution of 3 mm. Laplacian blurring with op- 

imal blurring parameters as described in Schuler et al. (2019) was 

pplied to the source distribution. The mean shape of the human 

ody SSM developed by Pishchulin et al. (2017) served as a refer- 

nce shape of the torso. The P wave of the 12-lead ECG signal was
ig. 4. Eigenmodes of the bi-atrial shape model. The three leading eigenmodes are dis

oefficients. In the fourth column, the anatomical view used to capture the respective eig

5 
xtracted from the body surface potentials at the standardized 

lectrode positions. 

. Results 

.1. Eigenmodes of the bi-atrial shape model 

Applying a PCA to the cut shape vectors in correspondence s C 

s described in Section 2.5 yields their mean shape s comprising 

2,818 triangular cells and 31,745 vertices with an average edge 

ength of 0.929 mm. Furthermore, the eigenvectors and eigenval- 

es of the bi-atrial model were obtained. Fig. 4 shows the shape 

hanges caused by varying the coefficients of the first three eigen- 

ectors. The first eigenmode represents a change in the total vol- 

me and size of both atria simultaneously ( Fig. 4 , first row). The 

econd mode reflects the asymmetry of the LA vs. the RA volume, 

.e., the increase of the LA volume and the concurrent decrease of 

he RA volume. The prominence of the right and left appendage 

re encoded in the third eigenmode ( Fig. 4 , third row). The orien-

ation of the PVs to one another are represented – among other 

spects – in the fifth, sixth, and eighth eigenmodes of the SSM. 

.2. Evaluation of the bi-atrial shape model 

The quality of the bi-atrial SSM was evaluated by first assess- 

ng the mean vertex to vertex distances between the meshes in 

orrespondence and their respective original locations from the 

ataset. For the 47 meshes used to build the SSM, this distance 

as 1 . 60 ± 0 . 25 mm. Furthermore, three standard evaluation crite- 

ia for evaluating the SSM quality proposed by Davies (2002) were 

onsidered: generalization, specificity, and compactness. The gen- 

ralization metric addressed in Section 3.2.1 refers to the abil- 

ty of the SSM to recreate an instance whose shape vector was 

xcluded from the dataset used to create the SSM. The speci- 

city metric ( Section 3.2.2 ) assesses the goodness of the model in 

erms of generating realistic shapes. Furthermore, the compactness 

 Section 3.2.3 ) metric of the model increases the more the set of 
played in different rows. Columns 1–3 represent the variation of the eigenvector 

enmode is depicted. 
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Fig. 5. Euclidean distance between vertices of the original and reconstructed shapes in mm. 
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Fig. 6. Approximated shape of instance 47 with a reduced SSM built without this 

shape. Vertex color represents the Euclidean distance to the corresponding vertex 

in the original shape instance 47. 
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igenvectors can be reduced while still being able to describe the 

ajority of the total shape variance present in the dataset. 

.2.1. Generalization 

To evaluate the generalization quality of the SSM, we used 

eave-one-out cross-validation and defined N datasets with N − 1 

eshes each by leaving out the final observation. Each of those 

as used to compute a reduced SSM. The excluded shape was 

econstructed with the reduced SSM by determining the eigen- 

ector coefficients using ordinary least squares. The similarity be- 

ween the original excluded shape and the approximated one was 

ssessed in terms of the Euclidean distance between the corre- 

ponding vertices. Fig. 5 shows the distribution of this error met- 

ic for all instances in the dataset. The median of the vertex to 

ertex distance was below 1 . 56 mm among all shapes which com- 

ares to the order of magnitude of the MRI cross-plane resolution 

 0 . 4 mm − 2 . 7 mm ). Instance 4, 11 and 43 hold the lowest Euclidean

istances between the vertices of its original and reconstructed 

hape, whereas instance 47 is characterized by considerably high 

rror values. Especially the 75th and the 95th percentile bounds 

omprise large vertex to vertex distances. Fig. 6 depicts the ap- 

roximated atria with the reduced SSM for the instance with the 

ighest error (47). The vertex color represents the Euclidean dis- 

ance to the corresponding vertex in the original shape instance 

7. Vertices showing larger deviations were located predominantly 

n the anterior wall and the appendages of both atria. 

.2.2. Specificity 

The specificity of the bi-atrial model was evaluated by gener- 

ting 10 0 0 random shapes according to Eq. 2 by uniformly sam- 

ling r in the interval [ −3 , 3] . The similarity between these ran-

om shapes and the respective closest shapes in the underlying 

ataset �C used to build the SSM was assessed in terms of the 

oot mean square error (rmse) of all vertex-to-vertex distances be- 

ween the randomly generated and the original shape. The rmse 

anged from 4.65 to 10.83 mm among all 10 0 0 random instances 

ith a mean ± standard deviation of 7 . 79 ± 1 . 00 mm. Fig. 7 shows

ne randomly generated shape with an rmse of 7.14 mm in yellow 

ogether with its most similar instance from the dataset in blue. 
6 
his case approximately represents the mean rmse value among 

ll 10 0 0 random shapes. 

.2.3. Compactness 

Fig. 8 depicts the total variance of the dataset explained by the 

odel when including only a limited number of leading eigenvec- 

ors. 

90 and 95% of the total shape variance in the individual seg- 

ented shapes can be covered by the SSM when considering only 

he first 18 and 24 eigenvectors, respectively. 

.3. P wave simulations 

Calculating the P wave on the mean shape of the proposed SSM 

s described in Section 2.7 yields the signals for the Einthoven, 

oldberger and Wilson leads shown in Fig. 9 . The P wave du- 
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Fig. 7. Example of one randomly generate shape with the SSM (yellow) overlaid 

with the closest instance in the dataset used to build the SSM (blue). (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 8. Cumulative variance covered for different numbers of leading eigenvectors 

included. 
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Fig. 10. Probability density functions of P wave durations in the Copenhagen ECG 

study (blue) and in our simulation study (yellow). The area highlighted in red rep- 

resents the value range of patients holding a low AF risk (90-111 ms) as reported 

by Nielsen et al. (2015) . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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ation was extracted for each of the 12-lead ECGs simulated on 

00 random instances by considering the time difference between 

he latest detection of the P wave offset and the earliest P wave 

nset across all 12 leads. The values of the P wave durations - 

rising from simulations in which only the atrial anatomy was 
ig. 9. P waves of the 12-lead ECG calculated on the mean shape of the proposed bi-atri

he P wave. (For interpretation of the references to colour in this figure legend, the reade

7 
aried - ranged from 83 ms to 146 ms with a mean and stan- 

ard deviation of 109 . 7 ± 12 . 2 ms. The probability density of the

 wave durations extracted from our simulation results are visual- 

zed in Fig. 10 in yellow. The distribution of P wave durations in 

he Copenhagen ECG study was reconstructed based on the values 

eported in Nielsen et al. (2015) and are shown in blue in Fig. 10 .

he interval of 90–111 ms characterizing P wave durations of sub- 

ects stratified with a low AF risk is marked in red. 

.4. Openly available dataset 

The bi-atrial SSM is provided under the Creative Commons li- 

ense CC-BY 4.0 together with 100 exemplary volumetric models 

erived from it including fiber orientation, inter-atrial bridges and 

natomical labels ( Nagel et al., 2021 ). Furthermore, solutions to 

aplace’s equation with various boundary conditions as proposed 

y Piersanti et al. (2021) are provided to facilitate the derivation of 

niversal atrial coordinates ( Roney et al., 2019 ). The SSM is avail- 

ble as an h5 file encoding information about the mean shape’s 

patial vertex locations and their triangulation. Also the eigenvec- 

ors and -values resulting from the applying the PCA are included. 

he 100 geometries were generated by sampling the eigenvector 

oefficients r from a Gaussian distribution in the [ −3 , +3] σ range. 

hese anatomical models are provided in VTK file format including 
al shape model. The red markers indicate the earliest onset and the latest offset of 

r is referred to the web version of this article.) 
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ber orientation as 3D vectors and material tags as scalar values in 

he cell data section. 

. Discussion 

The main result of this study is a point distribution model in- 

orporating the shape variations of the right and the left atrium as 

ell as their appendages and the PVs. Moreover, we presented a 

orkflow for building a volumetric atrial model from an endocar- 

ial surface derived from the SSM. Together with 100 example vol- 

metric geometries generated by a Gaussian variation of the prin- 

ipal component coefficients in the [ −3 , +3] σ range including fiber 

rientation, inter-atrial bridges and anatomical labels, the SSM is 

penly available ( Nagel et al., 2021 ). 

Electrophysiological simulations covering atrial excitation 

pread and propagation of electrical potentials to the body 

urface were conducted on these 100 example shapes. The re- 

ulting P wave durations obtained with the proposed SSM of 

09 . 7 ± 12 . 2 ms are in agreement with the P wave durations

f 100–105 ms reported for individuals with a very low atrial 

brillation risk in an extensive cohort study based on 285,933 

CGs ( Nielsen et al., 2015 ). On the one hand, this suggests that

ur model is capable of producing a large variety of variation 

hapes leading to realistic ECG feature values when compared 

o clinical recordings. On the other hand, it implies that the 

dditional P wave duration variability observed in individuals with 

ncreased atrial fibrillation risk (92-116 ms range covering 20–80% 

ercentiles in Nielsen et al. (2015) ) is either due to pathological 

natomical variability not represented in the healthy dataset used 

o build this SSM or due to non-anatomical, functional changes 

uch as conduction velocity slowing due to fibrotic infiltration of 

he atrial tissue ( Caixal et al., 2020 ). 

In our model, 24 eigenvectors are necessary to explain 95% 

f the total variance of the dataset. In the LA-only SSM built by 

orrado et al. (2020) , the first 15 eigenmodes cover 95% of the en-

ire shape variance. Cates et al. (2014) reported that only 8 eigen- 

ectors account for 95% of the total variance. However, these two 

odels do neither consider the LAA nor the RA which explains the 

igher complexity of our model and in turn the need to include 

ore eigenvectors to cover the majority of the shape variance. 

y allowing only a variation of the PVs’ orientation in anterior- 

osterior direction during correspondence retrieval, we prevent 

hanges in the PV lengths and diameters to be reflected in the 

odel’s eigenmodes, which was reported as a possible limitation 

f the model by Cates et al. (2014) . 

Varying the first eigenvector in the LA SSM published by 

arela et al. (2017) causes a variation of the total LA volume as it is

lso the case in our model ( Fig. 4 ). Also Corrado et al. (2020) and

ates et al. (2014) report a change of the total LA size in the first

igenmode. In the latter, the first mode represents a dilation of the 

A mainly in anterior-posterior direction, which is also the case 

or the third eigenmode of the SSM built by Corrado et al. (2020) ,

here the first eigenmode rather represents an elongation of the 

A in medial-lateral direction. Cates et al. (2014) also constructed 

 separate SSM of the LAA and found that its first shape param- 

ter corresponds to a change in the LAA length which is as well 

escribed by the third eigenmode of our model. 

The shape variations encoded in the leading eigenmodes of our 

ovel bi-atrial SSM are consistent with previously published LA- 

nly SSMs as far as the LA is concerned. This demonstrates that 

ur model is able to reflect the same main shape variations even 

hough it is based on a dataset of less than half the size compared

o the other models. The second eigenmode of our model repre- 

ents the asymmetry between right and left atrial volume. This fur- 

her manifests the novel insights into inter-subject atrial geometry 
8 
ariations revealing with our model since this shape change cannot 

e captured with two separate RA and LA SSMs. 

The generalization results demonstrate that our model is able 

o accurately predict the shape of a previously unseen atrial geom- 

try. The specificity results of 7 . 79 ± 1 . 00 mm leave room for im-

rovement. However, the low specificity scores do not result from 

nanatomical characteristics of the generated shapes. They occur 

ather due to the small dataset of 47 instances available for select- 

ng the closest shape during evaluation. Considering the MR slice 

hickness of predominantly 2 . 7 mm ( Table 1 ), a specificity rmse of

 . 79 mm is in the range of less than 2 voxel diameters with seg-

entation uncertainty adding to it ( Karim et al., 2018 ). The speci- 

city evaluation of our model therefore indicates that randomly 

enerated shapes produce valid shapes with an accuracy in the 

ange of the error susceptibility during segmentation. 

The atria segmented for this study originate from datasets com- 

rising images of not only healthy subjects but also patients with a 

nown history of atrial fibrillation. LA enlargement has been linked 

ith an increased risk for this arrhythmia ( Andlauer et al., 2018; 

roughton et al., 2016; Hamatani et al., 2016 ). To ensure that our 

odel is not based on a biased dataset with predominantly en- 

arged left atria, the LA volume (excluding LAA and PV ostia) of 

he N segmented geometries ( 82 . 16 ± 19 . 16 ml) was compared to 

eference values. Pritchett et al. (2003) considered all age and BMI 

roups in healthy individuals. Translating their 2D measurements 

o 3D volumes as suggested by Al-Mohaissen et al. (2013) yields 

 [ −3 , +3] σ range of 10–130 ml with the largest LA volume 

n our dataset (122 ml) being within that range. In this way, 

e were able to keep the dataset as large as possible. For the 

ame reason, we also did not exclude any geometries segmented 

rom different image modalities or different spatial resolutions, 

hich might however impact the shape statistics of the SSM. The 

argest slice thickness (2.7 mm) is in the range recommended in 

alerno et al. (2017) and relied on in previous studies ( Cates et al.,

014; Corrado et al., 2020 ). This indicates that the coarsest spatial 

esolution in our training dataset was still sufficient to allow cov- 

ring all relevant anatomical structures during segmentation. Re- 

arding segmentation, we relied as much as possible on the ground 

ruth LA shapes provided publicly available along with the datasets 

nd the automated segmentation workflows in CemrgApp. How- 

ver, since manual corrections were indispensable in some cases 

see Fig. 1 ), inter- and intra-observer variabilities might still have 

ad an impact on the final segmentation outcome. 

Due to the highly complex shape and the natural clustering 

f the LAA, we categorized the shape of this structure for all 

7 subjects into four classes as proposed by Wang et al. (2010) . 

1%, 47%, 36% and 6% of our segmented shapes were assigned 

o the ChickenWing, WindSock, Cauliflower and Cactus morphol- 

gy classes, respectively. Examples from our dataset assigned to 

ach of the four shape clusters are shown in Fig. 11 . The distri-

ution of the LAA shape in the four categories are in accordance 

ith the frequency of occurrence of the 612 LAA shapes studied 

y Wang et al. (2010) in each class. This demonstrates that our 

ataset also exhibits similar variability concerning the LAA shape 

s observed in larger cohort studies. 

We chose the PCA representation to describe the atrial shape 

ariability and thereby assumed the changes in the atrial shape to 

e Gaussian distributed which does not hold true for the entire 

nter-patient shape variability ( Bieging et al., 2018; Wang et al., 

010 ). For the sake of comparability with previously published 

odels and for reproducibility, we intentionally decided for this 

tate-of-the-art approach. Furthermore, the reference shape for the 

igid alignment and the correspondence retrieval was chosen to be 

he geometry with the smallest mean vertex to nearest neighbor 

istance to the other shapes. The choice of the reference mesh for 

CP only influences the alignment results regarding the final ori- 
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Fig. 11. Examples from our dataset assigned to the different LAA shape clusters as 

proposed by Wang et al. (2010) . The ChickenWing type differs from the other types 

by a sharp bend, the WindSock type is characterized by secondary lobes only in 

inferior direction, the Cactus type in inferior and superior direction. The Cauliflower 

type doesn’t exhibit any clear primary lobe. 
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ntation of all aligned meshes. Since the mean vertex-to-vertex 

istances between the meshes in correspondence and the origi- 

al instances quantified to 1.60 ± 0.25 mm, it can be inferred that 

he fitting algorithm for correspondence retrieval performed suf- 

ciently well. Therefore, the choice of the reference shape should 

ot have any major influence on the correspondence estimate. In 

ontrast, with the particular choice of our reference mesh, we 

acilitate that the deformed atlas is still capable of representing 

ner structural changes present in other models and prevent that 

ner structures that would only be present in the atlas are over- 

epresented in the final SSM. 

To showcase a potential application, we conducted multi-scale 

lectrophysiological simulations on 100 instances of the shape 

odel. This proof of concept was deliberately based on a simple 

odel not considering locally heterogeneous atrial wall thickness 

 Azzolin et al., 2020; Karim et al., 2018; Whitaker et al., 2016 ),

isease-induced remodeling of membrane dynamics ( Loewe et al., 

014 ) or diffusive aspects during cardiac depolarization. Also only 

ne torso shape and no rotation and translation of the atria within 

he torso are considered. The pipeline to generate volumetric mod- 

ls and simulation setups from the SSM is prepared for such ex- 

ensions, though. Even though the shape variability covered by 

ur model only comprises anatomical variants that were present 

n the dataset, i.e. healthy and AF patients without considerably 

nlarged left atrial volumes, the geometries can still be used for 

imulations of pathologies not affecting the atrial anatomy but re- 

ecting in non-healthy functional anomalies, for example conduc- 

ion blocks or ionic remodeling processes. Future studies focus- 

ng on repolarization could replace the simplistic Eikonal coupling 

mployed here with a reaction-Eikonal scheme as suggested by 

eic et al. (2017) . 

The main advantage of the novel bi-atrial SSM consists in the 

utomated generation of a large number of atrial geometries. In 

his way, the cumbersome and time-consuming process of anatom- 

cal model generation involving MRI segmentation and defining 

undles and fiber orientation can be facilitated and expedited. 
9 
Potse et al. (2018) examined the influence of electrical and 

tructural remodeling on the maintenance of complex reentrant 

ctivitiy. With our proposed bi-atrial SSM, also the influence of 

he general atrial anatomy on the perpetuation and initialization 

f atrial fibrillation can be quantified. 

Saha et al. (2016) investigated the effect of endo-epicardial ac- 

ivation delay on the P wave morphology. However, only one atrial 

eometry was used to deduce models of different atrial wall thick- 

esses in this study and the authors state the lack of using differ- 

nt geometries as a limitation of their work. The same limitation 

s listed in the study of Pezzuto et al. (2018) aiming at quantify- 

ng the beat-to-beat variability of P waves in patients with atrial 

brillation. With our SSM, a larger number of different volumetric 

trial models is easily acquirable. 

By means of our bi-atrial SSM, scale-large cohort studies us- 

ng computer models for simulating atrial activity become feasible. 

uongo et al. (2020b,a) found a significant influence of the num- 

er of atrial anatomies included on the classification of different 

ypes of atrial flutter with a machine learning approach. With the 

roposed SSM, a large number of geometries can be deduced and 

sed as a basis for in silico big data approaches such as to pro- 

uce extensive datasets for machine learning applications. The pro- 

ided instances are ready to be used off the shelf in available com- 

utational simulation environments such as openCARP for elec- 

rophysiology ( Sánchez et al., 2020 ), openFOAM for fluid dynam- 

cs ( Jasak, 2009 ) or FEniCS for continuum-mechanics ( Alnæs et al., 

015 ). 

. Conclusions 

To the best of our knowledge, we built the first SSM incorpo- 

ating both atria, their appendages and the orientation of the PVs. 

he model itself and 100 random volumetric atrial geometries in- 

luding rule-based fiber orientation and anatomical labelling were 

ade publicly available to the community which we consider as 

he main added value of our study. These models are ready to be 

sed off-the-shelf for electrophysiological simulations. Established 

uality criteria indicate that the novel SSM can be reduced to a set 

f 24 eigenvectors and is capable of generalizing well to unseen 

eometries. P waves simulated on 100 random instances derived 

rom the SSM reproduce the P wave distribution observed in clini- 

al ECGs of healthy individuals. As such, the SSM is suitable to gen- 

rate comprehensive model cohorts covering the relevant anatom- 

cal variability as a basis for large-scale in silico simulations in- 

luding, but not limited to, ECG simulations for machine learning 

pplications. 
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