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Abstract. The topological structure of RDF graphs inherently differs from other types of graphs, like social graphs, due to the
pervasive existence of hierarchical relations (TBox), which complement transversal relations (ABox). Graph measures capture
such particularities through descriptive statistics. Besides the classical set of measures established in the field of network analysis,
such as size and volume of the graph or the type of degree distribution of its vertices, there has been some effort to define
measures that capture some of the aforementioned particularities RDF graphs adhere to. However, some of them are redundant,
computationally expensive, and not meaningful enough to describe RDF graphs. In particular, it is not clear which of them are
efficient metrics to capture specific distinguishing characteristics of datasets in different knowledge domains (e.g., Cross Domain
vs. Linguistics). In this work, we address the problem of identifying a minimal set of measures that is efficient, essential (non-
redundant), and meaningful. Based on 54 measures and a sample of 280 graphs of nine knowledge domains from the Linked
Open Data Cloud, we identify an essential set of 13 measures, having the capacity to describe graphs concisely. These measures
have the capacity to present the topological structures and differences of datasets in established knowledge domains.

Keywords: RDF graph, graph topology, graph measures, measure assessment, RDF graph profiling

1. Introduction dataset discovery, index structures, or query optimiz-

ers. Solutions in the aforementioned research areas

Characteristics of RDF graphs can be captured rely on effective measures and statistics, in order to be

through descriptive statistics using graph-based mea- compliant with real-world situations and to return ap-
sures. propriate results.

Understanding the topology of RDF graphs can RDF graphs have a distinct topology from other

guide and inform the development of, e.g., synthetic graphs, like social graphs or computer networks, due

dataset generators, sampling methods, profiling tools, to the pervasive existence of hierarchical relations: re-

lations within the ABox (assertional statements — the
*Corresponding author. E-mail: matthaeus.zloch @ gesis.org. data) are complemented by relations within the TBox

1570-0844 © 2021 — The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).


mailto:matthaeus.zloch@gesis.org
mailto:daniel.hienert@gesis.org
mailto:stefan.dietze@gesis.org
mailto:maribel.acosta@kit.edu
mailto:matthaeus.zloch@hhu.de
mailto:stefan.conrad@uni-duesseldorf.de
mailto:stefan.dietze@hhu.de
mailto:maribel.acosta@rub.de
mailto:matthaeus.zloch@gesis.org
https://creativecommons.org/licenses/by/4.0/

790 M. Zloch et al. / Characterizing RDF graphs through graph-based measures — framework and assessment

(terminological statements — schema definitions, e.g.,
rdfs:subClassOf) as well as between ABox and TBox.
rdf:type is probably the most famous example adher-
ing to almost every description of a resource in an RDF
dataset. These particularities are directly reflected in
one RDF graph’s topology and lead to, e.g., higher
overall connectivity and existence of redundant struc-
tural patterns in the graphs, and as such, they cannot be
captured with ordinary measures. In addition to known
measures from the field of network analysis [29,36],
such as the number of vertices/edges and the distribu-
tion of vertex degrees, there has been some effort to de-
fine measures to characterize RDF graphs [15], in or-
der to capture the aforementioned particularities RDF
graphs involve.

1.1. Problem statement

Computing arbitrary graph measures for RDF
graphs is computationally expensive. Measures like di-
ameter (the longest shortest path in a graph), clustering
coefficient (tendency of the graph to build clusters), or
the mean repetitive distinct predicate set usage per sub-
ject, e.g., involve a degree of complexity and are costly
in terms of computation time (depending on the size
of the graph, i.e., number of vertices/edges). Focusing
on an efficient set of descriptive measures helps RDF
profiling tools to speed up the process and to create
concise descriptions of RDF graphs.

An efficient set of measures is considered to be dis-
crete and non-redundant, maximising performance in
describing and distinguishing datasets while minimis-
ing computational effort with respect to the number of
features. The feature set is meant to consist of effective
measures that contribute performance gains individu-
ally without being dependent on another measure. To
this end, an efficient set of measures avoids unneces-
sary and/or ineffective feature computation which does
not contribute to the descriptiveness of an RDF graph.

The main objective of this paper is to identify such
an efficient set of measures by means of investigat-
ing their performance on distinguishing distinct dataset
categories within a large amount of heterogeneous
RDF graphs. We aim to identify a set of meaningful,
efficient, and non-redundant measures, for the goal of
describing RDF graph topologies more accurately and
facilitating the development of the aforementioned so-
lutions.

1.2. Approach and methodology

In order to gain an understanding of measure effec-
tiveness and identify optimal graph measures, we in-
vestigate 54 distinct graph measures on RDF graphs,
and apply feature engineering techniques on various
tasks. Our study bases on 280 RDF datasets sampled
from all categories of the Linked Open Data Cloud'
(LOD Cloud) late 2017, and values of about 54(RDF)
graph-based measures.

We follow a three-stage approach. First, we inves-
tigate feature redundancy by computing feature corre-
lations among all measures and apply feature selec-
tion methods, to eliminate redundant and non-effective
measures. For the resulting set of non-redundant mea-
sures, we study measure variability in terms of statisti-
cal tests across and within categories, i.e., the nine dis-
tinct knowledge domains provided by the LOD Cloud.
Finally, we assess measure performance concerning a
measure’s capacity to discriminate dataset categories
in binary classification tasks, using state-of-the-art ma-
chine learning models. Our assumption is that mea-
sures performing well on this classification task can be
considered useful and important for a particular knowl-
edge domain.

The experiment results show that a large propor-
tion of the measures we investigate are redundant, that
is, they do not add additional value when describing
RDF graphs. We identify a set of 13 measures that
have the capacity to describe RDF graphs efficiently.
Moreover, characteristics of RDF graphs vary notably
across knowledge domains, which is well reflected in
the evaluation of measure impact when it comes to dis-
criminating RDF graphs by knowledge domain.

1.3. Contributions and structure

This work is considered an extension of a recently
published paper [36].>

Whereas key contributions of [36] include (a) a fra-
mework for efficiently computing graph measures and
(b) an initial application of such measures to datasets
of the LOD cloud, this work is an extension through
the following contributions:

1 https://lod-cloud.net/

2In order for this paper to be self-contained, please note that we
have re-used some paragraphs, especially for the related work in
Section 2, the textual descriptions of graph measures in Section 3.2,
and for the description about the acquisition of RDF datasets from
the LOD Cloud in Section 4.2.1.
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— Formal definitions of 27 graph measures in terms
of RDF graphs (Section 3),

— Implementation of 29 RDF graph measures for-
mally defined in [15], as an extension of the soft-
ware framework,? and

— an update of the website as a browsable version
for all datasets that were analyzed, with values
from the measure computation.

— A graph-based analysis of a mixed set of 54 graph
and RDF graph measures, obtained from a sample
of 280 datasets from the LOD Cloud (Section 4).

— Identification of an efficient set of measures
through feature engineering techniques, in order
to retrieve concise descriptions about RDF graphs
(Section 5.1).

— A report about topological differences of real-
world RDF datasets within distinct categories
(Section 5.2).

— An analysis of (RDF) graph measure perfor-
mance, concerning their capacity to discriminate
dataset categories (Section 5.3).

— Based on our observations, we identify relevant
measures or graph invariants that characterize
graphs in the Semantic Web.

4

2. Related work

The RDF data model imposes unique characteristics
that are not present in other graph-based data models.
Therefore, we distinguish between works that analyze
the structure of RDF datasets in terms of RDF-specific
measures and measures of graph invariants.

Many of the research related can be considered pro-
filing approaches. An RDF dataset profile or RDF
summary graph is a quantitative representation of an
RDF dataset in terms of its features (characteristics)
adhering at instance- and schema-level [5]. Profiling
in this context means the activity of extracting such
features from RDF datasets. Thus, some of the works
mentioned appear in research activities in this domain
of research [5,37]. Creating an RDF summary graph
aims at building concise overviews of the data in RDF
knowledge bases [37], in order to optimize, for exam-
ple, querying and processing times for SPARQL en-
gines [7,8], rather than aiming at extracting informa-
tion about its topology.

3hllps://doi.org/l 0.5281/zenodo.2109469
4https://data.gesis.org/lodcc/ZO 17-08/

2.1. RDF-specific analyses

This category includes studies about the general
structure and quality of RDF graphs at instance-,
schema-, and metadata-levels. Schmachtenberg et al.
[32] present the status of RDF datasets in the LOD
Cloud in terms of size, linking, vocabulary usage,
and metadata. LODStats [13] and the large-scale ap-
proach DistLODStats [33] report on descriptive statis-
tics about RDF datasets on the web, including the num-
ber of triples, RDF terms, properties per entity, and
usage of vocabularies across datasets. ExpLOD [25]
generates summaries and aggregated statistics about
the structure of RDF graphs, e.g., sets of used prop-
erties or the number of instances per class. In addi-
tion, [16] presents an approach for extracting struc-
tured topic profiles of RDF datasets from dataset sam-
ples. ProLOD+-+- [1,6] is an online tool which profiles
any RDF dataset. It reports on, for example, frequen-
cies and distributions of subjects, predicates, objects,
ratio of incoming/outgoing links, and performs pattern
analysis on object values. It enables “to perform fur-
ther analysis only on subsets of the dataset that corre-
spond to clusters” [1]. Loupe [28], a “comprehensive
linked data profiling tool”, provides a RESTful web
service for profiling SPARQL engines. The API re-
ports on vocabulary, class, and property usage and car-
dinalities, and facilitates the analysis of implicit data
patterns. Hogan et al. [23] study the distribution of
RDF terms, classes, instances, and datatypes to mea-
sure the quality of public RDF data.

The quality aspect of Linked Open Data has been
subject to some recent studies. Debattista et al. as-
sessed the quality of metadata and dataset availability,
investigating datasets from the LOD Cloud 2014 [12]
and early 2019 [11]. Haller et al. [21] investigated dif-
ferent types of links, i.e., contained in the ABox and
TBox, exposed by 430 datasets in the LOD Cloud.

A recent study provides a comprehensive overview
of “available methods and tools for assessing and pro-
filing structured datasets” and vocabularies to repre-
sent profiles in the past decades [5]. According to the
study, the full range of available features may be cat-
egorized into seven groups: Qualitative, Provenance,
Links, Licensing, Statistical, Dynamics, and Other.
Part of our (RDF) graph-based measures (see Sec-
tion 3) belongs to the group of Statistical features.
However, most of the tools listed in the paper gather
comprehensive statistics and summaries at instance-
and/or schema-level, leaving out to target the topology.
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In summary, the study of RDF-specific properties of
publicly available RDF datasets has been extensively
covered. It is currently supported by online services
and tools, such as LODStats and Loupe. Therefore, in
addition to these works, we focus on analyzing graph
invariants in RDF datasets.

2.2. Graph-based analyses

In the area of structural network analysis, it is com-
mon to study the distribution of specific graph mea-
sures in order to characterize a graph. RDF datasets
and schemas have also been subject to these studies.
Most of these works focus on studying different in-
and out-degree distributions, path length, and are lim-
ited to one dataset or a rather small collection of RDF
datasets, for instance, when investigating topological
characteristics of one particular vocabulary of interest.

The study by Ding et al. [14] reveals that the power-
law distribution at instance-level is prevalent across
graph invariants in RDF graphs, obtained from 1.7 mil-
lion documents. Theoharis et al. also investigated the
schema level of RDF graphs [34]. Their study cov-
ers 250 schemata and concluded that the majority of
classes with class descendants and property degree dis-
tributions approximate a power-law. Hu et al. studied
entity links in the domain of Life Sciences [24] and
discovered that the degree distribution of entity links
does not strictly follow the power law.

The small-world phenomenon [35], known from ex-
periments on social networks, were also studied within
the Semantic Web [4,19], with the result of saying that
Linked Open Data is having the small-world charac-
teristic [15]. Bachlechner et al. [4] found that the en-
tire FOAF® network is a small-world with high lo-
cal clustering coefficient and a power-law distribution.
Their analysis showed that, in this network, the aver-
age degree is 9.56, with a diameter (characteristic path
length) of 6.26. The work by Flores et al. [17] ana-
lyzes further relevant graph invariants in RDF graphs,
such as statistics on the number of vertices and edges,
in- and out-degree distributions, density, reciprocity,
and h-index. The work by Flores et al. applied graph-
based metrics on synthetic RDF datasets. More re-
cently, Ferndndez et al. [15] have studied the struc-
tural features of real-world RDF data and the related-
ness between vertices and edges in RDF graphs, using
subject-object, subject-predicate, and predicate-object

5 http://xmlns.com/foaf/spec/

ratios. Their experimental study investigates fourteen
real-world RDF datasets from seven categories, in or-
der to find “common features and characterize real-
world RDF data”.

Complementary to these works, we present a study
on 280 RDF datasets acquired from the LOD Cloud.
We primarily focus on analyzing measure effective-
ness and measure performance from a set of 54 graph-
based measures. By this means, we will also get some
understanding and insights into the structure of real-
world RDF datasets.

3. Measures for RDF graphs

In [36], we introduced a number of measures which
are formalized here. The set of measures utilized in
the experiments in the subsequent sections is comple-
mented by the measures described and formalized by
Fernandez et al. in [15]. By this means, we can pro-
vide an understanding of their complementarity as a
whole.

First, Section 3.1 introduces graph notations and
definitions that are used throughout the paper. Sec-
tion 3.2 then introduces definitions for all graph mea-
sures studied in [36]. Table 1 presents an overview of
the graph measures described in this section.

3.1. Graph data model

Definition 3.1 (Directed Multigraph). A directed
multigraph G is a pair of finite sets (V, E), with V
denoting the set of all vertices, and E a multiset of
directed, labeled edges in the graph G.

In this work, for the sake of simplicity, we use the
terms graph and multigraph interchangeably. They are
used when referred to a graph measure or graph in-
variant. In particular, the RDF data model builds upon
this definition to represent RDF graphs. RDF graphs
[20] are multigraphs modeled as a set of RDF triples.
RDF triples are composed of terms from U, B, L,
which are disjoint finite sets of URI references, blank
nodes, and RDF literals, respectively.

Definition 3.2 (RDF triple). An RDF triple is a tuple
(s, p,0) e UUB) xU x (UUBU L). s is denoted
as the subject, p the predicate, and o the object.

Through RDF triples, we can define RDF graphs
[10].
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Table 1

Set of graph measures implemented and evaluated in this study

Measure name Value Symbol Measure group Comment

vertices max n Basic -

edges max m Basic -

parallel edges max mp Basic -

unique edges max my Basic -

total degree max|mean dmaxz Degree-based -

in-degree max d$ax Degree-based -

out-degree max dmax Degree-based -

h-index directed - ht Degree-based Employing the in-degree of the vertices.
h-index undirected - h Degree-based Employing the total-degree of the vertices.
degree centrality max Cyq Centrality -

in-degree centrality max Cy+ Centrality -

out-degree centrality max Cy- Centrality -

centralization degree - C; Centrality -

page-rank max r Centrality -

fill overall max f Edge-based Respects all edges, i.e. including parallel edges.
fill unique max fu Edge-based Respects only unique edges.

reciprocity max y Edge-based -

diameter max 8 Edge-based Approximated value using pseudo-diameter algorithm7.
variance in-degree - o2t Descriptive stat. -

variance out-degree - o2 Descriptive stat. -

std.dev. in-degree - ot Descriptive stat. -

std.dev. out-degree - o~ Descriptive stat. -

coeff.variation in-degree - cvt Descriptive stat. -

coeff.variation out-degree - cv” Descriptive stat. -

degree powerlaw exp. - o Descriptive stat. -

in-degree powerlaw exp. - at Descriptive stat. -

Definition 3.3 (RDF graph). An RDF graph G is a
set of RDF triples, where each (s, p, 0) becomes a di-

rected labeled graph structure of the form s 2 0.

The sets of subjects, predicates, and objects in the
RDF graph G will be referred to as S¢ € (U U B),
Ps € U, and Og € (U U B U L), respectively.
When referring to the general graph topology V and
E will denote the set of vertices and edges of the
graph G. Moreover, with respect to the RDF termi-
nology, V is the set of all subjects and objects, i.e.,
V = {v|lv € (Sg U Og)}. Note that, the set of ver-
tices V may also contain predicates, as predicates are
subjects within the schema-definition (TBox, if de-
fined), and therefore elements of Sg. As given in the
definition above, E is a multiset of (labeled) edges,
since a pair of subject and object resources may be de-
scribed with multiple RDF predicates. For example, in
the graph {splo.sp20}, E has two pairs of vertices, and
therefore E = {(s, 0)1, (s, 0)2}.

3.2. Graph measures

3.2.1. Basic graph measures

In the following, we describe measures that can be
applied to graphs in general (cf. Definition 3.1).

We report on the total number of vertices n and the
total number of edges m for a graph G. Some works
in the literature refer to these values as size and vol-
ume, respectively. These measures are relevant, as the
number of vertices and edges usually varies drastically
across knowledge domains.

n=|V| ey

m = |E| @)

In multigraphs, parallel edges represent edges that
share the same pair of source and target vertices.

Therefore, the measure number of parallel edges, de-
noted as m p, is defined as

mp = |{e| count(e, E) > 1, e € E}| ©)
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with count,(e, E) being a function that returns the
multiplicity of e in E, i.e., number of times e is con-
tained in E£. Based on the above measure, we also com-
pute the total number of edges without counting paral-
lel edges, called the number of unique edges, denoted
as m,. This measure will give us an impression of the
“raw” shape of the graph, which is useful when one
may want to study graph clustering, like in a network,
for instance. It is computed by subtracting m, from the
total number of edges m, i.e.

my, =m—m, “)

3.2.2. Degree-based measures

Inagraph G = (V, E), the degree of a vertex v € V
is the total number of edges that are connected to it.
With directed graphs, as is the case of RDF graphs, it
is common to distinguish between in-degree and out-
degree of a vertex v. For a given v € V, we define the
total degree by means of the in- and out-degree.

dw) =dT () +d~ (v) (3)
with

d*() = |{w, v)[Fu € V, (u,v) € E}| (6)

d~() = |{(v,w)|Fu €V, (v,u) € E}| (7)

The previous definitions of d* and d~ also take into
account parallel edges.

In social network analyses, vertices with a high
out-degree are said to be “influential”’, whereas ver-
tices with a high in-degree are called “prestigious”.
To identify these vertices in an RDF graph, we com-
pute the maximum total-, in-, and out-degree of the
graph’s vertices, denoted as dmax = maxyey d(v),
di.. = maxyey dt(v), d,, = maxyey d”(v), re-
spectively. In addition, we compute the graph’s mean
total-degree z, which is the arithmetic mean of all ver-
tices’ total-degree, and can be computed via the fol-
lowing equation

z=— ®)
n

These measures may be applied in research about RDF
data management, for instance, where the (average)
degree of a vertex (database table record) has a sig-
nificant impact on query evaluation, since queries on
dense graphs can be more costly in terms of execution
time [31].

Another degree-based measure is k-index, known
from citation networks [22], where it is widely estab-
lished to measure author impact based on publications
and citations. In a graph G a value of & means that
for the number of & vertices in the graph, the degree
of these vertices is greater or equal to 4. In order to
compute the value through the following equation, as
a prerequisite, it is required to have a list of all vertex
degrees sorted in descending order.

h = max min(d (v;), i),
i€|lV|

V; € |4 (9)

with i being the position in the list.

This measure is an indicator of the importance of
a vertex, similar to a centrality measure (see Sec-
tion 3.2.3). Further, a high value of a graph’s h-index
could be an indicator for a “dense” graph and that its
vertices are more “prestigious”. As citations in a ci-
tation network are incoming edges to vertices, in this
work, we report on this network measure for the di-
rected graph (using only the in-degree of vertices) de-
noted as A ™. h takes the undirected graph into account
(using in- and out-degree of vertices).

3.2.3. Centrality measures

In social network analyses, the concept of point cen-
trality expresses the importance of nodes in a network.
There are many interpretations for the term “impor-
tance” and so are measures for centrality [29]. A high
centrality value of a vertex generally means that it is
more “important”, although for different reasons, as
indicated by the different measures.

We compute the maximum point centrality of all
vertices V, denoted as C4.° To indicate that it is a
centrality measure, and not just the maximum degree,
the literature often normalizes these values by the total
number of all vertices, i.e.,

d,
Cy= 2 with dpax = maxd(v) (10)
n veV

In addition to Cy we compute Cy+ and C;- in a graph
G, reflecting the corresponding maximum in- and out-
degree values.

Besides the point centrality, there is also the mea-
sure of graph centralization [18], which is known from
social network analysis. This measure may also be

6We use the notation introduced by Freeman [18], where C; and
related measures to point centrality and graph centralization are de-
noted with capital letters.
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seen as an indicator of the type of graph. It expresses
the degree of inequality and concentration of vertices
by means of a perfectly star-shaped graph, which itself
is at most centralized and unequal with regard to its
degree distribution. The graph centralization value of
one graph G regarding the degree is defined as:

cr — 2 e —d ) an
7 =D xn-2)

Another centrality measure is PageRank [30], which
considers all incoming edges to a vertex to estimate its
importance. After computing the PageRank value for
all vertices v € V in the graph G, denoted as pr(V),
the maximum PageRank value is defined as

r = max pr(v) (12)
ve|V|

3.2.4. Edge-based measures

As the (average) number of vertices and edges vary
highly across knowledge domains [36], it is interesting
to measure the so-called “density” of a graph, some-
times referred to as “connectance” or “fill”’. The den-
sity is computed as the ratio of all edges to the to-
tal number of all possible edges. The formula is in
accordance with the definition of RDF graphs, which
are directed and may contain loops. As mentioned ear-
lier, RDF graphs may contain parallel edges, and thus
we provide an additional measure, which uses unique
edges only. Therefore, fill_overall and fill, denoted as
f and f,, respectively, are defined as follows:

m

f= 2 (13)
ny

Ju = o) (14)

These measures may be used to calculate the prob-
ability of an edge between two randomly chosen ver-
tices in the graph G. Comparing the measure fill with
centrality measures shows that dense graphs show
higher centrality values of the vertices, which in turn
leads to higher “connectivity” and linkage among
them, as mentioned earlier. This also has a positive
impact on navigation through the graph.

As RDF graphs are directed and labeled graphs,
the aspect of “navigability” through the graph through
RDF predicates is of interest. We analyze the fraction
of bidirectional connections between vertices in the
graph. These are pairs of vertices forward-connected
by some edge, which are also backward-connected by

some other edge. The value of reciprocity, denoted as
¥, is expressed as the ratio of the number of bidirec-
tional edges, denoted as mp;, among all edges in the
graph G

(15)
with
mpi = |{(u,v) € E|3(v,u) € E}| (16)

High values of reciprocity mean there are many
links between vertices that are bidirectional. This value
is typically high in citation or social networks.

Another critical group of measures that is described
by the graph topology is related to paths. A path is a
set of edges one can follow along between two ver-
tices. As there can be more than one path, the diame-
ter is defined as the longest shortest path between two
vertices of the network [29], denoted as §.

8 = max path(v, u) (17)

v,ueV

The diameter is usually a very time-consuming mea-
sure to compute since all possible paths have to be
considered. Thus, we used the pseudo diameter al-
gorithm’ to estimate the value of the diameter for the
studied RDF graphs. In query optimization over RDF
data, this measure may be applied to estimate the cardi-
nality of joins (e.g., subject-object joins), which heav-
ily depends on the paths in an RDF graph.

3.2.5. Descriptive statistical measures

Descriptive statistical measures are useful to de-
scribe distributions of some set of values. It can be use-
ful to consult the degree of dispersion of the distribu-
tion of interest; in our scenario, it is the distribution of
vertex degrees in the graphs. Types of dispersion are,
for example, the degree variance o2, and the degree
standard deviation o,

N2
Uzzzuev(d(”) 2)

n—1
o = +vo? (19)

We compute the variance and the standard deviation
for the in- and out-degree distributions of vertices in

(18)

7https://graph—tool.skewed.de/static/doc/topology.html#
graph_tool.topology.pseudo_diameter
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the graphs, denoted as o>*, 62—, and 61, 0 ~, respec-
tively. They are defined adequately using the appro-
priate in- and out-degree values for vertex degree and
mean degree of all vertices V of a graph.

Comparing different standard deviation values is not
very meaningful, since two different distributions most
likely will have different means. Coefficient of varia-
tion, denoted as cv, may be consulted to have a com-
parable measure for distributions with different mean
values. It is obtained by dividing the standard deviation
o by the corresponding mean value, z.
o

(20)

cv =

As cv may also reflect the type of distribution con-
cerning a set of values, we are especially interested in
cvt and cv™, reflecting the in- and out-degree distri-
butions. A low value of cv™ means a constant influ-
ence of vertices in the graph (homogeneous group). In
contrast, a high value of cvt means high prominence
of some vertices in the graph (heterogeneous group).

Further, the type of degree distribution is an often
considered measure of graphs. In some knowledge do-
mains, datasets report on degree distributions that fol-
low a power-law function [24], which means that the
number of vertices with degree d behaves proportion-
ally to the power of d~¢, for some « € R. Such net-
works are called scale-free. The literature has found
that values in the range of 2 < « < 3 are typical in
many real-world networks [29]. The scale-free behav-
ior also applies to some datasets and measures of RDF
datasets [14,15]. However, to reason about whether
a distribution follows a power-law can be technically
challenging [3], and computing the exponent «, that
falls into a specific range of values, is not sufficient.
In addition to « (reflecting the total-degree distribu-
tion) we also compute the exponent for the in-degree
distribution of a graph, denoted as a™ [3], as we are
interested in the degree distribution of prominent ver-
tices (RDF objects). Also, to support the analysis of
power-law distributions, the framework produces plots
for both distributions. A power-law distribution is de-
scribed as a line in a log-log plot.

Determining the function that fits the distribution
may be of high value to estimate the selectivity of ver-
tices and attributes in graphs. The structure and size
of datasets created by synthetic datasets, for instance,
can be controlled with these measures. Also, an ex-
plicit power-law distribution allows for high compres-
sion rates of RDF datasets [15].

4. Performance of graph measures for dataset
profiling — research questions and setup

Building on the implementations of graph measures
introduced in the previous section, this section intro-
duces an experimental investigation into the perfor-
mance of measures for describing, profiling, and dis-
tinguishing datasets. Whereas Section 4.1 presents our
research questions and motivates the experiments, Sec-
tion 4.2 describes the design and methodology of the
experiments which apply and assess our measures on
datasets from the LOD Cloud through established fea-
ture selection and analysis techniques.

4.1. Research questions

This section elaborates on the research questions
which motivated our experiment. Let M denote the set
of all measures employed in our experiments. Further,
let K denote the set of all knowledge domains, i.e., cat-
egories or classes, available in the LOD-Cloud. Dy de-
notes the set of datasets assigned to the corresponding
category k € K.

A (graph) measure is a feature in the context of sta-
tistical operations (correlations, feature engineering,
statistical learning algorithms). Starting from here, we
will use these terms interchangeably. The usage of the
corresponding terms should be clear from the context.

RQI: What is an efficient and non-redundant set of
features for characterizing RDF graphs?

In order to characterize graphs or sets of graphs
within domains efficiently, concise graph descriptions
have to be based on efficient, non-redundant feature
sets where each feature provides significant informa-
tion gain.

This question aims at finding a concise and finite set
M’ C M of measures that reduce or eliminate redun-
dancy and maximize information gain through corre-
lation analysis. This step will improve the effective-
ness of the resulting set of graph measures and im-
prove their applicability, for instance, as part of ma-
chine learning models.

RQ2: Which measures describe and characterize
individual knowledge domains most/least efficiently?
Datasets within the LOD cloud are categorized into
nine distinct knowledge domains so that each dataset is
associated with precisely one specific category. In or-
der to understand the representativeness and variabil-
ity of topological measures within a knowledge do-
main, we investigate the heterogeneity of feature val-
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ues within and across distinct domains through ba-
sic statistic metrics and discuss observed values repre-
sentative for distinct LOD domains. We will refer to
this feature set as M} with k € K. Please note that
M C M',Vk € K.

This will provide insights into the capacity of in-
dividual features to represent the nature of particular
domains and may contribute to discriminative mod-
els and to filtering out noise features when profiling
datasets.

RQ3: Which measures show the best performance to
discriminate individual knowledge domains?

Datasets from a knowledge domain exhibit distinct
characteristics with respect to topological features of
the graphs but also with respect to other features, such
as vocabulary adoption. A particular question is which
(RDF-) graph measures are most descriptive within
one particular knowledge domain. In contrast to RQ2,
this research question investigates feature importance
for each domain. The findings are of interest to syn-
thetic dataset generators, for example. By generating
a synthetic dataset, benchmark suites most often tar-
get some particular domain of interest. When generat-
ing datasets for the Publications knowledge domain,
for example, a generator should follow a specific set
of measures, range of values, and used vocabularies, in
order to be identified with that category of datasets.

4.2. Experimental setup

Section 4.2.1 explains which datasets were acquired
and used for our experiment. Section 4.2.2 gives de-
tails about the framework and the measure computa-
tion. Section 4.2.3 explains how measure efficiency
and measure importance were obtained.

4.2.1. Datasets

We have downloaded a large group of datasets from
the LOD Cloud 2017 and prepared it with our frame-
work presented in [36].

From the total number of 1,163 potentially available
datasets in the LOD Cloud 2017, 280 datasets were se-
lected based on the criteria: (i) RDF media types state-
ments that were correct for the datasets, and (ii) the
availability of data dumps provided by the services. To
not stress SPARQL endpoints to transfer large amounts
of data, in this experiment, only datasets that provide
downloadable dumps were considered.

8http://lod—cloud.net/versions/ZO17—08—22/datasets_22—08—2017.
tsv.

To dereference RDF datasets, we relied on the meta-
data (so called data-package) available at DataHub,
which specifies URLs and media types for the cor-
responding data provider of one dataset.” We col-
lected the datapackage metadata for all datasets and
manually mapped the obtained media types from
the datapackage to their corresponding official me-
dia types that are given in the specifications. For in-
stance, rdf, xml_rdf or rdf_xml were mapped
to application/rdf+xml and similar.!0 In this
way, we obtained the URLs of 890 RDF datasets. Af-
ter that, we checked whether the dumps are available
by performing HTTP HEAD requests on the URLs. At
the time of the experiment, this returned 486 poten-
tial RDF dataset dumps to download. For the other not
available URLs, we verified the status of those datasets
with http://stats.lod2.eu. After these manual preparation
steps, the data dumps could be downloaded with the
framework.

The framework needs to transform all formats into
N-Triples. From here, the number of prepared datasets
for the analysis further reduced to 280. The reasons
were: (1) corrupt downloads, (2) wrong file media type
statements, and (3) syntax errors or other formats than
these what were expected during the transformation
process. This number seems low compared to the total
number of available datasets in the LOD Cloud, though
it sounds reasonable compared to recent studies on the
LOD Cloud [11,12,21]. Table 2 gives some descriptive
statistics about the analyzed datasets.

As graph library we used graph-tool,”" an efficient
library for statistical analysis of graphs. In graph-tool,
core data structures and algorithms are implemented
in C/C++, while the library itself can be used with
Python. graph-tool comes with pre-defined implemen-
tations for graph analysis, e.g., degree distributions or
more advanced implementations on graphs like PageR-
ank or clustering coefficient. Further, some values may
be stored as attributes of vertices or edges in the graph
structure. The library’s internal graph-structure may be
serialized as a compressed binary object for future re-
use. It can be reloaded by graph-tool with much higher
performance than the original edgelist. We instantiated
the graphs from the binary representation (see next

lll

9Example:
datapackage.json.

100ther media type statements like html_Jjson_1d_ttl_
rdf_xml or rdf_xml_turtle_html were ignored, since they
are ambiguous.

11 graph-tool, https://graph-tool.skewed.de/.

https://old.datahub.io/dataset/<dataset-name>/
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Statistics on RDF datasets which were acquired for the experiments. Listed are the number of RDF datasets per knowledge domain and their

corresponding maximum and average number of vertices n and edges m

Domain # datasets Maximum Average
n m n m
Cross Domain 15 291,178,702 1,042,217,722 36,276,052 111,329,448
Geography 11 47,541,174 340,880,391 9,763,721 61,049,429
Government 37 131,634,287 1,489,689,235 7,491,531 71,263,878
Life Sciences 32 356,837,444 722,889,087 25,550,646 85,262,882
Linguistics 122 120,683,397 291,314,466 1,260,455 3,347,268
Media 6 48,318,259 161,749,815 9,504,622 31,100,859
Publications 50 218,757,266 720,668,819 9,036,204 28,017,502
Social networking 3 331,647 1,600,499 237,003 1,062,986
User generated 4 2,961,628 4,932,352 967,798 1,992,069
Table 3

Set of 29 RDF graph measures, which were implemented and eval-
uated in this study

Measure name Value Group
out-degree max|mean Subject out-degrees
partial out-degree max|mean Subject out-degrees
labelled out-degree max|mean Subject out-degrees
direct out-degree max|mean Subject out-degrees
in-degree max|mean Object in-degrees
partial in-degree max|mean Object in-degrees
labelled in-degree max|mean Object in-degrees
direct in-degree max|mean Object in-degrees
subject/object ratio ratio Common ratios
degree max|mean Predicate degree
in-degree max|mean Predicate degree
out-degree max|mean Predicate degree
repeated predicate list ratio Predicate lists
predicate list degree max|mean Predicate lists

distinct classes max Typed subjects/objects
typed subjects max Typed subjects/objects
ratio of typed subjects ratio Typed subjects/objects

section) and operated on the graph objects provided by
the graph-tool library.

4.2.2. Graph measures computation

All graph-based measures introduced in Section 3.2
where already part of the framework introduced in
[36]. In order to do a more comprehensive evalua-
tion of the effectiveness of graph measures, we in-
clude RDF graph measures from Ferndndez et al. [15],
who provides a comprehensive list and formalization
of various RDF graph-based measures. Table 3 gives
an overview of all RDF graph-measures we imple-
mented as a module extension® of our framework.

We worked with lists of vertices, edges, and edge
labels (predicates), using Python’s build-in operations
for lists in the first place. In order to optimize perfor-
mance on list operations, we used external libraries.!?
That way, the computation of measures, such as the
maximum and mean in-/out-degree of all vertices, was
straight-forward. A more complex example is the par-
tial out-degree measure, which is “defined as the num-
ber of triples of G in which s occurs as subject and p
as predicate”. In order to compute this measure from
the perspective of a native graph object in memory,
one must create an array of all pairs of source vertices
(subjects) and their outgoing edge labels (predicates)
and count the number of grouped occurrences of these
pairs.

We encourage the interested reader to look into the
corresponding package of the framework? to find the
implementation for all measures.

4.2.3. Measure efficiency and measure importance
For RQI, we will first give an overview of all the
measures and their relationship among each other by
calculating the Spearman correlation coefficients be-
tween all measures. To this end, the Spearman correla-
tion test is employed, since most of the distributions of
measure values do not follow a normal distribution. To
reduce the number of measures, we employ two popu-
lar methods: (a) a low variance test, which filters mea-
sures which fall below a certain threshold, and (b) pop-
ular univariate statistical tests, from which we choose
Chi2, and Mutual Information (MI). Since many of the
variables are continuous, and MI only works with dis-
crete values, Maximum Information Non-parametric

120yr implementation mainly relies on numpy https://numpy.org/
and pandas https://pandas.pydata.org/.
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Estimation (MINE) is utilized additionally. Therefore,
M’ is defined as follows:

M' = {m € M|test(m, F) > 3}, 2D

with F being the set of all feature selection methods
mentioned above. test() returns the number of methods
having a match over the given measure m.

For RQ2, we will show boxplots as aggregated de-
scriptive statistics for some selected measures. This
will give insights into the distribution of values. In or-
der to investigate the variability at the category level,
we apply some statistical methods. To show the vari-
ability per category, we group all datasets by cat-
egories and compute the variance per measure and
group. By this means, we can analyze noisy and non-
noisy features in terms of variance and assign the cor-
responding M/ forall k € K.

The variability across categories (vac) is computed
by taking the mean of a measure for all datasets in a
particular category k € K computing the standard de-
viation over the obtained means subsequently. More
formally, with val denoting all values for measure m €
M’ and datasets in Dy, withk € K

vac(m) = std({avg(val(m, Dp))lk € K})  (22)

For the classification tasks in RQ3, we deploy and
tune a Random Forest classifier for both tasks. Initial
experiments have shown that Random Forest outper-
forms other established classifiers on our task. Mea-
sure efficiency/performance is evaluated in two differ-
ent experiments. First, we will train a classifier in or-
der to predict one of all six domains. By means of this
classification task, we will investigate measure perfor-
mance, in order to discriminate all domains between
each other. Second, in another classification task, we
want to find those measures with the best performance
to describe one particular knowledge domain. This
is done by employing the binary relevance method,
which is a one-vs-rest version of the first classification
task. It will evaluate measure performance for each in-

dividual domain by training one independent classifier
per domain. The measures with the best performance
will have the ability to characterize datasets within one
particular category most effectively.

Please note that our main aim is to understand over-
all and class-wise feature (i.e., graph measure) impor-
tance, rather than finding the best model for predicting
category labels of RDF graphs. However, we want to
find meaningful results. Thus we are obliged to tune
the classifier to some extend. We hyper-tune the pa-
rameters via grid-search and five-fold cross-validation.

Since the classes are not balanced (cf. Table 2), we
experimented with over- and undersampling strategies.
For oversampling, we used the SMOTE-algorithm, for
undersampling, a random undersampler. The results
are presented by employing the highest scored classi-
fier from the parameter-tuning and sampling strategy.

4.3. Execution environment

The operating system, client software, database
(with the records for all measures), reside all on one
server during the experiments. The experiments were
performed on a rack server Dell PowerBridge R720,
having two Intel(R) Xeon(R) E5-2600 processors with
16 cores each, 192GB of main memory, and a 10TB
total main storage. The operating system was Ubuntu
18.04.1 LTS, kernel version 4.15. Docker image ver-
sion with the corresponding graph-tool'! library was
2.29. All RDF graph measures shown in Table 3 were
computed directly on the instantiated graph-object af-
ter loading it into memory.

The computation of the measures on the graphs re-
quires significant physical memory. For graphs with
less than 100M edges, the framework was configured
to work in parallel with 12 concurrent processes. All
other graphs (more than 100M edges) were computed
sequentially. To illustrate runtime performance, Ta-
ble 4 depicts selected execution times throughout indi-
vidual stages of the processing pipeline.

Table 4
Duration of execution in the given stages and peak memory footprint of the whole analysis pipeline on some selected datasets. During prepa-
ration, all files needed to be transformed from RDF/XML into N-triples. extended analysis denotes RDF graph-based measure computation.
*compressed archive containing multiple RDF files that need to be merged

Dataset name m edges 1] preparation t Graph creation t3 Core analysis t4 extended analysis Memory footprint
Colinda 100,000 2.26s 0.67 s 3.62s 545s 180MB
Organic-edunet 1,200,000 25.81s 8.62s 16.95 s 83.53s 560MB
Uis-linked-data™ 10,300,000 203.05 s 61.01s 26.13s 510.98 s 3,410MB
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5. Assessing graph measures of the linked open
data cloud - results

We present our results by referring to the research
questions. A more detailed discussion about the results
can be found in the follow-up section (cf. Section 6).

5.1. RQI: What is an efficient and non-redundant set
of features for characterizing RDF graphs?

5.1.1. Correlation coefficients
We first report on observations about correlation co-
efficients between measures. Figure 1 shows a correla-
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tion matrix of all measures with color-encoded values
for the Spearman correlation coefficients. Values close
to 1.0 indicate strong positive correlation, around 0 no
correlation, and close to —1.0 strong negative correla-
tion.

In the group of graph measures, the number of
edges m and vertices n has an almost perfect corre-
lation with (a) max_degree and (b) max_in_degree.
In addition, the two measures have a strong posi-
tive mutual correlation. Due to this, other measures
which employ these measures are in turn strongly
correlated with each other. In particular, this can be
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Fig. 2. Meaningful measures according to different statistical feature selection scoring methods.

observed for measures employing the in-degree. De-
scriptive statistics on the distribution of in-degrees,
like var_in_degree, stddev_in_degree, and coeffi-
cient_var_in_degree, grow with the size and volume
of the graphs. This does not apply for measures re-
lating to the vertices out-degree: measures using the
in-degree differ from measures using the out-degree.
Most of the measures employing the out-degree do not
correlate with almost any of the other measures, which
makes them more descriptive. A negative correlation
value implies that while values for a measure x in-
crease, values for another measure y decrease. This is
the case with measures employing the aspect of den-
sity (£i11) of the graphs with increasing size n and
volume m. The density of a graph also has a negative
correlation to the distribution of vertex degrees, as we
can see with variance, standard deviation, and coeffi-
cient of variation values. This means that the denser the
graphs are (£i11 increases), the more homogeneous
the vertex degrees of the graphs become (descriptive
statistics over vertex degrees become smaller). Almost
no dependencies are exhibited by mean_degree, reci-
procity, diameter, centrality measures, and the pow-
erlaw_exponents, Which measures the type of distri-
bution of vertex (in-)degrees.

In the group of RDF graph measures, there are
less inter-relationships. As a group, measures employ-
ing predicate degrees, max_predicate_list_degree,
together with max_partial_in_degree, max_direct_
in_degree as well as the typed_subjects measure,
have strong positive mutual correlations. All of the
mentioned measures grow with the size n and volume m
of the graphs. Some individual mutual strong positive
correlations can be observed, for instance, between
repeated_predicate_lists and mean_predicate_
list_degree, mean_direct_in_degree and mean_in_
degree and mean_partial_in_degree. As in the first
group of graph measures, all “mean” in-degree mea-
sures have strong correlations among each other as
well as to the mean_degree.

5.1.2. Measure selection

Figure 2 highlights the measures that were selected
by the individual tests.

Overall, there is variance and no particular consen-
sus of the statistical tests. However, there are some
agreements. Looking at agreements in all tests, only
13 measures are providing information gain; only three
were dismissed by all tests, i.e., two degree-centrality
measures and ratio_of_typed_subjects. 16 mea-
sures have agreements in three tests (threshold was not
met in one of the tests); 10 measures met the threshold
in only one test. With 30 measures, the pair Chi2 and
Variance Threshold has the highest number of agree-
ments; Mutual Information and Variance Threshold
agree on 27 measures. The least agreements can be
found for the pair Mutual Information and MINE (18).

5.1.3. Summary of results
With particular regard to RDF graphs and the above
analysis, we conclude with the following observations:

— The larger the density, the more “stable” and ho-
mogeneous is the (in-/out-) degree distribution of
vertices in the graphs.

— The larger the size and volume of the graphs,
the more typed subjects become present, and the
higher the number of subjects using a fixed set of
predicates appears (cf. predicate degree and pred-
icate lists measures).

— The average degree of the graphs is mainly influ-
enced by the in-degree.

— Measures employing the distribution of out-
degrees are more descriptive.

The next subsections report the results on the re-
duced set of meaningful measures obtained from the
feature selection methods. In particular, M’ is defined
as the set of measures where at least three of the tests
have an agreement, i.e., |M’| = 29.
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5.2. RQ2: Which measures and values describe and
characterize knowledge domains most/least
efficiently?

In order to get a sense of the variability of mea-
sures within and across knowledge domains, in this
section, we look closer and report on characteristics
for some individual measures first. Afterwards, we ag-
gregate and report on variability across knowledge do-
mains, through variance and standard deviation.

5.2.1. Characteristics of values

Figure 3 shows, by example, the distribution of val-
ues for two groups of measures. The first group at
the top row shows exemplary measures which were
sorted out by the feature selection approaches in Sec-
tion 5.1, such as the mean total-degree and the mean
out-degree; the bottom row shows exemplary features
of M’. The figure shows all available knowledge do-
mains except Media, Social Networking, and the User
Generated, due to few dataset retrieved in these cate-
gories (cf. Table 2).
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Regarding the mean total-degree, some categories
show very similar median values, like Cross Domain,
Life Sciences, and Publications. Cross Domain, Ge-
ography, Life Sciences, and Linguistics share a simi-
lar maximum value. However, regarding the outliers,
Life Sciences contains a dataset that has by far the
highest average degree, followed by a dataset in the
Government category. The mean out-degree (outgoing
predicates of subjects) is higher for most of the cat-
egories (two outliers can be observed with very high
values). The boxes reveal that the majority of values
are larger than the mean total-degree, which means that
the mean total-degree is mainly influenced by the in-
degree. This is particularly striking for datasets in the
Geography and Life Sciences domains.

The last two plots in the first group show the
mean_direct_out_degree and mean_labelled_out_
degree measures, which describe the relationship of
subjects to their average number of different ob-
jects and predicates, respectively. Overall, the num-
ber of different objects is higher than the number
of predicates. The distribution of values is simi-
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lar for Cross Domain and Publications, as well as
for Geography and Linguistics, particularly for the
predicates (mean_labelled_out_degree). Compar-
ing mean_degree and mean_out_degree as well as
mean_direct_out_degree and mean_labelled_out_
degree with each other, we can see that they show
very similar characteristics. Generally, the distribution
of values is not symmetric (different whisker lengths
of the boxes) and skewed, thus they do not follow a
normal distribution. Further, there is little variability
(short length of boxes).

Below in Fig. 3 are exemplary measures of M/,
i.e., those that were considered to be non-redundant
and meaningful according to the feature selection ap-
proaches in Section 5.1. There is much higher variabil-
ity in most of the measures and knowledge domains.
Also, the number of outliers is larger. Please note that
the x-axis is log scaled for some measures, which
makes it hard to make statements about the skewness
of the distributions; thus, we would like to point out
h_index_d. It gives us the number of at least x RDF
objects with x incoming predicates.

Lowest spread and little variability can be found for
h_index_d. The distribution of values in Cross Do-
main, Geography, Government is highly skewed to the
right, which means that most of the values are rather
low. However, there are some datasets with quite high
value above 4000, e.g., in Cross Domain, Government,
Life Sciences, and Publications. The largest value can
be found for a dataset in the Government domain.

5.2.2. Variability of values

As a first overview, Fig. 4 shows measure variance
of the datasets within the given categories as a heat-
map: the lighter the color, the lower the variance and

Cross_domain 7...- .... .

Geography -
Govemment 7. .. . . ...

Linguistics -

Life_sciences ..-.... ...-..

Publications -

therefore the more homogeneous the corresponding
values are for the corresponding category and measure.

Overall, datasets in the Life Sciences, Cross Do-
main, and Government (in this order) have quite het-
erogeneous distributions of values for a high num-
ber of measures. On the contrary, only one, two, or
three measures have high variance in the Publications,
Linguistics, and Geography domain (in this order).
Some measures exhibit high variance in just one cate-
gory and a low variance in the others. Just to name a
few: max_out_degree and max_partial_out_degree
in Life Sciences, pseudo_diameter and distinct_
classes in Linguistics, max_labelled_in_degree and
mean_predicate_list_degree in Government, max_
predicate_list_degree in Cross Domain, max_
direct_out_degree in Publications. These measures
may be used to discriminate categories against each
other very well, as their characteristical distribution
of values for a particular category can be considered
meaningful. In turn, some measures also exhibit a
rather low variance in one or two domains and higher
in the others. These are, for instance, m, h_index_d,
std_in_degree in Linguistics.

Figure 5 shows the degree of variance across knowl-
edge domains. The scores are obtained by grouping
datasets by category, taking the mean of the corre-
sponding measure for all datasets per category, and
then computing the standard deviation over these
means. Lowest variances across all categories can
be found for mean_out_degree, mean_direct_in_
degree, pseudo_diameter, both nh_index measures,
std_dev_in_degree, coefficient_variation_out_
degree, distinct_classes, and mean_predicate_
list_degree. Among the top five measures with large
dispersion between categories (m, m_unique, paral-

Fig. 4. Measure variance. The lighter the color the lower the variance and the more homogeneous the values are within the corresponding

category.
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std over means
=
9

Fig. 5. Degree of variance across knowledge domains. A low/high value indicates low/high variance across knowledge domains. Colors encode

graph measures (in light) and RDF graph measures. y-axis is log-scaled.

lel_edges, n, and max_predicate_degree) are four
measures employing graph edges. The figure also in-
cludes minimum (lower stroke) and maximum (upper
stroke)

values. For some measures, the minimum value varies
significantly from the standard deviation value. To
name a few: pseudo_diameter, max_labelled_in_
degree, max_predicate_list_degree, and distinct_

classes.

5.2.3. Summary of results

— For the majority of the measures, the distribution
of values is not normally distributed.

— The degree of variance across domains is signif-
icant for most of the measures. A low variance
across domains is rather exceptional.

— Datasets in Cross Domain are heterogeneous, i.e.,
largest variability of the number of classes. While
individual datasets have a high number of dis-
tinct classes, the variability within categories is
less significant. Additionally, the number of typed
subjects highly varies.

— Datasets in the Government domain have high
variance in the mean degree of predicate lists,
meaning that they are not homogeneous in terms
of the used predicates per subject.

— Datasets in the Linguistics domain have high di-
ameter’.

— Each knowledge domain has datasets (graphs)
with unique characteristics, which enables dis-
crimination from the other domains.

5.3. RQ3: Which measures show the best per-
formance to discriminate knowledge domains?

To recall, with this question, we aim at finding the
most essential (RDF) graph measures able to discrimi-
nate knowledge domains efficiently and to measure in-
dividual measure performance. We used the approach
of setting up two classification tasks with Random
Forest classifiers, each tuned by hyperparameter grid-
search. The first task (1) is a multiclass classification
problem, the second task (2) a two-class, one-vs-rest,
binary version of the first. We removed three categories
and the corresponding datasets from the initially avail-
able nine knowledge domains, due to too little datasets
in these categories (<6, cf. Table 2). The remaining
data was subject to standardization with robust-scaling
since earlier, we found that most features have outliers.

5.3.1. Overall measure importance

Figure 6 shows the results of classification task (1).
The colors encode graph measures (in light) and RDF
graph measures. The x-axis shows all measures m €
M'. The y-axis shows the mean importance score ob-
tained from 300 estimators’ feature importance calcu-
lation, in descending order. It can be interpreted as a
percentage value of the extent to which a particular
feature contributes to decrease the weighted impurity
in the decision tree.

While the ranking shows a steadily decreasing order,
the overall scores are rather low. The first 13 measures
can be considered to have some impact. From the 14th
value on, there is hardly a change, and the impact score
is low.

Among the top 10 measures of the highest score
are three graph measures (pseudo_diameter, co-
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Fig. 6. Overall measure importance while discriminating datasets (classification task (1)). Shown are mean values for all non-redundant
measures m € M’'. Colors encode graph measures (in light) and RDF graph measures.
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Fig. 7. Per-category measure importance while discriminating datasets (classification task (2)). Measures are encoded by color throughout all

knowledge domains.

efficient_variation_out_degree, and distinct_
classes) and seven RDF graph measures. Over-
all, measures employing the out-degree are favored.
mean_predicate_list_degree, describing the mean
number of repeated predicate used to describe sub-
jects, has the highest score; m, describing the number
of edges, the lowest.

5.3.2. Per-category measure importance

Figure 7 shows the results of classification task (2),
where one can get a picture on measure performance
in each of the categories. It shows per knowledge do-
main the top seven measures with the highest scores
obtained from binary relevance method (one-vs-rest)
with Random Forest classifier. Like in Fig. 6, the y-
axis shows the degree of contribution to decrease im-
purity in the decision tree.

At first glance, we can see that the set of measures
considered most important varies much across knowl-
edge domains and that individual scores are higher
than in classification task (1). Overall, there are 13 dis-
tinct measures considered here (after measure selec-
tion, the initial set of measures in M’ was 29). Among
these, six measures are employing the max, three mea-
sures employing the mean, and four measures employ-
ing an other absolute value. To complete this overall
observation: out of the 13 distinct measures, six em-
ploy outgoing edges, i.e., RDF predicates of subjects;
two employ incoming edges of objects.

max_labelled_out_degree, mean_direct_in_
degree and mean_out_degree are present in five out
of six knowledge domains, although each with dif-
ferent scores and ranking. distinct_classes and
max_direct_out_degree are present in four domains.
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Collecting the top two and top three measures of
each knowledge domain results in having 10 and
11 distinct measures, respectively. No measure is
present in exclusively one category. Hence, there
seems to be no measure with particular importance
in a specific category. However, distinct_classes,
coefficient_variation_out_degree, and pseudo_
diameter, have highest scores in Cross Domain,
Life Sciences, and Linguistics, respectively. mean_
predicate_list_degree is even scored highest in
three domains: Geography, Government, and Publi-
cations. By far, mean_predicate_list_degree, co-
efficient_variation_out_degree have the highest
scores in Geography, Life Sciences, and Publications,
respectively. These measures can be considered most
important in the corresponding categories. Their val-
ues have distinctive characteristics, which enable clas-
sifiers to discriminate datasets according to these cat-
egories. Looking closer, the results of this binary rel-
evance task here aligns well with the single perfor-
mance analysis from above: the top 10 measures from
Fig. 6 are the ones which are most likely to be found
in the corresponding categories in Fig. 7.

To illustrate the classification performance, Table 5
shows the scores of the binary relevance method em-
ploying the Random Forest classifier, performed on
different sampling strategies as mentioned in Sec-
tion 4.2.3, using the final set of features M’ obtained
from Section 5.1. The micro score is the classifiers
overall accuracy. The macro score gives the mean
score per class. The last metric, macro weighted, ad-
ditionally gives each class a weight, by respecting the
number of seen samples while testing.

5.3.3. Summary of results
— To discriminate knowledge domains from each
other, classifiers favor RDF graph measures over
topological graph measures.
— Measures employing a max-value are favored
over mean- and absolute values, like distinct_

classes.

Table 5
F-measures for the binary relevance method (one-vs-rest) with Ran-
dom Forest, respecting only measures from M’. The table reports
averaged values over 10 prediction attempts

Balancing strategy F1 scores

Micro Macro Macro Weighted
None 0.7075 0.4970 0.6849
SMOTE 0.6896 0.5063 0.6899
Rand. undersampl. 0.5746 0.4043 0.5901

— Measures employing the out-degree are consid-
ered more important than measures employing
the in-degree.

— To discriminate datasets from another, each
knowledge domain considers a different set of
measures as meaningful.

6. Discussion

We would like to address two major aspects exposed
by the conducted experiments, namely (i) structural
differences about RDF graphs from the viewpoint of
graph measures, and (ii) the assessment of graph mea-
sure efficiency. The section closes up with limitations
of this study.

6.1. Structural characteristics of real-world RDF
datasets

The following discussion is based on the results of
measure correlation coefficients (cf. Fig. 1) and mea-
sure performance scores (cf. Fig. 6 and 7).

6.1.1. General observations

By identifying effective graph features describing
and discriminating RDF datasets and applying such
features to LOD datasets, we gained an understanding
of the topological differences of real-world datasets
within distinct categories. The topology of RDF graphs
(knowledge graphs more generally speaking) is dis-
tinct from other graph datasets, such as social graphs,
due to the prevalence of hierarchical relations, that is,
relations within the TBox (e.g. rdfs:subClassOf) or be-
tween ABox and TBox (e.g. rdf:type). This comple-
ments traversal relations and, by this means, imposes
special characteristics that lead to generally higher
connectivity, shorter paths, and the existence of vertex-
“hubs” with high attractiveness from other vertices.

This is very well reflected in the graph measures.
For example, measures like the number of edges, the
maximum degree, and the maximum in-degree per-
fectly correlate with each other (cf. Section 5.1). Look-
ing closer at the values for those measures reveals that
83% of the RDF graphs have vertices with a maximum
in-degree being exactly equal to the maximum degree
(in 94% of the cases, it is even almost equal). In most
graphs, vertices representing the type (vertices with
an “RDF type”-edge incident) are the ones with the
highest in-degree. Such behavior of modeling, which
is typical for RDF graphs and generally accepted as
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best practice in the RDF community, involves high
connectivity of the graph’s topology. More references
to the schema enhance this effect. In turn, more pro-
found is the loss of connectivity as soon as the graph
misses/loses references to the schema.

As more vertices and edges adhere to the graphs, the
more heterogeneous and unstable the connectivity be-
comes. As a consequence, the overall density shrinks
(cf. negative correlation of m, max_degree with £i11)
and the tendency of the topology to generate large sub-
graphs having the shape of a “star” increase. Due to
this and the aforementioned topological characteristic,
measures employing the in-degree (some descriptive
statistical measures, predicate (list-) degree measures,
typed subjects, etc.) show a high correlation among
each other. A stable value with growing size and vol-
ume of the graph would result in a homogeneous distri-
bution, leading to a more stable and equally distributed
connectivity of vertices among each other. The two
mentioned examples can be considered being partic-
ularly RDF graph specific phenomena, which can be
measured with the provided graph measures.

6.1.2. Observations within distinct categories

Vocabulary usage has a significant impact on the
graph’s topology since schema and cardinality def-
initions are directly reflected in the graphs as op-
tions/restrictions to append vertices and edges. Thus,
some measures are considered having a particular
impact in individual categories, as shown in Fig. 7.
Cross Domain, for instance, has a diverse and irreg-
ular vocabulary usage, which implies a large number
of mixed and heterogeneous datasets, with (larger) co-
occurrence of schema references and type-statements
(aistinct_classes). Geography and Publications re-
port on a regular usage of vocabularies. The recurrence
of a fixed set of predicates (mean_predicate_list_
degree) is the main distinguishable feature of these
categories. Geography additionally reports on a pro-
portionally high ratio of parallel edges of its datasets.
Inherently, datasets in Linguistics stand out with a
significantly larger path length of traversal relations
(pseudo_diameter’). The modeling strategy there
seems fairly concise, resulting in a low average num-
ber of types and outgoing predicates/edges per subject,
which is reflected by the measures mean_out_degree
and max_partial_out_degree.

In general, measure importance per category has
a dependency to the way how publishers, data ex-
traction tools, and researchers describe data. For ex-
ample, according to the naming pattern datasets in

Linguistics are clustered into three groups: universal-
dependencies-treebank-... (63 datasets), apertium-
rdf-... (22 datasets), and other (37 datasets). Other
examples of clusters can be found in Life Sciences
(bio2rdf-..., 26 datasets) and Publications (rkb-
explorer-. .., 32 datasets) categories. This implies sim-
ilarities of vocabulary usage, which in turn is reflected
in recurrences of particular patterns in the topological
structure. On account of this fact, the prevalent mea-
sure impact is also influenced by the habits of people
and tools populating datasets in the individual cate-
gories.

Therefore, category-specific topological character-
istics should be reflected in samples, benchmarks, or
synthetic data.

6.2. Efficient RDF graph measures

The initial set of 54 measures (M) was subject
to correlation coefficient analysis and feature selec-
tion methods. The size of the set reduced to 29 non-
redundant measures after feature elimination (M’).
This set was subject to an analysis of variability within
and across knowledge domains. After this preliminary
analysis, we employed a classifier to obtain feature im-
pact scores to rank measure importance.

Both experiments in Section 5.3 evaluated the same
distinct set of measures. Measures below the thresh-
old of 0.02 were considered having a particularly low
level of impact. From a mixed set of graph and RDF
graph measures, we identified a final efficient set of 13
measures, that is distinct and meaningful.

6.2.1. Low variability

As mentioned earlier, datasets in the individual
knowledge domains show similarities in their topolog-
ical structure. Thus, the set of measures considered be-
ing efficient and meaningful varies across these cate-
gories (cf. Fig. 7). According to the classifier, each of
the 13 measures provides some form of information
gain and meaning.

A somewhat naive intuition is that a measure with
low variability is characteristic in a particular category
and therefore could be considered important. The ex-
periments show that this is not necessarily the case.
In the first experiment measures with low variabil-
ity (e.g., mean_out_degree, mean_direct_in_degree
and pseudo_diameter) were preferred during cate-
gory prediction and evaluated with higher impact
scores (cf. Fig. 5 and 6). The second experiment,
focusing on individual categories, showed a differ-
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ent situation. Measures were considered characteris-
tic and assessed with higher impact scores as their
per-category variability (shown in Fig. 4) was high.
For example, mean_predicate_list_degree shows
a high impact score in Government due to higher
variability within and across categories (cf. Fig. 4
and 5). Similar applies for other measures, like coef-
ficient_variation_out_degree, max_partial_out_
degree, and max_labelled_out_degree. Cross Do-
main, for instance, employs only measures of low vari-
ability (e.g., distinct_classes, max_direct_out_
degree, etc.). Thus, in our classification tasks, the clas-
sifier tries to find the right balance between a low vari-
ability across categories and a somewhat characteristic
variability as a topological feature.

6.2.2. Type of measures

Compared to other types of graphs, like social net-
works, RDF knowledge graph topologies adhere spe-
cial characteristics, such as the pervasive reference to
schema elements, with rdf:type statements being the
most famous reference. This peculiarity influences the
assessment about the meaningfulness of measures with
regard to the discrimination of categories. For exam-
ple, the classification task in Section 5.3 showed that
RDF graph measures are preferred and obtained higher
scores over other graph invariants, such as h-index
(cf. Fig. 6). Out of the 10 best performing features
in classification task (1), seven were RDF graph mea-
sures. Further, measures employing the in-degree are
considered less effective, due to their heterogeneous
(“unstable”) value distributions. Hence, measures con-
sidering subjects and their out-degrees are considered
more meaningful. Measures like the number of (par-
allel/unique) edges, maximal (in-) degree, maximum
predicate (in-/out-) degree, and the number of typed
subjects, are inherently high in variability within and
across knowledge domains. Their heterogeneous char-
acter lets them be ineffective and not appropriate for
dataset/category discrimination.

6.3. Limitations

There are some limitations of our experimental
study that are worth to mention.

6.3.1. Size of the sample

The analysis of measure efficiency involved 280
datasets out of 1,163 (end of 2017). While this number
seems low regarding the theoretically available num-
ber of datasets, compared to other qualitative stud-
ies on datasets from the LOD Cloud, for instance

[11,12,21], it sounds reasonable and of sufficient rep-
resentativeness. Unfortunately, this is the current sit-
uation and, without additionally querying SPARQL-
endpoints, the most that one can get from crawling the
LOD Cloud.

6.3.2. Computational cost

Using our framework and infrastructure, we com-
puted the described measures and study the graph
topology of large state-of-the-art RDF knowledge
graphs such as the English DBpedia with over 1.5B
edges (cf. Table 2). However, memory consumption
is a crucial bottleneck considering scale and growth
of RDF graphs. Further, on graphs with a particularly
large number of edges (>100M), building temporary
lists of edge labels and the repetitive linear iterations
over lists of vertices has significant negative impact on
performance (cf. Table 4). For many measures, scal-
ability of measure computation could be approached
through a divide-and-conquer approach, by splitting
the large graph into partitions and merging the individ-
ual results one after another. In this sense, we have a
beta-ready implementation'? for all measures with the
exception of ratios, such as subject-object-ratio),
we implemented from [15]. However, we did not test
extensively whether the implementation is reliable,
and thus for this paper all measures for large graphs
were computed by loading the entire graph into mem-

ory.

6.3.3. Unbalanced domain classes

In order to tackle the class imbalance of our sample,
we investigated class weighting and over- and under-
sampling techniques on the training sample passed to
the classifier. Oversampling creates synthetic datasets
(no duplicates) in each class up to the number of
datasets of the largest class; undersampling down-
sampled all classes to the size of the smallest class.

Feature importance methods are sensitive to the
data structure and the distribution of feature values,
and thus all methods showed different scores for the
corresponding measures. What is interesting though,
the set of measures considered important was sim-
ilar to a great extent, in particular the most impor-
tant measure per category (e.g., mean_out_degree,
mean_predicate_list_degree,
and max_labelled_out_degree). Further, the model
was trained following best practices for model tuning

pseudo_diameter,

13https:// github.com/mazlo/lodcc/tree/master/graph/measures/
fernandez_et_al
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and cross-validation-based model selection. Hence, we
assume that the obtained impact ratio of the classifier
for each feature is reliable.

6.3.4. Limited set of features

If one actually wanted to perform category predic-
tion [2,26] or measure the structural similarity between
RDF datasets [27], we could ask if the graph measures
presented in this paper are appropriate and sufficient.
As discussed earlier, vocabulary usage and the way
how publishers, data extraction tools, and researchers
describe data, has an impact on the graph’s topology.
Employing merely ontological information of the RDF
dataset is, however, not sufficient to reach acceptable
prediction accuracy [2]. Our classification experiment
showed that, by employing topological measures, the
prediction of categories for datasets is possible. Thus,
knowledge domain-related, topological, and dataset
features should complement one another. Aligning and
integrating other tools and features for the extraction
of metadata and vocabulary usage [5] would achieve
improvements in prediction accuracy. Further, the in-
tegration of measures to somewhat distinguish hierar-
chical and traversal relations in the graphs, as this is a
key characteristic for RDF data, would be beneficial.

6.3.5. Application and generalization of the findings
to other (non-RDF and non-LOD) graphs

With our framework, all of the measures in M and
M’ can be computed on graph-like datasets from other
knowledge domains, outside of the LOD Cloud. Al-
though metrics introduced by Fernidndez et al. [15]
are considered to characterize RDF graphs in par-
ticular, of which in this paper only some could be
implemented in the framework® and included in the
study about measure efficiency, on closer inspection,
most of them could also be applied to non-RDF
graphs. distinct_classes, typed_subjects, and ra-
tio_of_typed_subjects form exceptions, as they re-
quire edges explicitly labeled with rdf:type. To analyze
non-RDF graphs, an essential requirement is to have
some form of consistent labeling (literal or numeric)
of the edges during graph initialization.

However, in this work, we investigate RDF graphs
only. RDF graphs are multigraphs, which may contain
multiple edges between the same pair of source and
target vertices, and whose use of (partly) very special-
ized vocabularies exposes special characteristics to the
graph’s topology. Thus, the results are unlikely to be
applicable to non-RDF graphs and categories outside
the LOD Cloud. Moreover, although following best
practice techniques for avoiding overfitting, value nor-

malization and feature selection, classification models
are very task-specific. Models are tuned towards (a)
the sample of RDF datasets we obtained and analyzed
from the LOD Cloud, and (b) the final set of features
obtained from the feature engineering step. Thus, the
generalizability of our findings to other kinds of graphs
(non-RDF) is an important part of future work.

7. Conclusion and future work

We have created a framework with which one may
efficiently compute topological graph measures for
an arbitrary number of RDF datasets [36]. The main
objective of this paper is to assess individual mea-
sure effectiveness and performance of 54 graph and
RDF graph measures for RDF datasets. This is accom-
plished by means of statistical tests, such as the analy-
sis of correlation coefficients, results of feature selec-
tion, analysis of variability, and a supervised classifi-
cation task, in order to assess a measure’s efficiency
and performance in terms of its capacity to discrimi-
nate dataset knowledge domains. For this purpose, a
sample of 280 RDF datasets from nine knowledge do-
mains was acquired from the LOD Cloud late 2017.
All 280 datasets, instantiated graph objects, and values
for 54 measures per graph are available for download
on our website.'* Please note that, despite following
best practices for model tuning and cross-validation-
based model selection, the primary aim was not to find
the best classification model but to provide an under-
standing of feature performance, i.e., the importance
of distinct graph measures in this particular task.

From a mixed set of initially 54 graph and RDF
graph measures, the final set of 13 measures is ac-
tually effective, distinct, and meaningful, in order to
describe RDF graphs. The majority of the measures
are RDF graph-based, according to the definition in
[15], and preferably employs the out-degree and out-
going edges of subjects to some extend. To discrimi-
nate categories, the following measures have the most
significant impact: the average number of repeated
predicate lists (mean_predicate_list_degree), the
diameter of the graph (pseudo_diameter7), the maxi-
mum number of predicates with which a subject is re-
lated (max_labelled_out_degree), and the mean out-
degree of the vertices (mean_out_degree).

The prevalent structure of topology is shaped by
means of two mutually influencing aspects: (1) fun-

14https://data.gesis.0rg/lodcc/2017—08
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damental characteristics that adhere to RDF knowl-
edge graph topologies in particular, and (2) the com-
pliance to a standardized vocabulary. The distinctness
of a measure’s impact in the individual knowledge do-
mains implies that there are fundamental differences
in the shape of topologies. An RDF dataset that is re-
using a popular vocabulary will likely show character-
istics that can be found in other RDF graphs. The more
diverse the use of vocabularies in a dataset is, the more
variety and irregularity will be found in common struc-
tural patterns of the topology. Therefore, datasets using
proprietary vocabularies will differ in their structure.
Hence, a group of RDF graphs with similar charac-
teristics causes knowledge domain-dependent feature
performance and impact.

Apart from the classification experiments, we also
gained some understanding of the general ability to
predict category labels for RDF datasets, by relying on
topological measures of the graphs exclusively. The re-
ported accuracy is comparable with other approaches
and experiments, such as [2] and [26]. We came to the
conclusion that this is on account of the usage of stan-
dardised and established vocabularies in the knowl-
edge domains itself. This can be considered as being a
qualitative aspect of a particular knowledge domain.

7.1. Implications

We are confident that related work in the fields of
synthetic dataset generation, sampling methods, and
frameworks for quality evaluation, e.g., can benefit
from considering efficient topological (RDF) graph
measures and category-specific assessments of the
RDF graph’s topology.

— A primary goal of synthetic dataset generators is
to emulate datasets and to be as close as possible
to a real-world setting. Thus, topological charac-
teristics exhibited by a particular knowledge do-
main are of high value. Beyond parameters like
the dataset size, which is typically interpreted as
the number of triples, synthetic dataset genera-
tors might employ meaningful and disregard non-
efficient (RDF) graph measures, in order to target
the domain of test-data generation more appropri-
ately.

— Sampling methods aim at finding a most repre-
sentative sample from an original dataset. Apart
from considering qualitative aspects, like classes,
properties, instances, and used vocabularies, also
topological aspects of the original RDF graph

should be considered. Our framework and the
proposed (RDF) graph-based measures could
help to evaluate the quality of a graph sample.

— Having topological measures as another group
of features is beneficial for solutions that evalu-
ate and ensure the quality of Linked Open Data,
such as dataset labeling/classification tools and
RDF dataset profile generators. Concerning effi-
cient measures, each category (LOD Cloud do-
main class) might have its own understanding of
quality, such as a large diameter for datasets in
Linguistics, a lower average degree for datasets in
the Life Sciences, etc. Outliers and striking val-
ues for some measures could be indicators for er-
roneous data or ways of modeling or using a vo-
cabulary that is not compliant with the knowledge
domain of interest.

7.2. Future work

Our intuition is that features performing well on the
classification tasks also are useful, e.g., when mod-
elling benchmark datasets, synthetic datasets or de-
vising sampling strategies, as they are able to model
dataset topology as representative for different kinds
of datasets, for instance, specific dataset categories.
While in this work we evaluate feature performance
on the base task of distinguishing datasets, future work
will deal with a more use-case driven evaluation in the
context of benchmark and synthetic datasets.

Further, we plan to align graph features with fea-
tures extracted by established RDF profiling tools.
This widens the field of potential research and ap-
plications involving graph-based measures. For in-
stance, we plan to improve the prediction of appropri-
ate category labels for datasets by including features
at instance- and schema-level of an RDF dataset. This
enables research in the direction of quality assurance
and dataset search.

In order to shape an understanding of the gen-
eralizability of our findings and to understand the
graph topology through graph-based measures in other
knowledge domains, we plan to include more datasets
from other sources, e.g., graphs different to RDF
datasets. Also, the evaluation of measures will be
extended towards non-RDF graphs, with the aim to
compare measure impact between these two types of
graphs.

The effort for computation of some measures on
very large graphs (>100,000,000) led us to implement
a way to compute certain measures on graph partitions.
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While this is not central to this paper and the proposed
approach described in Section 4.2, we plan to release
a stable version of the framework in future after thor-
ough evaluation of the functionality.

In terms of infrastructure, our portal is going to be
updated with an upload functionality. A website visitor
may then upload or provide the URL of an RDF dataset
to let our framework analyze the corresponding RDF
graph. By this means, we hope to collect more datasets
and statistics.

In order to facilitate the access, usage, and querying
of the results, we consider to represent all measures for
all RDF graphs as an RDF dataset itself and import it
into a publicly available SPARQL-endpoint. The RDF
Data Cube Vocabulary [9] is considered for this.
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