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An artificial magnetic response is not only intellectually intriguing but also key to multiple applica-
tions. While previously suitably structured metallic particles and high-permittivity dielectric particles
were used for this purpose, here, we highlight the possibility to exploit lattice effects to significantly en-
hance an intrinsically weak magnetic dipole moment of a periodically arranged scatterer. We identify
the effective magnetic dipole moment as it is modulated by the lattice and coupled to other electromag-
netic multipole moments the scatterer can sustain. Besides a more abstract consideration on the base of
parametrized Mie coefficients to study the theoretical upper limit, we present an actual particle that shows
an enhancement of the magnetic dipole moment by 100 with respect to what is attainable as a maximal
value for an isolated particle. © 2022 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

In recent years, structuring natural materials have enabled the
control of their optical response in unprecedented ways [1–3]1.
Based on the gained insights, disruptive means emerged to mold
the flow of light. Examples would be nanostructured metals with
which light can be localized in deep-subwavelengths spatial do-
mains by exploiting surface plasmon polaritons [4–6]. Another
example are photonic crystals, i.e., dielectric materials periodi-
cally structured on length scales comparable to the wavelength
that can suppress the propagation of light in selected spectral re-
gions [7–11]. Besides, refraction and diffraction can be tailored at
will while controlling the dispersion relation of the permissible
solutions to Maxwell’s equations in photonic crystals [12]. But
potentially most dramatic along these lines of research has been
the notion of metamaterials [2, 3, 13–15]. Metamaterials are char-
acterized by a subwavelength period and designed, primarily,
to control the propagation of light as it would be possible with a
homogeneous medium characterized by properties inaccessible
with natural materials; or at least unavailable with its constitut-
ing materials. Research on metamaterials considered initially
anisotropic dielectric properties at the effective level. This is
called form birefringence [16, 17]. Later, research focused on
chiral [18] or, slightly more general, bi-anisotropic materials [19–

1A notable contribution to this progress came from Costas M. Soukoulis and
his team(s). We thank him for this inspiration and would like to wish him Happy
Birthday on that occasion.
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Fig. 1. An artistic impression of the article. b) A lattice can
significantly enhance the magnetic response of a particle in
comparison to a) when considering the particle as isolated.
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23]. But an artificial magnetism has triggered the largest share of
excitement. No natural material at optical frequencies supports
a magnetic response, and the permeability corresponds to that of
vacuum [13, 14]. Therefore, in most textbooks, it is quite canoni-
cally stated that the relative permeability can be put to unity, and
magnetic effects do not need to be considered. However, this is
quite a self-imposed limitation. It was shown, a long time ago,
that in the presence of magnetic media, many effects occur quite
counter-intuitive at optical frequencies [24]. A game-changer has
been the suggestion for a perfect lens made from a medium char-
acterized by both negative permittivity and permeability [25].
Moreover, the notion of transformation optics, where permittiv-
ity and permeability are distributed suitably in space according
to a receipt that came from considering light propagation in
homogeneous and isotropic but curved spaces, liberated our
way to think about the design of optical elements [26, 27]. All
these possibilities were motivation to seek materials that offer an
artificial magnetic response at some effective level. Nowadays,
mostly two approaches are established.

The first approach relies on structuring metallic materials
to some interrupted ring-shaped objects [28, 29]. The idea is
always to let the external field induce a conduction current with
a ring shape that gives rise to an induced magnetic dipole mo-
ment [30]. The interruption of the ring is necessary to drive
the oscillation into resonance at an elevated frequency. Plac-
ing many of such artificial magnetic dipoles in an array allows
observing at the effective level dispersion in the permeability
[31]. Metallic structures have been advantageous to reach a deep
sub-wavelength scale [32, 33]. Canonical elements have been
split-ring resonators [34, 35] or cut-plate pairs [36], but many
other structural elements can be equally envisioned. However,
the use of metals is inevitably accompanied by dissipation. And
the absorption of light often prevents the exploitation of the
interesting dispersive effects. Even though this is not a funda-
mental obstacle, the mitigation of the absorption problem would
have been great [37].

That, in turn, led to the second approach to observe an arti-
ficial magnetic response [38–40]. Specifically, already spheres
made from a high index dielectric material sustain, in the form
of Mie resonances, strong magnetic dipole moments that can
be induced around some discrete frequencies. We can think of
these magnetic dipole moments as a consequence of an induced
displacement current instead of a conduction current in a metal.
Balancing the electric and magnetic dipole moment so that they
have the same polarizability in isotropic particles or suitably
shaped dielectric discs gives rise to a Huygens’ scatterer, which
scatters light exclusively in the forward direction [41–46]. While
operating in a spectral proximity to resonance, the phase of the
light scattered in forward direction can be tuned almost in the
entire range from 0 to 2π [47]. This scattering behavior opens un-
precedented opportunities for applications when these particles
are arranged to form an array.

While it has been to some extent already discussed in litera-
ture [48–50], we emphasize here in a systematic analysis a third
mechanism with which a strong magnetic dipole moment in
a structured material can be induced. We demonstrate that a
rather small intrinsic magnetic dipole moment from an object can
be significantly enhanced thanks to the lattice interaction. An
artistic impression of that idea is shown in Fig. 1. For an object
characterized by a magnetic dipole moment only, an enhance-
ment as large as fourfold is observed in the array. A colossal
enhancement by up to two orders of magnitude is witnessed
when exploiting a re-normalization by the lattice interaction

thanks to an electric quadrupole moment sustained in the par-
ticle. Our work highlights the possibility of capitalizing on the
lattice effect to tune the response from periodically arranged
structured materials in a drastic manner.

The contribution is organized as follows. First, we derive
the maximum magnetic dipole moment for an isolated isotropic
scatterer. Next, utilizing a suitable parametrization of the op-
tical response of isotropic particles known as the Mie angles,
we systematically search for a lattice-induced enhancement of
the induced magnetic dipole moment by a normally incident
plane wave excitation. Afterward, we explore the lattice-induced
coupling of the electric quadrupole moment of the individual
particle to the magnetic dipole moment and its effect on the
overall enhancement of the induced magnetic dipole moment.
The colossal induced magnetic dipole moment occurs when the
denominator of the expression describing the re-normalization
of the magnetic dipolar polarizability in the lattice is close to
zero. We provide the complete recipe to hit the sweet spots and
identify the required Mie coefficients to provide two orders of
overall magnitude enhancement. Developing upon that, and
as a proof of principle, using a particle swarm optimization al-
gorithm [51], we design a core-shell particle that satisfies the
required Mie coefficients. Placing this particle in a lattice shows
an enhancement of the magnetic dipole moment by two orders
of magnitude. At the point of the colossal enhancement, the
effective electric quadrupole moment is significantly enhanced
as well. This simultaneous enhancement suppresses specific
far-field effects, but the signatures in the near-field are pretty
clear.

2. MULTIPOLAR ANALYSIS FORMULATION

We consider time-harmonic fields and assume their depen-
dency according to e−iωt. We start our discussion by expressing
the induced Cartesian multipole moments in a particle up to
quadrupolar order. These induced moments can be written as
[52–54]
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The electric dipole (p) and electric quadrupole (Qe) moments
and the electric field (E1) and its gradients (E2) as used in Eq. (1)
are defined as [54–56]
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The magnetic multipole moments m and Qm and the respective
fields H1 and H2 are defined in a similar way as the case of
Eq. (1) but multiplied with a prefactor iη. ε is the permittivity,
and η is the impedance of the medium.

The properties of the object, whether considered isolated or
placed along a lattice, can expressed up to quadrupolar order by
the normalized polarizability tensor ˜̄̄α. It can be written as,

˜̄̄α =
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with the sub- and superscripts being rather intuitive. Subscripts
1 and 2 refer to dipolar and quadrupolar contributions, while the
superscripts e and m refer to electric and magnetic contributions,
respectively. The polarizability can be defined as [54]

¯̄αvv′
jj′ =

√
(2j + 1)(2j′ + 1)π

kjkj′k
˜̄̄α (5)

where {j, j′} = {1, 2} and {v, v′} = {e, m}. The use of a nor-
malized polarizability tensor simplifies the systematic search
process significantly.

For an isolated isotropic particle, i.e. a particle with a spheri-
cal symmetry not placed in a lattice, the polarizability tensor is
a diagonal matrix. This expresses the fact that multipolar fields
of different order do not couple to each other. The diagonalized
polarizability tensor at Eq. (4) simplifies to˜̄̄α0 = Diag

(
α̃p, α̃p, α̃p, α̃Qe , α̃Qe , α̃Qe , α̃Qe , α̃Qe , α̃m, α̃m, α̃m, α̃Qm , α̃Qm , α̃Qm , α̃Qm , α̃Qm

)
.

(6)

where α̃p (α̃m), and α̃Qe (α̃Qm ) are the normalized electric (mag-
netic) dipole and quadrupole polarizability moments, respec-
tively. For an isotropic particle, simple relations between the po-
larizability and the Mie coefficients of the particles exist, namely
[47, 56]

α̃p = ia1, α̃m = ib1, α̃Qe = ia2, α̃Qm = ib2. (7)

When arranging identical particles on a lattice, the normalized
polarizability of the individual particle α̃0, should in turn be
re-written as a function of the lattice interaction. Consequently,
the effective polarizability is calculated as [54, 57]

˜̄̄αeff. (λ) =
[

¯̄I − ˜̄̄α0 (λ)
¯̄C
(

Λ/λ, k̂inc.

)]−1 ˜̄̄α0 (λ) (8)

where ¯̄C is the coupling lattice tensor [57–59], λ is the operating
wavelength, Λ is the periodicity of the lattice, ¯̄I is a unity matrix,
and k̂inc. is the direction of incident plane wave excitation. We
have included the arguments herein to emphasize that the lattice
coupling tensor is a function of the normalized periodicity and
the direction of the plane wave illumination. With such a lattice
interaction, the polarizability entries on the diagonal get modi-
fied, but the appearance of non-diagonal elements is also worth
mentioning. Therefore, placing the particle on a lattice changes
the symmetry of the response. This change in symmetry is not
surprising and can be explained from two perspectives. On the
one hand, the particles arranged on a lattice do not obey the
necessary isotropic, i.e., directional independent, response. On
the other hand, we can note that the quadrupolar response from
a particle in the lattice generates a scattered field that can drive
the dipolar response in any other particle in the lattice. This

cross-coupling effectively causes an interaction that is otherwise
forbidden for the isolated object. Both interaction channels can
be exploited to effectively enhance, for example, the magnetic
dipole moment, on which we concentrate in this contribution.

We discuss the modification to the polarizability of a particle
if placed within a square lattice. The sample is illuminated at
normal incidence (i.e., k̂inc. = êz) with a linearly polarized plane
wave. The response is polarization-independent and the same
for either TE or TM polarization. Therefore, without losing
generality, we choose in the following the TM polarization, i.e.,

[
Ex Ey Ez

]T
= E0eikz [1 0 0]T (9)

where E0 is the amplitude of the incident field.
This specific setting allows to write out explicitly the equa-

tions that express the induced multipole moment (Eq. (1)) while
considering their re-normalization due to the lattice interaction
(Eq. (8)), and the description of the particle using the Mie coeffi-
cient (Eq. (7)). The induced multipole moments in each particle
up to quadrupolar order are, then, derived as [54]
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The polarizabilities of the particles in these expressions depend
on (a) the interaction among the same multipole moments in the
lattice (i.e., modulation) and (b) the coupling with other multi-
pole moments in the lattice. Note that not all multipole moments
couple to each other. Indeed, each multipole moment is influ-
enced by only one other multipole moment for up to quadrupo-
lar order. The respective multipole moment is mentioned in the
superscript. To be specific, electric (magnetic) dipole moments
are coupled to magnetic (electric) quadrupole moments and vice
versa. The as such dressed Mie coefficients are written as
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where Cdd, CQQ, CdQ are dipole-dipole, quadrupole-quadrupole,
and dipole-quadrupole coupling tensor elements [54]. The Mie
coefficients that appear in these expressions on the right hand
side are those that are modulated thanks to the coupling to
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themselves in the lattice. They are explicitly written as

1
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Writing the above equations in such a manner has many advan-
tages. First of all, we can immediately distinguish the impact
of the lattice on the multipole moments of the same or different
order. Moreover, the above equations hold for isolated particles
outside a lattice when replacing the effective coupled Mie coeffi-
cients with the Mie coefficient of the individual particles. Or, in
other words, all the coupling terms vanish. In the following, we
concentrate on enhancing the magnetic dipole moment in the
lattice with increasing complexity.

Before quantifying the enhancement, we have to set a stage
concerning what can be reached for an isotropic, isolated, pas-
sive, and non-absorbing particle. The magnetic dipole moment
induced in such a particle can be written as [60]

m0 =
6πiE0

ηk3 b1 (19)

where b1 is the dipolar magnetic Mie coefficient. Note that
we have drooped the y subscript for brevity since the excited
magnetic moment will always point towards the y-axis with the
TM illumination assumed. In the following, we wish to study
the problem systematically. Any possible value the magnetic
dipole Mie coefficient can take is, herein, parameterized using
the so-called Mie angles θMj [61–63]

bj = cos θMj exp iθMj, (20)

where −π/2 ≤ θMj ≤ π/2. An identical equation can be used
to parameterize the electric Mie coefficients using the electric
Mie angles θEj in the parametrization instead. The maximal
magnitude of the magnetic dipole moment is at resonance (i.e.,
θM1 = 0) and is equal to

mmax =

∣∣∣∣6πiE0

ηk3

∣∣∣∣ = 6πE0

ηk3 . (21)

This maximal value serves to normalize the possible response
and constitutes a reference value to quantify the enhancement of
the magnetic dipole moment inside a lattice. For completeness,
the normalized magnetic dipole moment as a function of the
Mie angle is illustrated in Fig. 2(a). Notice that the normalized
magnetic dipole moment takes the value of one at resonance.

3. LATTICE MADE FROM A PARTICLE WITH ONLY A
MAGNETIC DIPOLAR RESPONSE

The initial question is how much larger this magnetic dipole
moment can be enhanced when placing the magnetic dipolar
scatterer inside a lattice. The question can be answered by speci-
fying the previously considered equations applicable to purely
magnetic dipolar particles. Therefore, the induced magnetic
dipole moment inside a square lattice array upon normal plane
wave illuminations reads as
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Fig. 2. Magnitude of the induced magnetic dipole moment
normalized to the maximum induced magnetic dipole mo-
ment of an isolated scatterer in vacuum as a function of the
magnetic dipole Mie coefficient angle for a) an isolated mag-
netic dipole and b) a magnetic dipole inside a lattice with a
normalized periodicity of Λ/λ.

where the normalized modulated magnetic dipole moment is

mmod.
mmax

=
i b1

1− i b1Cdd
. (23)

Any possible value of the magnetic dipole moment at a given
operating wavelength now depends on only two parameters: the
Mie angle, which parameterizes the response of the individual
particle, and the periodicity of the lattice. The magnitude of the
modulated normalized magnetic dipole moment is plotted in
Fig. 2(b).

The maximal enhancement thanks to the lattice interaction is
slightly more than four and occurs in a parameter region where
the lattice is still sub-wavelength but very close to the diffrac-
tion zone. Using the conservation of energy relationships, it can
be proven that the maximum value of the normalized magnetic
dipole moment in such lattices can reach to a fundamental upper
limit of 4π/3 at the extreme point of Λ = λ. The polarizability of
the individual particle has to be off-resonant. To be specific, the
Mie angle can be translated to a frequency detuning [63]; a nega-
tive Mie angle suggests a frequency smaller than the resonance
one, while a positive Mie angle suggests a frequency larger than
the resonance one. The particle, therefore, has to be mainly
operated below its resonance frequency. The lattice interaction
drives the particle into a resonance, where it gets enhanced far
beyond the value it can attain when placed outside the lattice.
This is a usual behavior when observing the resonance from
dipolar particles in the lattice, i.e., for larger periodicities, the lat-
tice interaction shifts the resonance towards longer wavelengths
and hence smaller frequencies. In the limiting case, albeit the
resolution in the figure is slightly too small to recognize these
details, the largest magnetic dipole moment occurs for a particle
that has intrinsically a very weak magnetic dipole moment (i.e.,
the Mie angle is only slightly larger than −π/2) but arranged at
a period nearly comparable to the wavelength and only slightly
smaller.

The next question that we aim to answer in the following
section concerns the possibility to enhance this magnetic dipole
moment even stronger.
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Fig. 3. The magnitude of the effective induced magnetic
dipole moment meff. of a scatterer with only magnetic dipole
moment and electric quadrupole response normalized to the
maximal possible magnetic dipole moment of an isolated scat-
terer in vacuum mmax as a function of the normalized period-
icity Λ/λ and as a function of the Mie angle that parametrizes
the electric quadrupolar Mie coefficient. The magnetic dipole
Mie angle is kept fixed to the value necessary to induce a reso-
nance in isolation, i.e. θM1 = 0.

4. LATTICE MADE FROM PARTICLES WITH A MAG-
NETIC DIPOLAR AND ELECTRIC QUADRUPOLAR
RESPONSE

Considering Eq. (11), the multipole moment that couples to and
re-normalizes the magnetic dipole moment, beside the modu-
lation with the dipole-dipole lattice tensor element Cdd, is the
electric quadrupole moment. Taking into account this interac-
tion, the effectively induced magnetic dipole moment inside the
square lattice can be explicitly written as

meff. =
6πiE0

ηk3 b
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1,mod. =
6πiE0

ηk3
b1,mod.

(
1 + i

√
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dQ a2,mod. b1,mod.
, (24)

where b1,eff follows the expression given in Eq. (15). To explore
the possible value the magnetic dipole moment can attain sys-
tematically, we utilize the Mie angles again to parametrize the
possible Mie coefficients that an isotropic scatterer can attain
and, afterward, derive the possible magnetic moments inside a
square lattice. Please note that there are now three degrees of
freedom: the Mie angle parametrizing the magnetic dipole mo-
ment θM1, the Mie angle parametrizing the electric quadrupole
moment θE2, and the normalized periodicity of the square lattice
Λ/λ.

For illustrative purposes, Fig. 3 shows the normalized mag-
netic dipole moment as a function of the Mie angle parametriz-
ing the electric quadrupole Mie coefficient of the individual
particle and the normalized periodicity of the lattice. Here, the
Mie angle parameterizing the magnetic dipole moment was kept
fixed to zero, i.e., the particle is on magnetic dipole resonance if
place isolated.

A colossal enhancement of the magnetic dipole moment is
seen in Fig. 3 for some sweep spots. This colossal enhancement
occurs whenever the denominator for the effective coupled mag-
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Fig. 4. a) The maximal possible enhancement of the mag-
netic dipole moment for a scatterer with an intrinsic mag-
netic dipole and electric quadrupole response inside a lat-
tice with periodicity of Λ as a function of the Mie angle that
parametrizes the magnetic dipolar Mie coefficient. b) The re-
quired Mie angle for the electric quadrupole Mie coefficient
required to attain the maximal value.

netic dipole Mie coefficient is close to zero in Eq. (24). Please
note, the denominator does not go through zero strictly but gets
very close. When comparing the two dependencies, we notice
that the re-normalization thanks to the electric quadrupolar re-
sponse is much stronger than the initial re-normalization thanks
to the magnetic dipole moment alone.

To aggregate the possible values that are attainable, we iden-
tify in Fig. 4(a) the maximum possible values of the magnetic
enhancement inside the lattice as a function of the Mie angle
that parametrizes the magnetic dipole Mie coefficient and the
normalized periodicity. Here, we have systematically scanned
the Mie angle that parametrizes the electric quadrupole moment
and have chosen the value that maximizes the magnetic dipole
moment. The required Mie angle for the electric quadrupole
Mie coefficient that maximizes the magnetic dipole moment is
shown in Fig. 4(b). This systematic analysis was greatly simpli-
fied by the availability of analytical expressions for the induced
moments in the lattice.

Moreover, in Fig. 5 we have identified the set of Mie angles
that provide the largest enhancement in the magnetic dipole
moment for a suitably chosen period but above 100. Interest-
ingly, we notice that the intrinsic magnetic dipole moment can
take values below the resonance (negative Mie angle θM1) or
above the resonance (positive Mie angle θM1) to achieve such
colossal enhancement. Thanks to the interaction with the elec-
tric quadrupole moment, the re-normalization is always strong
enough to enhance the magnetic dipole moment significantly.
The electric quadrupole moment, in contrast, has to take always
values below its resonance frequency to intensify the interaction;
we observe only negative Mie angles.

We know the Mie coefficients that a particular particle should
offer to provide a colossal magnetic dipole moment when placed
on the lattice from these analytical considerations. However, the
question is, always, whether we can suggest an actual particle
that provides this response. To answer this question, we have
been using a particle swarm optimization (PSO) algorithm that
identifies a core-shell particle that can cope with these require-
ments and, indeed, we find such particle. The magnetic dipole
moment as a function of the periodicity for such an optimized
particle is shown in Fig. 6. Please note, other particles can be
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Fig. 5. The required Mie angles that parametrize the magnetic
dipole and electric quadrupole Mie coefficients that allow to
enhance the induced magnetic dipole moment for the nor-
malized periodicity Λ/λ with two orders of magnitude. The
dashed line in the figure indicates the chosen periodicity and
the two Mie angles that in the subsequent search of an actual
particle were used to provide these optical properties.

found, depending on the Mie angles chosen as the target val-
ues. This example should merely provide a clear indication that
there are actual particles that provide such desired response.
Although other geometrical shapes might be feasible, we have
been concentrating on a core-shell spherical particle for sim-
plicity. The geometrical as well as the material properties that
are necessary to provide the desired Mie angles and with that
the colossal enhancement of the magnetic dipole moment are
mentioned in the Fig. 6 caption. An enhancement as large as
100 with respect to the maximal possible value achievable in an
isolated particle can be seen (i.e., in a non-absorbing magnetic
dipole at resonance). This requires hitting a relatively sweet spot
in terms of lattice dimensions.

Finally, we stress that other multipole moments have not been
considered in the actual optimization. Of course, for the final
particles, they are also non-zero and indicated up to quadrupolar
order in the Fig. 6 caption. Their exact value is not crucial as the
lattice anyhow is tuned into a regime where predominantly the
magnetic dipole moment is enhanced. In parallel, the electric
quadrupole moment is enhanced as well, as the denominator
that expresses their re-normalization and which is brought close
to zero is indeed identical.

5. CONCLUSIONS AND OUTLOOK

In a short conclusion, we have studied the extent to which the in-
teraction among particles in a 2D lattice can enhance the induced
magnetic dipole moment. We found an enhancement larger than
100 for an actual particle, which seems to justify the notion of
“colossal". We emphasize that this is not the enhancement with
respect to the magnetic dipole moment of the isolated object
but to the magnetic dipole moment that is maximally feasible
for an isolated scatterer. Interestingly enough, nearly any in-
trinsic magnetic dipole moment can be enhanced to provide an
extremely large value, if only a suitable periodicity and electric
quadrupole moment is chosen for the particle.
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Fig. 6. Magnetic dipole moment of a designed core-shell par-
ticle when placed inside a lattice that shows an enhancement
by more than two orders of magnitude in comparison to the
maximal value an isolated scatterer can attain. The param-
eters of the core-shell particle are: r1 = 0.12350λ, r2 =
0.20323λ, n1 = 6, n2 = 2.968. The Mie coefficients are:
b1 = 0.1129 − 0.3165i, a2 = 0.0488 − 0.2155i, a1 =
0.4876− 0.4998i, b2 = 0.0003 + 0.0180i, a3 = 0.0000−
0.0035i, b3 = 0.0000− 0.0014i. The wavelength of illumina-
tion here is λ = 1500 nm.

The work highlights the importance of lattice effects in
nanophotonics. Very often, they are considered as a minor effect
but indeed, as shown here, they can also have an overwhelming
impact. This can be detrimental, for example, when consider-
ing metasurfaces made from scatterers with spatially varying
geometrical shapes [64]. Still, it can also be appealing when the
desire is to tweak the induced multipole moments in some sam-
ple to the desired combination unattainable with materials and
objects at hand. Then, putting them in a lattice and exploiting
the interaction can be decisive to reach the final goal.

The work also highlights the importance of analytical expres-
sions for the optical properties of these arrays. Only with their
availability, a systematic identification of scatterers with relevant
properties is possible. The question of how an actual scatterer
should look like that provides the desired response is a sec-
ondary task. That can be solved with many different tools [65],
and here we have been using particle swarm optimization. More
sophisticated tools can also be used to identify particles that
provide the proper response individually and are also feasible
for fabrication with some predefined materials or less sensitive
to imperfections. These indications shall only highlight a few
possibilities to develop the topic further.
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