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Residual Feedback Learning for Contact-Rich Manipulation Tasks with
Uncertainty
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Abstract— While classic control theory offers state of the
art solutions in many problem scenarios, it is often desired
to improve beyond the structure of such solutions and surpass
their limitations. To this end, residual policy learning (RPL)
offers a formulation to improve existing controllers with re-
inforcement learning (RL) by learning an additive “’residual”
to the output of a given controller. However, the applicability
of such an approach highly depends on the structure of the
controller. Often, internal feedback signals of the controller
limit an RL algorithm to adequately change the policy and,
hence, learn the task. We propose a new formulation that
addresses these limitations by also modifying the feedback
signals to the controller with an RL policy and show superior
performance of our approach on a contact-rich peg-insertion
task under position and orientation uncertainty. In addition, we
use a recent Cartesian impedance control architecture as the
control framework which can be available to us as a black-box
while assuming no knowledge about its input/output structure,
and show the difficulties of standard RPL. Furthermore, we
introduce an adaptive curriculum for the given task to gradually
increase the task difficulty in terms of position and orientation
uncertainty. A video showing the results can be found at
https://youtu.be/SAZm Krze7U.

I. INTRODUCTION

Humans’ skills for manipulating their environment has
historically been foreseen as being overtaken by machines
for which recent decades of research in artificial intelligence
have promised more dexterity, adaptability, and cost effi-
ciency with the help of accumulated experience or data.
On the frontier, deep reinforcement learning (DRL) has
proven its capability at learning similar skills through data
and prior-knowledge, offering novel solutions while often
surpassing humans’ performance similar to other advances in
machine learning (ML). However, as the research in this field
continues, major challenges such as sample complexity and
generalization capacity of the algorithms are yet addressed
differently given each problem scenario and in many cases
no solution is known to be optimal.

In many problem settings improving over available so-
lutions appears more applicable than learning skills from
scratch. Especially when samples are expensive, more guar-
antees are necessary, or the need for a solution is perceived
more crucial than discovery while engineering costs are
undesirable. Residual policy learning (RPL) [1], as one of
possible solutions in this regard, suggests a formalism where
the reinforcement learning (RL) agent learns to compensate
for the imperfections of the up-stream controller by superpos-
ing its actions with it. This formulation provides a trade-off
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Fig. 1: (a) RPL combined with RFL. Notations 0,¢, 0,¢, a{l,
and a;, correspond to the observations of the prior controller,
and the RL policy, inferred actions from the RL policy,
and final actions applied to the environment. (b) While
RPL regards the intervention of the RL policy as external
perturbation and error compared to its goal, it resists the
intervention. In contrast, RFL changes the goal itself through
feedback, that is for example, the controller sees a virtual
position instead of the true position.

between capturing more information from the environment or
allowing more exploitation of prior knowledge. Yet, the up-
stream controller in many cases sees the intervention of the
RL policy as external perturbation and error, and therefore
tries to resist it. Fig. 1 (b) illustrates an example on the left
where an ideal RL policy applies force toward the optimal
direction while the controller has a different goal. In this
case, one can instead modify the feedback to the controller
and obtain different results. In this formulation which we
denote as “residual feedback learning” (RFL) the controller
observes, for example, a virtual position, instead of the true
feedback, and is therefore promoted in a different direction.
In addition, in places where each formulation has its own
advantage, combining both, i.e. an RL policy that outputs
the residual controls as well as residual feedback commands,
allows leveraging the distinct advantages of both methods
simultaneously in one framework.

In general, for tasks that require wide spatial movements,
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e.g, moving toward the hole in a peg insertion task, RPL
appears limited as the up-stream controller observes the
external intervention of an ideal RL policy as error from
its goal and tries to recover from it. In contrast, RFL causes
the controller to observe a virtual feedback (e.g., position)
instead of the true feedback and hence does not result in a
competition between the RL policy and the controller. On
the other hand, for tasks that require sudden actions or high
frequency vibrations such as releasing a stuck peg due to
the orientation uncertainty of the hole, RFL does not appear
suitable as the up-stream controller is often designed to only
have smooth outputs while filtering feedbacks in different
ways. In contrast, in this scenario RPL can apply such sudden
actions. For this reason, we want to leverage the distinct
advantage of each formulation at the same time. We refer to
this approach as Hybrid Residual Reinforcement Learning
(HRRL) and illustrate in our experiments the beneficial
performance of such approach.

Furthermore, we build our residual reinforcement learning
algorithm on the recently developed manipulation framework
of [2] which provides an adaptive and compliant controller
based on impedance control for several manipulation tasks.
Using this baseline, we show the applicability of our formula-
tion for industrial assembly environments represented by the
common challenging peg-in-the-hole task. In addition, this
approach allows having the option to choose where the RL
policy should intervene for improvement as shown in Fig. 2.
Finally, we evaluate and compare different variations of our
residual policies for each sub-task of peg-in-the-hole, as well
as the complete task in simulation. We considerably increase
the task complexity by adding significant uncertainty in po-
sition and orientation of the hole, rendering it impossible for
the standard controller to overcome. In order to cope with this
challenging scenario, we apply adaptive curriculum learning
to vary the task difficulty in terms of these uncertainties,
leading to significant performance improvements.

Our primary contributions are as follows:

« We propose an alternative and an extension to the RPL
formulation [1] to address its limitations for a wide
range of tasks and controllers.

o« We extend the manipulation framework of [2] using
our approach and illustrate how the addition of residual
feedback removes some limitations of standard residual
policy learning.

e An empirical evaluation of the original method and
ours along with their variants in simulation that we
train within a recently proposed adaptive curriculum
formalism [3].

II. RELATED WORK

a) Residual Reinforcement Learning: Two concurrent
works [1] and [4] demonstrated the RPL formulation and
highlighted advantages such as sample efficiency, better sim-
to-real adaptation, as well as the ability in handling sensor
noise and controller miscalibration. A follow-up work [5]
developed this idea further using visual inputs and sparse
rewards for industrial insertion tasks. Other work investi-
gated improving the performance of RPL by exploiting the
uncertainty of the policy architecture to decide when only

the bare controller should be used [6] or taking advantage of
using more than one controller [7].

b) Contact Rich Manipulation and Assembly: Early
works regarding peg-in-the-hole insertion had a rather the-
oretical view for analyzing contact models between the
peg and the hole [8], [9]. A number of works focused on
task specific engineering efforts or obtaining an accurate
state estimation of contact through analytical or statistical
methods [10]. On the other hand, some of the learning-based
approaches include learning from demonstration (LfD) [11],
model-free RL with proprioceptive and/or visual feedback
[12], [13], [14], model-based RL [15], [16], and meta-
RL [17]. A concurrent work [18] also leveraged residual-
RL for an insertion problem. However, the authors mainly
focused on analyzing the performance of a newly proposed
graph-based structure for the experience replay buffer used
commonly in off-policy RL methods. There has been recent
effort proposing to take the advantages of the complementary
nature of both haptic and visual inputs for industrial ma-
nipulation tasks [19], [20], [14], [21]. The formulations we
discuss and propose in this work can certainly leverage the
above ideas as well, as they remain agnostic to the choices
of state representation, policy architecture, and the training
algorithm.

c) Impedance Control: Variable impedance actuators
(VIA) offer various natural characteristics of human motion
such as safety, robustness, and energy efficiency while still
possessing fast response time to impacts as well as energy
efficiency [22], [23]. A recent work that applied VIA [23]
proposed the first controller that can simultaneously adapt
force and impedance within unknown dynamics to handle
unstable conditions without requiring sensation of interaction
forces. This work was then extended by Johannsmeier et.
al. [2] to Cartesian space and full feed-forward tracking
to also offer a structure for Cartesian impedance control
that is applicable in a variety of tasks. Accordingly, the
authors exploit the knowledge regarding constraints that
come with every hardware such as stiffness adaptation speed.
Furthermore they define a graph based manipulation skill
formalism that can reduce the complexity of the solution
space for robots’ force-sensitive manipulation skills. We
leverage these ideas in this work, while in contrast, we resort
to a finite state machine controller.

III. PROBLEM STATEMENT
A. Partially Observable Markov Decision Process

We assume a controller is already available over which we
aspire to improve using RL. Similar to most RL works in ma-
nipulation skills that involve uncertainty, we also formulate
our problem as a discrete time and episodic Partially observ-
able Markov decision process (POMDP) described by the
tuple M = (S, A,0,P,E, R, ). These entries respectively
correspond to the state-space, action-space, observation-
space, transition probability P (s¢+1 | S¢, a¢), emission prob-
ability £ (0| s), reward function 7(s,a), and discount fac-
tor 7; where s € S,a € A,o € O. We also define
R(r) = Z?:t vi=tr(s;,a;) as our discounted return where
7 = (8, a¢,...,87,ar). The objective is to optimize the
parameters 6 of a policy g : S x A — [0, 1] to maximize the
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Fig. 2: (c): State machine behavior sequence of our insertion formalism. (a): The vanilla residual policy formulation from [1],
[4]. (b): An alternative to allow inferring residual wrench values instead of residual joint torques. (d): The vanilla residual

feedback formulation in contrast to (b). (e): Similar to (b) it

is an alternative allowing to infer residual feedback in task

space instead of joint space, e.g., the end effector pose. We elaborate more details regarding each in section IV.

expected return R, that is argmax E.,, ) [R(7)] where py
0

is the trajectory distribution induced from the stochasticity of
transitions, observations, and policy. In the following section
we elaborate on how we integrate the RL policy 7y along
with the controller to improve beyond its structure efficiently.

B. Finite State Controller for Manipulation

Following the skill formalism described in [2], we imple-
mented a state machine for our peg-in-hole task, shown in
Fig. 2(c) and include it within our black-box controller, over
which we seek improvement. This state machine controller
includes five states each of which evaluates predefined suc-
cess conditions Cgy. at run time to allow proceeding with
next states or subtasks. Moreover, we use an additional state
to proceed with a recovery behaviour if any of the states
are not successful, i.e. evaluate to Cg.., or the insertion
sequence has finished. This state in the context of RL serves
as a reset behavior for re-initializing the environment again
at test or train time. As shown in Fig. 2(c), we have the
advantage of optionally choosing which state of the state
machine should improve and suggest intervention of the RL
policy only at those states, highlighted in blue. The inputs
to the controller include joint position, velocity, and effort
at 1KHz along with the outputs of target joint torques at
the same frequency. In addition, the state machine updates
set-point commands of the controller at 40Hz similar to the
frequency at which residual commands are inferred from my.
For each episode, this result in environment steps of approx.
6000 while the learning steps at which we use the RL policy
(episode length) was approx. 150 which is also because we
use the policy during only two out of five states of the state
machine. As illustrated in Fig. 2(c) it includes five primary
states starting with "Move to pre-insert pose” that brings the
peg in a tilted orientation above a pre-defined hole position.
Next, in “Find contact”, the peg is moved toward a pre-

defined direction until it touches the surface after which the
controller proceeds with the “search hole” state that moves
the peg on the surface while maintaining a constant vertical
force on it to find the hole. Afterwards, the peg’s tip is
assumed to be between the hole’s edges where in “Hybrid
force alignment” the robot aligns the peg with a pre-defined
orientation vertical to the surface while applying a constant
force on the surface. Finally, in the “Insertion™ state, the
controller, applies a vertical force to insert the peg while
applying sinusoidal oscillations over the applied wrench at
the end-effector frame.

IV. HYBRID RESIDUAL FEEDBACK & ACTIONS

We first define the configuration space of our robot as C' €
R” in addition to its joint’s angular velocity V € R7, joint’s
torque space 7 € R7, end-effector pose P € R” (Cartesian
position and quaternion), and wrench space YW € RS. For
each modality we use superscripts ’0”, ”u”, and "7 if they
represent the input to the controller, its output, and the output
from sampling the policy distribution my. Accordingly, we
assume f is a a conventional impedance feedback controller
with a mapping f : C° X V° X T° + T". Furthermore, we
distinguish between the observations of the controller f and
the RL policy by 01 € C°xV°xT° and oy € O respectively.
Nevertheless, the methods discussed in this section are yet
agnostic to the choices of f, observation, and action spaces.
In the following we define each sketched formulation in Fig.
2, and Fig. 1(b).

A. Residual Policy Learning (RPL)

The original formulation of RPL proposes to use a residual
policy whose actions are added to the outputs of the con-
troller. However, depending on the controller’s architecture,
the output of the controller can be adapted at different levels
of the control command, e.g., the joint effort or the end-
effector wrench. Both approaches are described below.



1) joint effort action: The original RPL formulation,
mp: O X T™ — [0,1], proposed by [1] suggests superposing
outputs of a RL policy with those of the up-stream controller
f, that is

rl

ay’ ~7o (-] 0ye), ar= f(o1,t) +a§l. (1

Here we define 7™ as the action space of the policy my
which is of the same modality as the controller’s outputs,
in this case joint efforts. We refer to this formulation in our
comparison as “joint effort action” and illustrate a schematic
of it in Fig. 2(a).

2) end-effector wrench: As mentioned earlier, although
we can assume no knowledge about the input/output structure
of the controller, in cases where such knowledge is available,
we can certainly exploit them to our problem’s advantage. In
our case for RPL we i) first map the upstream controller’s
output to the wrench space, ii) then superpose them with
their equivalent output from the 7y, and finally iii) map the
result back to the original joint space. This procedure can
also be done by only mapping residual wrench values to
joint space, yet with less possibility for post-processing of
the controller’s output in wrench space. In our case, we do
this conversion by F = I and 7 = JTF where T € T,
FeW,J, and Jt are joint torque commands, wrench at
end-effector frame, Jacobian, and damped-pseudo inverse of
the Jacobian respectively. We note this formulation as “’end-
effector wrench”, mg : O x W™ — [0, 1], with a superposed
action computed as

wy ~ 7y (- | 0,0),  ar = f(or,t) + T wy. 2)

This formulation allows using a control space that is more
relevant for the task, i.e., the end-effector space, and there-
fore, intuitively, it should be easier to solve for the residual
policy depending on the task. This policy design is sketched
in Fig. 2(b).

B. Residual Feedback Learning (RFL)

There is a wide range of tasks where the above formulation
does not perform well as the residual policy causes a
feedback distribution shift that the controller sees as external
perturbation which it tries to resist. Hence, the residual
actions from the RL policy results in a competition between
f and my. That is, as shown for example in Fig. 1 (b), if the
Ty optimal action moves the end-effector to the left, the prior-
controller fights this perturbation and generates forces to
retrieve the previous position. Furthermore, depending on the
controller’s structure, the response to such perceived external
perturbation or persistent error can vary extensively. In some
cases it may even lead to lower safety, especially where the
residual-policy architecture lacks bounded output guarantees.
To address such limitations, we propose learning a residual
feedback as an alternative to residual-action policies. Here,
instead of superposing residual actions to the output of the
controller, we superpose residual feedback to the feedback it
receives from the environment.

1) joint position feedback: We start with a vanilla for-
mulation where residual feedbacks are used in the original
feedback space of the robot, in our case the joint positions.
Our residual feedback policy can be defined as mp : O X

C™ +— [0,1]. The superposed action is then computed as
follows

ok~ g (- 0ye), ar = flor+ 0T, 1). 3)

For residual feedback however, we only superpose residual
joint position feedback ¢ € C !, while optionally other
feedback modalities can be included, e.g.. joint’s angular
velocities and torques, depending on the application. This
policy design is sketched in Fig. 2(d), where we only show
an example of a superposition of residual joint position
feedback.

2) end-effector pose feedback: We can again use a task-
space centric feedback signal by converting the feedback
from the environment to the task space and, after superpo-
sition with the output of the RL-agent, map them back to
their original space. For instance, we do so in our case we
map joint positions to end-effector position in the base frame
using forward kinematics (FK). Afterwards we map the
superposition results back using inverse-kinematics (IK). We
denote this residual feedback approach “end-effector pose
feedback”. In addition, this conversion can be done rapidly
as the agent’s outputs only make a small modification of the
feedback and the optimizer that we use for inverse kinematics
can use the true feedback as an initial optimization point.
This procedure results in a definition of our policy my :
O xP™ — [0, 1], where PT is the action space (i.e. residual
end-effector pose), and the superposed action is computed as

ee = FK(qt), agl ~ 7T9('|02t)7

4
Qresidual = IK(@@ + Ggl), ay = f(Qresiduah V¢, tt)~

where ee € P° and we assume the normal input to f is
0,+ = (g, v, 1) (before superposing residual feedback).
This policy design is sketched in Fig. 2(e). The formulation
again allows adapting the feedback in a space that is more
relevant for the task.

C. Hybrid Residual Reinforcement Learning (HRRL)

Each formulation of residual reinforcement learning and
feedback learning has advantages depending on the stage
of the task execution (cf. our experiments in section V-C).
This allows, for example, sudden actions or high frequency
vibrations that are needed for releasing a peg that is stuck
due to overcome orientation uncertainty with residual actions
as well as more flexible spatial movement of the peg in
search for the hole with residual feedback. For this reason
we propose a combination of residual action and residual
feedback to form a new residual hybrid model, called “joint
space hybrid”. We illustrate a schematic of our hybrid model
in Fig. 1(a). In our case, we extend the action space to 14
dimensions where the first 7 dimensions contribute within
the original residual policy formulation and the remaining
dimensions modify the feedback. In particular, our hybrid
residual policy is defined as mg : O x T™ xC™ — [0, 1], with
a superposition,

rl rl

a;', 0"y ~mo (- | 0ye),  ar = flor + oﬁ,t) + afl. 5)

'where we implicitly assume the sum ot + oﬁ being a superposition of
oflt and corresponding joints’ dimensions of o, ¢.



Note that oﬁ € C™ only represents residual feedback of the
joint modality. For simplicity we implicitly assume the sum
0.t + 071"fE is a superposition of ofé and corresponding the
joints’ dimensions of o, ;.

V. EXPERIMENTS

In the following we evaluate the above formulations ex-
perimentally to observe their advantages and disadvantages
within different problem settings. This includes comparing
them in terms of final-performance, sample efficiency, as
well as well as an analysis of the benefits of each method
over the others. While denoting our experimental settings,
we start with simulations first and illustrate our result in the
real environment in the end.

A. Workspace

We base our experiments on a peg-in-the-hole task where
a shaft of 70mm length and 25mm diameter is used as
the peg. We use the Franka Emika robot arm with seven
degrees of freedom (DOF) to fully insert this peg in a hole
of 25.8mm diameter. Two robot arms were used — one
for peg insertion while the second arm rearranged the hole
between each episode for simulating the pose and orientation
uncertainty. To leverage quick experiments while focusing on
the difficulty of contact rich insertion rather than grasping,
we fixated the shaft and hole designs to the robots’ arm
as shown in Fig. 3. Compared to some of the earlier peg
insertion works, e.g. [9], [14], [17], [18] our task is more
difficult due to the larger size of the peg in terms of diameter,
length, and raw surface roughness owing to the 3D-printer’s
outlet. The end-effector commands and state readings are
computed with respect to the tool central point (TCP) at
the tip of the peg. For our RL learner we use the PyTorch
proximal policy optimization (PPO) implementation from
[24].

We introduce uncertainty to our task in terms of the
position and orientation of the hole in meters and radians
respectively, i.e., before each episode, the hole position and
orientation are sampled from a Gaussian distribution and the
second arm rearranges the hole accordingly. The variance of
this Gaussian distribution directly relates to the task difficulty
and is specified by the curriculum. The position of the hole
is not known to the second robot (the learning agent). In
addition, to allow evaluation and debugging in simulations
for orientation uncertainty separate from that of the position,
the orientations are calculated with respect to a central point
on the upper side of the hole to allow the peg’s tip to
always fall down between the hole edges. In all training
experiments we choose the sparse reward of r(s,a) which
is 1if ||Ptcp — Pt*cpH2 < ¢, and O otherwise , where P,
and Py, are the current and goal TCP positions. The value
of Py, is computed based on the lower side of the hole’s
position and € was set to Smm. We initialize the last layer
of the policies with zero weights such that we start with a
plain execution of the prior-controller. We use the first 50
episodes to only learn the critic without updating the policy.
The starting points of all curves are regardless of the chosen
algorithm.

We use MuJoCo [25] for simulation of our peg-in-the-hole
assembly task. Only one robot is simulated as the hole can

(a) Real scene

(b) Simulation scene

Fig. 3: Franka Emika robots at train time for peg-in-the-
hole task. While one robot is responsible for insertion of
the peg, the other robot serves as a mechanism to introduce
uncertainties of the environment.

be rearranged programmatically. Since the physics engines
require all simulated objects to be convex, we automated
the design of CAD models to fulfill this requirement using a
python script in Blender [26] that decomposes separate mesh
parts for MuJoCo. A simulation scene can be found in Fig.
3.

B. Searching for Hole using Visual Inputs

Although our focus regarding industrial assembly is
mainly on using contact feedback, we find using visual inputs
while moving towards the hole in the air better to contrast the
advantage of using residual feedback compared to residual
actions. We do so during the "Move to pre-insert pose” state
of the state machine, shown in Fig. 2 (c) and consider 1.6
centimeters position uncertainty for the hole without any
orientation uncertainty. For our observations O we choose
84x84x3 RGB images from a hand-mounted camera, as
well as the robot’s end-effector’s Cartesian position and
orientation in Euler angles along with its wrench. In addition,
we choose a convolutional policy architecture similar to [27].
These convolutional layers that receive RGB inputs comprise
of 32 filters of 8x8 size with stride 4 followed by 64 filters of
size 4x4 with stride 2, and 32 filters of size 3x3 with single
stride, all of which use ReLLU activation. We concatenate the
output of the convolutional layers with a latent representation
of the robot’s state similar to [3] before the subsequent
actor’s and critic’s fully connected layers.

Here, with the original formulation of RPL (e.g., joint
effort action” in our case), ideal residual actions try to move
the peg above the hole while the upstream controller observes
this interaction as external perturbation and resists it. This
effect becomes more damaging when the frequency of the
controller is higher than the frequency of the RL-agent inter-
ventions. That is, if we update each residual action after every
10 controller steps, those 10 steps represent opportunities
to counteract the external perturbation and hence compete
with the RL-policy. One way to investigate such an issue is
using different RL-agent frequencies. However, this would
also change the episode length and the learning problem.
For this reason, we only add a number of controller "’buffer
steps” during which the controller works without any update
from the RL policy, giving the aforementioned opportunity to
recover from any external perturbations, such as those from
the RL policy. We add these buffer steps at the end of the
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Fig. 4: Performance of using residual feedback learning com-
pared to the original residual policy learning. The environ-
ment difficulty includes only 1.6 (cm) position uncertainty.
Error bars correspond to half of the standard deviation over
30 seeds.

“"Move to pre-insert pose” each of which correspond to 1
millisecond of using the controller without any RL policy
inference. Furthermore, regardless of the sensitivity of the
low-level control layers to their feedback (e.g., impedance
controller in our case), higher level layers such as state
machines or a behavior trees can also respond critically
to the feedback. We show an example of such case that
we refer to it as ”strict condition” in our comparison in
Fig. 4, where the state machine raises an error if it does
not observe achieving its goal that can be the result of
any external perturbation such as those coming from the
residual action policy. As illustrated in this figure, higher
buffer steps, e.g., b=100, gives the up-stream controller more
opportunity to resist the residual policy, resulting in lower
success rates. In contrast, using residual feedback does not
result in any competition between the RL policy and the low
level controller, while also keeping the higher level state
machine satisfied in achieving its goal. We observe these
results from the joint position feedback baseline in Fig. 4.

C. Using contact and proprioceptive Features as Inputs

In this experiment, the peg-in-the-hole task needs to be
learned without vision feedback, only relying on the pro-
prioceptive feedback and the contact force readings at the
joints. We choose the relative position of the end-effector
from the position where the first contact takes place denoted
as Pi.p, along with its orientation in euler angels, 6, and
the measured contact wrench F at the end-effector frame.
For the policy architecture, we use long short term memory
(LSTM) similar to [28], which is shared between the actor
and the critic as shown in Fig. 5. The actor computes the
mean of a d, dimensional Gaussian distribution from which
actions are sampled, (see Section IV for a description of
the action definitions). Here, achieving a successful insertion
includes solving two main sub-tasks that are i) search for the
hole by moving the peg’s tip on the surface, and ii) insertion,
during which orientation uncertainty is of challenge. We aim
for improving the prior controller in obtaining this goal by
allowing the RL policy to intervene during relevant sub-tasks
as shown in Fig. 2(c). In addition, for training our policy we
leverage the adaptive curriculum formulation from [3] with
the difference that our environments adapt the difficulty inde-
pendent of each other. This curriculum increases or decreases
the degree of domain randomization (variance in the hole
position and orientation) depending on the current success
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Fig. 5: The network architecture used in Section V-C. We
initialized our policy architecture with (semi) orthogonal
matrices of gain v/2, except the last layer of the actor which
similar to [4] is zero initialized.

rate of the policy which helps us significantly on sparse-
reward domains like our current setting. That is, when the
current success rate is below 0.6, we decrease the difficulty,
and increase if the success rate is above 0.7. We list the
parameters of such adaptive domain randomization as well as
the uncertainties involved in our evaluation environments in
Table I. Moreover, Fig. 7 shows the history of this adaptation
in our experiments and Fig. 6 illustrates the results of our
evaluations concurrent with training. These evaluations were
done for position and orientation uncertainty separately as
well as together. Additionally, we include a comparison with
learning from scratch where the controller is only used for
finding contact and alignment of the peg while the rest is
purely controlled by an RL agent using joint torques as the
action space. In addition, we also experiment the ”joint space
hybrid” formulation that had shown superior performance
but without the adaptive curriculum. This baseline that we
denote “joint space hybrid (without curriculum)” in Fig. 6
trains the environments with the same difficulty at which the
other baselines are evaluated, and due to this high difficulty,
it rarely observe any reward to learn.

As the results shown in Fig. 6 suggest, joint position
feedback appears superior for handling position uncertainty,
joint effort action for orientation uncertainty, while miti-
gating both uncertainty types could be achieved best with
joint space hybrid. We see the same observations from Fig.
7 where joint space hybrid can adapt to the widest range
of uncertainties, i.e. always maintain a high success rate on
the largest standard deviations of domain parameters. This
makes sense as overcoming position uncertainty requires

Adaptive Experiment
domain randomization Only Only Both
parameters Position Orienration | Unc. types
Position std. Initial _ 0.007 0 0.007
(Meters) Evaluation 0.016 0 0.015
Increment 0.001 0 0.001
. . Initial 0 0.05 0.05
Orlfél:‘zg;;;ls)s td. Evaluation 0 0.15 0.1
Increment 0 0.01 0.01
success rate bounds [0.6, 0.7] [0.6, 0.7] 10.6, 0.7]

TABLE I: Adaptive curriculum parameters used in each
experiment that we describe in section V-B. The evaluation
values correspond the constant difficulty at which the policies
were evaluated in Fig. 6 concurrent with training.
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more spatial movement of the peg which is difficult with
”joint effort action” (i.e., RPL) due to the resistance of the
controller. In contrast, for orientation uncertainty, behaviors
such as a rather high frequency vibration of the peg in the
hole help pushing the peg into the hole. Yet, this may not
be possible with residual feedback learning (RFL) learning
as the controller is often designed to produce smooth output
actions. In this case, the RPL can, for example, conduct non
smooth or sudden actions through the residual outputs that
are directly applied to the environment. From our results,
it can be seen that our hybrid residual RL framework
combines the strength of both approaches and shows superior
performance in the single pose or orientation uncertainty
tasks as well as the complete task.

D. Hardware experiments

We trained our policy on hardware with a speed of approx.
3 episodes per minute with the same observation space we
described in section V-C and only using our ’joint space
hybrid” formulation. As we also leverage adaptive domain
randomization here, the evaluation of the policy concurrent
with training similar to the simulations would have doubled
our experiment time. For this we use our real environment
only for training and evaluate it afterwards. We illustrate the
history of the adaptation in Fig. 8 as well as success rate at
train time. Every time the environment’s difficulty increases
with respect to the curriculum the observed success rate
decreases as well that is the reason for the oscillatory shape
of the learning curve. Our training starts with position and
orientation uncertainty of 5 millimeters and 0.015 Radian. In
addition, our adaptive curriculum only modifies the orienta-
tion uncertainty using the second robot as shown in Fig. 3(a),
by an increment of 0.0025 Radian depending on the success
rate over 15 episodes. Using this adaptive formulation offered
us the convenience of not having to predefine the difficulty
of the environment without knowing if it is too high or low
while automatically increasing the degree of domain ran-
domization on hardware. One single experiment in total took
12 hours. Finally, our evaluations demonstrated the success
rate of 0.92 within 25 trials orientation and uncertainty of
0.08 Radians. A video showing the results can be found at
https://youtu.be/SAZm_Krze7U.

VI. CONCLUSION AND FUTURE WORK

Every controller comes with numerous imperfections that
limit its performance. Hence, it is desirable to improve
beyond their underlying structures using least engineering
effort and in a sample efficient way. We demonstrated the
limitations of the existing RPL formulation for controller
improvement that uses residual actions and proposed a more
flexible extension that can also exploit residual feedback. As
we demonstrated, both residual formulations have distinct
advantages that can be exploited in different task settings.
We demonstrated leveraging both residual models simultane-
ously within a hybrid model and gained superior performance
over all cases. In contrast to the RPL formulation where the
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up-stream controller resists the external perturbation caused
by the RL policy, the RFL applies changes in the feedback
signal, which can be regarded as similar to changing the set-
point of the controller in many cases.

Furthermore, we chose industrial assembly as a good
example of a scenario where lack of accurate models to rep-
resent contact rich dynamics is of great challenge especially
if uncertainties need to be considered. While we demonstrate
sample efficient improvement of an assembly task example,
i.e., peg-in-hole using raw sensory inputs, using learned
latent representations of those inputs should promise even
more efficiency and generalization within POMDP settings.
This applies also to different choices of RL algorithms that
are more sample efficient than PPO as our formulations are
agnostic such a choice.

Finally, sim-to-real transfer of policies that only observe
contact inputs is a major challenge that we kept for future
work. In addition, one can also investigate better exploration
strategies as well as more guarantees regarding residual
policy formulations. As we took the advantage of having
another robot side by side with the main robot responsible
for our task, an interesting future extension is to have two
robots competing with each other in an adversarial setting
where one robot tries to learn successful insertions while the
other robot learns to make insertions more difficult.
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