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Abstract In thiswork, amathematicalmodeling of the elastic properties of cubic crystalswith centrosymmetry
at small scales bymeans of the Toupin–Mindlin anisotropic first strain gradient elasticity theory is presented. In
this framework, two constitutive tensors are involved, a constitutive tensor of fourth-rank of the elastic constants
and a constitutive tensor of sixth-rank of the gradient-elastic constants. First, 3 + 11 material parameters (3
elastic and 11 gradient-elastic constants), 3 characteristic lengths and 1 + 6 isotropy conditions are derived.
The 11 gradient-elastic constants are given in terms of the 11 gradient-elastic constants in Voigt notation.
Second, the numerical values of the obtained quantities are computed for four representative cubic materials,
namely aluminum (Al), copper (Cu), iron (Fe) and tungsten (W) using an interatomic potential (MEAM). The
positive definiteness of the strain energy density is examined leading to 3 necessary and sufficient conditions
for the elastic constants and 7 ones for the gradient-elastic constants in Voigt notation. Moreover, 5 lattice
relations as well as 8 generalized Cauchy relations for the gradient-elastic constants are derived. Furthermore,
using the normalized Voigt notation, a tensor equivalent matrix representation of the two constitutive tensors
is given. A generalization of the Voigt average toward the sixth-rank constitutive tensor of the gradient-elastic
constants is given in order to determine isotropic gradient-elastic constants. In addition, Mindlin’s isotropic
first strain gradient elasticity theory is also considered offering through comparisons a deeper understanding of
the influence of the anisotropy in a crystal as well as the increased complexity of the mathematical modeling.

Keywords Strain gradient elasticity · Anisotropy · Higher-rank constitutive tensors · Characteristic lengths ·
Voigt average

1 Introduction

Strain gradient elasticity theories are challenging generalized continuum theories to model crystals at small
scales like Ångström-scale, where classical elasticity is not valid and leads to unphysical singularities. The
theory of first strain gradient elasticity in its modern form goes back to Toupin [55,56] and Mindlin [41].
Toupin [55] had already given the anisotropic form of strain gradient elasticity, whereas Mindlin [41] derived
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the corresponding isotropic form. The Mindlin theory of isotropic first strain gradient elasticity [41,43] is
often used for the convenience of simplification and the goal of finding analytical solutions. For polycrys-
tals and metamaterials with an isotropic character, Mindlin’s isotropic strain gradient elasticity might be a
suitable framework. However, for crystals, which are, in general, not isotropic, and for materials possessing
a microstructure such an assumption of isotropy is not reliable and can only be considered as an approxi-
mation. Therefore, anisotropic strain gradient elasticity is of high relevance for a proper physical modeling
of such anisotropic materials. Already, Mindlin [42] pointed out that for cubic crystals with centrosymme-
try, anisotropic first strain gradient elasticity should be used. Cubic materials with centrosymmetry cover a
big range of important and very useful materials in modern technology and engineering; some of them are
aluminum, copper, iron, tungsten, diamond, silicon and germanium. Particularly, silicon and germanium are
heavily used as semiconductors in engineering and industrial applications. The understanding of the properties
of cubic materials with centrosymmetry and their appropriate modeling with Toupin–Mindlin’s anisotropic
first strain gradient elasticity is of principal interest and will be investigated in this work.

Anisotropic first strain gradient elasticity theory with general anisotropy includes constitutive tensors of
rank four, five and six. Constitutive tensors or matter tensors are tensors representing physical properties of
crystals. They have definite orientation within a crystal and must conform to the crystal symmetry [44]. In
particular, the higher-rank constitutive tensors are able to model properties like acoustical activity in first
strain gradient elasticity and flexoelectricity in first gradient electroelasticity, which cannot be captured by
constitutive tensors of lower rank. In this sense, they are physical-property tensors. Field tensors such as the
elastic strain tensor and the electric field strength vector do not represent a crystal property and can have
any arbitrary orientation in a crystal [44]. Field tensors can be applied and measured in any orientation. The
matrix representation of the constitutive tensors of anisotropic first strain gradient elasticity for different elastic
symmetries is given by Auffray et al. [4,5]. In the general anisotropic case, a triclinic crystal with symmetry
1 has 210 = 21 + 108 + 171 material parameters in first strain gradient elasticity. The case of a cubic crystal
with centrosymmetry of point group m3m, which is studied here, has 14 = 3 + 11 material parameters. On
the other hand, Mindlin’s isotropic first strain gradient elasticity has only 7 = 2 + 5 material parameters. The
material parameters of first strain gradient elasticity can be computed from interatomic potentials being a self-
consistent and parameter-free field theory of materials [1,46]. The zero-temperature atomistic representation
of the fourth-rank, fifth-rank and sixth-rank constitutive tensors in anisotropic first strain gradient elasticity
is given by Admal et al. [1]. Shodja et al. [50] have used the Toupin–Mindlin first strain gradient elasticity
for cubic crystals of hexoctahedral class to give the analytical expression of the material parameters in terms
of the atomic force constants and to evaluate them via ab initio density functional theory (DFT). Moreover,
Po et al. [46] have given the Green tensor of Toupin–Mindlin’s anisotropic first strain gradient elasticity for
centrosymmetric materials.

On the other hand, properties of a material which are intrinsically isotropic can only be modeled by means
of tensors of low rank. Let a crystal possess an N -fold axis of symmetry AN . According to the Hermann
theorem [17]: “if a tensor of rank r possesses an axis of symmetry AN with N > r , then AN is an axis of
isotropy for that tensor”. For cubic crystals with centrosymmetry, the minimal rank which is necessary in order
to reveal the anisotropy is four, r = 4, thatmeans tensors of rank four, five and six are anisotropic tensors. Cubic
crystals are generally isotropic with respect to second-rank tensorial quantities such as thermal expansion and
in crystal optics, cubic crystals are optically isotropic. However, in classical elasticity, a few cubic crystals such
as aluminum, tungsten and diamond are isotropic or nearly isotropic and isotropic elasticity can be used as a
good approximation (see, e.g., [11]). For example, the reason why tungsten happens to be elastically isotropic
despite having cubic lattice symmetry is rooted in its electronic structure and chemical bonding resulting in
such values of the elastic constants which satisfy the corresponding isotropy condition of classical elasticity.
Then, questions which may arise are: Which are the isotropy conditions in Toupin–Mindlin’s anisotropic first
strain gradient elasticity for cubic materials with centrosymmetry? Are those conditions fulfilled?

The paper is organized as follows. In Sect. 2, the basic framework of the Toupin–Mindlin anisotropic first
strain gradient elasticity with general anisotropy is presented. In Sect. 3, the considered theory is specified
to cubic materials with centrosymmetry of point group m3m. Here, the 3 + 11 material parameters (3 elastic
and 11 gradient-elastic constants), the 3 characteristic lengths and the 1+ 6 isotropy conditions are computed.
The numerical values of all these quantities are obtained for four representative cubic materials, namely
aluminum (Al), copper (Cu), iron (Fe) and tungsten (W). The positive definiteness of the strain energy density
is examined. In Sect. 4, Mindlin’s isotropic first strain gradient elasticity theory is presented. In Sect. 5, the
lattice relations for the gradient-elastic constants as well as the Cauchy relations for the elastic constants and
the gradient-elastic constants are derived. In Sect. 6, the normalized Voigt notation is used in order to derive a
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tensor equivalent matrix representation of the two constitutive tensors in first strain gradient elasticity. Based
on this representation, the independent eigenvalues of the considered constitutive tensors for the cubic as
well as for the isotropic case are derived. In Sect. 7, a generalization of the Voigt average toward the sixth-
rank constitutive tensor is given in order to determine isotropic gradient-elastic constants. The paper ends
with Conclusions which sum up important comparisons between anisotropic and isotropic first strain gradient
elasticity for cubic materials with centrosymmetry as well as comparisons between classical elasticity and first
strain gradient elasticity. In “Appendix A”, the matrix representation in Voigt notation and the conditions of
positive definiteness of the two involved constitutive tensors of fourth-rank and sixth-rank using the Sylvester
criterion are given.

2 Anisotropic first strain gradient elasticity with general anisotropy

Let us consider a three-dimensional infinite elastic body. In the Toupin–Mindlin theory of anisotropic first
strain gradient elasticity of form II [41,42,55,56], the strain energy density is given by

W(e, ∇e) = 1

2
Ci jkl ei j ekl + 1

2
Di jmkln∂mei j∂nekl + Ei jklmei j∂mekl , (1)

where ei j denotes the (compatible) elastic strain tensor1

ei j = 1

2

(
∂i u j + ∂ j ui

)
, (2)

which is given in terms of the gradient of the displacement vector u. The partial derivative ∂/∂xk with respect
to the spatial coordinate xk is denoted by ∂k , and the indices run from 1 to 3, i, j, k, l,m, n = 1, . . . , 3. Here
and in the following all tensor components refer to a Cartesian coordinate system. Thus, in first strain gradient
elasticity, the strain energy density (1) is given in terms of the elastic strain tensor e and the gradient of the
elastic strain tensor ∇e, which is a hyperstrain tensor sometimes also called double strain tensor (see, e.g.,
[27,28]). The (compatible) elastic strain tensor (2) satisfies the compatibility condition [25]

εmkiεnl j∂k∂l ei j = 0, (3)

where εmki is the Levi-Civita tensor.
In Eq. (1),C orCi jkl is the fourth-rank constitutive tensor (matter tensor) of the elastic constants possessing

the minor symmetries

Ci jkl = C j ikl = Ci jlk (4)

and the major symmetry

Ci jkl = Ckli j (5)

and has 21 independent components. In short notation2, the symmetries of the constitutive tensor Ci jkl read

Ci jkl ≡ C(i j)|(kl). (6)

E or Ei jklm is the fifth-rank constitutive tensor (matter tensor) of the elastic constants due to the coupling
between the elastic strain tensor ei j and the gradient of the elastic strain tensor ∂mekl , possessing only the
minor symmetries

Ei jklm = E j iklm = Ei jlkm (7)

1 In the compatible case, the elastic strain tensor coincides with the total strain tensor.
2 We use the short notation of Schouten [48]. Symmetrization over two indices is denoted by parentheses, A(i j) := (Ai j +

A ji )/2!, and antisymmetrization by brackets, B[i j] := (Bi j − Bji )/2!. The analogous is valid for more indices, as: C(i jkl) :=
(Ci jkl +C jikl +Ci jlk +21 more terms)/4!. Symmetrization over more than 2 indices is, by definition, the normalized sum over all
possible permutations of the indices involved. If one or more indices are exempted from symmetrization, then they are enclosed
by vertical bars, as: C(i |kl| j) = (Cikl j + C jkli )/2!. One vertical bar denotes the major symmetry in Eq. (5).
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and has 108 independent components. In short notation, the symmetries of the constitutive tensor Ei jklm read

Ei jklm ≡ E(i j)(kl)m . (8)

D or Di jmkln is the sixth-rank constitutive tensor (matter tensor) of the gradient-elastic constants possessing
the minor symmetries

Di jmkln = D j imkln = Di jmlkn (9)

and the major symmetry

Di jmkln = Dklni jm (10)

and has 171 independent components. In short notation, the symmetries of the constitutive tensorDi jmkln read

Di jmkln ≡ D(i j)m|(kl)n . (11)

The constitutive tensors can be derived from the strain energy density (1) via

Ci jkl = ∂2W
∂ei j ∂ekl

, (12)

Ei jklm = ∂2W
∂ei j ∂(∂mekl)

, (13)

Di jmkln = ∂2W
∂(∂mei j ) ∂(∂nekl)

. (14)

Note that the fifth-rank constitutive tensor Ei jklm is a pseudo-tensor and changes its sign in an inversion
of the coordinate system. Ei jklm vanishes for materials with central symmetry, whereas is nonzero for non-
centrosymmetric materials also called as hemitropic or chiral materials. It is called acoustic gyrotropic tensor
and is involved in the phenomenon of acoustical activity in certain non-centrosymmetric crystals [19,47,55].

The quantities conjugate to the elastic strain tensor ei j and the gradient of the elastic strain tensor ∂mei j
are the Cauchy stress tensor σi j (in the Mindlin notation) and the double stress tensor τi jm , respectively. They
are defined as

σi j = ∂W
∂ei j

, (15)

τi jm = ∂W
∂(∂mei j )

(16)

with σi j = σ j i and τi jm = τ j im , and it yields σi j ≡ σ(i j) and τi jm ≡ τ(i j)m . Using the strain energy density (1),
the definitions (15) and (16) lead to the constitutive equations

σi j = Ci jkl ekl + Ei jkln∂nekl , (17)

τi jm = Ekli jmekl + Di jmkln∂nekl , (18)

which are local and linear. Thus, in general anisotropic first strain gradient elasticity, the Cauchy stress tensor
σ = σ (e, ∇e) and the double stress tensor τ = τ (e, ∇e) depend on both the elastic strain and the gradient
of the elastic strain. It is clear that the specific expression of the Cauchy stress tensor or also called the force
stress tensor as well as of the double stress tensor depends on the form of the strain energy density, which
is used. For example, in anisotropic second strain gradient elasticity or also called elasticity of grade three,
both Cauchy and double stress tensors depend also on the second gradient of the elastic strain (see, e.g., [3]).
Moreover, in first strain gradient elasticity, it should be pointed out that the elastic strain tensor ei j and the
gradient of the elastic strain tensor ∂mei j are the field tensors, whereas the Cauchy stress tensor σi j and the
double stress tensor τ j im are the response field tensors or excitation field tensors. In this sense, the field tensors
cause the excitation field tensors in a crystal. Field tensors and response field tensors have the physical meaning
of cause and effect, respectively. The response field tensors are related to the field tensors by means of the
(local) constitutive equations, which contain the information about the physical properties of the crystal. Local
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means that the response fields at some point P depend exclusively on the field tensors at the very same point
P .

The total or effective stress tensor σ̂i j of first strain gradient elasticity is defined by (see also [32])

σ̂i j := ∂W
∂ei j

− ∂m
∂W

∂(∂mei j )
(19)

with σ̂i j = σ̂ j i or σ̂i j ≡ σ̂(i j). It is easy to see from Eq. (19) that the symmetric character of the total stress
tensor is independent of the specific form of the strain energy density in the framework of first strain gradient
elasticity. Using Eqs. (15) and (16), the total or effective stress tensor (19) is given by (see also [29,30])

σ̂i j = σi j − ∂mτi jm, (20)

which using the constitutive equations (17) and (18) reads

σ̂i j = Ci jkl ekl + (Ei jklm − Ekli jm
)
∂mekl − Di jmkln∂m∂nekl , (21)

including all 3 constitutive tensors Ci jkl , Ei jklm and Di jmkln .
In presence of body forces, the Lagrangian density of first strain gradient elasticity is given by

L = −W − V, (22)

where the strain energy density W is given by Eq. (1) and

V = −ui fi (23)

is the potential a body force density fi .
The Euler–Lagrange equations in first strain gradient elasticity (in statics) are given by (see, e.g., [2])

Ei (L) = ∂L
∂ui

− ∂ j
∂L

∂(∂ j ui )
+ ∂m∂ j

∂L
∂(∂m∂ j ui )

= 0. (24)

Equation (24) provides the force equilibrium condition in first strain gradient elasticity in terms of the Cauchy
and double stress tensors

∂ j
(
σi j − ∂mτi jm

) + fi = 0 (25)

or in terms of the total stress tensor

∂ j σ̂i j + fi = 0 . (26)

It should be noted that the specific form of the total or effective stress tensor depends also on the considered
theory and it is always the quantity that enters in the divergence in the force equilibrium equation. For instance,
the form of the total or effective stress tensor in second gradient electroelasticity can be found in [21].

Using Eqs. (2), (17) and (18), the force equilibrium condition (25) can be cast in the following field equation
for the displacement vector

LM
ik uk = − fi , (27)

where

LM
ik = Ci jkl∂ j∂l + (Ei jklm − Ekli jm

)
∂ j∂l∂m − Di jmkln∂ j∂l∂m∂n (28)

denotes the differential operator of Mindlin’s first strain gradient elasticity called Mindlin operator being a
differential operator of fourth order. Equation (27) is an inhomogeneous partial differential equation of fourth
order for the displacement uk for a given body force density fi .

The Mindlin operator LM
ik can be written as a sum

LM
ik = L(0)

ik + L(1)
ik − L(2)

ik (29)
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of the (classical) Navier operator L(0)
ik , a differential operator of second order,

L(0)
ik = Ci jkl∂ j∂l , with L(0)

ik = L(0)
ki , (30)

a differential operator of third-order L(1)
ik appearing in first strain gradient elasticity due to the coupling between

strain and strain gradient tensors

L(1)
ik = (Ei jklm − Ekli jm

)
∂ j∂l∂m, with L(1)

ik = −L(1)
ki , (31)

and a differential operator of fourth-order L(2)
ik appearing in first strain gradient elasticity due to the higher-order

gradients

L(2)
ik = Di jmkln∂ j∂l∂m∂n, with L(2)

ik = L(2)
ki . (32)

Therefore, the Mindlin operator (29) can be decomposed into symmetric and antisymmetric parts according
to

LM
ik = LM

(ik) + LM[ik], (33)

where its symmetric part reads

LM
(ik) = L(0)

ik − L(2)
ik (34)

and its antisymmetric part reads

LM[ik] = L(1)
ik . (35)

3 Anisotropic first strain gradient elasticity for cubic crystals with centrosymmetry of point group
m3m

In this section, the anisotropic version of the Toupin–Mindlin first strain gradient elasticity is specified to
cubic crystals with centrosymmetry of point groupm3m, which are also called cubic hexoctahedral. In the first
subsection, the basic framework of the considered theory is given answering among others the question: How
many characteristic lengths can be defined in a natural way (that means appearing in the modified Helmholtz
operators which are part of theMindlin operator) in anisotropic first strain gradient elasticity for cubicmaterials
with centrosymmetry? Section 3.2 deals with the derivation of the involved 11 gradient-elastic constants. The
numerical values of the material parameters (elastic and gradient-elastic constants) and of the characteristic
lengths are computed for four representative cubic materials leading to important observations. Next, the
positive definiteness of the strain energy density is examined and the section ends with the important subject
of the investigation of the isotropy conditions.

3.1 Basic framework

We consider here a cubic crystal with centrosymmetry. Let the Cartesian coordinate axes x , y and z coincide
with the cubic crystal directions [100], [010] and [001], respectively. For cubic crystals of point group m3m
(cubic hexoctahedral), the fourth-rank constitutive tensorCi jkl , possessing the symmetries (4) and (5), is given
by (see, e.g., [11,53])

Ci jkl = C12 δi jδkl + C44
(
δikδ jl + δilδ jk

) + (C11 − C12 − 2C44) δi jkl , (36)

with

δi jkl =
3∑

s=1

e(s)
i e(s)

j e(s)
k e(s)

l , (37)
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where e(1), e(2), e(3) are the (orthogonal) unit vectors of the cubic system. Because the coordinate system
coincides with the cubic system, it yields δi jkl = 1 if i = j = k = l and δi jkl = 0 otherwise [11]. In Eq. (36),
C11, C12 and C44 are the 3 independent elastic constants of a cubic crystal (in Voigt notation, see Sect. 3.2)
and δi j is Kronecker’s delta. Following Hirth and Lothe [18], the pre-factor of δi jkl in Eq. (36) might be used
to define an anisotropy factor for cubic crystals

H = 2C44 + C12 − C11. (38)

For centrosymmetric crystals, the fifth-rank constitutive tensor Ei jklm vanishes

Ei jklm = 0. (39)

The sixth-rank constitutive tensor Di jmkln , possessing the symmetries (9) and (10), is given by

Di jmkln = a1
2

(
δi jδkmδln + δi jδknδlm + δklδimδ jn + δklδinδ jm

) + 2a2 δi jδklδmn

+ a3
2

(
δ jkδimδln + δikδ jmδln + δilδ jmδkn + δ jlδimδkn

) + a4
(
δilδ jkδmn + δikδ jlδmn

)

+ a5
2

(
δ jkδinδlm + δikδ jnδlm + δ jlδkmδin + δilδkmδ jn

)

+ a6
(
δikδ jlmn + δilδ jkmn + δ jkδilmn + δ jlδikmn

)

+ a7
(
δkmδi jln + δlmδi jkn + δinδ jklm + δ jnδiklm

)

+ a8 δmnδi jkl + a9
(
δi jδklmn + δklδi jmn

)

+ a10
(
δimδ jkln + δ jmδikln + δknδi jlm + δlnδi jkm

)

+ a11 δi jklmn, (40)

with

δi jklmn =
3∑

s=1

e(s)
i e(s)

j e(s)
k e(s)

l e(s)
m e(s)

n . (41)

Here, a1, . . . , a11 are the 11 gradient-elastic constants of a cubic crystal with centrosymmetry and δi jklmn = 1 if
i = j = k = l = m = n and δi jklmn = 0 otherwise. Note that the sixth-rank constitutive tensor Di jmkln given
in Eq. (40) consists of an isotropic part with the 5 gradient-elastic constants a1, . . . , a5 and an anisotropic
part with the 6 gradient-elastic constants a6, . . . , a11. The isotropic part of Eq. (40) is in agreement with
the corresponding one given by Mindlin [41,42]. However, the anisotropic part given by Mindlin [42] does
not possess the symmetries (9) and (10), which must be fulfilled. Furthermore, the tensorial structure of the
constitutive tensorDi jmkln (40) is in accordancewith the corresponding one given by Shodja et al. [50] fulfilling
the necessary symmetries. However, Shodja et al. [50] use different pre-factors for the isotropic part than the
gradient-elastic constants a1, . . . , a5 given in Eq. (40), where we follow Mindlin [41,42] in order to recover
in the isotropic limit the constitutive tensor Di jmkln of Mindlin’s isotropic first strain gradient elasticity [see
Eq. (70)].

The strain energy density for cubic materials with centrosymmetry is given by

W(e, ∇e) = 1

2
Ci jkl ei j ekl + 1

2
Di jmkln∂mei j∂nekl , (42)

where the constitutive tensorsCi jkl andDi jmkln are given byEqs. (36) and (40), respectively. The corresponding
constitutive equations are given by

σi j = Ci jkl ekl , (43)

τi jm = Di jmkln∂nekl . (44)

Using the constitutive tensors for a cubic crystal with centrosymmetry, Eqs. (36) and (40), the Cauchy stress
tensor (43) is explicitly written in terms of the 3 elastic constants C11,C12 and C44 as

σi j = C12 δi j ekk + 2C44 ei j + (C11 − C12 − 2C44) δi jkl ekl (45)
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and the double stress tensor (44) is explicitly written in terms of the 11 gradient-elastic constants as

τi jm = a1
2

(
δim∂ j ekk + δ jm∂i ekk + 2δi j∂kemk

) + 2a2δi j∂mekk

+ a3
(
δim∂ke jk + δ jm∂keik

) + 2a4∂mei j + a5
(
∂i e jm + ∂ j eim

)

+ 2a6
(
δ jkmn∂neik + δikmn∂ne jk

) + a7
(
2δi jkn∂nekm + δiklm∂ j ekl + δ jklm∂i ekl

)

+ a8 δi jkl∂mekl + a9
(
δi jδklmn∂nekl + δi jmn∂nekk

)

+ a10
(
δimδ jkln∂nekl + δ jmδikln∂nekl + 2δi jkm∂l ekl

) + a11δi jklmn∂nekl . (46)

In this way, if we substitute the Cauchy stress tensor (45) and the double stress tensor (46) into Eq. (20), then we
obtain the total or effective stress tensor (20) explicitly written in terms of the 3 elastic and 11 gradient-elastic
constants as follows

σ̂i j = C12 δi j ekk + 2C44 ei j + (C11 − C12 − 2C44) δi jkl ekl − a1
(
∂i∂ j ekk + δi j∂m∂kemk

)

− 2a2δi j�ekk − a3
(
∂i∂ke jk + ∂ j∂keik

) − 2a4�ei j − a5
(
∂k∂i e jk + ∂k∂ j eik

)

− 2a6
(
δ jkmn∂m∂neik + δikmn∂m∂ne jk

) − a7
(
2δi jkn∂m∂nekm + δiklm∂m∂ j ekl + δ jklm∂m∂i ekl

)

− a8 δi jkl�ekl − a9
(
δi jδklmn∂m∂nekl + δi jmn∂m∂nekk

)

− a10
(
δ jkln∂i∂nekl + δikln∂ j∂nekl + 2δi jkm∂m∂l ekl

) − a11δi jklmn∂m∂nekl , (47)

where � indicates the Laplacian.
Next, we give the necessary differential operators for a cubic crystal with centrosymmetry. In particular,

using Eq. (36), the (classical) Navier operator L(0)
ik , Eq. (30), is explicitly expressed in terms of the 3 elastic

constants as follows

L(0)
ik = (C12 + 2C44)∂i∂k + C44(δik� − ∂i∂k) + (C11 − C12 − 2C44)δi jkl∂ j∂l (48)

and using Eq. (40), the differential operator L(2)
ik , Eq. (32), is explicitlywritten in terms of the 11 gradient-elastic

constants as

L(2)
ik = 2(a1 + a2 + a3 + a4 + a5)∂i∂k�

+ 1

2
(a3 + 2a4 + a5)(δik� − ∂i∂k)�

+ (a6 + 2a7 + a8 + 2a10)δi jkl∂ j∂l�

+ a6 δikδ jlmn∂ j∂l∂m∂n + a11δi jklmn∂ j∂l∂m∂n

+ (a6 + a7 + a9 + a10)
(
δklmn∂i + δilmn∂k

)
∂l∂m∂n . (49)

For cubic materials with centrosymmetry, the Mindlin operator LM
ik , Eq. (29), is reduced to

LM
ik = L(0)

ik − L(2)
ik . (50)

Using Eqs. (48) and (49), theMindlin operator for cubic materials with centrosymmetry [Eq. (50)] is explicitly
written

LM
ik = (C12 + 2C44)

[
1 − �21�

]
∂i∂k + C44

[
1 − �22�

]
(δik� − ∂i∂k)

+ (C11 − C12 − 2C44)
[
1 − �23�

]
δi jkl∂ j∂l

− a6 δikδ jlmn∂ j∂l∂m∂n − a11δi jklmn∂ j∂l∂m∂n

− (a6 + a7 + a9 + a10)
(
δklmn∂i + δilmn∂k

)
∂l∂m∂n . (51)
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In Eq. (51), one can see that there appear 3 modified Helmholtz operators
[
1 − �2I�

]
, I = 1, 2, 3 with 3

characteristic lengths �I , I = 1, 2, 3 given by

�21 = 2(a1 + a2 + a3 + a4 + a5)

C12 + 2C44
, (52)

�22 = a3 + 2a4 + a5
2C44

, (53)

�23 = a6 + 2a7 + a8 + 2a10
C11 − C12 − 2C44

, (54)

and 3 non-classical parts (derivatives of fourth order) with no classical counterpart appearing due to the double
stress tensor (46). It should be emphasized that the definition of the 3 characteristic lengths comes out from the
mathematical structure of the 3 modified Helmholtz operators appearing in the Mindlin operator. In addition,
comparing the Mindlin operator for cubic materials with centrosymmetry, Eq. (51), with the Mindlin operator
for isotropic materials, Eq. (77), both in first strain gradient elasticity, one can see that only the first two terms
of Eq. (51) correspond to the isotropic part and all other terms to the anisotropic part, showing the influence
of the anisotropy in the mathematical structure of the equations. It should be mentioned that Shodja et al. [50]
defined 6 “characteristic lengths” in a different way.

Let us see some interesting features of the characteristic lengths (52)–(54) for a cubic crystal with cen-
trosymmetry. First of all, note that 9 from the 11 gradient-elastic constants, in particular the a1, a2, a3, a4,
a5, a6, a7, a8 and a10, contribute to the characteristic lengths (52)–(54). The first two characteristic lengths �1
and �2 satisfying Eqs. (52) and (53) in the isotropic limit lead directly to the characteristic lengths, Eqs. (78)
and (79), of Mindlin’s isotropic first strain gradient elasticity. The characteristic length that is new and is not
appearing in the isotropic case is the length �3. It is interesting to see that in the characteristic length �3 the
anisotropy factor H naturally appears, so that Eq. (54) can be written as

�23 = −a6 + 2a7 + a8 + 2a10
H

, (55)

showing that �3 is the characteristic length due to the inherent anisotropy of the cubic crystal. It should be
noticed that �23, Eq. (55), might be imaginary if a6 + 2a7 + a8 + 2a10 and H are of the same sign (positive
or negative). Moreover, H remains nonzero for cubic crystals even if the material can be considered as nearly
isotropic with respect to the constitutive tensor Ci jkl , like for Al and W as we will see in Sect. 3.4. In addition,
looking at the Mindlin operator (51), we can extract the information that �1 is the characteristic length for the
combination of the elastic constants C12 + 2C44, �2 is the characteristic length for the elastic constant C44,
and �3 is the characteristic length for the anisotropy factor H . Therefore, there are 3 characteristic lengths for
3 elastic constants C11, C12 and C44 for cubic crystals with centrosymmetry in anisotropic first strain gradient
elasticity, whereas there are 2 characteristic lengths for 2 elastic constants (Lamé constants) in isotropic first
strain gradient elasticity [see Eqs. (78) and (79) in Sect. 4].

3.2 Material parameters

In this subsection, we express the 11 gradient-elastic constants a1, a2, . . . , a11 in terms of the gradient-elastic
constants in Voigt notation D1,1, D1,2, . . . , D16,17. The numerical values of the last ones are computed from
interatomic potentials. Next, four representative cubic materials are considered and the numerical values of
the 11 gradient-elastic constants a1, a2, . . . , a11 as well as the values of the characteristic lengths �1, �2 and
�3 are calculated.

In what follows, we use the Voigt notation for the constitutive tensor Ci jkl , which in its contracted form
Cαβ, α, β = 1, . . . , 6 is a symmetric 6 × 6 matrix (see, e.g., [44])

(i j) = 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5, 12 → 6. (56)

and theVoigt notation for the tensorDi jmkln , which in its contracted form Dξ,ρ, ξ, ρ = 1, . . . , 18 is a symmetric
18 × 18 matrix (see, e.g., [1,4]):

(i jm) = 111 → 1, 221 → 2, 122 → 3, 331 → 4, 133 → 5, 222 → 6,

112 → 7, 121 → 8, 332 → 9, 233 → 10, 333 → 11, 113 → 12,

131 → 13, 223 → 14, 232 → 15, 123 → 16, 132 → 17, 231 → 18. (57)
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The 3 independent components of the constitutive tensor Ci jkl , Eq. (36), can be written as

C11 ≡ C1111, (58a)

C12 ≡ C1122, (58b)

C44 ≡ C2323, (58c)

and the 11 independent components of the constitutive tensor Di jmkln , Eq. (40), can be expressed in terms of
the 11 gradient-elastic constants a1, a2, . . . , a11:

D1,1 ≡ D111111 = 2(a1 + a2 + a3 + a4 + a5) + 4(a6 + a7 + a10) + a8 + 2a9 + a11, (59a)

D1,2 ≡ D111221 = a1 + 2a2 + a9, (59b)

D1,3 ≡ D111122 = a1
2

+ a3 + a10, (59c)

D2,2 ≡ D221221 = 2(a2 + a4) + a8, (59d)

D2,3 ≡ D221122 = a1
2

+ a5 + a7, (59e)

D2,4 ≡ D221331 = 2a2, (59f)

D2,5 ≡ D221133 = a1
2

, (59g)

D3,3 ≡ D122122 = a3
2

+ a4 + a5
2

+ a6, (59h)

D3,5 ≡ D122133 = a3
2

, (59i)

D16,16 ≡ D123123 = a4, (59j)

D16,17 ≡ D123132 = a5
2

. (59k)

It is interesting to observe that the component D1,1 [Eq. (59a)] is the only one consisting of all 11 gradient-
elastic constants a1, . . . , a11. Note that the corresponding relations to Eqs. (59b)–(59k) given in [50], that is,
Eqs. (55) in [50] need modification. The Voigt-type matrix representation of the tensors Ci jkl and Di jmkln is
given in “Appendix A”.

Solving the system of Eqs. (59a)–(59k), we obtain the 11 gradient-elastic constants

a1 = 2D2,5, (60a)

a2 = 1

2
D2,4, (60b)

a3 = 2D3,5, (60c)

a4 = D16,16, (60d)

a5 = 2D16,17, (60e)

a6 = D3,3 − D3,5 − D16,16 − D16,17, (60f)

a7 = D2,3 − D2,5 − 2D16,17, (60g)

a8 = D2,2 − D2,4 − 2D16,16, (60h)

a9 = D1,2 − D2,4 − 2D2,5, (60i)

a10 = D1,3 − D2,5 − 2D3,5, (60j)

a11 = D1,1 − D2,2 + 2(D2,4 − D1,2) + 4(D16,16 − D1,3 − D2,3 − D3,3) + 8(D2,5 + D3,5 + D16,17),
(60k)

expressed in terms of the 11 non-vanishing components of the 18× 18 matrix of the gradient-elastic constants
in Voigt notation D1,1, D1,2, . . . , D16,17.

In Table 1, the numerical values of the independent elastic and gradient-elastic constants are reported for
four representative cubicmaterials, namely aluminum (Al), copper (Cu), iron (Fe) and tungsten (W), which had
been computed in [1,46]. These components of the constitutive tensorsCi jkl andDi jmkln are given in the Voigt
notation. These values are based on the modified-embedded-atom-method (MEAM) interatomic potential by
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Table 1 Elastic and gradient-elastic constants in Voigt notation obtained from the modified-embedded-atom-method (MEAM)
interatomic potential by Lee et al. [34] for different cubic crystals

Al (fcc) Cu (fcc) Fe (bcc) W (bcc)

C11 [eV/Å3] 0.71366 1.09941 1.51659 3.32405
C12 [eV/Å3] 0.38649 0.77973 0.86160 1.28028
C44 [eV/Å3] 0.19704 0.51043 0.76096 1.01812
D1,1 [eV/Å] 1.08551 0.65018 1.07423 3.04998
D1,2 [eV/Å] 0.14572 0.36659 0.32346 − 0.13792
D1,3 [eV/Å] 0.15934 0.24150 0.22850 0.49286
D2,2 [eV/Å] 0.84221 0.73885 0.66683 1.16373
D2,3 [eV/Å] 0.15671 0.20651 0.03922 0.05159
D2,4 [eV/Å] 0.71708 0.47496 0.91961 1.75586
D2,5 [eV/Å] − 0.01143 − 0.04254 0.36430 0.71878
D3,3 [eV/Å] 0.27613 0.29055 0.50912 0.89435
D3,5 [eV/Å] − 0.12408 − 0.01828 0.29905 0.09548
D16,16 [eV/Å] 0.16786 0.03742 0.41599 0.85853
D16,17 [eV/Å] 0.15006 0.03739 0.38300 0.61640

Table 2 Gradient-elastic constants for different cubic crystals

Al (fcc) Cu (fcc) Fe (bcc) W (bcc)

a1 [eV/Å] − 0.02287 − 0.08509 0.72859 1.43755
a2 [eV/Å] 0.35854 0.23748 0.45980 0.87793
a3 [eV/Å] − 0.24815 − 0.03655 0.59810 0.19097
a4 [eV/Å] 0.16786 0.03742 0.41599 0.85853
a5 [eV/Å] 0.30012 0.07479 0.76600 1.23279
a6 [eV/Å] 0.08229 0.23401 − 0.58892 − 0.67605
a7 [eV/Å] − 0.13198 0.17426 − 1.09107 − 1.89998
a8 [eV/Å] − 0.21058 0.18906 − 1.08476 − 2.30919
a9 [eV/Å] − 0.54849 − 0.02327 − 1.32474 − 3.33133
a10 [eV/Å] 0.41893 0.32059 − 0.73389 − 0.41688
a11 [eV/Å] − 0.19492 − 2.86388 8.52704 14.79794

Lee et al. [34], which is archived in the OpenKIM repository. Elastic and gradient-elastic constants for this
potential were computed using the method described in Admal et al. [1] (see also [46]), and they are available
on the KIM repository [35]. The values of the elastic constants C11, C12 and C44 for Al, Cu and W given in
Table 1 are in perfect agreement with the experimental data at 0 K given in Kittel [23].

Using Eqs. (60a)–(60k) as well as the values of Table 1, we obtain the numerical values of the 11 gradient-
elastic constants a1, a2, . . . , a11 for the considered cubic crystals, which are given in Table 2. It is interesting
to observe that the gradient-elastic constant a11, relevant in the cubic case, gives an important contribution
which cannot be neglected. Particularly, for iron and tungsten the value of a11 is much greater than the value
of the other gradient-elastic constants.

Next, the 3 characteristic lengths, Eqs. (52)–(54), using the values given in Tables 1 and 2, are computed
for aluminum, copper, iron and tungsten and reported in Table 3. The following observations can be made:

(i) The characteristic lengths �1 and �2 are positive and real for all considered cubic materials.
(ii) The characteristic length (for the anisotropy) �3 is imaginary for aluminum, copper and tungsten. In this

case, if �3 is substituted, then the modified Helmholtz operator, [1− �23�], becomes a Helmholtz operator
(with plus sign). Negative values for the square of the characteristic lengths (due to anisotropy) of cubic
materials are also reported in Shodja et al. [50].

(iii) It can be observed that for copper, the characteristic lengths �1 and �2 are very small in comparison
with the lattice constant a, namely �1/a = 0.1392 and �2/a = 0.0921, whereas for aluminum it yields
�1/a = 0.2946 and �2/a = 0.2449. The lattice constants in Table 3 have been taken from [24,51,57,58].

(iv) Moreover, if we compare the 3 characteristic lengths, we see that the value of �3 is much greater than the
values of �1 and �2 reflecting the influence of the anisotropy.
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Table 3 Characteristic lengths for different cubic crystals

Al (fcc) Cu (fcc) Fe (bcc) W (bcc)

�1 [Å] 1.19303 0.50329 1.57824 1.66513
�2 [Å] 0.99186 0.33281 1.20124 1.24195
�3 [Å] 2.58079 i 1.41947 i 2.47806 31.80864 i
a [Å] 4.04950 3.61491 2.8665 3.1652

3.3 Positive definiteness of the strain energy density

The examination of the positive definiteness and semi-definiteness of the strain energy density is important
for the establishment of the uniqueness theorem (Kirchhoff [22]) that is the uniqueness of the solution for the
displacement field in the field equations (equilibrium equations) as well as for the stability of the material.

A cubic material with centrosymmetry of point group m3m is said to be stable if and only if the strain
energy density function (42) is nonnegative for all strains and double strains. Thus, the stability condition is
expressed by the positive semi-definiteness of the strain energy density

W(e, ∇e) ≥ 0, for all e and ∇e. (61)

The strain energy density for cubic materials with centrosymmetry (42) is given as a quadratic form with
respect to the elastic strain tensor e and the gradient of the elastic strain tensor ∇e as follows

W = W(e) + W(∇e)

= 1

2
Ci jkl ei j ekl + 1

2
Di jmkln∂mei j∂nekl

= 1

2
Cαβεαεβ + 1

2
Dξ,ργξ γρ, α, β = 1, . . . , 6, ξ, ρ = 1, . . . , 18, (62)

whereCαβ and Dξ,ρ obey the relations (56) and (57), respectively, and εα, α = 1, . . . , 6 and γξ , ξ = 1, . . . , 18
stand for the components of elastic strain tensor ei j , i, j = 1, 2, 3 and double strain tensor ∂mei j , i, j,m =
1, 2, 3, respectively (following also the Voigt notation, that is, the relations (56) and (57), respectively). Denot-
ing the two (uncoupled) quadratic parts by

Wε = 1

2
Cαβεαεβ, α, β = 1, . . . , 6, (63)

Wγ = 1

2
Dξ,ργξ γρ, ξ, ρ = 1, . . . , 18, (64)

the condition of positive definiteness of the elastic strain energy density reads

W = Wε + Wγ > 0, for all e and ∇e. (65)

Since strains and double strains are uncoupled from each other, we can studyWε andWγ separately (see, e.g.,
[14]).

A quadratic form Cαβεαεβ is called a positive definite form if it is in general positive and can be zero only
if all the εα are zero. There are different but equivalent methods criteria to check the positive definiteness of
a quadratic form. A set of necessary and sufficient conditions for a quadratic form to be positive definite is
given by the Sylvester theorem; that is, all the leading principal minors of the matrix C = (Cαβ) are positive.
Equivalently, a quadratic form is positive definite if and only if all eigenvalues λα, α = 1, . . . , 6 of C = (Cαβ)
are positive: λα > 0, α = 1, . . . , 6. Analogously, it holds for the quadratic form Dξ,ργξ γρ . In this case, the
eigenvalues are λξ , ξ = 1, . . . , 18. It should be mentioned that a quadratic form can be essentially positive
without being positive definite [20].

The conditions of positive definiteness impose restrictions to the elastic and gradient-elastic constants. The
conditions for the positive definiteness of the matrices C = (Cαβ) and D = (Dξ,ρ) are derived in “Appendix
A”. Consequently, the necessary and sufficient conditions that the strain energy density (42) is positive definite
are given by the inequalities (A.3) and (A.7a)–(A.7e), that is, 3 conditions for the elastic constants and 7
conditions for the gradient-elastic constants. The corresponding relations with the nonnegative sign are the
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Table 4 The anisotropy factor H for the fourth-rank constitutive tensor Ci jkl for different cubic materials

Al (fcc) Cu (fcc) Fe (bcc) W (bcc)

−H = C11 − C12 − 2C44 [eV/Å3] −0.06691 −0.70118 −0.86693 0.00753

necessary and sufficient conditions in terms of the elastic and gradient-elastic constants for the stability of the
material in the Toupin–Mindlin anisotropic first strain gradient elasticity.

In particular, the values of the elastic constantsC11,C12 andC44 given in Table 1 satisfy the conditions (A.3)
for a positive definite matrix C = (Cαβ) for all four considered cubic materials. On the other hand, the 11
gradient-elastic constants in Voigt notation D1,1, D1,2, . . . , D16,17 given in Table 1 satisfy the conditions of
positive definiteness (A.7a)–(A.7e) of the matrix D for Al and Cu but not for Fe and W 3. It is important to
note that many interatomic potentials given in [1] do not lead to a positive definite constitutive tensor Di jmkln ,
like for Fe and W. Nevertheless, the 7 conditions of positive definiteness of the matrix D, inequalities (A.7a)–
(A.7e), might be used to calibrate the interatomic potentials in a way leading to a positive definite matrix
D.

3.4 Isotropy conditions

In the considered Toupin–Mindlin anisotropic first strain gradient elasticity, the isotropy is related to conditions
arising from both constitutive tensors, Ci jkl and Di jmkln .

The isotropic limit of the constitutive tensorCi jkl , Eq. (36), for a cubicmaterial toward an isotropicmaterial
leads to the following isotropy condition for the constitutive tensor Ci jkl

C11 − C12 − 2C44 = 0, (66)

which is nothing but the isotropy condition for the anisotropy factor, H = 0, given in Hirth and Lothe [18]. The
values of the anisotropy factor H for the considered cubic materials are given in Table 4. From the physical
point of view, H is related to the maximum of Young’s modulus in the [111] or [100] direction depending on
its sign.

The isotropic limit of the constitutive tensor Di jmkln , Eq. (40), for a cubic material toward an isotropic
material leads to the following 6 isotropy conditions for the constitutive tensorDi jmkln in terms of the gradient-
elastic constants

a6 = a7 = a8 = a9 = a10 = a11 = 0. (67)

One could say that the gradient-elastic constants a6, a7, a8, a9, a10 and a11 are the additional 6 anisotropy
factors stemming from the constitutive tensor Di jmkln . Therefore, the isotropy conditions in anisotropic first
strain gradient elasticity are seven, one arising from the fourth-rank constitutive tensor Ci jkl and six arising
from the sixth-rank constitutive tensor Di jmkln .

As it can be seen in Table 2, the gradient-elastic constants a6, a7, a8, a9, a10 and a11 are far from fulfilling the
isotropy conditions (67). Not a single relation of Eq. (67) is fulfilled by the numerical values given in Table 2.
Therefore, the following conclusion can be reached: Aluminum and tungsten are nearly isotropic with respect
to the fourth-rank constitutive tensorCi jkl , whereas none of the four considered cubic crystals is isotropic with
respect to the sixth-rank constitutive tensor Di jmkln . The obtained result concerning the anisotropic behavior
of the sixth-rank constitutive tensor Di jmkln is in accordance with the Hermann theorem already discussed in
the introduction.

4 Mindlin’s isotropic first strain gradient elasticity

In this section, we present the basic equations ofMindlin’s isotropic first strain gradient elasticity of form II [41]
in order for helpful comparisons with the anisotropic version to be done leading to important observations and
consequences.

3 For Fe and W, only the 2 inequalities, (A.7c) and (A.7d), are not fulfilled.
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4.1 Basic framework

An isotropic constitutive tensor of rank four satisfying the symmetries (4) and (5) reads as

Ci jkl = λδi jδkl + μ
(
δikδ jl + δilδ jk

)
, (68)

where the 2 Lamé constants are given by

μ = C44 = 1

2
(C11 − C12), λ = C12. (69)

An isotropic constitutive tensor of rank six satisfying the symmetries (9) and (10) reads as

Di jmkln = a1
2

(
δi jδkmδln + δi jδknδlm + δklδimδ jn + δklδinδ jm

) + 2a2 δi jδklδmn

+ a3
2

(
δ jkδimδln + δikδ jmδln + δilδ jmδkn + δ jlδimδkn

) + a4
(
δilδ jkδmn + δikδ jlδmn

)

+ a5
2

(
δ jkδinδlm + δikδ jnδlm + δ jlδkmδin + δilδkmδ jn

)
, (70)

where a1, a2, a3, a4, a5 are the 5 gradient-elastic constants in Mindlin’s isotropic first strain gradient elasticity
theory [41] (see also [31,32,42]).

The strain energy density for isotropic materials in first strain gradient elasticity is given by

W(e, ∇e) = 1

2
Ci jkl ei j ekl + 1

2
Di jmkln∂mei j∂nekl , (71)

with the constitutive tensors Ci jkl and Di jmkln to be given by Eqs. (68) and (70).
The Cauchy stress tensor σi j reads

σi j = λ δi j ekk + 2μ ei j (72)

and the double stress tensor τi jm is given by

τi jm = a1
2

(
δim∂ j ekk + δ jm∂i ekk + 2δi j∂kemk

) + 2a2δi j∂mekk

+ a3
(
δim∂ke jk + δ jm∂keik

) + 2a4∂mei j + a5
(
∂i e jm + ∂ j eim

)
. (73)

The total or effective stress tensor σ̂i j reduces to

σ̂i j = λ δi j ekk + 2μ ei j − a1
(
∂i∂ j ekk + δi j∂m∂kemk

) − 2a2δi j�ekk

− a3
(
∂i∂ke jk + ∂ j∂keik

) − 2a4�ei j − a5
(
∂k∂i e jk + ∂k∂ j eik

)
. (74)

Using Eq. (68), the Navier operator (30) leads to the Navier operator for Mindlin’s isotropic first strain
gradient elasticity

L(0)
ik = (λ + 2μ)∂i∂k + μ(δik� − ∂i∂k). (75)

Using Eq. (70), the differential operator L(2)
ik , Eq. (32), takes in isotropic case the following expression

L(2)
ik = 2(a1 + a2 + a3 + a4 + a5)∂i∂k� + 1

2
(a3 + 2a4 + a5)(δik� − ∂i∂k)�. (76)



Mathematical modeling of the elastic properties of cubic crystals

Consequently, from Eq. (29) the isotropic Mindlin operator of first strain gradient elasticity is given by

LM
ik = L(0)

ik − L(2)
ik

= (λ + 2μ)
[
1 − �21�

]
∂i∂k + μ

[
1 − �22�

]
(δik� − ∂i∂k), (77)

with the 2 characteristic lengths to be given as follows

�21 = 2(a1 + a2 + a3 + a4 + a5)

λ + 2μ
, (78)

�22 = a3 + 2a4 + a5
2μ

. (79)

Therefore, inMindlin’s isotropic strain gradient elasticity,wehave 2 characteristic lengths for 2 elastic constants
(Lamé constants) λ and μ. �1 is the characteristic length for the combination of the Lamé constants λ + 2μ,
and �2 is the characteristic length for the Lamé constant μ.

Under isotropy, the isotropy condition for the constitutive tensor Ci jkl , Eq. (66), is satisfied, that is

C11 − C12 − 2C44 = 0 (80)

and the constitutive tensor Di jmkln must satisfy the 6 isotropy conditions, Eq. (67), that is,

a6 = a7 = a8 = a9 = a10 = a11 = 0. (81)

In the isotropic case, Eqs. (59a)–(59k) simplify, leading to the following gradient-elastic constants in Voigt
notation

D1,1 ≡ D111111 = 2(a1 + a2 + a3 + a4 + a5), (82a)

D1,2 ≡ D111221 = a1 + 2a2, (82b)

D1,3 ≡ D111122 = a1
2

+ a3, (82c)

D2,2 ≡ D221221 = 2(a2 + a4), (82d)

D2,3 ≡ D221122 = a1
2

+ a5, (82e)

D2,4 ≡ D221331 = 2a2, (82f)

D2,5 ≡ D221133 = a1
2

, (82g)

D3,3 ≡ D122122 = a3
2

+ a4 + a5
2

, (82h)

D3,5 ≡ D122133 = a3
2

, (82i)

D16,16 ≡ D123123 = a4, (82j)

D16,17 ≡ D123132 = a5
2

. (82k)

Note that Eqs. (82a)–(82k) agreewith the corresponding expressions given inDell’Isola et al. [12]with changed
basis vectors. Moreover, Eqs. (82a)–(82k) are in agreement with the corresponding ones given by Ojaghnezhad
and Shodja [45]. However, the gradient-elastic constants of the sixth-rank constitutive tensor, a1, a2 and a3,
used in [45] are defined different than in Mindlin [41] which are also used in this work.
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Moreover, Eqs. (60a)–(60k) in the isotropic case reduce to the following gradient-elastic constants

a1 = 2D2,5, (83a)

a2 = 1

2
D2,4, (83b)

a3 = 2D3,5, (83c)

a4 = D16,16, (83d)

a5 = 2D16,17, (83e)

0 = D3,3 − D3,5 − D16,16 − D16,17, (83f)

0 = D2,3 − D2,5 − 2D16,17, (83g)

0 = D2,2 − D2,4 − 2D16,16, (83h)

0 = D1,2 − D2,4 − 2D2,5, (83i)

0 = D1,3 − D2,5 − 2D3,5, (83j)

0 = D1,1 − D2,2 + 2(D2,4 − D1,2) + 4(D16,16 − D1,3 − D2,3 − D3,3) + 8(D2,5 + D3,5 + D16,17).
(83k)

Thus, in the isotropic approach, first strain gradient elasticity possesses only 5 independent gradient-elastic
constants.

Using Eqs. (83f)–(83k), the isotropy conditions (81) can be expressed in terms of the gradient-elastic
constants in Voigt notation as follows

D3,3 = D3,5 + D16,16 + D16,17, (84a)

D2,3 = D2,5 + 2D16,17, (84b)

D2,2 = D2,4 + 2D16,16, (84c)

D1,2 = D2,4 + 2D2,5, (84d)

D1,3 = D2,5 + 2D3,5, (84e)

D1,1 = D2,4 + 2D16,16 + 4(D2,5 + D3,5 + D16,17), (84f)

providing additional relations (constraints) between them.

5 Lattice-theoretical representation of the constitutive tensors in first strain gradient elasticity

In this section, we derive lattice relations for the constitutive tensor Di jmkln and Cauchy relations for the
constitutive tensors Ci jkl and Di jmkln based on a lattice-theoretical representation. These relations provide
important information for the elastic as well as the gradient-elastic constants.

5.1 Lattice relations

In a lattice-theoretical approach of the constitutive tensors in first strain gradient elasticity with general
anisotropy, the tensors of elastic constants and gradient-elastic constants are represented by (see, e.g., [50,52])

Ĉi jkl = − 1

2v0

∑

R

�i j (R) Xk Xl , (85)

Êi jklm = − 1

4v0

∑

R

�i j (R) Xk Xl Xm, (86)

D̂i jklmn = − 1

8v0

∑

R

�i j (R) Xk Xl Xm Xn, (87)

where �i j (R) are the atomic force constant tensors of second-rank, v0 is the volume of the unit cell, and Xk is
the atomic distance vector. The atomic force constant tensors are equivalent to the components of the Hessian
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matrix which can be obtained by first principles density functional theory (DFT) (see, e.g., [50]). The tensor
Ĉi jkl is the so-called Born–Huang tensor possessing the symmetries

Ĉi jkl = Ĉ(i j)|(kl) (88)

and having 21 independent components. It is well known that the tensor Ĉi jkl has the same symmetries as the
tensor Ci jkl (see [37,38]).

Note that the tensor Êi jklm possesses the following symmetries

Êi jklm = Ê(i j)(klm) (89)

having 60 independent components, and the tensor D̂i jklmn possesses the following symmetries

D̂i jklmn = D̂(i j)(klmn) (90)

having 90 independent components.
Moreover, the Born–Huang tensor Ĉi jkl can be expressed in terms of the tensor of elastic constants Cik jl

as follows

Ĉi jkl = 1

2

(
Cik jl + Cil jk

)
. (91)

For the tensor of elastic-gradient constants Di jmkln , the generalized Born–Huang tensor D̂i jklmn following
Shodja et al. [50] reads as

D̂i jklmn = 1

6

(
Dmnikl j + Dkniml j + Dklimnj + Dmlink j + Dlnimk j + Dmkinl j

)
, (92)

or shortly

D̂(i j)(klmn) = D(mn|i |kl) j . (93)

The generalized Born–Huang tensor D̂i jklmn is related to only 90 components of the tensor Di jmkln , and
this part is symmetric in the first, second, fourth and fifth indices, D(mn|i |kl) j . The tensor D̂i jklmn has more
symmetries than the tensorDi jmkln . For that reason, only 90 components of the constitutive tensorDi jmkln can
be computed from a lattice-theoretical approach.

Therefore, we consider that the tensor Di jmkln is symmetric in i, j, k, l, and then, it has 90 independent
components in the case of general anisotropy:Di jmkln = D(i j |m|kl)n . Due to themajor symmetry (10), the tensor
D(i j |m|kl)n is also symmetric in the indices m and n. Then, in the case of cubic materials with centrosymmetry,
the constitutive tensorDi jmkln , Eq. (40), leads to the following 5 relations between the gradient-elastic constants

a1 = a3 = a5, (94)

2a2 = a4, (95)

a6 = a9, (96)

a7 = a10. (97)

Equations (94)–(97) are the 5 lattice relations for the gradient-elastic constants which must be fulfilled in a
lattice-theoretical approach of first strain gradient elasticity for cubic materials with centrosymmetry. It can
be seen that there are only 6 independent gradient-elastic constants instead of 11 ones for a cubic crystal
with centrosymmetry. The lattice relations (94)–(97) are in agreement with the corresponding ones given by
Shodja et al. [50]. Moreover, it is interesting to note that the so-called sixth-rank tensor of “dynamic elastic
constants” used in lattice dynamics possesses also the symmetries (93) and consequently it has 6 “dynamic
elastic constants” for cubic crystals which can be determined from lattice dynamics (see [13,19,39]).

In the isotropic limit, the corresponding lattice relations for the gradient-elastic constants are Eqs. (94)
and (95) leading to 2 independent gradient-elastic constants instead of 5 ones, which is in agreement with the
results obtained in [13,49].
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5.2 Cauchy relations

Here, we investigate the Cauchy relations for the constitutive tensors Ci jkl and Di jmkln in first strain gradient
elasticity.

A lattice-theoretical approach for the elastic constants shows (see, e.g., [37,38]) that the Cauchy relations
are valid when it is provided:
(i) ideal lattice, no defects,
(ii) the interaction forces between the atoms or molecules of a crystal are central forces, as in halite,
(iii) each atom or molecule is a center of symmetry,
(iv) the interaction forces between the building blocks of a crystal can be well approximated by a harmonic

potential.
In most elastic bodies, the Cauchy relations for the constitutive tensor Ci jkl are not satisfied (see, e.g., [16]).
Nevertheless, halite (NaCl) fulfills nearly the Cauchy relation for Ci jkl (see, e.g., [11,16]). A study of the
violations of the Cauchy relations yields important information about the interatomic forces of elastic bodies.
The same assumptions (i)-(iv) should also hold for the “generalized Cauchy relations” for the constitutive
tensor Di jmkln . For central forces F(R), the force constant tensors read as (e.g., [37,38])

�i j (R) = −F(R)Xi X j . (98)

• Substituting Eq. (98) into Eq. (85), the Born–Huang tensor for central forces reads

Ĉ(i jkl) = 1

2v0

∑

R

F(R) Xi X j Xk Xl , (99)

being a totally symmetric tensor of rank four, and consequently, it holds

Ĉ(i jkl) = C(i jkl). (100)

C(i jkl) is a totally symmetric tensor with 15 independent components

Ci jkl = C(i jkl) (101)

leading to the well-known Cauchy relations for the fourth-rank constitutive tensor Ci jkl .
For a cubic crystal with centrosymmetry [see Eq. (36)], Eq. (101) reduces to the Cauchy relation for the
elastic constants:

C12 = C44. (102)

Therefore, the number of the independent elastic constants reduces to 2 constants instead of 3 ones.
• Substituting Eq. (98) into Eq. (87), the generalized Born–Huang tensor for central forces reads

D̂(i jklmn) = 1

8v0

∑

R

F(R) Xi X j Xk Xl Xm Xn, (103)

which is a totally symmetric tensor of rank six, and consequently, it holds

D̂(i jklmn) = D(i jklmn). (104)

D(i jmkln) is a totally symmetric tensor with 28 independent components

Di jmkln = D(i jmkln) (105)

leading to the generalized Cauchy relations for the sixth-rank constitutive tensor Di jmkln in first strain
gradient elasticity.
For a cubic crystal with centrosymmetry (see Eq. (40)), Eq. (105) provides the following 8 generalized
Cauchy relations for the gradient-elastic constants:

a1
2

= a3
2

= a5
2

= 2a2 = a4, (106)

a6 = a7 = a8 = a9 = a10. (107)

Through the generalized Cauchy relations, Eqs. (106) and (107), the number of the independent gradient-
elastic constants reduces to only 3 constants of a lattice instead of 11 ones for a cubic crystal.
In the isotropic limit, Eq. (106) holds and leads to only 1 independent gradient-elastic constant of a lattice
instead of 5 ones for an isotropic material.
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6 Tensor equivalent matrix representation of the constitutive tensors in first strain gradient elasticity

In this section, the normalized Voigt notation, proposed by Mehrabadi and Cowin [40], Cowin and Mehrabadi
[9] in anisotropic elasticity, is used in order to derive a tensor equivalentmatrix representation of the constitutive
tensors in first strain gradient elasticity (see also [4]).

In the normalized Voigt notation, the stress and the elastic strain, being second-rank tensors in the three-
dimensional space, are represented as first-rank tensors (vectors) in a six-dimensional space using an orthonor-
mal basis. Analogously, the elasticity tensor, which is a fourth-rank tensor in the three-dimensional space, is
represented by a second-rank tensor in a six-dimensional space. Therefore, invariants of the elasticity tensor
can be directly computed from the aforementioned matrix representation applying standard matrix formula.
In a similar way, third-rank tensors in the three-dimensional space can be represented as first-rank tensors
(vectors) in an 18-dimensional space and sixth-rank tensors in three-dimensional space as second-rank tensors
in an 18-dimensional space. It should be noted that in the (non-normalized) Voigt notation, the basis is not
orthonormal. As a result, the matrix representation of the constitutive tensors cannot be directly used to solve
the eigenvalue problem in linear elasticity, important, for example, to determine wave speeds and independent
strain modes (see, e.g., [9,40]).

6.1 Normalized Voigt notation: C̃αβ and D̃ξ,ρ

For the calculation of the invariants of a fourth-rank tensor, it is useful to introduce a matrix representation.
First, an orthonormal basis {Bα}(α = 1, . . . , 6) is introduced for symmetric second-rank tensors. A possible
basis is given by

B1 = e1 ⊗ e1, B4 = 1√
2

(e2 ⊗ e3 + e3 ⊗ e2) ,

B2 = e2 ⊗ e2, B5 = 1√
2

(e1 ⊗ e3 + e3 ⊗ e1) ,

B3 = e3 ⊗ e3 , B6 = 1√
2

(e1 ⊗ e2 + e2 ⊗ e1) ,

(108)

which satisfies

Bα · Bβ = δαβ, α, β = 1, . . . , 6 (109)

with Kronecker symbol δαβ and {ei }(i = 1, . . . , 3) an orthonormal basis in R
3. It should be noted that the

basis introduced here is not the same as the basis of classical Voigt notation. Using this basis system, second-
rank tensors in three-dimensional space are represented as first-rank tensors (vectors) in a six-dimensional
space. Analogously, fourth-rank tensors in three-dimensional space are represented as second-rank tensors in
a six-dimensional space.

The components of the stress, strain and elasticity tensors are determined by projection onto the basis
tensors

σ̃α = σ · Bα, ε̃α = e · Bα, C̃αβ = Bα · C[Bβ ]. (110)

The classical Hooke’s law can then be equivalently expressed by

σ =
6∑

α=1

σ̃αBα =
6∑

α,β=1

C̃αβ ε̃β Bα, (111)

or equivalently in pure matrix–vector notation

σ̃α =
6∑

β=1

C̃αβ ε̃β . (112)

The advantage of the normalized representation used here is that the eigenvalues and eigentensors of the
elasticity tensor, defined by λ e = C[ e], are identical with the corresponding quantities of the matrix C̃αβ .
This does not apply in the case of the non-normalized Voigt notation.
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In the case of a cubic crystal symmetry, the constitutive tensorCi jkl of the elastic constants in the normalized
Voigt notation is written as

C̃αβ =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

C̃11 C̃12 C̃12 0 0 0
C̃12 C̃11 C̃12 0 0 0
C̃12 C̃12 C̃11 0 0 0
0 0 0 C̃44 0 0
0 0 0 0 C̃44 0
0 0 0 0 0 C̃44

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

, (113)

where

C̃11 = C11, C̃12 = C12, C̃44 = 2C44. (114)

For the calculation of the invariants of a sixth-rank tensor, it is also useful to introduce a matrix represen-
tation. Since the tensor D constitutes energetically a quadratic form in the gradient of the elastic strain tensor
and satisfies two minor and one major symmetry conditions, the orthonormal basis for symmetric second-rank
tensors can be used to generate an 18-dimensional basis for D. Based on the index functions

f1(ξ) = {1, 2, 4, 3, 5, 2, 1, 4, 3, 6, 3, 1, 5, 2, 6, 4, 5, 6} (115)

and

f2(ξ) = {1, 1, 2, 1, 3, 2, 2, 1, 2, 3, 3, 3, 1, 3, 2, 3, 2, 1} (116)

an 18-dimensional orthonormal tensor basis for sixth-rank tensors can be defined by

Fξ = B f1(ξ) ⊗ e f2(ξ), ξ = 1, . . . , 18, (117)

which satisfies

Fξ · Fρ = δξρ, ξ, ρ = 1, . . . , 18. (118)

Using this basis system, third-rank tensors in three-dimensional space are represented as first-rank ten-
sors (vectors) in an 18-dimensional space. Analogously, sixth-rank tensors in three-dimensional space are
represented as second-rank tensors in an 18-dimensional space.

The components of the double stress, the gradient of the elastic strain tensor and the constitutive tensor of
the gradient-elastic constants are determined by projection onto the basis tensors

τ̃ξ = τ · Fξ , γ̃ρ = ∇ e · Fρ, D̃ξ,ρ = Fξ · D[Fρ]. (119)

The constitutive relation for the double stress tensor can be expressed by

τ =
18∑

ξ=1

τ̃ξ Fξ =
18∑

ξ,ρ=1

D̃ξ,ρ γ̃ρ Fξ , (120)

or equivalently in pure matrix–vector notation

τ̃ξ =
18∑

ρ=1

D̃ξ,ρ γ̃ρ. (121)

The advantage of the normalized representation used here is that the eigenvalues and eigentensors of the
constitutive tensor of gradient-elastic constants, which are defined by λ∇ e = D[∇ e], are identical with the
corresponding quantities of the matrix D̃ξ,ρ .

The 18 × 18 matrix representation of D has the form

D̃ξ,ρ =

⎛

⎜⎜
⎝

D̃1 0 0 0
0 D̃1 0 0
0 0 D̃1 0
0 0 0 D̃2

⎞

⎟⎟
⎠ (122)
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with the symmetric 5 × 5 sub-matrix with 9 independent elements

D̃1 =

⎛

⎜
⎜⎜
⎜
⎝

D̃1,1 D̃1,2 D̃1,3 D̃1,2 D̃1,3

D̃1,2 D̃2,2 D̃2,3 D̃2,4 D̃2,5

D̃1,3 D̃2,3 D̃3,3 D̃2,5 D̃3,5

D̃1,2 D̃2,4 D̃2,5 D̃2,2 D̃2,3

D̃1,3 D̃2,5 D̃3,5 D̃2,3 D̃3,3

⎞

⎟
⎟⎟
⎟
⎠

(123)

and the symmetric 3 × 3 sub-matrix with 2 independent elements

D̃2 =
⎛

⎝
D̃16,16 D̃16,17 D̃16,17

D̃16,17 D̃16,16 D̃16,17

D̃16,17 D̃16,17 D̃16,16

⎞

⎠ (124)

with the gradient-elastic constants in normalized Voigt notation to be given as

D̃1,1 = 2(a1 + a2 + a3 + a4 + a5) + 4(a6 + a7 + a10) + a8 + 2a9 + a11, (125a)

D̃1,2 = a1 + 2a2 + a9, (125b)

D̃1,3 = (a1 + 2a3 + 2a10)/
√
2, (125c)

D̃2,2 = 2(a2 + a4) + a8, (125d)

D̃2,3 = (a1 + 2a5 + 2a7)/
√
2, (125e)

D̃2,4 = 2a2, (125f)

D̃2,5 = a1/
√
2, (125g)

D̃3,3 = a3 + 2a4 + a5 + 2a6, (125h)

D̃3,5 = a3, (125i)

D̃16,16 = 2a4, (125j)

D̃16,17 = a5. (125k)

Therefore, the constitutive tensor D in the normalized Voigt notation is represented by the symmetric block
diagonal matrix (122), which is expressed in linear combinations of the 11 gradient-elastic constants through
the relations (125a)–(125k) .

Comparing Eqs. (125a)–(125k) and (59a)–(59k), the relations between D̃ξ,ρ and Dξ,ρ read as

D̃1,1 = D1,1, D̃1,2 = D1,2, D̃1,3 = √
2 D1,3, D̃2,2 = D2,2, D̃2,3 = √

2 D2,3, D̃2,4 = D2,4,

D̃2,5 = √
2 D2,5, D̃3,3 = 2D3,3, D̃3,5 = 2D3,5, D̃16,16 = 2D16,16, D̃16,17 = 2D16,17. (126)

6.2 Eigenvalues and positive definiteness of the constitutive tensors

In this subsection, we derive the independent eigenvalues of the constitutive tensors C and D of first strain
gradient elasticity for the cubic as well as for the isotropic case. The conditions for the positive definiteness of
the two tensors are also given for both examined cases.

The matrix C̃αβ has 3 independent eigenvalues, which are given by

λC1 = C̃11 + 2C̃12, λC2 = C̃11 − C̃12, λC3 = C̃44. (127)

Here, λC1 is a single eigenvalue, λC2 is a double eigenvalue, and λC3 is a triple eigenvalue. In the isotropic case
λC2 = λC3 and therefore only two independent eigenvalues exist.

Due to the specific matrix structure of D̃ξ,ρ given in Eq. (122), it follows that the eigenvalues of D̃ξ,ρ are
equal to the eigenvalues of D̃1 and that ones of D̃2. The 18 eigenvalues of the tensorD consist of 5 independent
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Table 5 Eigenvalues of the sixth-rank constitutive tensor D for different cubic materials are given in units of [eV/Å]
Al (fcc) Cu (fcc) Fe (bcc) W (bcc) Multiplicity

λD
1 0.03560 0.00005 0.06598 0.48426 2

λD
2 0.93596 0.22441 2.36399 4.18264 1

λD
3 0.87576 0.83490 0.65338 1.94819 3

λD
4 0.04980 0.04664 − 0.48601 − 0.94259 3

λD
5 1.70599 1.70391 2.47144 3.90703 3

λD
6 1.06408 0.07599 1.03077 3.18388 3

λD
7 0.17883 0.04664 0.77479 0.85833 3

eigenvalues of the 5 × 5 sub-matrix D̃2, which appears three times, and the 2 independent eigenvalues of the
3 × 3 sub-matrix D̃1, from which one has multiplicity 2. That is, the tensor D has 7 independent eigenvalues.

Specifically, the two independent eigenvalues of D̃2 are given by

λD
1 = −D̃16,17 + D̃16,16 (128)

with multiplicity two, and

λD
2 = 2D̃16,17 + D̃16,16 (129)

with multiplicity one.
The 5 independent eigenvalues of D̃1 with multiplicity one are given by

λD
3,4 = (k1 ± √

k2 − 4k3)/2 (130)

with

k1 = D̃2,2 − D̃2,4 + D̃3,3 − D̃3,5, (131)

k2 = (−D̃2,2 + D̃2,4 − D̃3,3 + D̃3,5)
2, (132)

k3 = −D̃2
2,3 + 2D̃2,3 D̃2,5 − D̃2

2,5 + D̃2,2 D̃3,3 − D̃2,4 D̃3,3 − D̃2,2 D̃3,5 + D̃2,4 D̃3,5, (133)

and, additionally, with the roots λD
5 , λD

6 , λD
7 of the cubic algebraic equation

0 = k4 + k5x + k6x
2 + x3 (134)

with the coefficients

k4 = 2D̃2
1,3 D̃2,2 − 4D̃1,2 D̃1,3 D̃2,3 + D̃1,1 D̃

2
2,3 + D̃ D̃2

1,3 D̃2,4 (135)

− 4D̃1,2 D̃1,3 D̃2,5 + 2D̃1,1 D̃2,3 D̃2,5 + D̃1,1 D̃
2
2,5 + 2D̃2

1,2 D̃3,3 (136)

− D̃1,1 D̃2,2 D̃3,3 − D̃1,1 D̃2,4 D̃3,3 + 2D̃2
1,2 D̃3,5 − D̃1,1 D̃2,2 D̃3,5 − D̃1,1 D̃2,4 D̃35, (137)

k5 = −2D̃2
1,2 − 2D̃2

1,3 + D̃1,1 D̃2,2 − D̃2
2,3 + D̃1,1 D̃2,4 − 2D̃2,3 D̃2,5 − D̃2

2,5 (138)

+ D̃1,1 D̃3,3 + D̃2,2 D̃3,3 + D̃2,4 D̃3,3 + D̃1,1 D̃3,5 + D̃2,2 D̃3,5 + D̃2,4 D̃3,5, (139)

k6 = −(D̃1,1 + D̃2,2 + D̃2,4 + D̃3,3 + D̃3,5). (140)

In Table 5, the numerical values of the eigenvalues of the constitutive tensor Di jmkln for the four considered
materials are given in units of [eV/Å]. One can see that in the sense of D, each of the five distinct eigenvalues
of D̃1 has the multiplicity of three. Hence, D has one eigenvalue of multiplicity of one, one of multiplicity of
two and five eigenvalues of multiplicity of three.
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Concerning positive definiteness, a matrix is positive definite if and only if all its eigenvalues are positive.
Therefore, the values of the elastic constants C11, C12 and C44 have to obey the following 3 conditions of
positive definiteness of the tensor C:

λC1 = C11 + 2C12 > 0, (141)

λC2 = C11 − C12 > 0, (142)

λC3 = 2C44 > 0. (143)

The conditions of positive definiteness for the gradient-elastic constants are given by the positive values of the
7 independent eigenvalues of D as follows

λD
α > 0, α = 1, . . . , 7. (144)

In Table 5, it can be seen that the conditions of positive definiteness are fulfilled for Al and Cu but not for
Fe and W, since one eigenvalue is negative, λD

4 < 0. This result is in agreement with the result obtained in
Sect. 3.3 based on the Sylvester criterion.

In the isotropic first strain gradient elasticity, H = 0, that is, λC2 = λC3 , and hence, the constitutive tensorC
has only two independent eigenvalues, namely

λC1 = C11 + 2C12, (145)

λC2 = 2C44. (146)

The eigenvalueλC1 hasmultiplicity one, andλC2 hasmultiplicityfive.Therefore, there exist only two independent
conditions for the positive definiteness of the tensor C.

In the isotropic case, the matrices D̃1 and D̃2 take the form

D̃1=

⎛

⎜⎜
⎜⎜
⎝

2(a1 + a2 + a3 + a4 + a5) a1 + 2a2
√
2(a1/2 + a3) a1 + 2a2

√
2(a1/2 + a3)

a1 + 2a2 2(a2 + a4)
√
2(a1/2 + a5) 2a2 a1/

√
2√

2(a1/2 + a3)
√
2(a1/2 + a5) a3 + 2a4 + a5 a1/

√
2 a3

a1 + 2a2 2a2 a1/
√
2 2(a2 + a4)

√
2(a1/2 + a5)√

2(a1/2 + a3) a1/
√
2 a3

√
2(a1/2 + a5) a3 + 2a4 + a5

⎞

⎟⎟
⎟⎟
⎠

(147)

and

D̃2 =
⎛

⎝
2a4 a5 a5
a5 2a4 a5
a5 a5 2a4

⎞

⎠ . (148)

The matrix D̃2 has 2 independent eigenvalues

λD
1 = 2a4 − a5, (149)

λD
2 = 2(a4 + a5), (150)

where λD
1 has multiplicity two and λD

2 has multiplicity one. The matrix D̃1 has 4 independent eigenvalues,
namely the λD

1 with multiplicity one and λD
2 with multiplicity two, and the eigenvalues

λD
3 = 1

2
(2a1 + 6a2 + 4a3 + 4a4 + a5 − √

k7), (151)

λD
4 = 1

2
(2a1 + 6a2 + 4a3 + 4a4 + a5 + √

k7), (152)

where

k7 = 24a21 + 24a1a2 + 16a1a3 + 28a1a5 + 36a22 − 32a2a3 + 4a2a5 + 16a23 + 16a3a5 + 9a25 (153)

with multiplicity one. Here, a new numbering of the eigenvalues is used.
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Therefore, the tensor D has four independent eigenvalues given in terms of the gradient-elastic con-
stants a1, . . . , a5. These eigenvalues provide 4 conditions for the positive definiteness of D in isotropic first
strain gradient elasticity. For the investigation of positive definiteness in isotropic first strain gradient elasticity,
the Sylvester criterion is commonly used in the literature leading to more than the necessary conditions and
also to different conditions mostly due to different used basis. However, only the normalized Voigt notation
gives the correct independent eigenvalues of the constitutive tensors and consequently the correct number of
the necessary and sufficient conditions for the positive definiteness.

7 Voigt-type average of the sixth-rank constitutive tensor D

In Sect. 3, we have seen that there are cubic materials with centrosymmetry such as Al andWwhich are nearly
isotropic4 with respect to the fourth-rank constitutive tensor Ci jkl , whereas they are not isotropic with respect
to the constitutive tensorDi jmkln , which does not satisfy any of the six isotropy conditions (67). For that reason,
we use here a Voigt-type averaging for the sixth-rank constitutive tensor Di jmkln in order to compute isotropic
gradient-elastic constants.

For the calculation of theVoigt-type average of the sixth-rank constitutive tensorDi jmkln , the tensorDi jmkln
must be averaged over all orientations. For complete random orientation of an isotopic material, such linear
averages can be calculated from the following condition: The linear invariants of the sixth-rank constitutive
tensor representing the single crystal of cubic type must be equal to the linear invariants of the corresponding
averaged isotropic sixth-rank constitutive tensor. Such a method was first used by Leibfried [36] (see also
[18,26]) to calculate the Voigt average of the second-order elastic constants for cubic symmetry, and by Bross
[7] (see also [6]) to calculate the Voigt average of the first kind of the third-order elastic constants for cubic
symmetry. In this work, we generalize the Voigt average for the sixth-rank constitutive tensor Di jmkln in order
to calculate the Voigt-type average of the gradient-elastic constants in Toupin–Mindlin anisotropic first strain
gradient elasticity for cubic materials with centrosymmetry.

Remark 1 The obtained averaged isotropic gradient-elastic constants defined in this manner are valid for
constant double strain. This is an important constraint that prevents the Voigt-type average for both constitutive
tensors, Ci jkl and Di jmkln , in the framework of anisotropic first strain gradient elasticity, since for the Voigt
average of the constitutive tensorCi jkl , the constraint of constant elastic strain would lead to zero double strain.

Remark 2 It should be noted that commonly the term Voigt average is related to a strict upper bound of the
strain energy density or the dissipation potential for linear and nonlinear materials, which depends generally
only on the one-point statistics of microstructure (see, e.g., [8]). Such an interpretation is not applied here.

The sixth-rank constitutive tensor of an averaged isotropic crystal, D̄i jmkln , is given by

D̄i jmkln = ā1
2

(
δi jδkmδln + δi jδknδlm + δklδimδ jn + δklδinδ jm

) + 2ā2 δi jδklδmn

+ ā3
2

(
δ jkδimδln + δikδ jmδln + δilδ jmδkn + δ jlδimδkn

) + ā4
(
δilδ jkδmn + δikδ jlδmn

)

+ ā5
2

(
δ jkδinδlm + δikδ jnδlm + δ jlδkmδin + δilδkmδ jn

)
, (154)

where ā1, ā2, ā3, ā4, ā5 are the five averaged isotropic gradient-elastic constants.
The five linear invariants of the sixth-rank constitutive tensor Di jmkln are

ID1 = Di i j jkk, (155a)

ID2 = Di i jkk j , (155b)

ID3 = Di j i jkk, (155c)

ID4 = Di jki jk, (155d)

ID5 = Di jk jki . (155e)

4 Diamond is also a nearly isotropic material.
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From the condition that the five linear invariants of the constitutive tensor of sixth-rank Di jmkln (representing
the single crystal of cubic type) must be equal to the ones of the sixth-rank tensor D̄i jmkln of the averaged
isotropic crystal, we obtain the following relations:

ID1 = I D̄1 , (156a)

ID2 = I D̄2 , (156b)

ID3 = I D̄3 , (156c)

ID4 = I D̄4 , (156d)

ID5 = I D̄5 . (156e)

Substituting Eqs. (40) and (154) into Eqs. (156a)–(156e), we obtain the following system of equations:

21a1 + 18a2 + 12a3 + 6a4 + 12a5 + 12a6 + 18a7 + 3a8 + 12a9 + 18a10 + 3a11
= 21ā1 + 18ā2 + 12ā3 + 6ā4 + 12ā5, (157a)

18a1 + 54a2 + 6a3 + 18a4 + 6a5 + 12a6 + 12a7 + 9a8 + 18a9 + 12a10 + 3a11
= 18ā1 + 54ā2 + 6ā3 + 18ā4 + 6ā5, (157b)

12a1 + 6a2 + 24a3 + 12a4 + 9a5 + 18a6 + 12a7 + 3a8 + 6a9 + 24a10 + 3a11
= 12ā1 + 6ā2 + 24ā3 + 12ā4 + 9ā5, (157c)

6a1 + 18a2 + 12a3 + 36a4 + 12a5 + 24a6 + 12a7 + 9a8 + 6a9 + 12a10 + 3a11
= 6ā1 + 18ā2 + 12ā3 + 36ā4 + 12ā5, (157d)

12a1 + 6a2 + 9a3 + 12a4 + 24a5 + 18a6 + 24a7 + 3a8 + 6a9 + 12a10 + 3a11
= 12ā1 + 6ā2 + 9ā3 + 12ā4 + 24ā5. (157e)

Solving the above system for ā1, ā2, ā3, ā4, and ā5, we obtain the five Voigt-type averaged isotropic gradient-
elastic constants:

ā1 = a1 + 2

5
(a7 + a9 + a10) + 2

35
a11, (158a)

ā2 = a2 + 1

10
(a8 + 2a9) + 1

70
a11, (158b)

ā3 = a3 + 2

5
(a6 + 2a10) + 2

35
a11, (158c)

ā4 = a4 + 1

5
(2a6 + a8) + 1

35
a11, (158d)

ā5 = a5 + 2

5
(a6 + 2a7) + 2

35
a11. (158e)

In terms of the Voigt-type averaged isotropic gradient-elastic constants, the corresponding two characteristic
lengths are given by

�̄ 2
1 = 2(ā1 + ā2 + ā3 + ā4 + ā5)

λ + 2μ
, (159)

�̄ 2
2 = ā3 + 2ā4 + ā5

2μ
, (160)

where μ = C44 and λ = C12. Notice that the mathematical structure of �̄ 2
1 and �̄ 2

2 is the same as those of �21
and �22 [see Eqs. (78) and (79)].

For example, for aluminum and tungsten, using Eqs. (158a)–(158e) together with the values of the gradient-
elastic constants from Table 2 and the values of C44 and C12 from Table 1, we compute the five Voigt-type
averaged isotropic gradient-elastic constants and the corresponding characteristic lengths, which are given in
Table 6. It can be seen that for both Al and W, it yields: �1/a ≈ 0.3 and �2/a ≈ 0.3. An important remark
here is that the conditions of positive definiteness for the constitutive tensor of the gradient-elastic constants,
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Table 6 Voigt-type averaged isotropic gradient-elastic constants and corresponding characteristic lengths for aluminum and
tungsten

Al (fcc) W (bcc)

ā1 [eV/Å] − 0.13862 0.02387
ā2 [eV/Å] 0.22500 0.19215
ā3 [eV/Å] 0.10877 0.43264
ā4 [eV/Å] 0.15309 0.54907
ā5 [eV/Å] 0.21632 0.28799
�̄1 [Å] 1.20272 0.94654
�̄2 [Å] 1.26566 0.94509
�̄1/a 0.2970 0.2990
�̄2/a 0.3125 0.2986

Eqs. (A.7a)–(A.7e), are fulfilled for aluminum (Al) and tungsten (W) using the Voigt-type averaged isotropic
gradient-elastic constants from Table 6 and Eqs. (82a)–(82k). In the same results, we conclude if we use the
conditions of positive definiteness with the eigenvalue method. Indeed, the eigenvalues given by Eqs. (149)–
(152) are positive for the values of the Voigt-type averaged isotropic gradient-elastic constants for aluminum
(Al) and tungsten (W) given in Table 6.

8 Conclusions

Comparisons between anisotropic and isotropic first strain gradient elasticity for cubic materials with cen-
trosymmetry of point group m3m as well as comparisons between classical elasticity and first strain gradient
elasticity are remarkable. From the presented results, the following favorable conclusions can be reached (see
also Table 7):

• There are 3 characteristic lengths appearing in the 3 modified Helmholtz operators, which are part of the
Mindlin operator, in the Toupin–Mindlin anisotropic first strain gradient elasticity for cubic materials with
centrosymmetry.

• There are 3 characteristic lengths for 3 elastic constants C11, C12 and C44 for cubic crystals with cen-
trosymmetry in anisotropic first strain gradient elasticity, whereas there are 2 characteristic lengths for 2
elastic constants (Lamé constants) in isotropic first strain gradient elasticity.

• There are 11 gradient-elastic constants in the Toupin–Mindlin anisotropic first strain gradient elasticity
for cubic materials with centrosymmetry, whereas there are 5 gradient-elastic constants in the isotropic
version.

• In the Toupin–Mindlin anisotropic first strain gradient elasticity for cubic materials with centrosymmetry,
the necessary and sufficient conditions for the positive definiteness of the strain energy density conclude to
3 conditions (inequalities) for the elastic constants and 7 conditions for the gradient-elastic constants. We
conclude in this result with two different but equivalent methods: one with the Sylvester criterion based
on a Voigt-matrix representation and another one with the eigenvalue method based on the normalized
Voigt-matrix representation. It should be noted that the matrix representation of the constitutive tensors in
the Voigt notation yields non-tensorial representations since non-normalized basis systems are used.

• There is 1 isotropy condition for the constitutive tensor Ci jkl (as in classical elasticity) and 6 isotropy
conditions for the constitutive tensor Di jmkln , that is 7 isotropy conditions in total, in the Toupin–Mindlin
anisotropic first strain gradient elasticity for cubic materials with centrosymmetry.

• From the physical point of view, it is reasonable that in the framework of classical elasticity, one can obtain
a nearly isotropic material from a cubic material, since it exists only the constitutive tensor of the elastic
constants, whereas in the framework of first strain gradient elasticity, which is valid at small scales where
the microstructure is dominant, the anisotropic behavior resists due to the appearance of the constitutive
tensor of higher rank, preventing the fulfillment of the corresponding isotropy conditions.

• Aluminum and tungsten are nearly isotropic with respect to the fourth-rank constitutive tensor Ci jkl ,
whereas none of the four considered cubic crystals (Al, Cu, Fe, W) is isotropic with respect to the sixth-
rank constitutive tensor Di jmkln .

• There are 5 lattice relations for the gradient-elastic constants in a lattice-theoretical approach of anisotropic
first strain gradient elasticity for cubic materials with centrosymmetry leading to only 6 independent
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Table 7 Independent components of the elastic and gradient-elastic constants

Elastic and gradient-elastic constants Ci jkl Di jmkln

Independent components—cubic 3 11
Independent components—isotropic 2 5
Isotropy conditions 1 6
Independent components due to (lattice relations)—cubic – 6 (5)
Independent components due to (lattice relations)—isotropic – 2 (3)
Independent components due to (Cauchy relations)—cubic 2 (1) 3 (8)

gradient-elastic constants instead of 11 ones. In the isotropic limit, there are 3 lattice relations for the
gradient-elastic constants leading to 2 independent gradient-elastic constants instead of 5 ones.

• In the Toupin–Mindlin anisotropic first strain gradient elasticity for cubic materials with centrosymmetry,
there are 8 generalized Cauchy relations for the gradient-elastic constants in addition to 1 Cauchy relation
for the elastic constants (as in classical elasticity).

• The independent eigenvalues of the constitutive tensorsC andD of first strain gradient elasticity have been
derived based on the normalized Voigt notation. For cubic materials with centrosymmetry, the constitutive
tensors C and D have 3 and 7 independent eigenvalues, respectively. In the isotropic case, C and D have 2
and 4 independent eigenvalues, respectively.

• A normalized Voigt notation is used for the representation of the constitutive relations between the field
tensors (elastic strain tensor and gradient of the elastic strain tensor) and excitation field tensors (Cauchy
stress tensor and double stress tensor). The advantage of the normalized Voigt notation is that the positive
definiteness can be naturally related to the eigenvalues of the matrix representation of the constitutive
tensors C and D.

An important result of our computation is the 11 gradient-elastic constants and the 3 characteristic lengths
for cubic materials with centrosymmetry given in Tables 2 and 3 as well as the 5 Voigt-type averaged isotropic
gradient-elastic constants and the related 2 characteristic lengths given in Table 6. They can be applied in
the modeling of nanomechanical problems with a solid basis of material parameters of the Toupin–Mindlin
gradient elasticity theory without any ad hoc assumption. Important applications of the material parameters are
nanomechanical benchmark problems, eigenstrain and fracture problems in gradient elasticity, nanomechanical
engineering and industrial problems, nanodevices as well as the modeling of non-singular dislocations leading
to Ångström-mechanics of dislocations [33].
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A Positive definiteness of Cαβ and Dξ,ρ using the Sylvester criterion

A.1 Constitutive tensor Ci jkl : Cαβ

Using the Voigt notation, the fourth-rank constitutive tensor Ci jkl for cubic crystals is contracted to the
symmetric 6× 6 matrix, Cαβ, α, β = 1, . . . , 6 in a reference system whose axes coincide with the axes of the

http://creativecommons.org/licenses/by/4.0/
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cubic crystal (see, e.g., [44]):

Cαβ =

⎛

⎜⎜
⎜⎜⎜
⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞

⎟⎟
⎟⎟⎟
⎠

. (A.1)

According to Sylvester’s criterion: “A real, symmetric matrix is positive definite if and only if all its (leading)
principal minors are positive” [10,15,54]. This leads to the following inequalities that have to be satisfied by
the elastic constants

C11 > 0, C11 − C12 > 0, C11 + 2C12 > 0, C44 > 0. (A.2)

The first condition is implied by the second and third conditions. Therefore, the values of the elastic constants
C11, C12 and C44 have to obey the following 3 conditions of positive definiteness of the matrix Cαβ

C11 − C12 > 0, C11 + 2C12 > 0, C44 > 0. (A.3)

A.2 Constitutive tensor Di jmkln : Dξ,ρ

Using the Voigt notation, the sixth-rank constitutive tensor Di jmkln for cubic crystals is contracted to the
following block-diagonal symmetric 18 × 18 matrix, Dξ,ρ, ξ, ρ = 1, . . . , 18, in a reference system whose
axes coincide with the axes of the cubic crystal (see, e.g., [1,4]):

Dξ,ρ =
⎛

⎜
⎝

A(9) 0 0 0
0 A(9) 0 0
0 0 A(9) 0
0 0 0 J (2)

⎞

⎟
⎠ (A.4)

with the symmetric 5 × 5 sub-matrix with 9 independent material parameters

A(9) =

⎛

⎜
⎜⎜
⎝

D1,1 D1,2 D1,3 D1,2 D1,3
D1,2 D2,2 D2,3 D2,4 D2,5
D1,3 D2,3 D3,3 D2,5 D3,5
D1,2 D2,4 D2,5 D2,2 D2,3
D1,3 D2,5 D3,5 D2,3 D3,3

⎞

⎟
⎟⎟
⎠

(A.5)

and the symmetric 3 × 3 sub-matrix with 2 independent material parameters

J (2) =
⎛

⎝
D16,16 D16,17 D16,17
D16,17 D16,16 D16,17
D16,17 D16,17 D16,16

⎞

⎠ . (A.6)
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The conditions of positive definiteness of the symmetric matrix D (Sylvester’s criterion) lead to the following
inequalities:

D1,1 > 0, D1,1D2,2 − D2
1,2 > 0, (A.7a)

D1,1D2,2D3,3 − D1,1D
2
2,3 + 2D1,2D1,3D2,3 − D2

1,2D3,3 − D2
1,3D2,2 > 0, (A.7b)

D1,1D
2
2,2D3,3 − D1,1D2,2D

2
2,3 − D1,1D2,2D

2
2,5 + 2D1,1D2,3D2,4D2,5 − D1,1D

2
2,4D3,3

− 2D2
1,2D2,2D3,3 + D2

1,2D
2
2,3 − 2D2

1,2D2,3D2,5 + 2D2
1,2D2,4D3,3 + D2

1,2D
2
2,5

+ 2D1,2D1,3D2,2D2,3 + 2D1,2D1,3D2,2D2,5 − 2D1,2D1,3D2,3D2,4 − 2D1,2D1,3D2,4D2,5

− D2
1,3D

2
2,2 + D2

1,3D
2
2,4 > 0, (A.7c)

(D2,2D3,3 − D2,2D3,5 − D2
2,3 + 2D2,3D2,5 − D2,4D3,3 + D2,4D3,5 − D2

2,5)

(D1,1D2,2D3,3 + D1,1D2,2D3,5 − D1,1D
2
2,3 − 2D1,1D2,3D2,5 + D1,1D2,4D3,3 + D1,1D2,4D3,5

− D1,1D
2
2,5 − 2D2

1,2D3,3 − 2D2
1,2D3,5 + 4D1,2D1,3D2,3 + 4D1,2D1,3D2,5 − 2D2

1,3D2,2 − 2D2
1,3D2,4) > 0,

(A.7d)

D16,16 − D16,17 > 0, D16,16 + 2D16,17 > 0. (A.7e)

Note that D16,16 > 0 is implied by the two conditions of (A.7e). Therefore, the conditions of positive definite-
ness for the gradient-elastic constants reduce to 7 conditions.
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