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Abstract: Projective transformation of spheres onto images produce ellipses, whose centers do not
coincide with the projected center of the sphere. This results in an eccentricity error, which must
be treated in high precision metrology. This article provides closed formulations for modeling this
error in images to enable 3-dimensional (3D) reconstruction of the center of spherical objects. The
article also provides a new direct robust method for detecting spherical pattern in point clouds. It
was shown that the eccentricity error in an image has only one component in the direction of the
major axis of the ellipse. It was also revealed that the eccentricity is zero if and only if the center of
the projected sphere lies on the camera’s perspective center. The effectiveness of the robust sphere
detection and the eccentricity error modeling method was evaluated on simulated point clouds of
spheres and real-world images, respectively. It was observed that the proposed robust sphere fitting
method outperformed the popular M-estimator sample consensus in terms of radius and center
estimation accuracy by a factor of 13, and 14 on average, respectively. Using the proposed eccentricity
adjustment, the estimated 3D center of the sphere using modeled eccentricity was superior to the
unmodeled case. It was also observed that the accuracy of the estimated 3D center using modeled
eccentricity continuously improved as the number of images increased, whereas the unmodeled
eccentricity did not show improvements after eight image views. The results of the investigation
show that: (i) the proposed method effectively modeled the eccentricity error, and (ii) the effects of
eliminating the eccentricity error in the 3D reconstruction become even more pronounced in a larger
number of image views.

Keywords: ellipse eccentricity error; spherical objects in images; 3D reconstruction; sphere tracking;
registration and calibration using spherical targets; sphere fitting; robust sphere fitting

1. Introduction: Spheres in Images

The perspective projection of a sphere onto an image is an ellipse. This is because the
camera’s perspective center and a sphere in its field-of-view create a cone, whereby the
intersection of the cone and the image’s plane generate an ellipse. The center of the ellipse
in the image, even in the absence of measurement errors, however, does not correspond to
the projected center of the sphere onto the image (see Figures 1 and 2). This phenomenon
is commonly referred to as the eccentricity error in projective geometry [1]. The eccentricity
error is an important factor in applications requiring high precision metrology such as
tracking balls in sporting events (e.g., FIFA goal-line technology [2]), as well as calibra-
tion [3] and registration [4] of optical instruments. In fact, the eccentricity error has been
shown to produce considerable errors in 3D reconstruction of the sphere’s center from
simulated stereopair images [3]. The real-world impact of the eccentricity error in multi-
view 3-dimensional (3D) reconstruction has, however, not yet been investigated in the
literature. Modeling the eccentricity error in images is, hence, an important step towards
accurate 3D reconstruction of spherical objects from images. To this end, the objectives of
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this article are to: (i) provide a closed form solution to the eccentricity error of the center
of spheres, projected onto images; (ii) develop a new method for robust sphere detection
in 3D reconstructed point clouds; and (ii) evaluate the effect of modeling the eccentricity
error in estimating the 3D coordinates of the center of a sphere as the number of camera
views increase.

2. Materials and Methods
2.1. Modeling the Eccentricity Error

The ellipse formed by the perspective projection of a sphere onto an image is equiva-
lent to the ellipse formed by the intersection of the tangential cone to the sphere with the
plane. Miller and Goldman [5] explained the relationship between a randomly oriented
plane intersecting a cone. They showed that the centers of the two tangential Dendelin
spheres (see Figure 1a,b), and the major axis of the generated ellipse, lie on a plane whose
normal vector is parallel to the minor axis of the projected ellipse. As illustrated in Figure 1,
the camera center, O, the centers of the Dandelin spheres, D1 and D2, and the true center of
the sphere, C, lie on the same line. The center of the sphere, projected onto the intersecting
plane, CC, is, hence, the intersection of the line, connecting the centers of the Dendelin
spheres with the major axis of the ellipse. Because the center of the ellipse, Ce, is always on
the major axis of the projected ellipse, the eccentricity error has only one component in the
direction of the ellipse’s major axis, and no eccentricity in the direction of the orthogonal
minor axis. To this end, the true target’s center in the image plane can be derived by trans-
lating the estimated ellipse’s center in the direction of the major axis by the eccentricity
error, εe, shown in Figure 1b.

Figure 1. Geometry of the intersection of a plane and a cone: (a) 3D orthographic view; (b) projected onto the plane whose
normal vector is parallel to the minor axis of the intersecting ellipse. The images were generated using GeoGebra, a dynamic
geometry, mathematics, and algebra software [6,7].

To provide a closed-form solution for εe, the following two relationships from [5] are
employed:

r1

r2
=

cos β + sin α

cos β− sin α
, (1)
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be = c· sin α√
cos2 β− sin2 α

, (2)

where r1 and r2 are the radii of the two tangential Dandelin spheres, α is the half-angle
of the cone, β is the angle between the cone’s axis and the intersecting plane’s normal,
be is the semi-minor length of the best fit ellipse, and c is the camera’s principal distance
(focal length). Using the notations of Figure 1b, the eccentricity error, εe, can be derived
as follows:

εe = fe − δ2 where fe =
√

a2
e − b2

e , (3)

where ae is the semi-major length of the best fit ellipse, fe is the distance of the ellipse’s
center to one of the focal points, and δ2 is shown in Figure 1b. Based on the similarity of
the two right angled triangles, we have:

δ2
δ1

= r2
r1

Substituting
Equation (1)
−−−−−−−−−−→ δ2

δ1
= cos β−sin α

cos β+sin α →
{

δ2
δ1+δ2

= cos β−sin α
2 cos β

δ1 + δ2 = 2 fe
→ δ2 = fe − fe

sin α
cos β , (4)

The ratio sin α
cos β can be directly derived from Equation (2):

sin α

cos β
=

1√
1 +

(
c
be

)2
, (5)

Substituting Equations (5) and (4) into Equation (3) provides the closed-form solution to
the magnitude of the eccentricity error:

εe =
fe√

1 +
(

c
be

)2
, (6)

The ellipse center must now be translated onto the major axis with magnitude εe. The
direction of the translation, as observed in Figure 1, must always be towards the principal
point, P. Equation (6) also shows that the eccentricity is zero when the focal length of the
projected ellipse is zero (the ellipse is a circle). This occurs in the marginal case when the
estimated ellipse center lies exactly on the principal point. The latter can be geometrically
explained from the following generic relationships:

1. The cone’s vertex, and the two centers of the Dandelin spheres, always lie on the line
passing through the center of the cone’s base.

2. The two Dandelin spheres are also tangential (orthogonal) to the ellipse’s major axis
at the focal points.

3. The line connecting the cone’s vertex and the center of the ellipse is also orthogonal to
the ellipse’s major axis (marginal case of center passing through the principal point).

4. Because the spheres’ centers lie on one side of the cone’s vertex, and the ellipse’s
center lies between the two focal points, the only acceptable arrangement is when the
center and the focal points are the same, which suggests no eccentricity.

5. Condition 4 can only hold if Condition 3 is satisfied. Condition 3 can only occur
as a special case when the camera’s optical axis passes through the sphere’s center,
which is expected to produce no eccentricity error [3]. As mentioned, in this case, the
projection of the sphere onto the image plane will be a circle.

From Condition 3, it can be inferred that the major axis of the projected ellipse also
passes through the camera’s principal point. Predicated on the aforementioned discussions,
the corrected image coordinates of the spherical target center, (xce, yce) are obtained using
Algorithm 1, given the camera’s principal distance, c, and principal point, P =

(
xp, yp

)
,

and the geometric parameters of a best fit ellipse, (xe, ye, ae, be, θe), representing the (x, y)
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coordinates of the center, semi-major length, semi-minor length, and the major axis’ rota-
tion angle in the image plane, respectively.

Algorithm 1 Corrected Ellipse Center

Inputs: Camera’s principal distance, c, principal point, P =
(

xp, yp
)
, best fit ellipse geometric

parameters, (xe, ye, ae, be, θe).
Output: Corrected center of the ellipse, (xce, yce).

1. Calculate the distance vector from the ellipse’s center to the principal point:

‖
→

dpe‖ =
√(

xp − xe
)2

+
(
yp − ye

)2 , (7)

2. If ‖
→

dpe‖ = 0, (xce, yce) = (xe, ye), and exit the algorithm.
3. Else, perform the following steps:

3.1. Determine the unit vector representing the direction of the major axis:

→
ace = (cos θe, sin θe) , (8)

3.2. Calculate the focal point of the ellipse, fe =
√

a2
e − b2

e .
3.3. Estimate the magnitude of the eccentricity error, εe, using Equation (6).
3.4. Estimate the corrected ellipse center, (xce, yce), using the following equation:{

xce = xe − εe· cos θe
yce = ye − εe· sin θe

, (9)

Algorithm 1 requires an estimate of the interior orientation parameters (IOPs) of
the camera, c, and P. This initial estimate can be obtained from pre-calibration [8,9],
manufacturer’s specifications, or the Exchangeable Image File (EXIF). In addition, it is
possible to use Algorithm 1 to help correct camera positions in applications involving
tracking spheres using cameras. In case the application involves tracking, say, a rigid
spherical ball, the corrected center can be used to guide the direction of the movement of the
camera to always face the center of the ball (i.e., the only position with no eccentricity error).

2.2. Data Collection and Validation

A white Styrofoam spherical target on a black background was attached to the wall as
the subject of the main experiment presented in this study (Figure 2a). The true radius of
the spherical target was 50 mm (to 0.01 mm measurement precision). The color contrast
between the spherical target and its background were purposefully designed to guarantee
a clear detectable boundary for the ellipse representing the projected sphere on the image.
In each image, an ellipse is fitted to the boundary of the sphere using the reliable confocal
hyperbola ellipse fitting method proposed in [10]. The center of the best fit ellipse is then
adjusted using Algorithm 1 (Figure 2b).

A pre-calibrated Huawei P30 mobile phone camera was used to acquire thirty-two 4K
images of the spherical target. The calibration of the smartphone camera was performed
using the method and IOPs presented in [9]. The position and orientation of the camera
for each image view (exterior orientation parameters) were estimated automatically (in-
dependent of the spherical target’s center) using COLMAP [11], a reliable open source
structure-from-motion [12] software. The camera positions are shown in Figure 2c with
red pyramids. Figure 2d shows the point cloud of the target after dense 3D reconstruction.
Figure 2e shows the best fit sphere (shown in green) to the point cloud of the spherical tar-
get. The center of the best fit sphere is then used as ground truth in the presented analysis.
The reconstruction object space scale is defined using the ratio between the real-world and
the best fit radius of the spherical target.
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Figure 2. (a) Spherical target with black background; (b) best fit ellipse, its center and the corrected center using Algorithm
1 for the image of the spherical target; (c) plan-view of the estimated position and orientation of each image; (d) dense 3D
reconstruction of the spherical target; and (e) robust best fit sphere (shown in green).

2.3. Robust Sphere Detection in 3D Point Clouds

The validation of the estimated 3D reconstructed center of the sphere for the exper-
iment presented in Section 2.2 is predicated on an accurate and reliable methodology to
fit spheres to 3D reconstructed point clouds. To this end, a new methodology for robust
fitting of spheres to 3D point clouds was developed. The proposed method extends the
direct hyperaccurate least squares circle fit of Chernov [13,14] to spheres. The extension of
Chernov’s hyperaccurate method was combined with the robust model fitting algorithm of
Maalek, presented in Appendix B (Algorithm A1) of [15] to minimize the impact of outliers
on the estimated sphere parameters (i.e., radius and center). The hyperaccurate direct circle
fitting to 2D points was extended here for fitting spheres to 3D points because the original
method was proven to eliminate the essential bias of the estimated radius of the best fit
circle [14]. The new extension to the direct hyperaccurate sphere fitting is presented in
Algorithm 2 using singular value decomposition to provide optimal numerical stability [14].
Furthermore, reliable outlier detection is key because it provides the necessary basis to fit
the sphere to only the spherical points and eliminate the adverse effects of outliers on the
estimated sphere parameters. The methodology of Maalek for outlier detection was utilized
here because this method was shown to be superior to popular robust methodologies, such
as random sample and consensus (RANSAC) shape detection [15] as well as the least
trimmed squared (LTS) method in linear regression [16]. The hyperaccurate circle fitting
together with Maalek’s outlier detection method was also proven reliable for robust circle
and cylinder fitting to 3D point clouds [16,17]. It is, hence, hypothesized that this method
will produce reliable and robust sphere fitting results for the experiment presented in this
study. The effectiveness of the newly proposed sphere fitting will also be investigated in
this study on simulated point cloud datasets.
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Algorithm 2 Hyperaccurate Direct Algebraic Sphere Fit

Inputs: Point cloud, Xi = (xi, yi, zi), i = 1 : n, where n is the number of observations.
Outputs: Estimated best fit least squares sphere’s radius, R, and center, C.

1. Calculate the mean of the observations X = (x, y, z).
2. Compute wi = (xi − x)2 + (yi − y)2 + (zi − z)2 for (i = 1 : n).
3. Construct the Z matrix as follows:

Z =

 w1 x1 − x y1 − y
...

...
...

wn xn − x yn − y

z1 − z
...

zn − z

1
...
1

 , (10)

4. Perform the singularvalue decomposition on Z = UDVT .
5. Calculate the algebraic parameter vector of the best fit sphere, A, as follows:

5.1. If D5,5
D1,1
≤ ε (the singular case), set A = V:,5, where Di,j is the element corresponding

the ith row and jth column of D, V:,5 is the vector corresponding to the 5th column of
V, and A is the algebraic paramer vector of the sphere. ε = 10−12 is custumary for
practical applications [14].

5.2. Else, perform the following steps:

5.2.1. Calculate the mean of the first column of Z: w =
n
∑
1

wi (wi: defined in Step 2).

5.2.2. Construct matrix G as follows:

H =


0 0 0 0 1

2
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1
2 0 0 0 −2w

 , (11)

5.2.3. Calculate the matrix multiplication T =
(
VSVT)G(VSVT) using steps 4

and 6.2.
5.2.4. Find the eigenvector, A∗, corresponding to the smallest non-negative

eigenvalue of T.
5.2.5. Calculate the algebraic parameter vector of the sphere: A = VS−1VT A∗.

6. Use the following equations to calculate the radius, R, and center, C, of the sphere:

R =

√
A2

2 + A2
3 + A2

4 − 4A1 A5

2|A1|
, (12)

C = X− 1
2A1

 A2
A3
A4

, (13)

where Ai represents the ith element of the sphere’s algebraic parameter vector, A.

3. Experimental Design

In this study, two sets of experiments were carried out to evaluate the effectiveness
of Algorithm 1 and Algorithm 2. The first experiment assessed the accuracy of the newly
proposed sphere fitting method, compared to the reliable M-estimator sample consensus
(MSAC) method of [18] for robust sphere detection on simulated datasets. The second
experiment investigated the impact of modeling the eccentricity error in images on the 3D
reconstructed center of spheres as the number of image views increase.

3.1. Experiment 1: Robust Sphere Fitting Evaluation

This experiment was designed to evaluate the effectiveness of Algorithm 2 in com-
bination with Algorithm A1 of [15], compared to the MSAC method of [18] on simulated
datasets. To this end, 50,000 sets of point cloud data corresponding to a unit sphere,
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attached to a planar surface with parameter vector γ = (0, 1, 0,−1), as per the planar
parameter convention of [19], were simulated. The square unit planar patch was so chosen
to simulate the arrangement of Figure 2a, while serving as the outlier set in each point cloud
dataset (i.e., the ratio of outliers refers to the ratio of points generated on the planar patch
to all generated points). At each simulation, the point cloud generation was performed
while varying specific properties, namely, number of points (resolution), noise (as zero
mean normally distributed error), and outlier ratio. The domains of the parameter selection
(i.e., number of points, noise, and outlier ratio) are presented in Table 1. At each of the
50,000 simulations, a random configuration from Table 1 was selected to generate the point
cloud. A sample of the dataset is provided in Figure 3.

Table 1. Domain of parameters used to simulate spheres (inliers) and tangential planes (outliers).

Configuration Category
Parameter Selection Domain

From To

number of points 100 10,000
noise 0 0.05

outlier ratio 10% 60%

Figure 3. Simulated 3D point cloud of a unit sphere with the tangential plane in orthographic (left) and side (right) views.

For each simulated point cloud, the estimated radius and center of the sphere, along
with the sphere detection quality, using our proposed and MSAC methods, were recorded.
For the radius and center, the distance (L2-norm) between the actual and the estimated
were calculated. To evaluate the quality of automatic detection of points following spheri-
cal patterns (sphere detection quality), the established metrics, namely, precision, recall,
accuracy, and F-measure, were used, which are calculated as follows [20]:

Precision = TP
TP+FP

Recall = TP
TP+FN

Accuracy = TP+TN
TP+TN+FP+FN

F−measure = 2· Precision·Recall
Precision+Recall

, (14)

where TP, TN , FP, FN are, respectively, the number of true positive, true negative, false
positive, and false negatives, of the object detection method.
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3.2. Experiment 2: Eccentricity Error Correction vs. Number of Images

This experiment investigated the impact of the modeled as well as the unmodeled
eccentricity error on the accuracy of the 3D reconstructed sphere’s center. This impact was
measured as the number of image views increase from two to thirty-two. Because different
combination of views will provide different reconstruction results for a given number of
(say k) image views, N different combinations of k = 2 . . . 32 images are selected. To this
end, for k image views, the following steps are carried out:

1. Randomly select N different combination of k images from the 32 images.
2. For each set of k images, using the estimated best fit ellipse center (unmodeled),

adjusted center (modeled), and camera projection matrices (see Figure 2b,c), perform
triangulation [21] and determine the object space position of both the adjusted centers
and the best fit ellipse centers.

3. Calculate the Euclidian distance between the object space coordinates of the adjusted
and unadjusted centers from the ground truth (Figure 2e).

4. For a given number of image views, k, record the mean of the N distances obtained
from Step 3.

In our experiments, N = min
(

250,
(

32
k

))
is chosen.

4. Experimental Results and Discussions
4.1. Experiment 1: Robust Sphere Fitting Evaluation

As discussed in Section 3.1, three types of analysis, namely accuracy of the estimated
radius, accuracy of the estimated center, and quality of the sphere point detection, were
performed.

4.1.1. Experiment 1: Accuracy of the Estimated Radius

Figure 4 shows the results of the radius estimation accuracy using the proposed
method and the MSAC methods for the 50,000 simulated point cloud datasets. The horizon-
tal axis represents the absolute difference between the estimated and true radius (i.e., unit
radius), while the vertical axis represents the cumulative probability. Figure 4 shows that
the estimated radius using the proposed method considerably outperforms those estimated
using the MSAC method. To provide a numerical comparison, the mean, median, and
95th percentile of the estimated radius for each method is presented in Table 2. The results
presented in Table 2 show that the mean, median, and 95th percentile of the accuracy of the
estimated radius using our method outperformed those of the MSAC method by a factor
of approximately 12, 17, and 11, respectively.

Figure 4. Cumulative probability distribution of the accuracy of the estimated radius of the 50,000
simulated point cloud configurations using the MSAC and proposed methods.
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Table 2. Mean, median, and 95th percentile of the accuracy of the estimated radius using the proposed
and MSAC methods.

Statistic
Accuracy of Radius Estimation

Proposed MSAC

mean 0.002 0.022
median 0.001 0.013

95th percentile 0.007 0.074

4.1.2. Experiment 1: Accuracy of the Estimated Center

Figure 5 shows the cumulative probability distribution of the estimated center of
the sphere using the proposed and MSAC methods. Similar to the radius estimation
case, Figure 5 shows that the estimated center of the best fit sphere using the proposed
methods significantly outperforms those estimated using the MSAC method. Table 3 shows
the mean, median, and 95th percentile of the accuracy of the estimate center using both
methods. The results of Table 3 indicate that the mean, median, and 95th percentile of the
accuracy of the estimated center using our method improved those achieved using the
MSAC method by a factor of 14, 17, and 12, respectively.

Figure 5. Cumulative probability distribution of the accuracy of the estimated center of the 50,000 sim-
ulated point cloud configurations using the MSAC and proposed methods.

Table 3. Mean, median, and 95th percentile of the accuracy of the estimated center using the proposed
and MSAC methods.

Statistic
Accuracy of Radius Estimation

Proposed MSAC

mean 0.004 0.057
median 0.003 0.045

95th percentile 0.013 0.151

From the results of Table 3, together with Table 2, two important observations can be
made. First, when comparing Tables 2 and 3, it was observed that both methods produced
more accurate radius estimation than center estimation. While the proposed method
considerably outperformed the MSAC method, the radius was, on average, estimated
almost 3 times better than the center in both methods. Second, Table 3 shows that, 95% of
the time, the center of the Styrofoam target of interest with radius of 50 mm (Figure 2) is
estimated better than 0.5 mm. This result is, of course, considering the noise levels of up
to 5% of the radius of the sphere (simulation domain of Table 1). The noise level of the
Styrofoam target was, however, in the order of 2% of the radius (obtained using the root
mean squared error of the best fit sphere). At this noise level and considering the number
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of 3D reconstructed points and outlier ratio for the Styrofoam target, the simulation results
indicated that the center of the Styrofoam target was estimated better than 0.1 mm, 100% of
the time. This, however, was significantly larger using the MSAC method, which achieved
better than 5mm center estimation 100% of the time. As will be revealed in Section 4.2, the
center estimation accuracy of 0.1 mm achieved using the proposed method is sufficient,
whereas the accuracy of 5 mm achieved using the MSAC will be inadequate.

4.1.3. Experiment 1: Quality of Sphere Detection

The quality of the robust spherical point detection is calculated using Equation (14)
for both the proposed and MSAC methods. The precision, recall, accuracy, and F_Measure
were calculated using the number of correct and incorrect detections in all simulations
combined. The results of the sphere detection quality are presented in Table 4. As observed,
the two methods achieved similar results in terms of precision, which is an indicator
of Type I errors (i.e., spherical points not detected as spherical). The proposed method,
however, achieved recall of around 15% points more than the MSAC, which is an indication
of robustness to Type II errors (i.e., points of the planar patch incorrectly detected as sphere;
Figure 6). A similar trend in accuracy and F_Measure was observed, indicating the superior
performance of the proposed method compared to the MSAC.

Figure 6. Results of the detected spherical points with outlier ratios of 20%, 40%, and 60% using the proposed (green) and
MSAC (magenta) methods in orthographic (left) and side (right) views.
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Figure 6 shows the results of the sphere detection using the proposed and MSAC
methods for a sample sphere and plane point cloud for 10,000 points and noise level of
0.05 with outlier ratios of 20%, 40%, and 60%. It can be observed that, as the outlier ratio
increases, the MSAC method includes many points of the planar patch as spherical. This
trend was much less evident using the proposed method, which achieved satisfactory
results. The latter phenomenon, i.e., the inclusion of points of the planar patch as spherical,
is the reason for the lower recall rates of the MSAC method compared to the proposed
method (as reported in Table 4).

Table 4. Mean, median, and 95th percentile of the accuracy of the estimated center using the proposed
and MSAC methods.

Method Precision (%) Recall (%) Accuracy (%) F_Measure (%)

proposed 96.26 95.21 94.18 95.44
MSAC 96.70 80.93 84.23 87.79

4.2. Experiment 2: Eccentricity Error Correction vs. Number of Images

Figure 7 shows the accuracy of the 3D reconstruction of the spherical target using
adjusted as well as the unadjusted center in images as a function of the number of image
views. Two important observations can be made from Figure 7. Firstly, the accuracy of the
estimated center of the sphere using the adjusted centers (the red curve) consistently falls
below that without using center adjustment (the blue curve). This suggests that the average
accuracy obtained using the adjusted center outperforms that without center adjustment.

Figure 7. Accuracy of the estimated 3D reconstructed target centers using modeled eccentricity (with adjustment) as well as
unmodeled (no adjustment), vs. the number of image views.

Secondly, it was observed that the accuracies of the estimated centers—for both
modeled and unmodeled eccentricity—are improved (almost with the same slope) as
the number of image views increases from two to eight. At around eight image views,
the accuracy of the centers estimated using the center of the best fit ellipse (unadjusted
eccentricity error) remains (almost) constant as the number of image views increase (shown
with the hidden line in Figure 7). This, however, is not the case when the center in each
image is adjusted using Algorithm 1. In fact, as the number of image views increase,
the accuracy of the estimated center is consistently improving. The accuracy using the
unadjusted and adjusted centers improved by 46% and 93% on average, respectively, when
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the number of image views changed from two to thirty-two. Using all thirty-two images,
the accuracy of the estimated center is improved by over an order of magnitude using our
proposed eccentricity adjustment method (accuracy of around 0.25 mm vs. 3.5 mm for
adjusted and unadjusted errors, respectively). The results of this study corroborate the
importance of modeling the eccentricity errors as well as the effectiveness of our derived
formulation to correctly model this phenomenon.

5. Discussions and Conclusions

The closed form solution for the eccentricity error of the center of a spherical target,
projected into an image, was derived. The effectiveness of the proposed formulation
in estimating the 3D coordinates of the center of a spherical target was examined. The
accuracy was quantified as the number of image views increased from two to thirty-two. It
was shown that the accuracy of the estimated center using the center adjustment was better
than that without center adjustment (i.e., using the best fit ellipse center). The accuracy
of the estimated center using the adjusted center and without adjustment improved by
93% and 46% on average, respectively, as the number of image views increased from
two to thirty-two. It was also revealed that the accuracy of the estimated 3D center
without eccentricity adjustment did not improve noticeably as the number of image views
increased from eight to thirty-two. This was, in fact, not the case for the estimated centers
with the eccentricity adjustment, whose accuracy continuously improved as the number of
image views increased. The negative impact of unmodeled eccentricity error in simulated
stereopairs was demonstrated in Luhmann [3]. In this study, we observed that not only
must this eccentricity error be modeled, but also the eccentricity adjustment becomes even
more crucial as the number of image views increase (say for multi-camera systems).

To reliably conclude the main results presented in Figure 7, the accuracy of the
estimated center of the Styrofoam target must be better than the 0.25 mm. The 0.25 mm
was the distance between the ground truth sphere’s center and the center estimated by first
correcting the eccentricity in all 32 images and then #d reconstruction through triangulation.
This, hence, required a best fit sphere method that can provide center estimation better
than the 0.25 mm in the presence of outlying observations. To this end, a new robust sphere
fitting method was proposed, which combined the idea of Chernov for circle fitting [14]
together with Maalek’s robust model fitting method [15]. The newly proposed method
at the noise level, outlier ratio, and number of points corresponding to the dense 3D
reconstructed Styrofoam target achieved an accuracy of better than 0.1 mm, which satisfied
the 0.25 mm accuracy requirement. The MSAC method, on the other hand, could only
provide a center estimation accuracy of within 5 mm, which would be unsatisfactory for
the experiment presented in this study. This demonstrates the importance of the proposed
method for robust sphere fitting from point clouds in the presence of outlying observations.
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