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Motivation

Experiment: the Trapped Reactive Atmospheric Particle Spectrometer (TRAPS) [1,2]
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 Microwave plasma nanoparticle generator (a)

 Aerodynamic lens (b)

 Octupole ion guide (c)

 90° electrostatic deflector (d)

 Linear quadrupole ion trap configured as super-

saturation Molecular-Flow-Ice-Cell (MICE) (e)

 Time-of-Flight mass spectrometer (TOF-MS) (f)

 Helium buffer gas thermalizes the nanoparticles in MICE

 Cryogenic temperature control

Mesospheric ice clouds 

seen from the ISS

Photo: NASA, 13. Jul 

2012

03. Sep. 2021

 Strong charge-dipole interaction between nanoparticle

ions and polar water molecules.

 How does an electric charge impact the agglomeration

of water molecules on nanoparticles compared to

neutral particle interactions?

 How much does the charge induced attractive force

enhance the collision cross section on nanoparticles

whose radii exceed the Langevin capture radius [3]?

 What is the role of charged particles in cloud formation

and the growth of atmospheric nanoparticles?

 We present new experimental results for the charge

induced enhancement of the collision cross section

between H2O molecules and singly charged

nanoparticles with radii between 1.4 nm and 3 nm; we

also present a new theoretical model to describe our

experimental findings.
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 Potential � �� : Assuming that Eq. (6) is a good

approximation also for the strongest fields near a point

charge (103 kVcm-1), inserting into Eq. (5 & 4) and

integrating results in: .
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 Enhancement 
: The differential enhancement factor

γ(v) depends on the initial velocity of the gas phase

molecule. Integration over the Maxwell-Boltzmann

distribution   � � � 4��� · � 2�
�⁄ � �⁄ · exp � ��� 2
�⁄ .

yields the total enhancement factor Γ : .

Γ � � � � � � �  �� � � 1 �
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 Conclusions:The integration of Eq. (8) was performed.

numerically and the result is shown by the solid black

line in Fig. 2 without further adjustable fit parameters.
.

For reference, Fig. 2 also displays two models, which

are in general use in the atmospheric community [7, 8]

and which are bracketing our results. .
.

The new model for charge induced enhancement of

water adsorption on nanoparticles based on Stark effect

adiabatic dipole orientations appears in excellent

agreement with our experimental findings.

 Formation of noctilucent ice clouds.
Ice clouds  forming in the mesopause at an altitude of ~85 km 

by heterogeneous nucleation on meteoric smoke nanoparticles. 

 Analyzing data only for ice-coverages above

1.5 monolayers ensures � � 1.

 Cross section enhancement 

factor Γ :

σ � Γ · �� (2)                                                               

 We derive � from the experimental data by determining 

growth rates dm/dt from the derivative of the smoothed 

growth curves and solving Eq. (1) and (2) for �.

 Fig. 1 shows a typical growth rate measurement of H2O 

ice on Fe2O3 core nanoparticle ions (r0=1.15 nm). 

 At very low particle temperatures and high super-

saturations we can safely neglect the outgoing flux.

 The particle mass growth rate is simply {incoming flux 

density * effective surface area * molecular mass}, or:

�
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spectra (smoothed) for the

evaluation of particle growth; t
res

is the time particles had been

exposed to mesospheric

conditions in the MICE ion trap

prior to TOF mass analysis. S is

the supersaturation.

 Dipole orientation: at thermal equilibrium the .

mean dipole orientation ��� � is given by the Langevin

function �  �  ��� � �
������
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 Rotating dipoles: rotating polar molecules establish a

rotational state distribution at a distance r≫λ and then

respond adiabatically, to the electric field at distances

smaller than λ. This results in lower values for ��� � [6] :
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 Stark effect model: Quantum mechanical Stark shift

calculations of ��� � were carried out by Moro et al. [5,

6]. The authors of reference [6] generously shared the

results of their modelling (Fig. 3), which we will now use

to determine the dipole orientation factor F(T,E)=F(x).

Method

 Condensation of water ice on the nanoparticles is

observed by measuring the particle mass as a function

of trapping time with the TOF-MS

s is the sticking coefficient, m
H2O

the mass of the water molecule, n
H2O

the 

number density of gas phase water molecules. �� � 8����� �����
⁄ is 

the mean thermal velocity. σ denotes the effective collision cross section of 

the nanoparticle with a gas phase molecule (various factors of 4 cancel out).

 Collisions with attractive force: The velocity-

dependent differential enhancement factor γ(v) for the

collisions of a nanoparticle with a gas phase molecule

(mass m, starting velocity v, kinetic energy K0) is a

function of the potential energy of the molecule at the

collision radius φ(rc) [4] (mean free path length λ≫r
c
): .
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 Charge-dipole potential: φ(rc) is obtained by integra-

ting the force Fd acting on the dipole from the far field at

r=λ to the collision surface r=r
c

(r
c
≪λ): .
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α is the polarizability, 
 the dipole moment, E=E(r) is the electric field.

In order to evaluate Eq. (4) a suitable expression for the

average dipole orientation ��� � must be applied.

induced dipole permanent dipole

Results and Discussion

Fig. 2
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 Measurements: experimental results (Fig. 2) show that

the enhancement factor Γ increases with decreasing

particle radius; the charge effect is evident for particles

with rp <3 nm.

data points Moro et al. [6]
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 Dipole orientation factor: According to ref. [6] F(T,E)

for water molecules is surprisingly independent of the

electric field strength below 100 kVcm-1. We represent

F(T) by a linear fit (see Fig. 3): .

    � � � 0.875 & 0.0002 ⋅ � /     (120 K < T < 300 K) (6)


