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a b s t r a c t 

We adopt a thermodynamically consistent multi-phase, multi-component phase-field model to investigate 

the morphological evolution of peritectic transition in carbon steel though 2-D and 3-D simulations. By 

using phase-field method, we rationalize the peritectic solidification in both 2-D and 3-D simulations 

under different liquid supersaturations as well as on the δ particle with distinct microstructures. Through 

the comparison between 2-D and 3-D simulation results, we clarify the reason for the different growth 

rate of γ phase in two and three dimensions. In 3-D simulation, we observe the unequal growth rate of γ
phase in radial and axis directions. In addition, a novel measurement method is proposed to determine 

the dynamic contact angle. We anticipate that the simulation results can be applied to interpret the 

isothermal peritectic transition with a liquid supersaturation in alloys. 
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. Introduction 

High-strength steels within the peritectic composition range are 

sed in a broad variety of engineering applications due to its out- 

tanding mechanical properties [1–3] . However, the defects gen- 

rated by the peritectic transition during solidification, such as 

urface depressions, cracks, and breakouts, have a crucial dam- 

ge on mechanical properties and thereby limit the utilization of 

teels [4–7] . In order to avoid these defects in steels, numerous 

nvestigations on the microstructural evolution in peritectic transi- 

ion have been conducted in the past decades. 

The peritectic phase transition in carbon steel involves the peri- 

ectic reaction ( L + δ → γ ) and subsequent peritectic transforma- 

ions ( L → γ and δ → γ ). Many different mechanisms have been 

roposed via experimental observations to explain the details of 

his phase transition. Shibata et al. [8] investigated the peritectic 

ransition in carbon steel by using a confocal scanning laser mi- 

roscope (CSLM) and proposed that the growth of the γ phase is 

ot controlled by carbon-diffusion but by either a massive trans- 

ormation or a direct solidification from the liquid. In the study of 

eritectic transition, Griesser et al. observed three different modes, 
∗ Corresponding author. 
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ncluding a diffusion controlled mode, a cellular/dendritic peri- 

ectic transformation mode, and a massive transformation mode, 

y the use of a concentric solidification technique [9] . Nassar 

t al. [10] experimentally observed that surface tension plays a 

ital role in the governing mechanism of γ phase. Owing to the 

omplexity of the peritectic transition, the explanation about the 

rowth mechanisms is not entirely consistent. 

Considering the daunting task of statistical and theoretical in- 

estigations by precisely controlled experiments, it is of great sig- 

ificance and feasibility to gain insight into the peritectic transi- 

ion by using computational materials simulations. The phase-field 

odel has been proven to be a powerful modeling technique to 

imulate the microstructural evolution in many alloy systems [11–

3] , including peritectic alloys. By using phase-field method, Tiaden 

t al. [14] studied the engulfing microstructure, in which the 

eritectic phase grows over the pro-peritectic phase. Dobler et. 

l. [15] documented another possible growth morphology in peri- 

ectics, namely coupled growth of lamellae or rods like in eu- 

ectics, and clarified the main differences between this analogues 

orphology in peritectics and eutectics. In addition, the peritectic 

ransition in carbon steels is explored by phase-field modeling to 

larify its underlying growth mechanism [16–18] . Ohno and Mat- 

uura [19] investigated the γ growth at different undercoolings by 

sing phase-field model and confirmed previous experimental ob- 

ervations proposed by Hillert [20] that the re-melting of δ phase 

n the vicinity of triple junction affects the peritectic reaction rate. 

his phenomenon has been also confirmed by other phase-field 
. This is an open access article under the CC BY-NC-ND license 
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odeling studies [21,22] . Owing to their focus on the mechanisms 

f peritectic reaction, these studies investigated the growth of γ
hase on a planar δ phase at different undercoolings in 2-D sim- 

lations. However, there is a paucity of researches discussing the 

urvature effect of δ particle on the growth of γ phase as well 

s on the growth process after the complete engulfment of δ par- 

icle. Moreover, in comparison with 2-D simulations, the curvature 

ffect in an extra direction in 3-D should also be taken into consid- 

ration. As a supplement to the work of Ohno et al, we presently 

xplore the morphological evolution of γ phase on a spherical δ
article in 2-D and 3-D simulations. In the most of above men- 

ioned studies, more attention were paid to the peritectic tran- 

ition at different undercoolings, while research on the peritectic 

ransition caused by the supersaturation still has a gap. 

The early phase-field models, proposed by Karma [23] and 

heeler et al. [24] , were used to simulate alloy solidification. 

hese models applied a dual phase-field model to describe the 

olid and liquid phases and are coupled with Cahn-Hilliard model 

or demixing in solid phase. However, they are restricted to em- 

late the three-phase transition. In order to solve this problem, 

 multi-phase model was developed [14,25] . In this multi-phase 

odel, each phase is identified with an individual phase field pa- 

ameter ϕ α . Nestler and Wheeler [26] formulated a phase-field ap- 

roach based on interpolating the free energy density to simulate 

he solidification process for binary eutectic and peritectic alloy 

ystems, by setting up suitable values for the latent heats and tem- 

erature. This model in combination with a cubic anisotropy func- 

ion was applied by Choudhury et al. [27] to emulate the solidifi- 

ation in Fe-C. Due to a common idea that the driving force for a 

hase transformation is the difference in the grand potentials be- 

ween phases, Choudhury and Nestler reformulated a multi-phase- 

eld model based on the grand-potential functional [28] . Moreover, 

he anomalous interface effects were observed in several numerical 

nvestigations by using the phase-field model, when the interface 

idth was extended artificially and the solute has unequal diffusiv- 

ties between phases [29–31] . In order to eliminate these abnormal 

ffects, an anti-trapping current was proposed into the diffusion 

quation by Karma [32] . In the past decades, the static contact an- 

le is determined by the thermodynamic equilibrium at the triple 

unction between three distinct phases, described by Young’s law. 

owever, the dynamic contact angle deviates from the Young’s law 

nder the influence of the interface motion, which is observed in 

everal experimental and numerical observations about spreading 

f fluids [33–35] . Similarly, the occurrence of the phase transition 

s accompanied with the movement of interfaces. Hence, the dy- 

amic contact angle may also deviate from Young’s law during the 

hase transition. In the previous study of Ohno and Matsuura, the 

easurement methods of the dynamic contact angle cannot deter- 

ine the contact angle precisely and the value of the contact an- 

le is significantly affected by the different selecting criteria [19] . 

n order to better explore the dynamic contact angle in peritec- 

ic transition, a novel measurement method for a dynamic contact 

ngle should be proposed. 

As mentioned above, the peritectic transition is frequently 

ound in different alloys, e.g. Cu-Sn [36] , Ag-Sn and Cd-Ag [37] , and

e-Co [38] , and the phase-field method is applied to research this 

hase transition since quite early on. However, the understanding 

f peritectic transition in alloy solidification, especially from nu- 

erical studies, is considerably limited compared to other common 

hase transitions in alloy, such as eutectic transition. The relatively 

mall amount of numerical investigations on the peritectic transi- 

ion is likely to be caused by the following reasons: (i) In com- 

arison with eutectic transition, there are much greater variety of 

rowth modes in peritectic transformation, e.g., diffusion control 

echanism, δ-ferrite remelting mechanism, and massive transfor- 

ation mechanism [9,39] . (ii) According to the previous experi- 
2 
ental and numerical observations [8,27] , the growth rate of γ - 

hase after the complete engulfment of the δ particle decreases 

ignificantly, and consequently the simulation of whole process re- 

uires a high amount of computational effort, especially for a 3-D 

imulation. (iii) Most previous studies focus on directional solidifi- 

ation in peritectic transformation where the steady-state growth 

s rarely achieved [40] . (iv) The paucity of 3D phase-field model- 

ng of peritectic transition in mesoscopic scale is probably due to 

he capability of the phase-field model before the invention of the 

hin interface analysis as well as the decoupling of the interfacial 

nergy from the interface width in the grand potential formalism. 

In the present work, we shed light on the microstructural evo- 

ution of peritectic transition in carbon steel by using phase-field 

ethod and propose a new measurement method to determine the 

ynamic contact angle. A common agreement is reached through 

everal studies that the peritectic transition in Fe-C alloys at low 

riving force (e.g. at low undercoolings) is controlled by carbon dif- 

usion [9,10,41] . Therefore, in the modeling section, we present a 

hase-field model formulation in 3-D, added with an anti-trapping 

urrent and coupled with a diffusion-equation, to simulate the oc- 

urrence of phase transition and the growth of intermetallic com- 

ound. By using this phase-field method, we simulate the evolu- 

ion of γ phase in both 2-D and 3-D simulations under differ- 

nt liquid supersaturations as well as on the δ particle with dis- 

inct microstructures. All large domain simulations in 2-D and 3-D 

re performed in parallel computing on high performance comput- 

rs. By analyzing the concentration distribution and morphological 

volution, we clarify the underlying mechanisms of the peritectic 

ransition in carbon steel. 

. Binary phase diagram of Fe-C system 

Fig. 1 (a) shows the reconstructed Fe-C binary phase diagram 

ased on the thermodynamic database published in Ref. [42] . Ac- 

ording to this phase diagram, γ -Fe is produced by a peritectic re- 

ction between liquid and δ-Fe phases at the peritectic temper- 

ture T p = 1767 K, L + δ − Fe → γ − Fe . In the present study, we 

imulate this peritectic reaction at the temperature T = 1757 K, 

hich is 10 K below T p , as displayed by the red dashed line in

ig. 1 (a). Here, c 
γ ,L 
e and c 

L,γ
e represent the equilibrium concen- 

ration in γ phase with respect to liquid phase and the equilib- 

ium concentration in liquid phase with respect to γ phase at T = 

757 K, respectively. In order to simulate this peritectic transition, 

e fit the Gibbs free energies of liquid-, γ -, and δ-phases based on 

he CALPHAD database [42] , by using the least square method. The 

tted Gibbs free energy curves are displayed in Fig. 1 (b). The ther- 

odynamic equilibrium between two phases is given by the com- 

on tangent construction between two Gibbs energy curves, as il- 

ustrated by the pink or olive dashed line in Fig. 1 (b). The equilib-

ium chemical potentials correspond to the slopes of the common 

angent lines. This fitting method results in exact equilibrium con- 

entrations between each pairwise phases ( L / γ - and δ/γ -phase), 

hich are in accordance with experimental data. 

. Phase-field model 

In the present study, we use a phase-field model with the 

rand-potential formulation, which is proposed by Choudhury and 

estler [28] , to investigate the microstructural evolution in peri- 

ectic transition. For a N-phase and K-component system, the bulk 

ree energy density of the phase α is formulated as 

f α = f α(c α1 , . . . , c 
α
k , . . . , 1 −

K−1 ∑ 

i =1 

c αi ) , α ∈ [1 , N] , k ∈ [1 , K] . (1)
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Fig. 1. (a) Phase diagram of the Fe-C system. We consider the reaction at the temperature T = 1757 K, as indicated by the red dashed line. (b) The fitted dimensionless free 

energy f α/E ∗ as a function of concentration, at a fixed temperature T = 1757 K, where E ∗ = 1 × 10 6 J/m 

3 . α = liquid, δ-Fe, and γ -Fe, respectively. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

T

i

μ

T

Ψ

w

a

(

l

v

μ
a

t

i

w

H  

b

t  

t

i

p

Ψ

w  

ϕ  

E

y

c

w

m

t

t

t

Ω  

H

p

t

a

w

i

w

o

s

e

w

H

t

fi

w

τ

w

r

d

s

F

f

t

c

w  

b

M

w

o

he chemical potential for the α phase is calculated by the follow- 

ng equation: 

α
k = 

∂ f α

∂c α
k 

. (2) 

he grand chemical potential is defined as 

α( μ) = f α( c α( μ)) − 〈 μα, c α〉 , (3) 

here the concentration vector is defined as c α = (c α
1 
, . . . , c α

K−1 
) 

nd the chemical potential vector is written as μα = 

μα
1 
, . . . , μα

K−1 
) . When the phases are in thermodynamic equi- 

ibrium, the chemical potential of each phase has the same 

alue, thereby the chemical potential vector can be described as 
α = μ = (μ1 , . . . , μK−1 ) . The mathematical symbol 〈 , 〉 represents 

 scalar product. 

In this model, an order parameter ϕ α is introduced to represent 

he local volume fraction of the α phase, whose value character- 

zes the phase state of the system in time and space. In addition, 

e use a diffuse interface to separate two distinct phases α and β . 

ence, we set the order parameter ϕ α = 1 , 0 < ϕ α < 1, ϕ α = 0 in the

ulk phase α, in the diffuse interface, and in other phases, respec- 

ively. The phase-field vector ϕ = (ϕ 1 , . . . , ϕ N ) is used to charac-

erize the phase state of the system. The grand chemical potential 

n the diffuse interface is interpolated in terms of the individual 

hases as 

( ϕ , μ) = 

N ∑ 

α=1 

Ψ α( μ) h (ϕ α) , (4) 

here h (ϕ α) is a cubic interpolation function defined as h (ϕ α) =
 

2 
α(3 − 2 ϕ α) and satisfies h (0) = 0 and h (1) = 1 . With the aid of

q. (3) , we differentiate both sides of Eq. (4) with respect to μi 

ielding 

 ( ϕ , μ) = 

N ∑ 

α=1 

c α( μ) h (ϕ α) , (5) 

here the concentration vector is defined as c = (c 1 , . . . , c K−1 ) . 

In accordance with the basic thermodynamic law, the funda- 

ental idea of using the phase-field method to illustrate the phase 

ransition process in a multiphase system is such as to minimize 

he grand potential functional dΩ/ dt ≤ 0 , which is achieved with 

he following formulation: 

( ϕ , μ) = 

∫ [ 
εa ( ϕ , ∇ ϕ ) + 

1 

ε
w ( ϕ ) + Ψ ( ϕ , μ) 

] 
dx. (6)
V 

3 
ere, V is the volume occupied by the system, and ε is a length 

arameter, which determines the width of the diffuse interface. 

The first term in Eq. (6) represents the gradient energy density 

hat is formulated as 

 ( ϕ , ∇ ϕ ) = 

∑ 

α<β

γαβ

[
a αβ ( q αβ) 

]2 ∣∣q αβ

∣∣2 
, (7) 

here γαβ is a coefficient defining the surface energy of the α − β
nterface, and q αβ is the generalized asymmetric gradient vector, 

hich is written as: q αβ = ϕ α∇ ϕ β − ϕ β∇ ϕ α . Here, the anisotropy 

f solid phases is not taken into consideration, hence a αβ ( q αβ) is 

et as 1. 

The second term in Eq. (6) is an obstacle potential, which is 

xpressed as 

 ( ϕ ) = 

16 

π2 

∑ 

α<β

γαβϕ αϕ β + 

∑ 

α<β<δ

γαβδϕ αϕ βϕ δ. (8) 

ere, the higher order term γαβδ suppresses spurious contribu- 

ions of third phases in the binary interfaces. The temporal phase- 

eld evolution equation is derived by the variational approach and 

rites as 

αβε
∂ϕ α

∂t 
= ε

[ 
∂a ( ϕ , ∇ ϕ ) 

∂ϕ α
− ∇ · ∂a ( ϕ , ∇ ϕ ) 

∂∇ϕ α

] 
− 1 

ε

∂w ( ϕ ) 

∂ϕ α

−
[
Ψ α( μ) − Ψ β( μ) 

]
h 

′ (ϕ α) − λ, 

α = 1 , . . . N, β 
 = α, 

(9) 

hereby λ is a Lagrange multiplier ensuring 
∑ N 

α=1 ϕ α = 1 . The pa- 

ameter ταβ is a relaxation constant at the α/β interface, which is 

iscussed later in this section. 

Furthermore, the total amount of solute in the system is con- 

erved. Therefore, we introduce a diffusion equation, which follows 

ick’s law. As the flux in the diffuse interface of phase-fields differ 

rom the sharp interface limit, an anti-trapping current is added in 

his solute conservation equation. The evolution equation for the 

oncentration fields is derived as [28,43] 

∂ c 

∂t 
= ∇ ·

[ 
M ( ϕ , μ) ∇ μ − J at 

] 
, (10) 

here M ( ϕ , μ) = 

∑ N 
α=1 M 

α( ϕ , μ) h (ϕ α) is the mobility. The mo-

ility of atoms in α phase M 

α is defined as 

 

α = 

D 

α

∂ μ
∂ c α

, (11) 

here D 

α is the diffusivity matrix in α phase. In this paper, we 

nly state the result of the anti-trapping current in the phase-field 
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imulation and refer to another paper for details of the asymptotic 

nd derivation [28] . The anti-trapping current is defined as 

 at = 

πε

4 

N ∑ 

α=1 

h (ϕ α)(1 − h (ϕ α)) √ 

ϕ 

0 
α(1 − ϕ 

0 
α) 

∂ϕ α

∂t 

( ∇ϕ α

| ∇ϕ α| ·
∇ϕ L 

| ∇ϕ L | 
)

×
((

c L ( μ, T ) − c α( μ, T ) 
)

�
∇ϕ α

| ∇ϕ α| 
)

, (12) 

here ϕ 

0 
α is the lowest order solution of the phase-field equation, 

 

L and c α is the concentration in liquid and solid phase, respec- 

ively. It should be noted that the diffusion coefficient in the liq- 

id phase D 

L is much larger than the one in the solid phases D 

α , 

hereby the anti-trapping current with an assumption of one sided 

iffusion is adopted in the present study. 

According to Eq. (5) , the time derivative of the concentration is 

ritten as 

∂ c 

∂t 
= 

N ∑ 

α=1 

c α( μ) 
∂h (ϕ α) 

∂t 
+ 

N ∑ 

α=1 

∂ c α( μ) 

∂t 
h (ϕ α) 

= 

N ∑ 

α=1 

c α( μ) h 

′ (ϕ α) 
∂ϕ α

∂t 
+ 

N ∑ 

α=1 

∂ c α

∂ μ
h (ϕ α) 

∂ μ

∂t 
. 

(13) 

hrough a combination of Eqs. (10) and (13) , the evolution equa- 

ion for the chemical potential is formulated as 

∂ μ

∂t 
= 

[ 

N ∑ 

α=1 

∂ c α( μ) 

∂ μ
h (ϕ α) 

] −1 

·
[ 

(∇ · ( M ( ϕ , μ) ∇ μ − J at )) −
N ∑ 

α=1 

c α( μ) h 

′ (ϕ α) 
∂ϕ α

∂t 

] 

. 

(14) 

ereafter, we restrict our discussion for the case of a binary alloy 

here the concentration c is the concentration of carbon and μ
s the corresponding chemical potential. Hence, there is only one 

ndependent inter-diffusivity in the system and the mobility M 

α is 

ritten as M 

α = D 

α ∂c 
∂μ

. 

Next, we relate the modeling parameter ταβ for the time re- 

axation to the physical parameter of kinetic coefficient ξ . In lit- 

rature, there are two approaches to estimate the value of ταβ in 

erms of ξ . The first one is in the context of the sharp-interface 

imit, where the chemical potential within the diffuse interface 

s almost constant. To achieve this, the interface width in the 

hase-field model should be much less than the capillary length. 

ence, the interface width in the phase-field method is typically 

n nanometer scale. In this way, it is impractical for the numeri- 

al simulation to simulate microstructure evolution in mesoscopic 

cale, especially in 3D, since the grid resolution and the time scale 

f the phase-field model are both related with the interface width. 

or instance, it would require ten thousand cubic grid cells in 3D 

o simulate a domain with a size of 10 × 10 × 10 μm 

3 , which is ex-

remely challenging for the present computational capability even 

ith high performance computing technique. To overcome this dif- 

culty, a second way to relate ταβ in terms of ξ is the so-called 

hin-interface analysis, as derived in Refs. [32,44–47] . Benefiting 

rom the decoupling of the interface width from the interfacial en- 

rgy for relatively small driving force (equilibrium solidification), 

he interface width in the second approach can be set arbitrar- 

ly large, e.g. 100 nm. For such a large interface width, it is still

ossible to obtain a physical value for the interfacial energy and 

eplicate the classic Stefan problem. This large interface width is 

eyond the physical meaning of realistic value but is indeed a sig- 

ificant modeling approach to perform large scale 3D simulations. 

owever, an arbitrary enlargement of the interfacial width results 
4 
n some artifacts for those properties, such as interfacial diffusion, 

hich are proportional to the interfacial width. To eliminate these 

rtifacts, an additional constraint, namely, the aforementioned an- 

itrapping current is applied. 

In the following, we exemplarily illustrate the derivation of the 

odeling parameter τγ L at γ / L interface. By asymptotic expansions 

f phase-field variable and chemical potential with considering the 

ntitrapping current, the deviation of the chemical potential from 

he equilibrium value in the thin interface analysis is expressed as 

μ := μ − μe = μ0 − μe + εμ1 , (15) 

here μ0 and μ1 are the solutions of the chemical potential in the 

harp and thin interface analysis, which are obtained by analyzing 

he phase-field equation in the order of ε0 and ε1 , respectively. 

e is the equilibrium chemical potential. The departure from the 

quilibrium chemical potential in the sharp-interface limit μ0 − μe 

s written as 

0 − μe = 

−τγ L V 

c L (μe , T ) − c γ (μe , T ) 
, (16) 

here V is the interface velocity. The chemical potential μ1 is for- 

ulated as 

1 = 

c L (μ0 , T ) − c γ (μ0 , T ) 

D 

L ∂c L (μ0 ,T ) 
∂μ

V (M + F ) . (17) 

ere, M and F are solvability integrals equating to 0.063828 

nd 0.158741, respectively. Substituting Eq. (16) and Eq. (17) into 

qs. (15) and comparing Eqs. (15) with the Gibbs-Thomson 

quation �T = ξV for an one-dimensional setup, where �T = 

 L 
∂c L (μe ,T ) 

∂μ
�μ ( m L is the slope of the liquidus), the modelling pa- 

ameter τγ L is related to the kinetic coefficient ξ . In this work, we 

et the kinetic coefficient ξ to be zero to estimate the modelling 

arameter τγ L , namely, 

γ L = ε
[ c L (μe , T ) − c γ (μe , T )][ c L (μ0 , T ) − c γ (μ0 , T )] 

D 

L ∂c L (μ0 ,T ) 
∂μ

(M + F ) . 

(18) 

he reason for setting ξ = 0 is two-fold. Firstly, in 2D and 3D, apart 

rom the kinetic undercooling, the Gibbs-Thomson equation has an 

dditional contribution from the curvature, namely, �T = ξV + �κ , 

here � is the Gibbs-Thomson coefficient and κ is the curva- 

ure. The kinetic coefficient ξ for alloys is typically in the scale of 

 ×10 −5 Ks/( μm ) [4 8,4 9] . For equilibrium solidification, this kinetic 

ndercooling is much less than the curvature undercooling. Sec- 

ndly, in comparison with the parameter ταβ corresponding to a 

on-zero kinetic coefficient, a modelling parameter ταβ for a zero 

inetic coefficient leads to a less transient time and a faster conver- 

ence of the simulation to the steady state, which is an additional 

dvantage to simulate large 3D simulations. 

We initially fill a semicircular γ nucleus at the interface be- 

ween the liquid and δ phases. The interface thickness is set to be 

.5 μm in order to keep the simulation stable. The concentration 

f C in γ is set to be 0.006785, which is the equilibrium concen- 

ration with δ phase at the temperature of 1757 K. The carbon con- 

entration in the δ phase is 0.003159 implying a supersaturation of 

γ /δ = 0 . 027 . Due to the constant concentration in δ phase, all su- 

ersaturation hereafter refers specifically to the supersaturation in 

iquid. The other simulation parameters are tabulated in Table 1 . In 

he following discussion, we simulate the growth of γ -phase with 

ifferent supersaturation in liquid and its development on the δ- 

article in various size. Neumann boundary conditions are applied 

n the present simulations. The supersaturation in liquid is defined 
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Table 1 

Parameters for the phase-field simulations. 

Symbol Description Value 

�t Time step 1 ×10 −6 s 

�x Space step 1 × 10 −7 m 

σγδ Interfacial energy of the γ / δ interface 0.370Jm 

−2 

σγ L Interfacial energy of the γ /L interface 0.319Jm 

−2 

σδL Interfacial energy of the δ/L interface 0.204Jm 

−2 

D L Diffusion coefficient in the L-phase 5 . 2 × 10 −7 exp (−5 . 0 × 10 4 / (RT )) m 

2 s −1 [19] 

D γ Diffusion coefficient in the γ -phase D L × 0 . 01 

D δ Diffusion coefficient in the δ-phase D L × 0 . 01 

R Gas constant 8.314J/molK 

a

Δ

w

l

i

r

f

0

l

4

t

p

w

c

t

t

c

t

t

T

p

t

s

t

i

t  

l

c

a

o

ϕ  

t

m

B

s

a

t

d

F

r  

a

F

o

 

d

Fig. 2. (a) Level 0.5 contours of all the phase-field variables (white lines) identify 

a triple region. The three boundary points of this region are marked by red circles 

and called p 1 , p 2 , and p 3 . The triple junction (tp) is the point where ϕ 1 = ϕ 2 = 

ϕ 3 = 1 / 3 . The dynamic contact angle of γ -phase, θ is defined as the angle between 

two lines, which are obtained by separately connecting the triple junction with two 

boundary points. The point p and the triple point tp are symmetric with respect 

to the connecting line between p 2 and p 3 . (b) Schematic illustration of equivalent 

thickness of γ phase. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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c L 0 − c 
L,γ
e 

c 
γ ,L 
e − c 

L,γ
e 

, (19) 

here c 
L,γ
e is the solute concentration in the liquid phase in equi- 

ibrium with the γ -phase and c 
γ ,L 
e is the carbon concentration 

n the γ phase in equilibrium with the liquid (see Fig. 1 (a)). c L 
0 

epresents the initial carbon concentration in liquid phase. In the 

ollowing discussion, the supersaturation Δ of 0.352, 0.281,0.211, 

.141, and 0.071 corresponds to the initial carbon concentration in 

iquid c L 0 of 0.019, 0.020, 0.021, 0.022, and 0.023, respectively. 

. Measurement methods 

In the present study, we investigate the microstructural evolu- 

ion of peritectic transition in Fe-C system. Because of the typical 

eritectic structure that the δ-phase is surrounded by the γ -phase, 

e measure the temporal change of two parameters: the dynamic 

ontact angle and the equivalent thickness of γ -phase. 

In order to facilitate an effective measurement of the con- 

act angle, a sharp-interface analogue is needed. In experiments, 

he three interface curves between δ-, γ -, and liquid-phases are 

rossed at a joint point via graphical treatment of the experimen- 

al pictures. The three tangent lines at this crossing point for the 

hree interface lines give rise to the contact angle between phases. 

his is a sharp interface treatment. However, the model in the 

resent study assumes that all interfaces involved are diffuse in- 

erfaces with a finite thickness. The phase-field variable ( ϕ α) varies 

moothly from 0 to 1 within the interface. Hence, in this model, 

he triple junction is expanded to a triple point area, as shown 

n Fig. 2 (a). The interface between phases is given by the con- 

our line of ϕ i = 0 . 5 ( i = δ, γ , and L). Mostly, the three contour

ines between δ-, γ -, and liquid-phases or the extension of the 

ontour lines cannot pass a single point inside the triple point 

rea and thus, the determination of the contact angle is ambigu- 

us. In literatures [19,50] , a circle with the center at the point 

 δ = ϕ γ = ϕ L = 1 / 3 is drawn and this circle crosses with each in-

erface lines with an intersection point. The contact angle can be 

easured by connecting the center and each intersection point. 

ut this measurement method is very sensitive to the radius of the 

elected circle. For this reason, we use the following way to locate 

 sharp interface from the diffuse-interface profiles. Firstly, we take 

he level 0.5 contours of all the phase-field variables, which are 

efined as the interface between each two adjacent phases (see 

ig. 2 (a)). The three diffuse interfaces form a diffuse triple junction 

egion. The three vertices of this region p 1 , p 2 and p 3 in Fig. 2 (a)

re identified by the intersections between the contour lines of 0.5. 

or instance, the point p 1 is the crossing point of the contour lines 

f ϕ δ = 0 . 5 and ϕ γ = 0 . 5 . 

The black point in the Fig. 2 (a), where ϕ δ = ϕ γ = ϕ L = 1 / 3 , is

efined as the triple junction (tp). The dynamic contact angle of 
5 
-phase θ is defined as the angle between two lines, which are 

btained by separately connecting the triple junction with two ver- 

ices (see Fig. 2 (a)). It is noteworthy that the phase-field variables 

re located in the center of each grid cell, which are assigned to 

e integer values. The exact positions for ϕ δ = ϕ γ = ϕ L = 1 / 3 or

 i = 1 / 2 ( i = δ, γ , and L) may not locate at the center of the grid

ells. In 2D, a bilinear interpolation based on the values of the 

hase-field variables of four neighbouring cells is used to deter- 

ine the position of the points p 1 , p 2 , p 3 , and tp (trilinear in-

erpolation in 3D). The resulting points for ϕ i = 0 . 5 are connected 

o form the contour line, as schematically illustrated by the white 

ines in Fig. 2 (a). In addition, in the following discussion, we ex- 

lore the underlying mechanisms of the peritectic transition by an- 

lyzing the concentration of the point p, which is chosen to char- 

cterize the local liquid concentration in the vicinity of triple point. 

he point p and the triple point tp are symmetric with respect to 

he connecting line between p 2 and p 3 (see Fig. 2 (a)). 

In the peritectic transition process, the γ -particle grows along 

he interface between liquid and δ-phase. Because of its inhomoge- 
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Fig. 3. (a) The thickness of the γ -phase as a function of time for different domain sizes under the same supersaturation � = 0 . 352 . (b) The thickness of the γ -phase as a 

function of time for different domain size, while fixing the size of the δ particle. 
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eous distribution on the δ-phase, we investigate its development 

y using an equivalent thickness d. 

In Fig. 2 (b), the violet γ -phase with an instantaneous surface 

rea of S 1 (t) locates on the gold δ-phase at the time step t. The γ -

hase is equivalently converted to a ring around the δ-phase with 

he same area. The equivalent thickness d is calculated by the fol- 

owing equation: 

(t) = R 2 (t) − R 1 (t) 

= 

√ 

S 1 (t) + S 2 (t) 

π
−

√ 

S 2 (t) 

π
, 

(20) 

here S 1 (t) and S 2 (t) are functions of time and represent the sur-

ace area of γ - and δ-particle, respectively. 

. Validation 

In order to eliminate the influence of Neumann boundary in 

imulations on the microstructural evolution, we explore the vari- 

tions in domain size in this section, while keeping the other sim- 

lation conditions fixed. 

Fig. 3 (a) portrays the time evolution of γ -phase thickness with 

ifferent domain sizes from 250�x × 250�y to 450�x × 450�y 

or a constant supersaturation ( Δ = 0 . 352 ). The space scale of the

imulation is �x = �y = �z = 1 × 10 −7 m and the physical length 

s given by N x × �x . The red, black, blue, yellow, and dark-green 

ines represent the simulation with domain size of N x = N y = 250 ,

80, 350, 400, and 450, respectively. In all cases, the thickness of 

he γ -phase layer increases exponentially with time. The under- 

ying physical reason will be discussed later in this paper. With 

he magnified domain size, a convergence emerges in the simula- 

ion results and the simulations with N x = N y ≥ 400 are well con- 

erged. It is noteworthy that among all the considered supersat- 

ration, the supersaturation Δ = 0 . 352 for testifying the conver- 

ence of the simulations is the largest one, which represents the 

trongest driving force for the particle growth. The boundary influ- 

nce recedes with decreasing the driving force. Therefore, we set 

he domain size with N x = N y = 400 cells for investigating the in-

uence of liquid supersaturation on the γ -phase thickness. A sim- 

lar validation is also performed for the study with distinct radius 

 R 2 ) of the δ-particle. For the case of δ with the largest initial size

 R 2 = 70 ), the simulation results with N x = N y ≥ 350 are converged,

hich are illustrated in Fig. 3 (b). The effect of Neumann bound- 
6 
ry weakens with decreasing the initial radius of the δ particle, 

hereby we explore the γ growth with different initial radii of δ
article in a domain with 350 × 350 cells. 

. Simulation results and discussion 

As observed in experimental microstructures, the austenite 

latelet ( γ ) grows along the ferrite ( δ)/liquid (L) interface. Aim- 

ng to explore the influencing factors of this microstructural evo- 

ution during the peritectic transition in carbon steel, we simu- 

ate isothermal peritectic solidification of the Fe-C alloy by using 

he phase-field model in 2-D and 3-D domains. In the 2-D simu- 

ations, we investigate the peritectic solidification for the following 

wo cases: (i) on the δ phase with a planar surface and (ii) on the 

phase with a circular surface. In the 3-D simulations, we explore 

he peritectic transition on the δ phase with different geometries: 

a) spherical structure, (b) cylinder structure, and (c) sandglass- 

haped structure. 

In the following study, we set the initial carbon concentration 

n the liquid phase c L 
0 

less than the equilibrium concentration c 
L,γ
e 

t the temperature T = 1757 K, which provides a driving force for 

he peritectic phase transition. 

.1. 2-D Simulation: Peritectic transition on a planar δ phase 

In 2-D simulations, we focus on the growth of austenite on a 

at and a circular δ-particle. Fig. 4 (a) portrays the microstructural 

volution of the peritectic transition on a flat δ-particle. A semi- 

ircular nucleus of the austenite phase with a radius of 2 μm is 

nitially placed at the δ-L interface. With time, the austenite phase 

rows along the δ/L interface in the horizontal direction and its 

hickenness increases in the vertical dimension. Since the austenite 

hase grows at the expense of the δ and L phases and the δ phase 

emelts at the δ/L interface, the γ / δ interface sinks in the vicin- 

ty of the triple point, which is a typical characteristic of peritectic 

ransition. Meanwhile, due to the initial quasi equilibrium setup 

etween the γ and δ phase as well as the relatively small diffu- 

ivity in these two solid phases, the interfacial region where the γ
nd δ phases are in contact at the beginning does not evolve with 

ime. This results in a platform in the middle of the γ phase close 

o the δ phase. 

In order to better explore the mechanism of peritectic transi- 

ion, we magnify the region in vicinity of the triple junction (see 
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Fig. 4. (a) Microstructural evolution of γ -phase on a planar δ-phase during peritectic phase transition from t 1 to t 3 , where t 1 , t 2 , t 3 represent the time 0, 400 μs, 600 μs, 

respectively. (b) A magnified region in the vicinity of the triple point which is highlighted in the middle of (a). (c) Schematic diagram for the microstructure of peritectic 

phase transition near the triple point. (d) The area of γ phase as a function of time for different supersaturation �. (e) The growth exponent b for the relation S 1 = at b + g

as a function of �. 

Table 2 

The fitted coefficients for different su- 

persaturation. 

� a b g 

0.352 0.104 0.861 6.388 

0.281 0.078 0.879 6.427 

0.211 0.055 0.907 6.448 

0.141 0.038 0.937 6.445 

0.071 0.025 0.979 6.435 
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ig. 4 (b)). At the front of the austenite phase, the L/ δ interface is 

ent towards the δ-phase. This curved interface indicates the melt- 

ng of the δ phase during the reaction near the L/ δ/ γ triple point. 

his phenomenon is well consistent with previous studies [19,22] . 

he corresponding schematic diagram of the microstructure near 

he triple junction is shown in Fig. 4 (c). The peritectic solidification 

nvolves the peritectic reaction, namely L + δ → γ and the sub- 

equent peritectic transformation, namely δ → γ , L → γ [51,52] . 

ig. 4 (d) depicts the area of the γ phase S 1 as a function of time

or different supersaturation Δ. The red, green, blue, yellow, and 

iolet lines represent the cases with Δ = 0 . 352 , 0.281, 0.211, 0.141, 

nd 0.071, respectively. In all these 5 cases, S 1 increases exponen- 

ially with time, which follows an empirical formulation as 

 1 = at b + g. (21) 

he fitted coefficients a, b, and g are tabled in Table 2 . 
7 
A comparison between the five cases shows that a higher su- 

ersaturation leads to a faster growth. In order to provide insight 

nto the underlying growth mechanisms, the relationship between 

he growth exponent b and the supersaturation Δ is shown in 

ig. 4 (e). With an increase in Δ, b decreases from 0.96 to 0.84. This

esult indicates that the coefficient b in the case with a higher su- 

ersaturation is closer to the theoretical exponent of 0.5 for diffu- 

ional growth [53] . A higher supersaturation, as defined in previous 

ection, means a lower carbon concentration in the liquid phase, 

hich provides a larger driving force for the phase transformation 

t the L/ γ interface. With the diminishing supersaturation, the di- 

ect solidification of austenite from liquid is inhibited. The whole 

rocess is determined by the peritectic reaction. As a result, the 

oefficient b for the case with supersaturation 0.071 is very close 

o the exponent of 1 for reaction-controlled limit. 

The growth of γ -platelet involves the contributions from peri- 

ectic transformation between L/ γ and δ/ γ interfaces, and from 

eritectic reaction in the vicinity of the triple point. By analyzing 

he tip velocity of γ -platelet growing along the L/ δ interface, we 

larify the influence of various supersaturations on the movement 

f the triple point, caused by peritectic reaction. Fig. 5 demon- 

trates the tip velocity of γ -platelet as a function of undercooling 

n Fe-C alloys with different compositions. Five filled circles, from 

ottom to top, are obtained by the present simulation and cor- 

espond to the five cases with increasing supersaturations shown 

n Fig. 4 (d). The open symbols are the experimental data from 

hibata et al. [8] and Grisser et al. [9] , which are shown for the
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Fig. 5. Tip velocity of γ -phase as a function of undercooling in different Fe-C alloys. 
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ake of comparison. As aforementioned, the present study focuses 

n the isothermal peritectic solidification at the 1757 K, which is 

0 K below the peritectic temperature (T p ). In order to better com- 

are with experimental data, the mole concentrations for the cases 

ith different supersaturations are converted to the composition in 

eight percentage of carbon (wt%) based on the initial concentra- 

ion and volume fraction of each phase in the system, hence the 

ases with supersaturation of Δ = 0 . 352 , 0.281, 0.211, 0.141, and 

.071 represent Fe-0.341 wt% C, Fe-0.359C, Fe-0.376C, Fe-0.394C, 

nd Fe-0.411C steels, respectively. All five numerical measured val- 

es fall within the range of experimental data and the tip velocity 

f γ -platelet increases with a decrease in the carbon concentra- 

ion. Good agreement between the numerical results and the ex- 

erimental data indicates that the present PF-model is capable of 

uantitatively analyzing the peritectic transition. 

.2. 2-D Simulation: Peritectic transition on a circular δ-phase 

As an emblematic peritectic microstructure, austenite surrounds 

-iron, forming a sandwich microstructure: liquid/austenite/ δ. 

hen the δ-phase has a spherical shape, the effect of its curvature 

n the austenite growth needs to be considered. In this section, we 

nvestigate the growth of austenite under different supersaturation 

nd its morphological evolution on ferrite in various sizes. 

Fig. 6 (a) presents the microstructural evolution of austenite on 

 δ-particle. Austenite grows along the L/ δ interface and thick- 

ns gradually with time. When δ-phase is completely encircled 

y the γ -phase, the L/ δ/ γ triple point disappears, which leads to 

he end of peritectic reaction. Subsequently, the peritectic trans- 

ormation occurs. As a result, γ -phase engulfs the δ-phase and 

rows in the liquid phase. The whole process is divided into two 

tages: before (stage 1) and after (stage 2) the disappearance of 

riple point. Fig. 6 (b) illustrates the thickness d of γ -phase, as de- 

ned in Eq. (20) , as a function of time. The red, green, blue, yel-

ow, and violet dashed lines correspond to the liquid with super- 

aturation of 0.352, 0.281, 0.211, 0.141, and 0.071, respectively. In 

ll five cases, the size of δ-particle is fixed and the thickness of 

-particle d increases exponentially with time. For each case, d 

hows two different exponents, by which we classify this process 

nto two stages. For a better discrimination, the stage 2 is indicated 

y a shading region in Fig. 6 (b). A comparison between these five 

ases shows that with an increase in Δ, the growth rate of the 

-phase enlarges and the dividing point between stage 1 and 2 

lightly delays. As discussed in previous section, the supersatura- 

ion denotes the deviation of the composition in the liquid from 

he equilibrium value. This deviation leads to a difference in the 

rand chemical potential, which provides the driving force for the 

hase transition. In the following, we define two concentration dif- 

erences to represent the driving force for the phase transforma- 

ion at the respective interface. One is �c L,γ = c L − c 
L,γ
e at the L/ γ

nterface; the other is �c L,δ = c L − c L,δe at the L/ δ interface. Here, 

 

L,γ
e = 0 . 024032 and c L,δe = 0 . 0203904 is the equilibrium concentra-
8 
ion in liquid phase with respect to γ and δ phase, respectively. c L 

s the carbon concentration in the liquid phase. As illustrated in 

ig. 6 (c), we use the liquid concentration of the point p, which 

s defined in Section 4 (see Fig. 2 (a)), to characterize the driv- 

ng force for the morphological evolution of the γ -phase. The red, 

reen, blue, yellow, and violet lines correspond to the five cases in 

ig. 6 (b). In all these five cases, the composition c oscillates dur- 

ng the peritectic transition and converges after an initial transient 

ime. The convergence of the concentration signifies that the peri- 

ectic transition reaches a steady state. At the steady state, the con- 

entration differences �c L,γ < 0 and �c L,δ > 0 lead to the phase 

ransformation of L → γ and δ → L , respectively. It is noteworthy 

hat the melting of δ ( δ → L ) occurs just ahead of the γ phase due

o the local enrichment of concentration in liquid. Comparing these 

ve cases, we find that an increase in Δ leads to an increase in 

c L,γ and a reduction in �c L,δ . The increase in �c L,γ provides a 

elatively large driving force for the austenite growth towards liq- 

id. The reduction in �c L,δ inhibits the melting of δ phase, de- 

reasing the rate of the peritectic reaction and thereby delaying 

he disappearance of the triple junction. 

Next, we focus on the influence of the initial radius of δ phase 

n the peritectic transition. Fig. 6 (d) illustrates the normalized 

hickness of γ phase d n as a function of time. The red, green, blue, 

ellow, and violet dashed lines correspond to the δ particle with 

adius R 2 of 3 μm , 4 μm , 5 μm , 6 μm , and 7 μm , respectively.

he supersaturation for these five cases is fixed at Δ = 0 . 141 . The

hickness d n is defined by the following formulation: 

 n = 

d − d 0 
d 0 

, (22) 

here d is given by Eq. (20) and d 0 represents the initial value at 

 = 0. In all five cases, d n increases with time and the whole pro-

ess is divided into two stages, which is similar to the previous 

iscussion. In stage 1, these five lines overlap with each other. In 

tage 2, the five lines separate from each other and are almost par- 

llel, which indicates the same growth rate during the whole peri- 

ectic transition. The dividing points between the two stages are 

arked by the vertical dashed lines. A comparison between these 

ve cases shows that an enlargement of the initial radius of the δ- 

article leads to an increase in the migration distance of the triple 

oint, which results in a temporal prolongation of stage 1. In ad- 

ition, the growth rate of stage 1 is greater than that in stage 2. 

n increment in d n is caused by the difference in the growth rate 

n combination with the extending stage 1, when the δ particle is 

ith a larger initial radius. 

In a similar way, Fig. 6 (e) depicts the liquid concentration of the 

oint p as a function of time. The red, green, blue, yellow, and vi- 

let dashed lines represent the five cases in Fig. 6 (d). In all five

ases, the concentration almost overlaps with each other, which 

mplies the same driving force for the austenite growth on the δ
article in various radii. When the initial size of the γ phase is 

xed, the capillary force remains constant. Therefore, the γ phase 

rows with the same rate in stage 1 for the δ particle with dif- 

erent radii. Due to the complete encirclement of the δ particle by 

he γ phase, the triple point disappears. Fig. 6 (f) shows the profile 

f concentration along the black line in Fig. 6 (a), corresponding to 

he three cases with R 2 = 3 μm , 5 μm , and 7 μm , respectively.

n Fig. 6 (f), the concentration c i, j represents the concentration of 

arbon in the i-phase at the i/j interface (i, j = γ , δ, and L). As an

xemplary explanation, we choose the concentration profile at the 

ime t = 4800 μs. The concentration distribution for these three 

ases displays a similar characteristic. As shown in Fig. 6 (f) by the 

lack dashed lines, the local γ concentrations at the γ /L and γ / δ
nterfaces ( c γ ,L and c γ ,δ) are the same for these three cases, which

s responsible for the same growth rate shown in Fig. 6 (d). 
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Fig. 6. (a) Morphological evolution of austenite on a circular δ-particle. (b) The thickness d of the γ -phase as a function of time for different supersaturation Δ, where the 

radius of the δ phase is 5 μm . (c) The liquid concentration of the point p as a function of time for different values of Δ. (d) The normalized thickness d n of the γ -phase 

as a function of time for different initial radii of the δ particle, where Δ is set as 0.141. (e) The liquid concentration of the point p as a function of time for different initial 

radii of the δ particle. (f) The concentration distribution at the time t = 4800 μs for different initial radii of δ particle. The concentration c i, j represents the concentration of 

carbon in the i-phase at the i/j interface (i, j = γ , δ, and L). 

9 
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Fig. 7. The dynamic contact angle and the concentrations of the three points p 1 , 

p 2 , and p 3 as a function of time for the peritectic transition with � = 0 . 352 . 
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Fig. 8. (a) The average dynamic contact angle as a function of the supersaturation 

for cases 1 and 2. (b) The average dynamic contact angle as a function of the initial 

radius R 2 of the δ particle. 
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.3. 2-D Simulation: The dynamic contact angle in peritectic 

ransition 

According to the previous studies [20] , the contact angle be- 

ween interfaces at a triple junction should follow the thermo- 

ynamic equilibrium relation, which is described by Young’s law. 

ypical examples are eutectic and monotectic solidification. How- 

ver, this is different in the peritectic transition process. In this 

ection, we investigate the dynamic contact angle during the peri- 

ectic transition, which is influenced by two factors: the supersat- 

ration Δ and the initial radius R 2 of the δ particle. 

Fig. 7 illustrates the time evolution of the dynamic contact an- 

le and the concentration for the peritectic transition on a circular 

-particle ( R 2 = 5 μm ) with Δ = 0 . 352 . The dynamic contact angle

the blue line) increases transiently at the beginning and subse- 

uently converges to about 103 ◦, implying that the peritectic tran- 

ition reaches a steady state after a certain time. As discussed in 

ection 3 , the dynamic contact angle θ is determined by the po- 

itions of the three points, p 1 , p 2 , and tp, which are affected by

heir relative movement caused by the phase transformation. The 
Fig. 9. Morphological evolution of γ phase on δ particle with three different geometries

10 
oncentrations of these three points, which are responsible for the 

ransformation, are depicted in Fig. 7 . The yellow, red, and green 

ines represent the time evolution of the concentration for p 1 , p 2 , 

nd tp, respectively. The concentrations of three points increase 

imultaneously at the beginning and converge to constants after 
: (a) spherical structure, (b) cylinder structure, and (c) sandglass-shaped structure. 
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Fig. 10. (a)-(c) The area of the γ phase as a function of time for different cases. (d) The concentration of the point p (see Fig. 2 (a)) as a function of time for the cases (iii), 

(iv), and (v). 
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eaching the steady state, which shows a quite similar trend to 

hat of the dynamic contact angle. In contrast to the concentration 

f the other two points, c p 2 has a relatively large increase at the 

eginning. This large increase of c p 2 leads to a farther movement 

f p 2 towards the liquid phase. As a result, the dynamic contact 

ngle θ increases with an enlarging c p 2 . 

Fig. 8 (a) shows the average dynamic contact angle θ̄ as a func- 

ion of Δ for cases (i) and (ii). In order to eliminate the error 

aused by the initial setup, we only consider the data at the steady 

tate for the calculation of θ̄ . In both cases, θ̄ increases with in- 

reasing Δ. As discussed in section 5.2, the increasing supersatu- 

ation results in an enlarging phase transformation rate at the L/ γ
nterface towards liquid phase. Meanwhile, the slight increase in 

he movement rate of the triple point is negligible. Therefore, the 

ynamic contact angle increases with the supersaturation Δ. The 

ependence of θ̄ on the initial radius of δ particle R 2 is depicted 

n Fig. 8 (b). With increasing R 2 , θ̄ almost remains constant, which 

s consistent with the overlapping of concentrations for different 

 2 in Fig. 6 (e). 

.4. 3-D Simulation: Peritectic transition on δ particle with different 

eometries 

3D simulations are more close to the reality where the mean 

urvature has an additional contribution. In this section, we simu- 

ate the microstructural evolution of γ phase in 3-D domains and 

nvestigate the thickness of the production phase and the dynamic 

ontact angle at the triple junction during the peritectic transi- 
11 
ion. The differences between 2-D simulation and 3-D simulation 

re discussed. 

Fig. 9 portrays the morphological evolution of peritectic transi- 

ion on the δ phase with different geometries: (a) spherical struc- 

ure, (b) cylinder structure, and (c) sandglass-shaped structure. In 

ll three cases, the γ phase is initially set as a semisphere with 

 radius of 2 μm . In (a) and (b), the initial radius of the spheri-

al δ particle and the cylinder δ phase both are 3 μm . In (c), the 

hape of the δ phase in the longitudinal dimension is depicted by 

 cosinusoidal function and the cross section through the center of 

andglass is a circle with a radius of 3 μm . 

In order to compare the simulation results with the cases 

i) and (ii) in 2-D simulations, which are previously defined in 

ection 5 , we explore the peritectic transition in 3-D for the fol- 

owing five cases: (iii) δ phase with a spherical structure in the 

-y plane ( Fig. 9 (a)), (iv) δ phase with a cylinder structure in the 

-y plane ( Fig. 9 (b)), (v) δ phase with a cylinder structure in the y-

 plane ( Fig. 9 (b)), (vi) δ phase with a sandglass-shaped structure 

n the x-y plane ( Fig. 9 (c)), (vii) δ phase with a sandglass-shaped 

tructure in the y-z plane ( Fig. 9 (c)). In all the cases (iii)-(vii), the

phase grows on a planar or quasi-planar δ phase in the y-z plane 

nd on a circular δ particle in the x-y plane. The former one is sim- 

lar to case (i) and the latter one is comparable with case (ii). In all

he cases (i)-(vii), the γ phase gradually covers the outer surface of 

phase. 

Fig. 10 (a) depict the area S 1 of the γ phase as a function of 

ime t for the cases (i), (iii), (v), and (vii). It is noted that case (iii)

epresents the result in the x-y plane on a circular particle, which 
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Fig. 11. (a) and (c) The microstructure in the vicinity of triple point at the time t = 700 μs for the cases (v) and (iv), respectively. (b) and (d) The calculated shape of 

interfaces corresponding to Fig. 11 (a) and (c), respectively. 

d  

H

o

v

t

t

o  

s

c

c

i

F

s

i

s

s

i

b

l

w

p

δ
a

(

w

l

c

g

g

t

o

r

m

(

s

γ
i

(

l

s

(

c

p

F

p  

t

f

u

ϕ  

c

i  

t

T

i

t

t

c

F  

i

iffers from the one on a flat δ phase in the cases (i), (v), and (vii).

ence, the green line shows a different exponent b of t b from the 

ther three lines. This difference is an evident effect of the cur- 

ature. In the cases (i), (v), and (vii), the area S 1 increases with 

ime with an almost identical exponent b. A comparison between 

hese four cases shows that S 1 in 3-D increases faster than the 

ne in 2-D and on a circular surface faster than that on a planar

urface. 

In Fig. 10 (b), the blue, green, red, and yellow lines depict the 

ases (ii), (iii), (iv), and (vi), respectively. In all four cases, S 1 in- 

reases with time and shows obviously different exponents of time 

n two distinct growing stages, similar to the observation in the 

ig. 6 (d). A comparison between these four cases demonstrates a 

imilar result that γ phase in 3-D has a larger growth rate than 

n 2-D. In the 3-D simulations, the γ nucleus is set as a semi- 

phere with a surface-to-volume ratio (SVR) of 3/R, whereas in 2-D 

imulations, the SVR of the semicircular γ particle is 2/R. Here, R 

s the radius of the γ particle and is fixed in 2-D and 3-D. The 

igger SVR facilitates the peritectic reaction and hence leads to a 

arger growth rate in 3-D. The red and yellow lines almost overlap 

ith each other, which both are lower than the green line. This im- 

lies that the γ phase grows on a cylinder and a sandglass-shaped 

phase with a nearly same rate, which is slower than that on 

 spherical δ phase. After entering into the stage 2 for the cases 

iii), (iv), and (vi), the area S 1 increases with the same growth rate, 

hich is caused by the identical supersaturation. The red and blue 

ines in Fig. 10 (c) represent the cases (iv) and (v), respectively. A 

omparison between these two cases shows a difference in the 

rowth rate for the γ phase in the x-y and y-z planes. 

We explain the underlying mechanism of the difference in the 

rowth rate for different cases by analyzing the concentration of 
12 
he point p. Fig. 10 (d) exemplifies the concentration as a function 

f time for the cases (iii), (iv), and (v), which are shown by green, 

ed, and blue lines, respectively. The concentration for case (v) re- 

ains almost constant, whereas the concentrations for the cases 

iii) and (iv) oscillate around a particular value after an initial tran- 

ient stage. According to the previous discussion, the growth of the 

phase is controlled by the remelting of δ phase in the vicin- 

ty of triple point. The concentration difference �c L,γ for the cases 

iii) and (iv) is greater than that for case (v), which results in a 

arger driving force for the phase transformation L → γ . As a re- 

ult, in cases (iii) and (iv), γ phase grows faster than that in case 

v). However, the concentration difference �c L,δ in the first two 

ases is smaller than that in the last case and consequently the 

hase transformation δ → L is inhibited in the former two cases. 

ig. 11 (a) and (c) depict the microstructure in the vicinity of triple 

oint at the time t = 700 μs for the cases (v) and (iv), respec-

ively. Fig. 11 (b) and (d) illustrate the calculated shape of inter- 

aces corresponding to Fig. 11 (a) and (c), respectively. In each fig- 

re, the violet, yellow, and gray lines represent the contour lines of 

 γ = 0 . 5 , ϕ δ = 0 . 5 , and ϕ L = 0 . 5 phase, respectively. In order to fa-

ilitate the comparison between the cases (iv) and (v), the shape of 

nterfaces in Fig. 11 (d) is rotated until the two points at the γ in-

erface, which are farthest from the triple point, fall on the y-axis. 

he triple point situates at the x-axis for both cases. In the vicin- 

ty of the triple point, a triangular shaped region is surrounded by 

he interfaces, because the isolines of ϕ α = 0 . 5 cannot intersect at 

he triple point. The L/ δ interface, which is defined by the coin- 

idence part of yellow and gray lines, curves towards δ phase in 

ig. 11 (b), indicating the melting of δ, whereas in Fig. 11 (d), this

nterface shows no evident change. This difference in microstruc- 
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Table 3 

Average dynamic contact angle for cases (iii)-(vii). 

Case (iii) Case (iv) Case (v) Case (vi) Case (vii) 

θ̄ ( ◦) 94.18 95.44 96.9 95.12 97.24 
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ure is attributed to the larger solute enrichment in the vicinity of 

riple point in case (v), as shown in Fig. 10 (d). 

The average dynamic contact angle θ̄ is calculated by using the 

ata in the steady state. The angles θ̄ for the cases (iii)-(vii) are 

abulated in Table 3 . A comparison between these five cases shows 

hat the shape of δ particle has no evident influence on the dy- 

amic contact angle under the same supersaturation. 

. Conclusion and outlook 

By using the phase-field method, we have systematically inves- 

igated the morphological evolution of peritectic transition in Fe-C 

inary system through 2-D and 3-D simulations, with inputs from 

he CALPHAD database. A novel measurement method is proposed 

o more precisely determine the dynamic contact angle. 

The simulation results show that the growth of γ phase on a 

lanar δ phase is affected by the supersaturation Δ and the growth 

ate increases with Δ. Due to the supersaturation, the migration 

istance of L/ γ interface is larger than that of the δ/ γ interface. 

he tip velocity of γ -platelet, obtained in our simulations, is in 

oncordance with the experimental data, which indicates that the 

resent PF-model can quantitatively investigate the peritectic tran- 

ision. In addition, the δ/L interface near the L/ γ / δ triple point de- 

ects towards the δ phase region, indicating that the melting of 

phase occurs in the vicinity of triple point. The reason is that 

he local liquid concentration at the triple point is greater than the 

quilibrium concentration of the liquid phase with respect to the 

phase, but less than the equilibrium concentration of the liquid 

hase with respect to the γ phase. 

Furthermore, we have elucidated that when the γ phase grows 

n a circular δ particle, the growth rate of γ phase enlarges with 

and remains constant with an increase in the size of the δ par- 

icle. Differing from the γ growth on a planar δ phase, the growth 

rocess on a circular δ particle is divided into two stages by the 

omplete engulfment of the δ particle. 

In addition, we have measured the dynamic contact angle and 

ound that the average dynamic contact angle increases with the 

iquid supersaturation and remains almost constant with increas- 

ng the radius of the δ phase. 

Through the comparison between 2-D and 3-D simulation re- 

ults, we have clarified that the growth of γ phase in 3-D is faster 

han in 2-D, as a result of the bigger value of SVR in 3-D. Further-

ore, in 3-D simulation, the growth rate of γ phase is unequal in 

adial and axis direction, due to the asymmetric microstructure. 

By simulating the growth of peritectic phase in Fe-C system, we 

ave clarified the mechanisms of peritectic transition with various 

upersaturation, which should be helpful to understand this com- 

lex phase transition in other systems. 
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ppendix A. Interface width 

The width of the diffuse interface resulting from the present 

ormalism is discussed in this section. The grand potential func- 

ional of the binary system for two phases α and β , where ϕ α + 

 β = 1 and μ is expressed as μ for this binary system, is written 

s 

(ϕ α, μ) = 

∫ 
V 

[ 
γαβε|∇ϕ α| 2 + 

16 

π2 

γαβ

ε
ϕ α(1 − ϕ α) 

+ Ψ α(μ) h (ϕ α) + Ψ β(μ) h (1 − ϕ α) 
] 

dx. (A.1) 

n equilibrium, the movement speed of the interface is zero, read- 

ng 

αβε
∂ϕ α

∂t 
= − δΩ

δϕ α
≡ 0 , (A.2) 

or an one-dimensional setup, the equilibrium equation writes 

 γαβε
d 2 ϕ α

dx 2 
= 

16 

π2 

γαβ

ε
(1 − 2 ϕ α) + 

(
Ψ α(μ) − Ψ β(μ) 

)
dh (ϕ α) 

dϕ α
, 

(A.3) 

oth sides of Eq. (A.3) multiplying by dϕ α
dx 

and integrating from −∞ 

o x yield 

 x 

−∞ 

dϕ α

dx 

d 2 ϕ α

dx 2 
dx = 

∫ x 

−∞ 

[ 
16 

π2 

1 

ε2 

1 − 2 ϕ α

2 

+ 

1 

2 γαβε

(
Ψ α(μ) − Ψ β(μ) 

)
dh (ϕ α) 

dϕ α

]
dϕ α

dx 
dx 

(A.4) 

pon integrating with the conditions dϕ α
dx 

= 0 , x → −∞ and 

 (ϕ α) = 0 when ϕ α = 0 , the following equation is obtained 

dϕ α

dx 

)
2 = 

16 

π2 

1 

ε2 
ϕ α(1 − ϕ α) + 

1 

γαβε

(
Ψ α(μ) − Ψ β(μ) 

)
h 

′ (ϕ α) .

(A.5) 

he interface width Λαβ is estimated by 

αβ = 

∫ ∞ 

−∞ 

dx = 

∫ 1 

0 

1 

dϕ α
dx 

dϕ α. (A.6) 

ased on Eq. (A.5) , the interface width is derived as 

αβ = ε

∫ 1 

0 

dϕ α√ [ 
16 
π2 ϕ α(1 − ϕ α) + 

ε
γαβ

(
Ψ α(μ) − Ψ β(μ) 

)
h 

′ (ϕ α) 
] .

(A.7) 

hen there is no driving force between the phases α and β , the 

ifference of the grand chemical potential of two phases �Ψ = 

α(μ) − Ψ β(μ) = 0 and the interface width is expressed as 

αβ = ε
π2 

4 

. (A.8) 

he above expression of the interface width is also valid for the 

hase transition with small driving force. In the same manner, the 
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Fig. A.12. The interface width as a function of ε. 
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nterfacial energy σαβ is derived from Eq. (A.3) and written as 

αβ = 2 γαβ

∫ 1 

0 

√ [ 
16 

π2 
ϕ α(1 − ϕ α ) + 

ε

γαβ

(
Ψ α(μ) − Ψ β(μ) 

)
h ′ (ϕ α ) 

] 
dϕ α. 

(A.9) 

hen there is no driving force �Ψ = 0 or the contribution from 

he latter term in Eq. (A.9) is far less than the one from the former

erm, which is the typical case of equilibrium solidification, we ob- 

ain that the physical parameter interfacial energy σαβ equals the 

imulation parameter γαβ . For such two cases, the parameters σαβ

nd Λαβ are independent from each other. Hence, for the sake of 

onvenience, we set the interface width of all three interfaces with 

he same value in the present simulations without interfering with 

he physical values of the interfacial energies. 

In the following, we perform 1D simulations to validate the de- 

ived equation, Eq. (A.7) with ( �Ψ 
 = 0 ) and without ( �Ψ = 0 )

riving force. Aiming to prove the above theoretical calculation, we 

imulate a binary phase transition between γ and liquid phases, as 

n exemplary validation. Considering the influence of the driving 

orce on the interface width, we choose its largest value Δ = 0 . 352

onsidered in the present work for the validation. Furthermore, 

he theoretical derivation is based on the one-dimensional setup, 

here the curvature effect has not been considered. In particu- 

ar, non-uniform curvature may lead to different driving force dur- 

ng the time evolution and thus engenders a deviation of interface 

idth from that of a planar interface. In order to show this de- 

iation, we conduct simulations with curving L/ γ interface, where 

he γ phase is set as a circle in the liquid phase with the small-

st radius 3 μm , corresponding to the largest curvature in the cur- 

ent work. Fig. A.12 illustrates the relationship between the inter- 

ace width and the modeling parameter ε. The black dashed lines 

s obtained by the theoretical calculation based on Eqs. (A.8) for 

Ψ = 0 . The triangle and the square symbols correspond to a pla- 

ar L/ γ interface with Δ = 0 . 352 and Δ = 0 , respectively. The cir-

le depicts the cases of curving L/ γ interface with Δ = 0 . 352 . Un-

er the influence of the driving force and curvature, the interface 

idth for the cases with same ε shows a relatively small differ- 

nce of 0.1-0.2 μm , corresponding to 1–2 grid cells in our simu- 

ations. Good agreement between theoretical calculation and sim- 

lation results suggests that the present model can simulate the 

hase transformation with a specified interface width for a fixed 

, when the driving force is relatively small. 

eferences 

[1] R. Kuziak , R. Kawalla , S. Waengler , Advanced high strength steels for automo-

tive industry, Arch. Civ. Mech. Eng. 8 (2) (2008) 103–117 . 
[2] B. De Cooman , Structure–properties relationship in trip steels containing car- 

bide-free bainite, Curr. Opin. Solid State Mater. Sci. 8 (3–4) (2004) 285–303 . 
[3] P. Jacques , Transformation-induced plasticity for high strength formable steels, 

Curr. Opin. Solid State Mater. Sci. 8 (3–4) (2004) 259–265 . 
14 
[4] A. Grill , K. Sorimachi , J. Brimacombe , Heat flow, gap formation and break-outs
in the continuous casting of steel slabs, Metall. Trans. B 7 (2) (1976) 177–189 . 

[5] M. Suzuki , Y. Yamaoka , Influence of carbon content on solidifying shell growth 
of carbon steels at the initial stage of solidification, Mater. Trans. 44 (5) (2003) 

836–844 . 
[6] J. Xu , S. He , X. Jiang , T. Wu , Q. Wang , Analysis of crack susceptibility of regular

carbon steel slabs using volume-based shrinkage index, ISIJ Int. 53 (10) (2013) 
1812–1817 . 

[7] H.W. Kerr , W. Kurz , Solidification of peritectic alloys, Int. Mater. Rev. 41 (4)

(1996) 129–164 . 
[8] H. Shibata , Y. Arai , M. Suzuki , T. Emi , Kinetics of peritectic reaction and trans-

formation in Fe-C alloys, Metall. Mater. Trans. B 31 (5) (20 0 0) 981–991 . 
[9] S. Griesser , C. Bernhard , R. Dippenaar , Effect of nucleation undercooling on the

kinetics and mechanism of the peritectic phase transition in steel, Acta Mater. 
81 (2014) 111–120 . 

[10] H. Nassar , H. Fredriksson , On peritectic reactions and transformations in 

low-alloy steels, Metall. Mater. Trans. A 41 (11) (2010) 2776–2783 . 
[11] F. Wang, B. Nestler, A phase-field study on the formation of the intermetallic 

Al 2 Au phase in the Al-Au system, Acta Mater. 95 (2015) 65–73, doi: 10.1016/j. 
actamat.2015.05.002 . 

[12] Y. Cai , F. Wang , M. Selzer , B. Nestler , Phase-field investigation on the growth
orientation angle of aluminum carbide with a needle-like structure at the sur- 

face of graphite particles, Modell. Simul. Mater. Sci. Eng. 27 (6) (2019) 065010 .

[13] M. Kellner, J. Htzer, E. Schoof, B. Nestler, Phase-field study of eutectic colony 
formation in NiAl-34Cr, Acta Mater. 182 (2020) 267–277, doi: 10.1016/j.actamat. 

2019.10.028 . 
[14] J. Tiaden , B. Nestler , H.-J. Diepers , I. Steinbach , The multiphase-field model

with an integrated concept for modelling solute diffusion, Phys. D 115 (1–2) 
(1998) 73–86 . 

[15] S. Dobler , T. Lo , M. Plapp , A. Karma , W. Kurz , Peritectic coupled growth, Acta

Mater. 52 (9) (2004) 2795–2808 . 
[16] J. Tiaden, Phase field simulations of the peritectic solidification of Fe-C, J. Cryst. 

Growth 198–199 (1999) 1275–1280, doi: 10.1016/S0022-0248(98)01009-4 . 
[17] D. Phelan, M. Reid, R. Dippenaar, Experimental and modelling studies into high 

temperature phase transformations, Comput. Mater. Sci. 34 (3) (2005) 282–
289, doi: 10.1016/j.commatsci.20 05.02.0 06 . Computational Microstructure Evo- 

lution in Steels 

[18] D. Phelan , M. Reid , R. Dippenaar , Kinetics of the peritectic phase transforma-
tion: in-situ measurements and phase field modeling, Metall. Mater. Trans. A 

37 (3) (2006) 985–994 . 
[19] M. Ohno, K. Matsuura, Diffusion-controlled peritectic reaction process in car- 

bon steel analyzed by quantitative phase-field simulation, Acta Mater. 58 (18) 
(2010) 6134–6141, doi: 10.1016/j.actamat.2010.07.031 . 

20] M. Hillert , Solidification and casting of metals, Metals Soc. London 81 (1979) . 

[21] G. Boussinot, E. Brener, D. Temkin, Kinetics of isothermal phase transforma- 
tions above and below the peritectic temperature: phase-field simulations, 

Acta Mater. 58 (5) (2010) 1750–1760, doi: 10.1016/j.actamat.2009.11.017 . 
22] S. Pan, M. Zhu, M. Rettenmayr, A phase-field study on the peritectic phase 

transition in Fe-C alloys, Acta Mater. 132 (2017) 565–575, doi: 10.1016/j. 
actamat.2017.04.053 . 

23] A. Karma, Phase-field model of eutectic growth, Phys. Rev. E 49 (1994) 2245–
2250, doi: 10.1103/PhysRevE.49.2245 . 

24] A .A . Wheeler , G. McFadden , W. Boettinger , Phase-field model for solidification

of a eutectic alloy, Proc. R. Soc. Med. of London. Series A: Math. Phys. Eg. Sci.
452 (1946) (1996) 495–525 . 

25] I. Steinbach , F. Pezzolla , B. Nestler , M. Seeßelberg , R. Prieler , G.J. Schmitz ,
J.L. Rezende , A phase field concept for multiphase systems, Phys. D 94 (3) 

(1996) 135–147 . 
26] B. Nestler, A. Wheeler, A multi-phase-field model of eutectic and peritectic al- 

loys: numerical simulation of growth structures, Phys. D 138 (1) (20 0 0) 114–

133, doi: 10.1016/S0167-2789(99)00184-0 . 
27] A. Choudhury, B. Nestler, A. Telang, M. Selzer, F. Wendler, Growth morpholo- 

gies in peritectic solidification of Fe-C: a phase-field study, Acta Mater. 58 (10) 
(2010) 3815–3823, doi: 10.1016/j.actamat.2010.03.030 . 

28] A. Choudhury , B. Nestler , Grand-potential formulation for multicomponent 
phase transformations combined with thin-interface asymptotics of the dou- 

ble-obstacle potential, Phys. Rev. E 85 (2) (2012) 021602 . 

29] Y. Chen , A .-A . Bogno , N.M. Xiao , B. Billia , X.H. Kang , H. Nguyen-Thi , X.H. Luo ,
D.Z. Li , Quantitatively comparing phase-field modeling with direct real time 

observation by synchrotron x-ray radiography of the initial transient during 
directional solidification of an Al–Cu alloy, Acta Mater. 60 (1) (2012) 199–207 . 

30] H. Xing , X. Dong , H. Wu , G. Hao , J. Wang , C. Chen , K. Jin , Degenerate seaweed
to tilted dendrite transition and their growth dynamics in directional solidifi- 

cation of non-axially oriented crystals: a phase-field study, Sci. Rep. 6 (2016) 

26625 . 
[31] R. Folch , M. Plapp , Quantitative phase-field modeling of two-phase growth, 

Phys. Rev. E 72 (1) (2005) 011602 . 
32] A. Karma , Phase-field formulation for quantitative modeling of alloy solidifica- 

tion, Phys. Rev. Lett. 87 (11) (2001) 115701 . 
33] R.E. Johnson Jr , R.H. Dettre , D.A. Brandreth , Dynamic contact angles and con-

tact angle hysteresis, J. Colloid Interface Sci. 62 (2) (1977) 205–212 . 

34] P.A. Thompson , M.O. Robbins , Simulations of contact-line motion: slip and the 
dynamic contact angle, Phys. Rev. Lett. 63 (7) (1989) 766 . 

35] Š. Šikalo , H.-D. Wilhelm , I. Roisman , S. Jakirli ́c , C. Tropea , Dynamic contact an-
gle of spreading droplets: experiments and simulations, Phys. Fluids 17 (6) 

(2005) 062103 . 

http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0001
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0001
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0001
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0001
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0002
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0002
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0003
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0004
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0004
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0004
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0004
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0005
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0005
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0005
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0006
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0007
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0008
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0008
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0008
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0008
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0008
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0009
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0009
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0009
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0009
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0010
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0010
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0010
https://doi.org/10.1016/j.actamat.2015.05.002
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0012
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0012
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0012
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0012
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0012
https://doi.org/10.1016/j.actamat.2019.10.028
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0014
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0014
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0014
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0014
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0014
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0015
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0015
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0015
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0015
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0015
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0015
https://doi.org/10.1016/S0022-0248(98)01009-4
https://doi.org/10.1016/j.commatsci.2005.02.006
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0018
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0018
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0018
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0018
https://doi.org/10.1016/j.actamat.2010.07.031
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0020
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0020
https://doi.org/10.1016/j.actamat.2009.11.017
https://doi.org/10.1016/j.actamat.2017.04.053
https://doi.org/10.1103/PhysRevE.49.2245
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0024
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0024
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0024
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0024
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0025
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0025
https://doi.org/10.1016/S0167-2789(99)00184-0
https://doi.org/10.1016/j.actamat.2010.03.030
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0028
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0028
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0028
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0029
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0030
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0030
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0030
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0030
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0030
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0030
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0030
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0030
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0031
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0031
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0031
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0032
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0032
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0033
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0033
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0033
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0033
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0034
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0034
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0034
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0035
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0035


Y. Cai, F. Wang, Z. Zhang et al. Acta Materialia 219 (2021) 117223 

[  

[  

[  

[  

[

[

[  

[  

[

[

[  

[  

[

[

[  
36] J. Valloton , J. Dantzig , M. Plapp , M. Rappaz , Modeling of peritectic coupled
growth in Cu-Sn alloys, Acta Mater. 61 (15) (2013) 5549–5560 . 

37] H. Ha , J. Hunt , A numerical and experimental study of the rate of transforma-
tion in three directionally grown peritectic systems, Metall. Mater. Trans. A 31 

(1) (20 0 0) 29–34 . 
38] N. Liu , F. Liu , C. Yang , Y. Chen , G. Yang , Y. Zhou , Peritectic solidification of un-

dercooled Fe-Co alloys, J. Alloys Compd. 465 (1–2) (2008) 391–395 . 
39] G. Azizi , B.G. Thomas , M.A. Zaeem , Review of peritectic solidification mech-

anisms and effects in steel casting, Metall. Mater. Trans. B 51 (5) (2020) 

1875–1903 . 
40] S. Akamatsu , M. Plapp , Eutectic and peritectic solidification patterns, Curr. 

Opin. Solid State Mater. Sci. 20 (1) (2016) 46–54 . 
[41] H. Fredriksson , T. Nylen , Mechanism of peritectic reactions and transforma- 

tions, Metal. Sci. 16 (6) (1982) 283–294 . 
42] P. Gustafson , A thermodynamic evaluation of the Fe–C system, Scand. J. Metall. 

14 (5) (1985) 259–267 . 

43] B. Echebarria , R. Folch , A. Karma , M. Plapp , Quantitative phase-field model of
alloy solidification, Phys. Rev. E 70 (6) (2004) 061604 . 

44] S.G. Kim , W.T. Kim , T. Suzuki , Phase-field model for binary alloys, Phys. Rev. W
60 (6) (1999) 7186 . 

45] A. Karma , W.-J. Rappel , Phase-field method for computationally efficient mod- 
eling of solidification with arbitrary interface kinetics, Phys. Rev. E 53 (4) 

(1996) R3017 . 
15 
46] B. Nestler , H. Garcke , B. Stinner , Multicomponent alloy solidification: phase–
field modeling and simulations, Phys. Rev. E 71 (4) (2005) 041609 . 

[47] G.B. McFadden , A. Wheeler , D. Anderson , Thin interface asymptotics for an 
energy/entropy approach to phase-field models with unequal conductivities, 

Phys. D 144 (1–2) (20 0 0) 154–168 . 
48] S.G. Kim , W.T. Kim , T. Suzuki , Interfacial compositions of solid and liquid in a

phase-field model with finite interface thickness for isothermal solidification 
in binary alloys, Phys. Rev. E 58 (3) (1998) 3316 . 

49] J. Monk , Y. Yang , M. Mendelev , M. Asta , J. Hoyt , D. Sun , Determination of the

crystal-melt interface kinetic coefficient from molecular dynamics simulations, 
Modell. Simul. Mater. Sci. Eng. 18 (1) (2009) 015004 . 

50] W. Villanueva, W. Boettinger, J. Warren, G. Amberg, Effect of phase change and 
solute diffusion on spreading on a dissolving substrate, Acta Mater. 57 (20) 

(2009) 6022–6036, doi: 10.1016/j.actamat.2009.08.033 . 
[51] H. W. Kerr, J. Cisse, G. Bolling, On equilibrium and non-equilibrium peri- 

tectic transformations, Acta Metall. 22 (6) (1974) 677–686, doi: 10.1016/ 

0 0 01-6160(74)90 077-7 . 
52] S. Griesser, C. Bernhard, R. Dippenaar, Mechanism of the peritectic phase tran- 

sition in Fe-C and Fe-Ni alloys under conditions close to chemical and ther- 
mal equilibrium, ISIJ Int. 54 (2) (2014) 466–473, doi: 10.2355/isijinternational. 

54.466 . 
53] R.W. Balluffi, S.M. Allen , W.C. Carter , Kinetics of materials, John Wiley & Sons,

2005 . 

http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0036
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0036
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0036
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0036
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0036
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0037
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0037
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0037
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0038
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0039
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0039
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0039
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0039
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0040
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0040
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0040
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0041
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0041
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0041
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0042
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0042
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0043
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0043
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0043
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0043
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0043
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0044
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0044
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0044
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0044
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0045
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0046
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0047
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0047
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0047
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0047
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0048
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0048
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0048
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0048
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0049
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0049
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0049
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0049
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0049
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0049
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0049
https://doi.org/10.1016/j.actamat.2009.08.033
https://doi.org/10.1016/0001-6160(74)90077-7
https://doi.org/10.2355/isijinternational.54.466
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0053
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0053
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0053
http://refhub.elsevier.com/S1359-6454(21)00603-0/sbref0053

	Phase-field investigation on the peritectic transition in Fe-C system
	1 Introduction
	2 Binary phase diagram of Fe-C system
	3 Phase-field model
	4 Measurement methods
	5 Validation
	6 Simulation results and discussion
	6.1 2-D Simulation: Peritectic transition on a planar  phase
	6.2 2-D Simulation: Peritectic transition on a circular -phase
	6.3 2-D Simulation: The dynamic contact angle in peritectic transition
	6.4 3-D Simulation: Peritectic transition on  particle with different geometries

	7 Conclusion and outlook
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Interface width
	References


