
Received: 29 May 2021 Revised: 13 August 2021 Accepted: 18 August 2021

DOI: 10.1002/nme.6817

R E S E A R C H A R T I C L E

Mesh distortion insensitive and locking-free
Petrov–Galerkin low-order EAS elements for
linear elasticity

Robin Pfefferkorn Peter Betsch

Institute of Mechanics, Karlsruhe Institute
of Technology (KIT), Karlsruhe, Germany

Correspondence
Peter Betsch, Institute of Mechanics,
Karlsruhe Institute of Technology, 76131
Karlsruhe, Germany.
Email: peter.betsch@kit.edu

Abstract
One of the most successful mixed finite element methods in solid mechanics
is the enhanced assumed strain (EAS) method developed by Simo and Rifai in
1990. However, one major drawback of EAS elements is the highly mesh depen-
dent accuracy. In fact, it can be shown that not only EAS elements, but every
finite element with a symmetric stiffness matrix must either fail the patch test or
be sensitive to mesh distortion in bending problems (higher order displacement
modes) if the shape of the element is arbitrary. This theorem was established
by MacNeal in 1992. In the present work we propose a novel Petrov–Galerkin
approach for the EAS method, which is equivalent to the standard EAS method
in case of regular meshes. However, in case of distorted meshes, it allows to over-
come the mesh-distortion sensitivity without loosing other advantages of the
EAS method. Three design conditions established in this work facilitate the con-
struction of the element which does not only fulfill the patch test but is also exact
in many bending problems regardless of mesh distortion and has an exception-
ally high coarse mesh accuracy. Consequently, high quality demands on mesh
topology might be relaxed.
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1 INTRODUCTION

In the early days of the finite element method it was soon discovered that low-order displacement-based elements severely
underestimate displacements under many circumstances such as in bending dominated problems and the incompressible
limit. This phenomenon was termed locking and prohibits reasonable utilization of low-order displacement-based ele-
ments in engineering applications (cf. MacNeal1). Thus, a plethora of remedies has been developed since the 1960s which
can essentially be grouped into three main categories: higher order methods1-3, reduced integration with stabilization4-6,
and mixed finite elements7-10. All of these remedies lead to substantially improved finite elements and some of each
category are available in commercial software.

Despite the tremendous effort put into developing new finite elements and enhancing their performance, there
have been hardly any major breakthroughs in classical methods since the mid 1990s (with the exemption of the
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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isogeometric analysis, see Reference 3). An explanation for this can be found in a landmark paper published by
MacNeal11 in 1992 (see also the preliminary work12), which has in the opinion of the authors not gotten the attention
it deserves. In this work MacNeal proves the theorem that a finite element with arbitrary shape cannot simultane-
ously satisfy the constant strain patch test2 and be exact for higher order modes under the premise of a symmetric
stiffness matrix. This fundamental limit to an element’s perfectibility applies regardless of internal methodologies, that
is, which of the remedies to cure locking is used. Thus, the final conclusion drawn by MacNeal11 is that it is impos-
sible to substantially improve elements beyond what has already been achieved with the standard (Bubnov–Galerkin)
approach. Indeed, to the best knowledge of the authors, no element could so far break the limits of MacNeal’s
theorem*.

In particular, most elements have symmetric stiffness matrices, which come of course with many advantages†. More-
over, they are usually designed to fulfill the patch test, see for example, References 8,9 since this comes with a lot of
benefits2 as well. Consequently, in accordance with MacNeal’s theorem, they perform poorly in (higher order) bending
problems if meshes are distorted. Vice versa, the less frequent choice of (deliberately or not) sacrificing the ability to pass
the patch test enables construction of elements with increased bending accuracy. An example for this approach is the
incompatible mode model by Wilson et al.16 which famously fails the patch test, and the recently proposed method of
reverse adjustment to the patch test by Hu et al.17,18 (which ironically does not pass the strong patch test).

All in all, improvement of element performance beyond what has already been achieved almost inevitably leads to an
unsymmetric stiffness matrix. MacNeal even briefly mentions this possibility but then deems this option “abhorrent for
many reasons”.11 However, the works of for example, Rajendran et al.,19,20 Xie et al.,21 and the present contribution show
that there is much to be gained with unsymmetric stiffness matrices.

The first element with unsymmetric stiffness matrix has been proposed by Rajendran and Liew,19 who chose a
Petrov–Galerkin approach for higher order displacement elements instead of the usual Bubnov–Galerkin ansatz, and
named their method unsymmetric finite element method. The key idea is to use metric1,22 shape functions, which are
constructed in the physical space, as ansatz for the trial function of the displacement while the usual isoparametric func-
tions are employed for the test function. Unfortunately, merely using physical coordinates leads to frame-dependent
ansatz functions as noted by Ooi et al.23 A cure for this issue, which does not induce other problems such as anisotropies,
has been proposed by Xie et al.21 It involves skew coordinates, which are affine-equivalent24 to physical coordinates
and objective. The skew frame has first been proposed for assumed stress finite elements (cf. Yuan et al.25 and Wis-
niewski and Turska26) and has subsequently also been employed for other mixed elements26-30 and unsymmetric finite
elements21,31,32.

While higher order unsymmetric finite elements work well and pass higher order patch tests regardless of ele-
ment shape (cf. the works19-21,33-35), there is a fundamental issue for low-order elements: Consider for example, a plane
four-node quadrilateral element with eight displacement degrees of freedom. It is then impossible to represent complete
quadratic polynomials since these would require at least 12 degrees of freedom. Thus, it is crucial to choose the higher
order modes carefully in order to get the best performance. Consequently, the unsymmetric low-order elements presented
so far have either extremely complex ansatz functions which are material dependent13,21,32,36,37 or require higher order
integration and many internal degrees of freedom.31 Furthermore, the elements are often not straightforward to extend
to the 3D case.

However, the advantages of low-order elements with regard to mesh generation, (stress) singularities and bandwidth
(sparsity) of the stiffness matrix make low-order unsymmetric finite elements desirable. Hence, we propose a novel
low-order unsymmetric mixed element based on a Petrov–Galerkin approach for the enhanced assumed strain (EAS)
method introduced by Simo and Rifai.9 We will show that this approach allows to construct low-order unsymmetric
elements without the drawbacks described above.

We choose to start our developments from the EAS method since the commonly used symmetric (Bubnov–Galerkin)
version of it features several desirable properties: it fulfills the patch test, is locking-free in case of undistorted
meshes, and, most importantly, it is straightforward to extended to large deformations and general material

*Cen et al.13 claim to break through MacNeal’s theorem. However, their element has an unsymmetric stiffness matrix and does therefore not violate
the limits proven by MacNeal.11 Another interesting candidate is the element by Wu and Chueng.14 It has a symmetric stiffness matrix and is exact in
a bending problems at some nodes. Unfortunately, the displacement is not exact at all nodes and it does thus also not break through MacNeal’s
theorem (see the work of Sze15).
†For example, the reduced computational cost to solve the linear equation system and decreased memory consumption since only half of the sparse
matrix has to be stored.
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models due to its strain-driven format (cf. Simo et al.38,39 and Glaser & Armero40). Consequently, it is one of the most
frequently used mixed methods in research and application (cf. e.g., the works9,27,28,38-49). With the newly proposed
Petrov–Galerkin approach we show that it is possible to overcome the sensitivity to mesh distortion of existing EAS
elements.

To that end, we first establish three design conditions required in order for the element to be exact for a specific dis-
placement mode. If these conditions are met, the element is exact for that mode in the sense that the nodal displacements
coincide with the analytic solution (nodally exact response). In particular, we choose to fit the novel element to a modified
version of the assumed stress modes proposed by Pian and Sumihara8 and Pian and Tong50 in 2D and 3D, respectively.
These stress modes include besides the important patch test states also bending modes which are of the utmost impor-
tance in many engineering applications. The resulting element is therefore exact for constant stress and bending problems
regardless of element shape. It is also locking-free, frame-indifferent, isotropic and its stiffness matrix is integrated exactly
by the standard Gauss-quadrature rule. Moreover, the newly proposed unsymmetric EAS element exhibits an substan-
tially increased coarse mesh accuracy. Finally, in case of regular meshes, the element coincides with the original well
working EAS element by Simo and Rifai.9

The design of the novel element with all these desirable properties is made possible by combining ingredients from
a multitude of previously developed element formulations. Besides the obvious EAS framework9,39 we also employ
ideas from assumed stress approaches,8,26,50 the skew coordinate frame,21,25,26 incompatible mode elements,7,16,31,51 and
others.5,29,52

Naturally, the unsymmetric incompatible mode 2D element proposed by Huang et al.31 is closely related to the
present Petrov–Galerkin EAS element. However, the novel EAS approach is more general, requires less internal degrees
of freedom, and allows to examine the underlying mechanisms in a deeper way. Interestingly, a violation of one of the
three design conditions for exact solutions mentioned above is the reason why the 2D element by Huang et al.31 is not
straightforward to extend to 3D.

The present work is structured into six sections. In Section 2 we revisit MacNeal’s theorem since it is key to the meth-
ods developed in the remainder of this work. We aim at giving a simpler approach to the proof in Reference 11 and present
some extensions to the original theorem of MacNeal. To that end we compare the finite element approximation to the con-
tinuum description and examine both formulations in detail in Sections 2.1 and 2.2, respectively. After that, conclusions
of MacNeal’s theorem are drawn in Section 2.3. Some generalizations of the proof in Section 2 can be found in Appendix
A and the key findings of MacNeal’s theorem are summarized in Section 2.4. Section 3 covers the weak form for EAS
elements and the three design conditions required for nodally exact solutions. Afterwards, we determine ansatz spaces
which fulfill the design conditions in Section 4. To that end we first introduce the skew coordinate frame in Section 4.1
and describe the analytic modes for which the element is optimized in Section 4.2. The actual ansatz spaces for the
Petrov–Galerkin EAS elements are covered in Section 4.3 for the 2D case and in Section 4.4 for the 3D case, respectively.
Numerical simulations comparing the novel element to established ones are presented in Section 5 before conclusions
are drawn in Section 6.

2 MACNEAL’S THEOREM

MacNeal’s theorem11 states that a finite element cannot simultaneously pass the patch test (see e.g., Reference 2)
and be exact for higher order displacement modes in case of arbitrarily distorted meshes if its stiffness matrix is
symmetric.

To prove this proposition we consider, following MacNeal,11 a linear elastic continuum  and a single finite element
Ωe

⊂  of arbitrary shape and arbitrary number of nodes N which is embedded into . The two domains interact at the
element’s boundary 𝜕Ωe. This connection is described by displacement u(x) and traction t(x) ‡ for x ∈ 𝜕Ωe, where x are
Cartesian (or physical) coordinates. Comparing the continuum solutions u∗ and t∗ with the finite element aliases uh,e and
th,e on 𝜕Ωe allows to evaluate how well the element replaces the respective continuum domain.§ To that end we examine
both formulations in depth in the sequel.

Example Q1. Figure 1 shows exemplarily the case of a plane quadrilateral element with straight edges and four nodes
(Q1). This simple case is used throughout the remainder of this work to clarify relations.

‡In order to improve readability, arguments of functions are frequently omitted in the sequel.
§Throughout the remainder of the work we denote continuum solutions with an asterisk (•)∗ and finite element approximations with superscript (•)h.
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F I G U R E 1 Single finite element Ωe embedded into linear elastic continuum 

2.1 Continuum domain

2.1.1 Linear elasticity

Given a prescribed displacement field u∗(x) for x ∈ , the usual relations for a linear elastic continuum

𝜺∗ ∶= ∇s
xu∗, (1a)

𝝈∗ ∶= C ∶ 𝜺∗, (1b)
t∗ ∶= 𝝈∗n, (1c)

determine the corresponding strain 𝜺∗, stress 𝝈∗, and traction t∗. Therein, C denotes the symmetric positive definite
fourth order elasticity tensor, ∇s

x(•) symbolizes the symmetric part of the gradient and n is the unit outward normal on a
surface. Furthermore, the strong form of equilibrium is given by

div𝝈∗ + b∗ = 0, (2)

where b∗ is the field of body force which is readily determined by the prescribed displacement field u∗ via (1) and (2).
By virtue of the given displacement u∗ and (1), it is also straightforward to compute appropriate Dirichlet boundary
conditions u∗ = u∗ on 𝜕u ⊂ 𝜕 along with appropriate Neumann boundary conditions t∗ = t∗ on 𝜕t ⊂ 𝜕 on the body’s
boundary 𝜕. Here, the standard conditions 𝜕u ∩ 𝜕t = ∅ and 𝜕u ∪ 𝜕t = 𝜕 hold. The corresponding weak form (or
principle of virtual work) is given by

∫

∇s

xv∗ ∶ 𝝈∗dV = ∫


v∗ ⋅ b∗dV + ∫
𝜕t

v∗ ⋅ t∗dA ∀v∗ ∈  , (3)

where u∗ ∈  =
{
(u)i ∈ H1 | u = u∗ on 𝜕u

}
is the displacement field introduced above and v∗ ∈  =

{(v)i ∈ H1 | v = 0 on 𝜕u} is an arbitrary test function. Moreover, in the sequel the left and right hand side of (3) are
abbreviated by G∗

int and G∗
ext and identify the internal and external part of the weak form, respectively.

2.1.2 Displacement modes on Ωe

Having summarized the basic relations we turn now to the response of the continuum in subdomain Ωe. Every
non-singular displacement state can be represented uniquely by an infinite sum of weighted linearly independent poly-
nomial elementary modes u∗

m(x). In ascending order these displacement modes are classified as rigid body modes (no
strain), patch test modes with constant strain (linear displacement), quadratic displacement modes, and so forth.

Since finite elements have only a specific number of degrees of freedom NDOF, the discrete solution can only represent
a limited amount of modes. Thus, we restrict the following investigation to a linear combination of M linearly independent
modes u∗

m, m = 1, … ,M with weights 𝛼m such that the displacement and traction are given by

u∗ =
M∑

m=1
u∗

m𝛼m and t∗ =
M∑

m=1
t∗m𝛼m. (4)
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The traction modes t∗m relate to u∗
m via (1). Furthermore, to keep expressions as simple as possible, we consider only

modes for which

b∗ = 0 ⇔ div 𝝈∗ = 0. (5)

This includes the important cases of rigid body and constant strain modes, which are characterized by a complete
linear displacement field. Furthermore, pure bending modes also fulfill (5).52 The case b∗ ≠ 0 is complemented in
Appendix A.1.

By considering the usual Bubnov–Galerkin approach (see Appendix A.2 for the generalization to a Petrov–Galerkin
scheme), which implies that the test function v∗ =

∑M
m=1u∗

m𝛽m use the same modes u∗
m as the prescribed displacement

field u∗, the external part of the weak form on subdomain Ωe assumes the form

G∗,e
ext = ∫

𝜕Ωe

v∗ ⋅ t∗dA =
M∑

m=1
𝛽m∫

𝜕Ωe

u∗
m ⋅ t∗dA =

M∑
m,n=1

𝛽mF∗
mn𝛼n =

M∑
m=1

𝛽mf ∗m. (6)

Note that we assume that the traction boundary condition applies to the whole boundary 𝜕Ωe of the element, that
is, 𝜕Ωe

t = 𝜕Ωe, and that the traction is defined by the continuum value t∗, which will be crucial in Section 2.2.2. In
the equation above, we introduced the generalized modal forces f ∗m and corresponding matrix components F∗

mn (m,n =
1, … ,M) given by

f ∗m =
M∑

n=1
F∗

mn𝛼n and F∗
mn = ∫

𝜕Ωe

u∗
m ⋅ t∗ndA. (7)

Proceeding analogously with the internal part of the weak form yields

G∗,e
int = ∫

Ωe

∇s
xv∗ ∶ C ∶ ∇s

xu∗dV =
M∑

m,n=1
𝛽mK∗

mn𝛼n, (8)

where the components K∗
mn constitute the modal stiffness matrix. The major symmetry of C implies the symmetry of K∗

mn.
Since the weak form (3) holds for every subdomain of , relation

G∗,e
int = G∗,e

ext ⇔ ∫
Ωe

∇s
xv∗ ∶ C ∶ ∇s

xu∗dV = ∫
𝜕Ωe

v∗ ⋅ t∗dA (9)

needs to be satisfied. Now the arbitrariness of 𝛽m yields K∗
mn = F∗

mn. In particular, this establishes the symmetry of F∗
mn.

Finally, by use of Gram–Schmidt orthogonalization

û∗
m = u∗

m −
m−1∑
k=1

∫Ωe ∇s
xû∗

k ∶ C ∶ ∇s
xu∗

mdV
∫Ωe ∇s

xû∗
k ∶ C ∶ ∇s

xû∗
kdV

û∗
k, (10)

any set of displacement modes u∗
m can be uncoupled such that matrix F∗

mn can be made diagonal. In the following we
assume that the modes u∗

m are uncoupled and thus F∗
mn is diagonal. A final conclusion drawn from (8) is that f ∗m = 0 for

rigid body modes u∗r
m since 𝜺∗r

m = ∇s
xu∗r

m = 0 holds.

2.2 Finite element domain

2.2.1 Connection between nodes and modes

In the next step we consider the finite element approximation. In contrast to the continuum description, the finite element
approximation is based on nodes rather than modes. It is therefore crucial to determine the relation between the node
based finite element displacement uh,e and the displacement modes introduced in (4). For standard (interpolatory) finite
elements the displacement on element level is given by
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uh,e(x) =
N∑

i=1
Me

i (x)u
e
i , (11)

where N is the number of nodes and ue
i is the displacement at node i. The corresponding scalar ansatz functions¶ Me

i ,
which may (for now) differ from element to element, have the Kronecker-delta property Me

i (xj) = 𝛿ij, where xj is the
position of node j. With these definitions at hand, the relation between modes and nodes can be described by

ue
i =

M∑
m=1

u∗,e
im𝛼m, (12)

where

u∗,e
im = u∗

m(xi) (13)

is the value of mode u∗
m at node xi. This ensures that the finite element interpolation uh,e (11) coincides with the prescribed

displacement field u∗ at the nodes, that is, uh,e(xj) = u∗(xj). However, at other points x ∈ Ωe the values do generally not
coincide.

Remark 2. Assuming a displacement field of the form (12) is rather restrictive. In general, Me
i are not necessarily scalar

and the weights ue
i need not correspond to the nodal displacements. Such non-interpolatory approaches include the

widely used hierarchical higher order elements2 and the isogeometric analysis.3 These generalizations are covered in
Appendix A.3.

2.2.2 General finite element framework

Regardless of internal element methodologies, the relation between nodal displacements ue
i and nodal forces Ph,e

i of any
linear finite element can be written as

N∑
j=1

Kh,e
ij ue

i = Ph,e
i i = 1, … ,N, (14)

where Kh,e
ij denotes a partition of the element’s nodal stiffness matrix Kh,e. This format is very general and includes

displacement-based elements, reduced integrated elements as well as mixed methods with internal degrees of freedom#.
The left-hand side of (14) refers to the internal part associated with elastic deformations while the right-hand side contains
the external nodal forces. Defining the element’s modal stiffness matrix and modal external forces by

K̃h,e
mn ∶=

N∑
i,j=1

(u∗,e
im )TKh,e

ij u∗,e
jn , (15a)

f h,e
m ∶=

N∑
i=1

(u∗,e
im )TPh,e

i , (15b)

allows to recast (14) by virtue of (12), pre-multiplication with (u∗,e
im )T and summation over i in the form

M∑
n=1

K̃h,e
mn𝛼n = f h,e

m m = 1, … ,M. (16)

The last equation allows to determine the maximum number of modes M for which an element can exactly reproduce
the continuum response in the sense that the nodal displacements are exact. In order for (16) to be solvable K̃h,e

mn must
have proper rank. To that end we assume that our finite element fulfills the design imperative of stress-free response to

¶In anticipation of the Petrov–Galerkin approach proposed in the sequel we denote the nodal shape functions in (11) by Me
i instead of the more

common Ne
i .

#Internal degrees of freedom can be statically condensed on element level to achieve form (14).
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rigid body motions. For the corresponding Mr rigid body modes f ∗m = 0 as shown in Section 2.1.2 while for all other modes
f ∗m ≠ 0.

For the finite element to correctly represent rigid body motions we thus require accordingly f h,e
m = 0 and rank[K̃h,e

mn] =
M − Mr. Naturally, the nodal stiffness matrix has to correctly account for rigid body motion as well. Its rank is then,
provided that there are no spurious instable modes, NDOF − Mr where NDOF = N d is the number of degrees of freedom
and d is the spatial dimension. Rewriting the element’s modal stiffness matrix (15a) in vector-matrix notation yields
K̃h,e = (u∗,e)TKh,eu∗,e. Thus, the element’s modal stiffness matrix has at best the same rank as the nodal stiffness matrix||.
Therefore, a finite element can in general exactly represent no more than M = NDOF modes including Mr rigid body modes.

Example Q1. In case of the quadrilateral element there are Mr = 3 rigid body modes, N = 4 nodes, and NDOF = 8 degrees
of freedom which determines M = 8. Thus, considering the three rigid body modes, the element can only be adapted to
a maximum of five displacement modes. Thereof, three are usually chosen to be the constant stress modes (patch test,
represented by linear displacement modes). The two remaining higher order modes should therefore be chosen carefully
to get the best performance (cf. Cen et al.13).

Remark 4. The total of eight modes for Q1 is especially not sufficient to represent fully quadratic displacement modes,
which require a total of 12 modes (1, x, y, xy, x2, y2 in both displacement components). It is therefore futile to try
and improve quadrilateral elements to exactly represent fully quadratic displacement fields regardless of the applied
technique. This observation is the essence of the principle of limitation by Fraeijs de Veubeke54.

So far, we focused on the internal part of the weak form leading to the stiffness matrix. We now turn to the external
part of the weak form which yields the nodal forces Ph,e

i (14). In particular, the nodal forces are related to the traction th,e

acting on the element’s boundary 𝜕Ωe. We assume that the analytic traction acts on the finite element, that is, th,e = t∗.
For the element’s response to be nodally exact we ultimately have to show that assumption th,e = t∗ is consistent with
ue

i = u∗(xj) (see Section 2.3). For the finite element discretization of the external part of the weak form (9) we get

Gh,e
ext =

N∑
i=1

ve
i ⋅ ∫

𝜕Ωe

Ne
i t∗dA =

N∑
i=1

ve
i ⋅ Ph,e

i ⇒ Ph,e
i = ∫

𝜕Ωe

Ne
i t∗dA, (17)

where the approximation of the test functions assumes the form (11) with nodal shape functions now denoted by Ne
i .

Inserting this result into definition (15b) of the element’s external modal forces f h,e
m yields

f h,e
m =

M∑
n=1

N∑
i=1

(u∗,e
im )T∫

𝜕Ωe

Ne
i t∗ndA𝛼n =

M∑
n=1

Fh,e
mn𝛼n. (18)

The modal forces f h,e
m can be viewed as discrete counterpart of the modal forces f ∗m introduced in (7) and establish the

connection between the continuum and the discrete finite element formulation. Comparing (18) and (7) motivates the
introduction of

uh,e
m =

N∑
i=1

Ne
i (x)u

∗,e
im and Fh,e

mn = ∫
𝜕Ωe

uh,e
m ⋅ t∗ndA. (19)

In this way, the components Fh,e
mn have the same structure as the components F∗

mn defined in (7). In particular, uh,e
m

introduced in (19) can be regarded as the finite element alias of the displacement mode u∗
m. We emphasize again that in

general both quantities coincide only at the nodes as pointed out in Section 2.2.1.

2.2.3 Nodal equilibrium

All investigations so far focused on a single finite element Ωe. However, the correct reproduction of displacement modes
u∗

m on element level is not sufficient to ensure exact solutions for patches of elements. We show subsequently, that it is
crucial to additionally fulfill equilibrium of nodal forces.

||Theorem rank(AB) ≤ min(rankA, rankB) holds for arbitrary matrices A and B (see e.g., the work53).
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F I G U R E 2 Two finite elements Ωa and Ωb with shared boundary 𝜕Ωab separated by Δx (left) and a patch of finite elements embedded
into the linear elastic continuum (right)

To that end we consider two finite elements Ωa and Ωb embedded into the linear elastic continuum  as shown in
Figure 2 on the left. Assume that their adjacent faces 𝜕Ωab and 𝜕Ωab are congruent and separated by Δx. In case of an
infinitesimal Δx clearly 𝜕Ωab → 𝜕Ωab and t∗ → −t∗.

Furthermore, the total contribution from boundary 𝜕Ωab to the nodal force at node ζ̄ → i is given by

Ph
i,ab ∶= Ph,a

i,ab + Ph,b
i,ab = ∫

𝜕Ωab

(Na
i − Nb

i )t
∗dA, (20)

where use has been made of (17). For nodal equilibrium we require Ph
i,ab = 0, which ensures that, after assembly,

Ph
i = 0 at every node i inside a finite element patch (see Figure 2 on the right). Moreover, contributions from internal

faces to nodes at the boundary of an element patch are likewise zero (see e.g., node j in Figure 2 on the right). Thus, if
Ph

i,ab = 0, all interior contributions vanish and it is possible to consider a complete patch of elements as a single element
(with many nodes). Conversely, if nodal equilibrium is fulfilled, it is justified to investigate only a single finite element
since results can then be transferred to arbitrary meshes.

To fulfill condition Ph
i,ab = 0 for an arbitrary traction t∗, it is obvious in view of (20) that a valid choice is given by

Na
i = Nb

i = Ni on 𝜕Ωab. (21)

With this choice, nodal equilibrium is not only fulfilled for the considered M displacement modes u∗
m but for arbi-

trary traction t∗. Condition (21) is the classical conformability requirement or, likewise, the C0 inter-element continuity
requirement and severely restricts the choice of ansatz functions Ni. Suitable functions can be created by mapping parent
elements from the parametric space to the physical space**. This approach was indeed introduced to fulfill nodal equilib-
rium and mapped elements are so successful that they have been used almost exclusively since their first occurrence in
the 1960s. All in all, (21) is a usual assumption and not as serious of a restriction in practical applications.

Even less restrictive choices to fulfill nodal equilibrium than (21) still put a restriction on the design of Ne
i . This

ultimately establishes MacNeal’s theorem as shown in the next section.

Example Q1. To demonstrate the restrictions imposed by nodal equilibrium we consider again a quadrilateral element:
The only sensible choice of parent element for a quadrilateral is a square. All other forms would induce anisotropies into
the formulation. Furthermore, the four linearly independent monomials in the parametric space have to be 1, 𝜉, 𝜂, 𝜉𝜂 since
any other choice would either be incomplete or anisotropic. These restrictions lead directly to the well-known bilinear
Lagrangian ansatz functions.

Thus, there seems to be only one reasonable choice for the ansatz functions of the displacement test function if
conformability is to be fulfilled. This illustrates the severe restriction imposed by (21).

2.3 Design problem

Having summarized properties of the continuum and the finite element formulation allows to finally determine the
optimal stiffness matrix for which the finite element is capable to exactly represent M = NDOF displacement modes.

**Isoparametric Lagrangian, serendipity and hierarchical elements as well as the isogeometric approach are examples for such ansatz spaces.
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Equation 16 together with (18) yields the design problem11 of finite element technology

M∑
n=1

K̃h,e
mn𝛼n =

M∑
n=1

Fh,e
mn𝛼n, m = 1, … ,M, (22)

where the goal is to design the element’s modal stiffness matrix K̃h,e
mn such that (22) holds for arbitrary 𝛼n. If that is the

case all nodal displacements ue
i would be exact.

Without restrictions (such as (21)) on the choice of ansatz functions Ne
i , the design problem would be simple to

solve. Proper choice of Ne
i would ensure Fh,e

mn = F∗
mn, that is, the finite element would account for the boundary traction

in exactly the same way as the continuum solution for the M displacement modes under consideration. In particular,
Fh,e

mn could be diagonalized. It would then be straightforward to choose a proper nodal stiffness matrix Kh,e such that
K̃h,e

mn = F∗
mn.

However, as shown in Section 2.2.3, the conformability requirement (21) puts severe limitations on the
choice of Ne

i . This restriction directly determines Fh,e
mn through (19). Thus, Fh,e

mn = F∗
mn can not be accomplished in

general.
By comparing definition (19) for Fh,e

mn with definition (7) for F∗
mn, we observe that Fh,e

mn = F∗
mn holds in general only if

uh,e
m = u∗

m on 𝜕Ωe. However, as shown in Section 2.2.1, the latter equality does not hold in general. More specifically, in
case of the widely used isoparametric concept, uh,e

m = u∗
m can be guaranteed only for linear displacement modes u∗,L

m . In
contrast to that, for higher-order displacement modes u∗,H

m , uh,e
m ≠ u∗

m except for special cases. Corresponding to these sets
of modes u∗,L

m and u∗,H
m , we may calculate Fh,e,LL

mn , Fh,e,HL
mn , and Fh,e,HH

mn via (19). Now, the right-hand side of (22) can be recast
in the form

[Fh,e
mn][𝛼n] =

[
Fh,e,LL

mn 0
Fh,e,HL

mn Fh,e,HH
mn

][
𝛼L

n

𝛼H
n

]
, (23)

where only Fh,e,LL
mn is diagonal and equal to the corresponding part of F∗

mn. Equation 23 clearly shows that Fh,e
mn is

unsymmetric which is induced by the coupling between lower and higher order modes.
Accordingly, satisfaction of design problem (22) would require the modal stiffness matrix K̃h,e

mn to be unsym-
metric. This in turn would mean an unsymmetric nodal stiffness matrix†† as can be concluded from (15a).
Conversely, a symmetric stiffness matrix makes it impossible to simultaneously fulfill the patch test and
correctly represent higher-order displacement modes, which is the central statement of MacNeal’s theorem.
It is worth mentioning that MacNeal’s theorem does not rule out special cases such as in the examples
below.

Example Q1. A quadrilateral element can simultaneously satisfy the patch test and exactly represent quadratic displace-
ment modes under certain conditions. An example for this is the EAS element proposed by Simo and Rifai9. This element
is capable to exactly capture pure bending of a cantilever beam (see sec. 6.1.1 in Reference 9 and the 3d version of this
example in Section 5.4). However, the exact response is limited to the special case of rectangular elements. In that case
the integrals in (7) and (19) have the same value and thus Fh,e

mn = F∗
mn holds even though uh,e

m ≠ u∗
m. For other element

shapes the results deteriorate rapidly.

Example Q2. Another exemption can be observed for quadratic displacement-based nine-node quadrilaterals (Q2)
(cf. MacNeal,1 Ch. 3.5 and Zienkiewicz et al.,2 Ch. 5.7). These elements are capable of representing element shapes
with quadratic borders. However, if we restrict the shape to bilinear forms (i.e., the geometric capabilities of
quadrilateral elements), the elements are capable of correctly representing full quadratic polynomials in the physi-
cal space. Thus, for bilinear shapes uh,e

m = u∗
m holds for all quadratic modes and the element is exact for bending

problems.
Higher order modes (cubic and quartic) incorporated in the base of Q2 are unfortunately not represented correctly.

Furthermore, it is not advisable to generally restrict the geometry to bilinear shapes in case of curved domains since this
degrades the order of convergence with mesh refinement (cf. Braess,55 Ch. II.§1).

††The option of an unsymmetric finite element formulation was already recognized by MacNeal11. At that time, however, it seemed “abhorrent for
many reasons” (MacNeal11) to consider such elements. However, previous works13,19,31 and the present contribution show, that there is much to be
gained with unsymmetric stiffness matrices.
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2.4 Summary of MacNeal’s theorem

Before we start to develop Petrov–Galerkin EAS elements we summarize the key conclusions of the previous pages. First,
a finite element can in general only be “exact” for a maximum of M = NDOF modes, where NDOF is the number of dis-
placement degrees of freedom. By exact we denote a finite element solution which coincides with the continuum solution
at the nodes (nodally exact response). Second, it is essential to fulfill nodal equilibrium to extend the solution capabili-
ties of a single element to a whole patch of elements. This is ensured if the ansatz functions for the test function of the
displacement are conforming. Finally, to reach exact representation of a maximum of M = NDOF displacement modes for
general element geometries, the element’s stiffness matrix Ke needs to be unsymmetric. In case of a symmetric Ke there
is always a trade-off between lower and higher order modes (cf. MacNeal11).

All these conclusions hold for a broad class of finite elements. In particular, they apply to all well-known finite ele-
ment discretization schemes regardless of their internal design. That is, regardless of whether they are based on mixed
formulations, higher-order methods or reduced integration.

3 PETROV–GALERKIN EAS FRAMEWORK

Our investigations based on MacNeal’s theorem presented in the last section indicate that the best performance for a given
set of nodes can only be achieved with an unsymmetric stiffness matrix. However, the question on how to construct such
a stiffness matrix has not been addressed. In order to answer this question, we propose an Petrov–Galerkin extension of
the enhanced assumed strain (EAS) method originally proposed by Simo and Rifai.9 Our subsequent examinations of this
basis yields three design conditions that enable the construction of high performance EAS elements.

3.1 Weak form

The key idea of the EAS method proposed by Simo and Rifai9 is to recast the strain in the form 𝜺 = ∇s
xu + �̃�. Therein ∇s

xu
and �̃� denote the compatible and incompatible part of the strain, respectively. Inserting this ansatz into the three-field
Hu-Washizu56 functional yields the variational framework for the EAS method (see Simo and Rifai9 for details). In the
present work we start with the discrete weak form and assume that the independent stress has already been eliminated
via a suitable L2-orthogonality condition. The weak form is then given by9

Gh
EAS,u = ∫

h

∇s
xvh ∶ �̂�h(uh, �̃�h)dV − Gh

ext(v
h) = 0 ∀ vh ∈ h, (24a)

Gh
EAS,�̃� = ∫

h

�̃�h ∶ �̂�h(uh, �̃�h)dV = 0 ∀ �̃�h ∈ h, (24b)

where vh ∈ h, uh ∈  h as well as �̃�h ∈ h, �̃�h ∈ h denote the finite element approximations of test and trial functions
of the displacement and incompatible strain, respectively. Furthermore,

�̂�h = C ∶ (∇s
xuh + �̃�h), (25)

Gh
ext(v

h) = ∫
h

vh ⋅ bhdV + ∫
𝜕h

t

vh ⋅ thdA, (26)

define the constitutive stress �̂�h as well as the contribution of the external forces to the weak form Gh
ext in analogy to G∗

ext
given in (3). The external forces bh and th are the finite element approximations of the continuum counterparts b∗ and t∗.
Since the ansatz for the enhanced assumed strain, �̃�h ∈ h, �̃�h ∈ h, does not need to be inter-element continuous, it is
as usual introduced element-wise, which later allows static condensation of the internal degrees of freedom on element
level.

The weak form (23) is so far exactly the same as the one presented in Simo and Rifai.9 The only difference in the
present work is that we subsequently apply a Petrov–Galerkin approach instead of the usual Bubnov–Galerkin method.
Thus, we use different ansatz functions for the test and trial spaces. The corresponding ansatz spaces h,  h, h,e, h,e

will be specified in Section 4.3.
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3.2 Design conditions for exact nodal solutions

The goal of this section is to find suitable design conditions for EAS elements which ensure that the solution of (23) for an
analytic displacement state u∗ is nodally exact. That is, the nodal displacements coincide with the analytic displacement
state according to (12).

The first design condition stems directly from Section 2.2.3 where it has been shown that it is crucial to fulfill nodal
equilibrium by proper choice of the test function for the displacement vh,e. This allows to consider only a single finite
element in analogy to Section 2, since results may be generalized to larger patches of elements as shown in Section 2.2.3.

To determine further design conditions we start with the analytical weak form for a single finite element given in (9)
and add the body force contribution, which has been neglected in (9). Choosing v∗ = vh,e yields

G∗,e
ext(v

h,e) = ∫
Ωe

vh,e ⋅ b∗dV + ∫
𝜕Ωe

vh,e ⋅ t∗dA = ∫
Ωe

∇s
xvh,e ∶ 𝝈∗dV . (27)

Similar to the investigations in Section 2.2.2 we set the external loads in (26) to bh = b∗ and th = t∗. Thus, we obtain
identity G∗,e

ext(v
h,e) = Gh,e

ext(v
h,e). Finally substituting this result into (24a) and enforcing the weak form for a single finite

element gives

∫
Ωe

∇s
xvh,e ∶

(
�̂�h

, e − 𝝈∗) dV = 0 (28)

which determines the next condition for an exact finite element solution. Since we have seen that nodal equilibrium puts
severe restrictions on the choice of the test functions vh,e (cf. the first design condition), it is in general only possible
to fulfill (28) if �̂�h,e = 𝝈∗ holds pointwise, where, according to (1b), 𝝈∗ = C ∶ ∇s

xu∗. On the other hand, the constitutive
stress (25) is given by �̂�h,e = C ∶ (∇s

xuh,e + �̃�h,e). Thus, condition �̂�h,e = 𝝈∗ can be fulfilled by choosing the ansatz spaces
for uh,e and �̃�h,e appropriately. Furthermore, �̂�h,e = 𝝈∗ must be possible under the premise that the nodal displacements
are exact. Otherwise it would be possible to fulfill (28) without having exact nodal displacements.

The third and final condition emerges from the second equation of the weak form. Substituting �̂�h,e = 𝝈∗ (i.e., the
second condition) into (24b) yields

∫
Ωe

�̃�h,e ∶ 𝝈∗dV = 0, (29)

which determines that the test functions of the incompatible strain has to be L2-orthogonal to the stress 𝝈∗. Interestingly,
this is an extended version of the patch-test condition of the classical EAS element by Simo and Rifai.9 However, instead
of requiring (29) only for constant stress fields we demand L2-orthogonality for all modes for which the element should
be exact.

Summarizing the above we established three conditions, which have to be fulfilled in order to construct a
Petrov–Galerkin EAS element on the basis of (23) that is exact for a chosen displacement field u∗ regardless of element
shape:

C1 The test functions for vh,e have to ensure that nodal equilibrium is fulfilled regardless of element geometry and
neighboring elements (see Section 2.2.3),

C2 the discrete constitutive stress tensor �̂�h,e, which is computed from uh,e and �̃�h,e via (25), must include 𝝈∗ under the
premise that the nodal displacements are exact (see (28)) and

C3 the test functions for the enhanced strain �̃�h,e must be L2-orthogonal to 𝝈∗ (see (29)).

4 DESIGN OF MESH-DISTORTION INSENSITIVE EAS ELEMENTS

The final theoretical part of this contribution concerns the actual finite element design. We have to specify the analytic
modes, for which the element should be exact, and then construct the ansatz spaces for all four fields introduced in (23)
such that conditions C1 to C3 are fulfilled.
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F I G U R E 3 Geometry maps and coordinate systems for the four node quadrilateral element. Isoparametric map xh,e ∶ Ω̂ → Ωe (see
(30)), skew map 𝝃 ∶ Ωe → Ω (see (32)) and additional map 𝜻 ∶ Ω̂ → Ω (see (35))

We start with the introduction of the skew coordinate frame in Section 4.1 since it is the key for the analytic stress
modes in Section 4.2 and the finite element discretization in Section 4.3. For simplicity, we focus on the 2D case in
Sections 4.1 to 4.3 and cover the extension to 3D in Section 4.4.

4.1 Skew coordinate frame

An element Ωe is described as usual by mapping a reference element Ω̂ = [−1,+1]2 to Ωe
⊂ R2. Accordingly, each

point with parametric coordinates 𝝃 =
[
𝜉 𝜂

]T ∈ Ω̂ is mapped to a physical point x =
[
x y

]T ∈ Ωe via the isoparametric
transformation (see Figure 3)

xh,e =
4∑

i=1
Ni(𝝃)xe

i , Jh,e = 𝜕xh,e

𝜕𝝃
=

4∑
i=1

xe
i ⊗ ∇𝝃Ni. (30)

Therein, Jh,e is the Jacobian of the transformation xh,e ∶ Ω̂ → Ωe, xe
i are the nodal coordinates and

Ni =
1
4
(1 − 𝜉i𝜉)(1 − 𝜂i𝜂) (31)

denote the usual bi-linear Lagrangian shape functions. They are defined with help of the nodal positions
[
𝜉i 𝜂i

]T =[
±1 ±1

]T in the parametric space.
In the context of assumed stress elements Yuan et al.25 and Wisniewski and Turska26 proposed to use a skew coordinate

frame for an alternative description of geometry. The skew coordinates are introduced via the elementwise affine map
𝝃 ∶ Ωe → Ω defined by

𝝃 =
[
𝜉 𝜂

]T
= J−1

0 (xh,e − x0), (32)

where J0 = Jh,e|||𝝃=0
is the Jacobian at the element center x0 = xh,e||𝝃=0. The inverse of transformation (32) is given by

xh,e = J0𝝃 + x0. (33)

Since the covariant base vectors g0
𝜉
= 𝜕xh,e∕𝜕𝜉||𝝃=0 and g0

𝜂 = 𝜕xh,e∕𝜕𝜂||𝝃=0 constitute the columns of J0, (33) can also be
written as xh,e = 𝜉g0

𝜉
+ 𝜂g0

𝜂 + x0. Accordingly, the coordinates 𝜉 and 𝜂 refer to the base vectors g0
𝜉

and g0
𝜂 , which in general

span a skew basis (see Figure 3). It can further be observed from Figure 3 that the skew element Ω plays the role of an
intermediate configuration between the reference element Ω̂ and the physical element Ωe.

Two important properties of the skew coordinates follow directly from (32). First, since the map (32) from
Ω to Ωe is affine, the two elements Ω and Ωe are affine-equivalent (see, e.g., Ch. 12 in Reddy24). This
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implies in particular that complete polynomials defined on Ω are mapped to complete polynomials in Ωe. This
property will be exploited below for the construction of complete ansatz functions regardless of the geometry
of element Ωe.

Second, the skew coordinates are frame-indifferent. This can be shown by considering superposed rigid motions cor-
responding to nodal position changes of the form xe#

i = Rxe
i + c, where R ∈ SO(2) is a rotation tensor and c ∈ R2 is an

arbitrary vector. Substituting xe#
i for xe

i in (30) yields xh,e# = Rxh,e + c and Jh,e# = RJh,e. With regard to (32), we then
obtain

𝝃
#
= J#−1

0 (xh,e# − x#
0) = (RJ0)−1R(xh,e − x0) = J−1

0 R−1R(xh,e − x0) = 𝝃, (34)

which establishes the frame-indifference of the skew coordinates. This facilitates subsequently the construction of a
frame-indifferent finite element formulation.

Remark 8. Although (32) links the skew coordinates to the parametric coordinates via xh,e and (30), it is convenient to
have a direct relation between 𝝃 and 𝝃. In particular, the map 𝜻 ∶ Ω̂ → Ω is given by

𝝃 = 𝝃 + J−1
0 c1H1(𝝃), c1 = 1

4

4∑
i=1

xe
i h1

i , (35)

where H1 = 𝜉𝜂 and h1 =
[
+ 1 −1 +1 −1

]T are the hourglass function and vector, respectively (see Appendix B for
further details). It is straightforward to verify that c1 = 0 for a parallelogram shaped element and therefore 𝝃 = 𝝃 in case
of a constant Jacobian.

4.2 Prescribed analytic modes

The investigations of Section 2.2.2 show that the four node quadrilateral element with eight degrees of freedom can be
fitted to a maximum of M = NDOF = 8 prescribed modes. Three of which are necessarily the rigid body modes, since
elements that are not exact for those would lead to completely unphysical results. For the remaining five modes we
propose to use the assumed stress modes developed by Pian and Sumihara.8 These modes are suited perfectly since
they include the important constant stress modes as well as the bending modes. The former are necessary to fulfill
the patch test2 and the latter are of the utmost importance in many engineering applications. Furthermore, the almost
unchanged form of the assumed stress modes for more than 35 years suggests their optimality for assumed stress
elements.

One of the few successful modifications of the Pian-Sumihara stress modes is formulating them in the skew coordinate
frame. This has the advantage that equilibrium, that is, div𝝈h,e = 0, is fulfilled a priori regardless of element shape (see
References 25,26). We therefore choose the analytic stress modes in the skew system, which are in vector matrix form
given by

𝝈
∗
v (𝝃) ∶=

⎡⎢⎢⎢⎣
1 0 0 𝜂 0
0 1 0 0 𝜉

0 0 1 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝛽1

⋮

𝛽5

⎤⎥⎥⎥⎦ (36)

as prescribed analytic modes. These stress modes have to be transformed to the physical frame to use them in (28). The
usual assumption of a contravariant stress field yields the transformation

𝝈∗ = J0𝝈
∗JT

0 . (37)

The last two equations could be used to compute the corresponding displacement modes u∗
m, m = 1, … , 5 via the

system of coupled PDEs (1). Fortunately, it is not necessary to perform this tedious task. To fulfill conditions (28) and (29)
we only need the prescribed stress𝝈∗. By proper choice of the ansatz space of the displacement and the incompatible strain
we can ensure that the nodal displacements are exact without knowing the actual value of the analytic displacement at
the node.
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4.3 Ansatz spaces

The final task is to find ansatz spaces that fulfill conditions C1 to C3 for the prescribed modes (37) such that we obtain
an element that is nodally exact for these deformation states.

4.3.1 Test function for the displacement

Condition C1, which concerns nodal equilibrium, is straightforward to fulfill. The only requirement is a conforming
ansatz (21) for the test functions of the displacement vh,e. Since this is exactly what the isoparametric concept was designed
for, we choose

vh,e =
4∑

i=1
Nive

i (38)

which employs the same bi-linear shape functions (31) as the ansatz for the geometry (30).

4.3.2 Trial function for the displacement

Condition C2 determines that the discrete stress �̂�h,e has to include the prescribed stress modes 𝝈∗ given in (37). Since
the chosen stress modes (36) are linear with respect to the skew coordinates, we meet condition C2 if each component of
∇s

xuh,e + �̃�h,e contains complete linear polynomials P1(Ωe). Then, in view of the linear map (25), the discrete constitutive
stress �̂�h,e is also a complete linear polynomial and contains in particular 𝝈∗. This approach is more general than explicitly
needed for condition C2, since we can represent not only (36) but complete linear stress modes. However, its independence
of the material model (i.e., C) is a crucial advantage.

Although the isoparametric concept ensures that complete linear displacement modes are correctly represented in
the physical space, this is in general not the case for higher-order displacement modes. This deficiency is caused by the
nonlinearity of the map (30).

Example Q1. The components of the map (30) can be written as x = a0 + a1𝜉 + a2𝜂 + a3𝜉𝜂 and y = b0 + b1𝜉 + b2𝜂 + b3𝜉𝜂

with constants ai, bi. Unless a3 = b3 = 0 (a parallelogram) the expression xy contains monomials up to 𝜉2𝜂2 not included in
the base of the isoparametric interpolation. The expression xy can therefore not be represented by the bilinear Lagrangian
shape functions. Similar relations can be found for all isoparametric elements.

Complete polynomials in the physical space can be obtained by using shape functions constructed in the physical
space, which are termed metric shape functions (see the book by MacNeal1‡‡). The construction of metric shape functions
starts by choosing an appropriate set of N monomials. For the four node quadrilateral (N = 4) the only sensible choice
is 1, x, y, xy. Furthermore, it is necessary to construct the shape functions using the skew coordinates 𝝃 instead of the
physical coordinates x to maintain frame-indifference (cf. Xie et al.21). Despite using the skew frame, the shape functions
can still be regarded as metric shape functions since the two elements Ω and Ωe are affine-equivalent (see Section 4.1).
Following these considerations, we choose

uh,e(𝝃) =
[
1 𝜉 𝜂 𝜉𝜂

] ⎡⎢⎢⎢⎣
a1

⋮

a4

⎤⎥⎥⎥⎦ (39)

as ansatz for the x-component of the displacement vector. The modal weights ai, i = 1, … , 4 can be linked to the nodal
displacement weights ue

i by imposing conditions uh,e(𝝃i) = ue
i , i = 1, … , 4, where 𝝃i denote the skew coordinates of the

nodes of element Ω. Doing so yields the metric shape functions Me
i (𝝃) defined through

uh,e(𝝃) =
[
1 𝜉 𝜂 𝜉𝜂

] ⎡⎢⎢⎢⎣
1 𝜉1 𝜂1 𝜉1𝜂1

⋮

1 𝜉4 𝜂4 𝜉4𝜂4

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

ue
1

⋮

ue
4

⎤⎥⎥⎥⎦ =
[

Me
1 · · · Me

4

] ⎡⎢⎢⎢⎣
ue

1

⋮

ue
4

⎤⎥⎥⎥⎦ . (40)

‡‡MacNeal1 uses the expression metric interpolations instead of metric shape functions.
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F I G U R E 4 Isoparametric shape function N4 (left) and corresponding metric shape function M4 (right) of a quadrilateral finite element
Ωe with nodes x1 = [−1,−0.8], x2 = [2,−1.2], x3 = [1.5, 1.3], x4 = [−0.5, 0.8]

The inverse matrix required to compute Me
i exists as long as there are no coincident nodes. It is also well-conditioned

even for elements with high aspect ratios because of the skew coordinates which scale the element appropriately. Natu-
rally, both displacement components of uh,e have to be approximated using the same Me

i to maintain isotropy. The final
approximation of the trial function for the displacement reads

u(𝝃)h,e =
4∑

i=1
Me

i (𝝃)u
e
i (41)

in analogy to (38). Starting from (40) it is now straightforward to compute the derivative of the displacement component
uh,e with respect to 𝝃 which is given by

∇
𝝃
uh,e =

[
0 1 0 𝜂

0 0 1 𝜉

]⎡⎢⎢⎢⎣
1 𝜉1 𝜂1 𝜉1𝜂1

⋮

1 𝜉4 𝜂4 𝜉4𝜂4

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

ue
1

⋮

ue
4

⎤⎥⎥⎥⎦ =
[
∇

𝝃
Me

1 … ∇
𝝃
Me

4

] ⎡⎢⎢⎢⎣
ue

1

⋮

ue
4

⎤⎥⎥⎥⎦ . (42)

The last equation yields expressions for the derivatives of the metric shape functions ∇
𝝃
Me

i , i = 1, … , 4. Derivatives
with respect to the physical coordinates follow from application of the chain rule together with (32) such that

∇xMe
i = J−T

0 ∇
𝝃
Me

i . (43)

The derivatives ∇
𝝃
Me

i are obviously not complete linear polynomials which prohibits fulfilling C2 using only the
displacement ansatz (41). It is further worth noting that the inverse matrices in (40) and (42) required to calculate the
metric shape functions Me

i and their derivatives ∇
𝝃
Me

i are the same and need to be computed only once per element.
We summarize a few properties of the metric ansatz described above which are straightforward to verify using (40)

before we conclude this section. Functions Me
i are by construction frame-indifferent and isotropic.21 The latter implies

that Me
i are invariant with respect to the node-numbering, that is, the direction of the skew basis vectors g0

i . Furthermore,
they are a partition of unity

∑
Me

i = 1 and have the Kronecker-delta property Me
i (xj) = 𝛿ij. Finally, Me

i are equal to the
bilinear shape functions Ni in case of elements with constant Jacobian Jh,e. However, Me

i are non-conforming for general
element shapes, that is (21) does not hold as shown in Figure 4.

4.3.3 Trial function for the enhanced strain

Relation (42) reveals that the derivatives of the metric shape functions are not complete linear polynomials and have to
be complemented in order to fulfill condition C2. Inspection of (40) shows that the missing expressions for a complete
quadratic displacement field are m̃e

1 = 𝜉
2

and m̃e
2 = 𝜂

2. A simple way to add these terms is considering two elementwise
incompatible mode ansatz functions with internal weights ũe

j . In this way we obtain a displacement field complete in P2(Ω)
given by

uh,e(𝝃) =
4∑

i=1
Me

i (𝝃)u
e
i +

2∑
j=1

M̃e
j (𝝃)ũe

j . (44)
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However, directly choosing M̃e
j = m̃e

j does not fulfill the second part of condition C2 which states that identity
�̂�h,e = 𝝈∗ must hold under the premise that the nodal displacements ue

i associated with Me
i are exact. In other words, the

incompatible modes may not contribute to the displacement at the nodes. Choosing

M̃e
j (𝝃) = m̃e

j (𝝃) −
4∑

i=1
Me

i (𝝃) m̃e
i (𝝃i). (45)

as ansatz in (44) ensures M̃e
j = 0 at the element’s nodes while maintaining the quadratic completeness of the displacement

field (44).
It is now straightforward to obtain a suitable ansatz for the trial function of the incompatible strain from (44) using the

strain-displacement relationship of the form (1a). Accordingly, taking the derivative of the second term on the right-hand
side of (44) results in

�̃�h,e =
2∑

j=1
ũe

j ⊗ ∇s
xM̃e

j , (46)

where the incompatible displacement vectors ũe
j contain the four internal degrees of freedom.

Remark 4. The shape functions M̃e
j presented above are a more compact form of the ansatz proposed by Huang and

Li57 in a Bubnov–Galerkin frame. Furthermore, a similar idea of using metric incompatible modes has recently been
suggested by Huang et al.31 Their idea is to employ a higher order parent element which automatically ensures M̃e

j = 0 at
the nodes. The drawbacks of that method are the higher number of internal degrees of freedom (at least twice as much),
the higher-order of Gauss-quadrature required and the difficulty to extend it to 3D problems due to a violation of condition
C3. All of these drawbacks are overcome with the present approach.

4.3.4 Test function for the enhanced strain

The remaining task is to find appropriate test functions for the incompatible strain �̃�h,e such that condition C3 holds. To
that end, we start with the incompatible strain field of the classical EAS approach9

ẽh,e = 1
jh,e J−T

0 eJ−1
0 , ev ∶=

⎡⎢⎢⎢⎣
𝜉 0 0 0
0 𝜂 0 0
0 0 𝜉 𝜂

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝛼1

⋮

𝛼4

⎤⎥⎥⎥⎦ , (47)

where jh,e = det Jh,e and ev contains the classical Wilson-modes in vector-matrix notation. The transformations chosen in
(47) and (37) allow to recast condition C3, that is, (29), in the form

∫̂
Ω

e ∶ 𝝈
∗dΩ̂ = 0. (48)

This condition is fulfilled in case of the special choice (47). Thus condition C3 is immediately fulfilled by choosing
�̃�h,e = ẽh,e. However, in case of general ansatz functions, this is not necessarily the case. See for example, the 3D case
described in Section 4.4.3.

Remark 5. Interestingly, (48) offers an explanation why transformation (47), which works well in linear simulations,9
is the best choice of transformation of the enhanced modes in nonlinear simulations even though it is not the obvi-
ous choice if the deformation gradient is enhanced (cf. Pfefferkorn and Betsch47): Since any nonlinear element should
be close to the linear case for moderate deformations we may conclude that (48) is required for good bending accu-
racy even in nonlinear simulations. In case of rectangular elements (48) is fulfilled for the standard (transposed)
Wilson ansatz functions if transformation (47) is used. This holds only approximately for distorted meshes but still
improves performance. Other transformations lead to more severe violations of (48) which implies worse overall
performance.
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This effect is described in numerous works40,47,58 with numerical investigations but could, to the best knowledge of
the authors, not be explained so far.

4.3.5 Additional features

Exact numerical integration
Similar to other Petrov–Galerkin finite elements20 standard Gauss-quadrature allows to evaluate the integrals in the weak
form (23) exactly.

To show this we first note that the constitutive stress �̂�h,e contains only polynomials of x, y since we choose metric
interpolations of uh,e and �̃�h,e. In view of (35), these expressions are also simple polynomials of 𝜉, 𝜂. Next, transformation
of the integral in (24b) to the reference element is possible using dV = jh,edΩ̂. Due to the specific transformation in (47)
jh,e immediately cancels out which establishes the polynomial form of the integrand in (24b). The same holds for (24a).
Here we can recast the gradient of the isoparametric shape functions in the form

∇xNi = (Jh,e)−T∇
𝝃
Ni =

1
jh,e cof(Jh,e)∇

𝝃
Ni, (49)

where cof (•) denotes the cofactor.59 This shows that jh,e cancels analogously after transformation of the integral in (24a)
and the remaining expression again contains only polynomials of 𝜉, 𝜂.

By inspection of the integrands we find that the highest order monomials are 𝜉2𝜂, 𝜉2𝜂2, and 𝜉𝜂2, all of which are inte-
grated correctly by standard 2 × 2 Gauss-quadrature. Thus, standard integration is exact for the present element regardless
of element shape.

Connection to the standard EAS element
If an element is parallelogram shaped, the present approach reduces to the standard EAS method presented in the work
of Simo and Rifai.9 In that case the Jacobian of the isoparmetric map Jh,e = J0 is constant and (35) implies 𝝃 = 𝝃. We then
obtain from (40) that Me

i = Ni. Finally, (45) become the classical Wilson-bubble modes which establishes the equivalence.

Eliminated orthogonal stress field
The weak form introduced in (23) is a reduced form of the full Hu-Washizu framework as mentioned in Section 3.1. The
complete weak form on element level is given by9

∫
h

∇s
xvh ∶ �̂�hdV − Gh

ext(v
h) = 0 ∀ vh ∈ h, (50a)

∫
h

�̃�h ∶
(
�̂�h − 𝝈h) dV = 0 ∀ �̃�h ∈ h, (50b)

∫
h

𝝉h ∶ �̃�hdV = 0 ∀ 𝝉h ∈  h,e, (50c)

where in contrast to (23) the stress field 𝝈h with its test functions 𝝉h has not yet been eliminated via L2-orthogonality
condition. It is straightforward to get from (49) to (23). Simply choosing 𝝈h,e = 𝝈∗ for the independent stress field on
element level, where 𝝈∗ is given by (37) and (36), eliminates 𝝈h from (50b) due to (29). Moreover, it is simple to construct
an ansatz for the test functions for the independent stress 𝝉h such that (50c) is fulfilled by construction. To that end we
simply start by taking (37) and replace the skew coordinates 𝝃 in (36) with the parametric coordinates 𝝃. This set of ansatz
functions can then be orthogonalized to �̃�h,e with a Gram–Schmidt orthogonalization similar to Section 4.4.2. Thus, it is
possible to use (23) instead of (49).

4.4 Three dimensional problems

So far, we described the 2D case in a detailed way. However, most of the ideas and methods presented are straightforward
to transfer to the 3D setting. We list differences and specifics for the 3D case in this section.



18 PFEFFERKORN and BETSCH

4.4.1 Prescribed stress modes

Similar to Section 4.2 we use the stress modes from assumed stress elements as prescribed analytic modes. They were first
proposed in the work of Pian and Tong50 in the parametric space. In skew coordinates (32), the assumed stress modes are
defined by using (37) together with

𝝈
∗
v (𝝃) ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 𝜂 𝜁 0 0 0 0 0 0 0 𝜂𝜁 0 0
0 1 0 0 0 0 0 0 𝜁 𝜉 0 0 0 0 0 0 𝜁𝜉 0
0 0 1 0 0 0 0 0 0 0 𝜉 𝜂 0 0 0 0 0 𝜉𝜂

0 0 0 1 0 0 0 0 0 0 0 0 𝜁 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 𝜉 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 𝜂 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝛽1

𝛽2

⋮

𝛽18

⎤⎥⎥⎥⎥⎥⎦
. (51)

Again, the analytic modes contain the patch test (𝛽1 to 𝛽6) and bending modes (𝛽7 to 𝛽12). Additionally, the three
remaining linear modes (𝛽13 to 𝛽15) concern the shear components and cover states of pure torsion.§§ The final three
modes are bilinear and were first proposed by Pian and Chen.60 They are required to suppress zero energy modes in
assumed stress elements. These modes fulfill equilibrium (2) with b∗ = 0 but do not lead to a compatible strain field in
case of isotropy.¶¶ This is why they are labeled incompatible stress modes.

It would of course be better to find suitable compatible stress modes. Unfortunately, these do, to the best knowledge
of the authors, not exist. Compatible modes would need either full quadratic fields or a priori knowledge of the material
model. Both of which are not satisfactory which is why (51) is employed in most works (e.g., References 50,61,62). Other
approaches63,64 perform either worse or at best similar compared to (51).

4.4.2 Trial functions for displacement and incompatible strain

The 3D metric shape functions Me
i , i = 1, … , 8 for a eight node hexahedral element are defined analogously to (40) and

contain the monomials 1, 𝜉, 𝜂, 𝜁 , 𝜂𝜁 , 𝜁 𝜉, 𝜉𝜂, and 𝜉𝜂𝜁 . Again we obtain complete quadratic fields in skew coordinates
by complementing the metric shape functions with quadratic incompatible modes M̃e

j , j = 1, 2, 3. They are computed
analogously to (45) using m̃e

1 = 𝜉
2
, m̃e

2 = 𝜂
2, and m̃e

3 = 𝜁
2
. As consequence of the complete quadratic displacement ansatz

all linear stress modes (51) up to 𝛽15 can be exactly represented regardless of the material model.
Approaching the remaining bilinear stress modes 𝛽16 to 𝛽18 in the same way would require nine additional cubic

incompatible displacement modes which are by far too many for an efficient element. Furthermore, the bilinear stress
modes are incompatible and of subordinate importance due to their higher order nature. We therefore propose to follow
the approach of Simo et al.39 instead and focus on volumetric locking.

Andelfinger et al.65 first observed that using only the three quadratic incompatible modes described above is not
enough to eliminate volumetric locking. Following Simo et al.39 this can be explained by looking at the trace of the strain
tensor, which assumes the form

tr(𝜺h,e) = tr(∇s
xuh,e + �̃�h,e)

= C0 + C1𝜉 + C2𝜂 + C3𝜁 + C4𝜂𝜁 + C5𝜁 𝜉 + C6𝜉 𝜁 + C̃1𝜉 + C̃2𝜂 + C̃3𝜁 ,
(52)

where Ci and C̃i are constants depending on the displacement and enhanced degrees of freedom, respectively. The last
equation immediately reveals that the incompressibility condition tr(𝜺h,e) = 0 can only be met if C4 = C5 = C6 = 0. This
restriction leads to a mild form of locking which can be alleviated using three additional enhanced modes

�̃�h,e = J−T
0 (𝛼10𝜉𝜂I + 𝛼11𝜂𝜁I + 𝛼12𝜁 𝜉I)J−1

0 (53)

§§See for example, the work of Reference 52 for analytic solutions associated with the linear modes.
¶¶It is not possible to find a displacement field that leads to 𝝈∗ = 𝛽16 yz(ex ⊗ ex). The compatibility condition 𝜀∗11,23 = 𝜀∗13,21 + 𝜀∗12,31 − 𝜀∗23,11 is violated
for the simple isotropic material which ultimately prohibits finding a suitable u∗.
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in the spirit of Simo et al.39 It is straightforward to verify this by observing that (52) now includes the additional terms
C̃4𝜂𝜁 + C̃5𝜁 𝜉 + C̃6𝜉 𝜁 which relaxes the incompressibility conditions from Cm = 0 to Cm = −C̃m, m = 1, 2, 3. In contrast
to Simo et al.39 we use skew coordinates in (53) and do not apply the scaling by determinants. With these three additional
modes there are now in total 12 enhanced modes.

Remark 6. Other approaches for volumetric locking-free EAS elements require either more internal degrees of
freedom18,41,66,67 or are only slight modifications of (53)46.

All in all, the three quadratic incompatible Wilson-modes formulated in terms of skew coordinates together with (53)
enable exact representation of arbitrary linear stress fields and volumetric locking-free elements.

4.4.3 Test function for the incompatible strain

The test functions for the incompatible strain are chosen in exactly the same way as in the work of Simo et al.,39 which
are given by

ev ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜉 0 0 0 0 0 0 0 0 𝜉𝜂 𝜂𝜁 𝜁𝜉

0 𝜂 0 0 0 0 0 0 0 𝜉𝜂 𝜂𝜁 𝜁𝜉

0 0 𝜁 0 0 0 0 0 0 𝜉𝜂 𝜂𝜁 𝜁𝜉

0 0 0 𝜉 𝜂 0 0 0 0 0 0 0
0 0 0 0 0 𝜂 𝜁 0 0 0 0 0
0 0 0 0 0 0 0 𝜉 𝜁 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝛼1

𝛼2

⋮

𝛼12

⎤⎥⎥⎥⎥⎥⎦
, (54)

along with the transformation formula in (47). Unfortunately however, (48) is not a priori fulfilled for the bilinear modes
in (51) and (54). It is thus necessary to find a proper L2-orthogonal set of test functions for the strain modes. This can be
achieved by starting with an arbitrary ev and a two step Gram–Schmidt orthogonalization procedure. The stress modes
are orthogonalized to each other in a first step before these modified stress modes are used to create an orthogonal
enhanced field. It is crucial to conduct these operations using (48) instead of (29). This is because the latter leads to cou-
pling between the different stress components which in turn induces frame dependence to the orthogonalized stress. The
final orthogonalization in vector-matrix notation is described by

s∗v,i = 𝝈
∗
v,i −

i−1∑
k=1

∫Ω̂ 𝝈
∗
v,i ⋅ s∗v,k jh,edΩ̂

∫Ω̂ s∗v,k ⋅ s∗v,k jh,edΩ̂
s∗v,k, 𝝐

h,e
v,j = ev,j −

n𝜎∑
k=1

∫Ω̂ ev,j ⋅ s∗v,kdΩ̂

∫Ω̂ s∗v,k ⋅ s∗v,k jh,edΩ̂
s∗v,k, (55)

where𝝈v,i and ev,j denote columns of the ansatz matrices of𝝈∗
v and ev, respectively. Furthermore, n𝜎 and n𝜖 are the number

of stress and incompatible strain modes and k = 1, … ,n𝜎 and j = 1, … ,n𝜖 . The final ansatz for the test functions of the
incompatible strain is given by

�̃�h,e = 1
jh,e J−T

0 𝝐
h,eJ−1

0 (56)

and fulfills condition C3 by construction.

4.4.4 Additional features

It is straightforward to show that the 3D element presented reduces to the linear version of the EAS element proposed by
Simo et al.39 in case of regular meshes.

Furthermore, as in Section 4.3.5, all integrands in (23) and (55) are of pure polynomial nature. However, standard
2 × 2 × 2 Gauss-quadrature is not sufficient for exact integration of the higher order expressions in (51), (53), and (54)
in case of distorted elements. Fortunately though, all lower order modes are integrated exactly by standard 2 × 2 × 2
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Gauss-quadrature and the under-integration of the higher order modes does not seem to affect the results as our numerical
experiments show. It is furthermore interesting that increasing the order of quadrature does not lead to over-integration
and too stiff response which is in contrast to standard finite elements.

Remark 7. In case of generally distorted elements with non-constant Jacobians 4 × 4 × 4 and 3 × 3 × 3 Gauss-quadrature
is required to exactly integrate the expressions of the orthogonalization procedure (55) and the weak form (23), respec-
tively. Using different order of integration for the weak form and the orthogonalization procedure is not advisable as it
leads to numeric violations of (29). The required order of Gauss-quadrature can be reduced to 3 × 3 × 3 in the orthogo-
nalization procedure (55) if one replaces the skew coordinates in the bilinear modes in (51) with parametric ones, which
does not seem to influence the numeric results.

However, we stress that despite not giving exact results, standard 2 × 2 × 2 Gauss points is sufficient for convergence
and we thus employ it if not stated otherwise.

5 NUMERICAL INVESTIGATIONS

This final section covers several numerical benchmarks comparing the novel finite element formulation to established
ones. Special emphasize is put on mesh distortion sensitivity. To keep the descriptions of setup and results as concise as
possible, we drop the 2D case in favor of the more complex 3D simulations. However, if not mentioned otherwise, results
can qualitatively be transferred to 2D.

In the sequel we denote the present element Q1U/E4 and H1U/E12 in 2D and 3D, respectively. Therein, U denotes
the unsymmetry of the stiffness matrix and Ex accounts for the number of enhanced modes. The standard elements we
use for comparison are

• H1 standard isoparametric displacement-based element with Lagrangian shape functions.
• H1/E9 EAS element based on the nine Wilson-modes. The 2D version of this element, Q1/E4, was proposed in the

seminal work of Simo and Rifai.9 A 3D extension can for example, be found in the work of Andelfinger and Ramm.41

• HA1/E12 linearized form of the EAS element proposed by Pfefferkorn and Betsch47 which is closely related to the
improved EAS element by Simo et al.39 It uses three additional volumetric enhanced modes, a special nine point
quadrature rule and a modified evaluation of the compatible displacement gradient.

• H1/S18 assumed stress element with 18 stress modes as proposed by Pian and Tong50.
• H1/P0 the three field mixed pressure element with constant pressure and dilatation approximation as proposed by

Simo et al.68

• H1U/IM-S the 3D extension of the unsymmetric incompatible mode element by Huang et al.31 We use a serendipity
approach instead of the proposed Lagrange ansatz and perform the orthogonality procedure (55) to fulfill condition
C3, which has not been considered in Huang et al.31

Other low-order unsymmetric finite element formulations as the ones proposed in Cen et al.,13 Xie et al.,21 and Huang
et al.31 (only 2D) have also been tested. Their accuracy is very similar to the present element in most tests. However, they
suffer from other severe drawbacks as outlined in the introduction and are therefore not included in this section. The
only exemption is H1U/IM-S (see above) in the Cook’s-membrane example in Section 5.5.

5.1 Patch test

The first benchmark is the classical patch test which is performed here as described in Pfefferkorn and Betsch47,48.
A block 0 = [0, 1]3 with Young’s modulus E = 104 and Poisson’s ratio 𝜈 = 0.3 is subjected to boundary conditions
ui(xi = 0, xj, xk) = 0, i, j, k ∈ {1, 2, 3}, i ≠ j ≠ k and loaded via displacement u3(x3 = 1, x1, x2) = u. A regular mesh with
3 × 3 × 3 elements as well as a distorted mesh with seven elements according to MacNeal and Harder69 is used to discretize
the block. Figure 5 shows the deformed configuration and stress distribution for both types of meshes.

By considering the stress distribution we can establish if the elements pass the patch test, that is, if the linear displace-
ment states lead to the correct constant stress state. The nodal stresses of the novel H1U/E12 at a displacement state of
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6.000000

6.000000

6.000000

6.000000

6.000000⋅103

F I G U R E 5 Patch test. Deformed configuration (u = 0.6) with von Mises stress distribution for the regular (left) and distorted (right)
mesh

Nodes and forces in coordinates:

= (0, −0.75, 0) = (0, 0.75, 0)

= (1, −0.50, 0) = (1, 0.75, 0)

= (2, −1, 3) = (2, 1, 3)

= (−1, −0.75, 2) = (−1, 0.75, 2)

= [200, 0, 0]T = [100, 0, 0]T

Element node-numberings:

EDOF1 = [ ]

EDOF2 = [ ]

EDOF3 = [ ]

F I G U R E 6 Setup of the isotropy and frame-indifference test in 3D

u = 0.6 average to 𝜎 = 6000 for both meshes, which is the analytic solution. Moreover, the standard deviation of below
10−10 establishes the constant stress state. Thus, the novel element passes the patch test, which is not surprising since
H1U/E12 was designed to pass the patch test by choice of the analytic stress modes (see Section 4.2).

Remark 8. Other quadrature rules than the standard 2 × 2 × 2 rule might induce failure of the patch test. Using for
example, 2 × 2 × 2 and 3 × 3 × 3 Gauss-points for integration of the residual (23) and orthogonalization procedure
(55), respectively, leads to a violation of the patch test. An equal number of Gauss-points for both the residual and
the orthogonalization (e.g., the 2 × 2 × 2 for H1U/E12) ensures satisfaction of the patch test. Alternatively, an exact
integration, which requires at least 3 × 3 × 3 and 4 × 4 × 4 Gauss-points, respectively, also ensures that the patch test
is passed.

5.2 Isotropy and frame-indifference

With this simple one element test we check whether the novel element formulation fulfills two basic properties. First,
we test for frame-indifference with respect to rotation of the coordinate system and second for isotropy with respect
to choice of the local element axes. This test was proposed in the works of References 21,64 and is slightly modified
here##.

We consider a single finite element of general shape whose geometry in the local x y z coordinate frame is described
in Figure 6. Dirichlet boundary conditions u = 0 apply on nodes A,D,E,H and two nodal forces act on nodes C and G as
shown in Figure 6. The material properties are E = 1500 and 𝜈 = 0.25.

To test for frame-indifference we consider the case of no rotation, that is, the local x y z-frame coincides
with the global xyz-frame, and a case where the element is rotated by 65◦, 15◦, and 25◦ around the x, y, and
z axis, respectively. Furthermore, we use different element node-numberings (see Figure 6) to change the local
element axes with respect to the coordinate frame x yz. If this does not influence the result the element is
isotropic.

##In particular, we use a different geometry to ensure generality of the test. The nodes chosen in references21,64 are symmetric to the xz-plane which
should be avoided.
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All standard elements and the novel element H1U/E12 pass this test and are indifferent to rotation as well as
node-numbering. Specifically, the novel element exhibits a displacement of u = 1.3696 for all six combinations of rotation
and node-numbering. The standard deviation of the six displacements is 5.4 ⋅ 10−16.

Remark 9. Isotropy and frame-indifference of H1U/E12 are a direct consequence of using skew coordinates as described
in Section 4.1 which are extensively used for both trial fields uh,e and �̃�h,e.

If we used the centroid coordinates x = xh,e − x0 instead of the skew coordinates (32), the element would loose
its frame-indifference. In our numerical test this is established by the increased standard deviation of 1.7 ⋅ 10−3. This
frame-dependence of the centroid coordinates has first been cured by a rotation.23 Unfortunately, that approach induces
anisotropy (cf. Xie et al.21). So far, the only proper choice is using the skew coordinates which simultaneously scale and
rotate the centroid coordinates, (see (32)).

5.3 Eigenvalue analysis

Next we perform the eigenvalue analysis of the stiffness matrix as proposed by Simo et al.39 A single finite element
with regular or distorted shape as shown in Figure 7 is considered for this test. The shear and bulk modulus are 𝜇 = 1
and 𝜅 = 109 which corresponds to nearly incompressible material behavior and causes volumetric locking for standard
elements.

After static condensation, the stiffness matrix of the single finite element Ke is always of the size 24 × 24. Thus, Ke has
24 eigenvalues which can be grouped into four sets. First, zero eigenvalues 𝜆i = 0 which correspond to rigid body modes.
Second, locking modes with 𝜆i → +∞. In the numeric examples infinity is not reached and therefore modes with “high”
eigenvalues are considered as locking modes. The remaining eigenpairs are normal modes if their eigenvalues 𝜆i > 0 are
positive and instable if 𝜆i < 0.

The desired result is that the element exhibits the correct number of six rigid body modes, has no instable modes 𝜆i < 0
and exactly one locking mode which corresponds to pure dilatational deformation and accounts for the incompressibility.
The other modes should be normal modes with 𝜆i > 0.

The number of modes in each category for the elements tested are shown in Table 1. Apart from elements H1
and H1/E9 all elements are free from locking in this test and exhibit the desired behavior. Failure to reproduce the
correct number of modes immediately establishes that the element suffers from locking. For example, the four and
five locking modes of H1/E9 in the regular and distorted case result in a mild form of locking which influences for
example, limit loads in elasto-plastic simulations as first reported by Andelfinger et al.65 Unfortunately, passing this
test is not sufficient to prove that an element is locking free. It is for instance well-known that H1/P0 suffers from
shear locking yet it passes the test. It is much more difficult to detect shear locking using this simple test. Even if the
block is scaled in one direction to mimic a shell-like geometry there are no additional locking modes for H1/P0. The
only difference compared to shear locking-free elements is that a few eigenvalues are slightly higher but not clearly
distinguishable.

The novel element H1U/E12 passes this test by exhibiting the correct number of modes in each category. It is also
shear locking-free which we show with subsequent examples. However, due to the unsymmetric stiffness matrix it is not
guaranteed that all eigenvalues are real-valued. Indeed there is one pair in the distorted case with 𝜆i = 2.177 ± 0.02374i
where the imaginary part is not negligibly small. So far, there seems to be no consequence of this in all the simulations we
conducted. Interestingly, no imaginary eigenvalues occur in the 2D case even though the stiffness matrix is unsymmetric
as well.

1 2 3 4 5 6 7 8

-1.249 1.317 -0.821 0.961 -0.941 0.937 -1.356 1.148
-1.195 -0.923 1.221 0.712 -0.846 -1.278 0.869 1.054
-1.114 -0.865 -0.789 -1.261 0.963 1.056 0.745 1.312

F I G U R E 7 Regular Ωreg = [−1, 1]3 (left) and distorted Ωdist(right) cube for the eigenvalue analysis. Table with positions of nodes xi of
the distorted element Ωdist47
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T A B L E 1 Number of eigenvalues of the stiffness matrix in each category

Regular element Distorted element

Element type Rigid bodya Normalb Lockingc Rigid bodya Normalb Lockingc

H1 6 11 7 6 10 8

H1/E9 6 14 4 6 13 5

HA1/E12T 6 17 1 6 17 1

H1/P0 6 17 1 6 17 1

H1/S18 6 17 1 6 17 1

H1U/E12 6 17 1 6 17 1

aRigid body modes with |𝜆i| ≤ 10−6.
bNormal modes with 0.1 ≤ 𝜆i ≤ 10.
cLocking modes with 𝜆i ≥ 1000 (most satisfy 𝜆i ≥ 108).

∕2

∕2 −

∕2 −

∕2
( )

h

F I G U R E 8 Mesh distortion test. Setup (left) and deformed configuration for s = 3 (right). Deformed configuration computed with
H1U/E12

5.4 Mesh distortion

To examine the influence of mesh distortion we consider a 3D version47 of the widely used mesh distortion test (e.g., the
works9,13,31,41). The cantilevered beam-like structure is subjected to pure bending as shown in Figure 8. The specimen of
length l = 10, height h = 2, and width b = 1 is meshed with only two elements and distortion is applied via parameter s. At
the clamped end of the beam boundary conditions u(x = 0, y, z) = 0, v(x = 0, y = 0, z) = 0, and w(x = 0, y, z = 0) = 0 apply.
The free end is subjected to a bending moment M = 20 which is applied via traction boundary condition𝜎(z) = 30 ⋅ (1 − z).
We use material parameters E = 1500 and 𝜈 = 0.25.

An analytic solution exists for this problem and can for example, be found in the work of Jabareen and Rubin.52 The
exact value for displacement 𝛿 in z-direction at point (10, 0.5, 2) is 𝛿 = 1.

Results of the mesh distortion test are shown in Figure 9 where we compare the numerically computed displacement 𝛿
for increasing skew s. We limit the degree of skew to s = 4.9 instead of the usual s = 5 since the matrix needed to compute
the metric shape functions in (40) becomes singular for coincident nodes.

Apart from element H1/P0, which suffers from shear locking, all elements are exact for a regular mesh with s = 0.
However, for distorted meshes the computed displacement of the standard mixed finite elements drops to less than 60% of
the required 𝛿 = 1 for distortions s ≥ 2. Of the standard finite elements the best results can be obtained with the assumed
stress element H1/S18. There exist modified symmetric assumed stress elements that exhibit even better accuracy and
show exact displacement for some nodes. We mention the elements proposed by Wu and Chueng14 and Sze.15 However, we
stress that since the displacement is not exact at all nodes (see Table 6 in the work15), these elements do not breakthrough
MacNeal’s theorem.

In contrast to the symmetric elements the novel H1U/E12 is exact regardless of the mesh distortion parameter s.
The second plot in Figure 9 shows that there is only a small numerical round-off error compared to the analytic solu-
tion. This error slightly increases for higher distortions since the matrix needed to compute the metric shape functions
is less well conditioned for highly distorted meshes. Moreover, the newly proposed element does not only reproduce
the correct displacement at every node but is even pointwise exact. This holds for the displacement, the stress and the
strain.
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F I G U R E 9 Results of the mesh distortion test. Displacement 𝛿 for different degrees of skew s (left) and error of displacement compared
to analytic solution (right, only element H1U/E12)

F I G U R E 10 Special meshes for the mesh distortion test and corresponding deformed configurations computed with H1U/E12. Scaled
distorted patch test mesh 1 (left) and regularized version of the distorted patch test mesh 2 (right)
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F I G U R E 11 Results of the mesh distortion test. Displacement 𝛿 for special meshes 1 and 2

As pointed out in Section 2.2.2, it is not possible to obtain exact solutions to quadratic problems with low-order ele-
ments for all geometries. We can observe this by scaling the distorted mesh from the patch test in Section 5.1 for this test
(see Figure 10, mesh 1). In contrast to the mesh in Figure 8 the skew axes of the elements do not align for this mesh.
As a consequence, the displacement 𝛿 = 1.004 obtained with H1U/E12 differs marginally from the analytic value 𝛿 = 1.
However, it is still a much better approximation than any of the standard elements can provide. Of those H1/S18 shows
the best accuracy with 𝛿 = 0.146, which is more than 85% off in contrast to the 0.4% of H1U/E12 (see Figure 11). Further-
more, H1U/E12 exhibits the analytic results in case of the slightly regularized mesh 2 which is shown in Figure 10 on the
right. For that mesh the skew axes in longitudinal direction of the beam align which implies that pure bending around
the y-axis is again part of the ansatz space.

All in all, the novel Petrov–Galerkin EAS element H1U/E12 was designed to be accurate for bending problems and
therefore it performs extraordinarily well in this test.

5.5 Cook’s membrane

The final numerical example in the present work is the Cook’s membrane (cf. the works47,48,70) which we use to investigate
coarse mesh accuracy and convergence of results with mesh refinement. The tapered trapezoidal specimen shown in
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F I G U R E 12 Cook’s membrane. Geometry, boundary conditions (left) and deformed configuration computed using H1U/E12 and a
16 × 16 × 2 mesh (right)
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F I G U R E 13 Results of the Cook’s membrane benchmark. Convergence of displacement u (left) and stress 𝜎 (right) with mesh
refinement

Figure 12 is clamped (u(x = 0, y, z) = 0) on the left and subjected to equally distributed shear stress 𝜏 = 100 in y-direction
on the right face. We assume near incompressibility and set the material parameters to E = 2261 and 𝜈 = 0.4955. There
are always two elements in direction of the thickness while we gradually refine the mesh in the other two directions using
nel = {2, 4, 8, 16} elements per side.

Figure 13 shows the displacement u of the top right corner and von Mises stress 𝜎 at the mid point of the lower
surface in dependence of the number of elements. The stress is extrapolated from the Gauss-points to the nodes using an
L2-smoothing procedure given by

nel∑
e=1

𝜏i∫
Ωe

NiNjdV𝜎j =
nel∑
e=1

𝜏i∫
Ωe

Ni�̂�dV , ∀ 𝜏i ∈ R (57)

Therein, Ni are the standard parametric shape functions, 𝜎j the stress at the nodes and �̂� the constitutive stress||||
within the element. We use the same Gauss-points for the stress extrapolation as for the integration of element stiffness
matrices and residuals.

The plots in Figure 13 show that the novel element exhibits the most accurate displacement and stress for all mesh
sizes. It is even slightly better than the other unsymmetric element H1U/IM-S. Especially the accuracy for very coarse
meshes is extremely high compared to the other elements. For finer meshes the difference becomes smaller because
the deformation state within single elements converges towards the patch test state for which all elements are exact.
Furthermore, the principle of limitation discussed in Remark 2 prohibits higher order convergence beyond (h2) in the
limit of fine meshes.

Nevertheless, the present example shows that the novel element can also improve results if the sought displacement
state is not part of the ansatz space. However, the improvements are in general not as impressive as in bending dominated
examples. After all, it is a low-order numerical method with its limitations.

Another aspect we examine with the Cook’s membrane benchmark is the computational effort needed for the newly
proposed H1U/E12 in comparison with the symmetric element HA1/E12. To that end we focus on the time taken to solve
the global linear equation system since it usually requires most of the computing time of a finite element program.71 We

||||For H1/S18 we use the independent stress field.
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F I G U R E 14 Comparison of the computing time required for the solution of the linear system of equations

employ Matlab’s72 “∖”-operator, which automatically selects a suitable efficient and highly optimized algorithm. In the
present case it uses a sparse Cholesky and LU-factorization for the symmetric and unsymmetric stiffness matrix, respec-
tively. Other parts of the finite element program are of subordinate importance and are either equivalent for both methods
(assembly, pre- & post-processing) or hardly comparable due to non-optimized code (element-routine, computation of
shape functions). These parts are therefore not considered here. Figure 14 shows the median relative computation time
of H1U/E12 compared to HA1/E12 of 50 runs for different mesh sizes with up to 114,075 degrees of freedom. The run
times are highly volatile in particular for fine meshes. There are many outliers which is why we considered the median
instead of the mean value. Nevertheless, Figure 14 gives an idea of the additional computational effort which seems to
be relatively independent of the mesh size and is about four times the effort of a symmetric method for the same mesh
size. However, as Figure 13 and the other examples of the present work suggest, less elements might be required with the
novel approach.

6 CONCLUSION

We designed a novel high performance Petrov–Galerkin mixed finite element based on the EAS framework. The rather
uncommon Petrov–Galerkin approach is motivated by MacNeal’s theorem,11 which is revisited in the present work and
in particular states that the optimal element performance can only be obtained with an unsymmetric stiffness matrix.

Within the newly-proposed Petrov–Galerkin EAS framework, we devised three design conditions which ensure that
the finite element is capable of exactly reproducing nodal displacements corresponding to specific deformation modes.
The proposed element is designed to fulfill these conditions for rigid body, patch test, and bending modes, which are of
the utmost importance in many engineering applications. For the construction of the ansatz spaces skew coordinates play
a crucial role to obtain the novel frame-indifferent element with exceptional coarse mesh accuracy and low sensitivity to
mesh distortion. In case of the patch test and bending problems, for which the element is specifically crafted, the element’s
response is even point wise exact not only for the displacement but also for the stress and strain. Furthermore, in case of
regular meshes it is equivalent to the standard EAS approach.

Previously developed low-order unsymmetric elements suffer from major drawbacks that could be overcome with the
present Petrov–Galerkin EAS-framework. In particular, the new approach does neither involve ansatz functions depen-
dent on material parameters13,21 nor does it require many internal degrees of freedom and/or higher order numerical
integration.31 Its extension to 3D is also straightforward in contrast to many existing elements.

In practical simulations the key feature of the novel EAS-framework is probably its reduced mesh-distortion sensi-
tivity. This might help to reduce the effort to generate finite element meshes since the high quality demands on mesh
topology can be reduced.

A drawback of unsymmetric elements in general is the increased numerical effort compared to standard methods.
This concerns in particular the computation of the ansatz functions and the factorization of the unsymmetric stiffness
matrix. However, this additional effort is in the opinion of the authors more than compensated by the increased accuracy.

Future work should first focus on extending the method presented to nonlinear problems. Even though it is not
possible to find general solutions for the large variety of material models, our preliminary results show significant
improvements, especially regarding sensitivity to mesh distortion. Other interesting lines of research are the extensions
to shell problems as well as dynamics.



PFEFFERKORN and BETSCH 27

ACKNOWLEDGMENTS
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—project number
466086399 (BE 2285/16-1). This support is gratefully acknowledged.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Robin Pfefferkorn https://orcid.org/0000-0002-2153-1236
Peter Betsch https://orcid.org/0000-0002-0596-2503

REFERENCES
1. MacNeal RH. Finite Elements: Their Design and Performance. Dekker; 1994.
2. Zienkiewicz OC, Taylor RL, Zhu J. The Finite Element Method. Its Basis and Fundamentals. Vol 1. 6th ed. Elsevier Butterworth-Heinemann;

2010.
3. Cottrell JA, Hughes TJR, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley; 2009.
4. Flanagan DP, Belytschko T. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int J Numer Meth Eng.

1981;17(5):679-706. https://doi.org/10.1002/nme.1620170504
5. Belytschko T, Ong JSJ, Liu WK, Kennedy JM. Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng.

1984;43(3):251-276. https://doi.org/10.1016/0045-7825(84)90067-7
6. Belytschko T, Bindeman LP. Assumed strain stabilization of the eight node hexahedral element. Comput Methods Appl Mech Eng.

1993;105(2):225-260. https://doi.org/10.1016/0045-7825(93)90124-G
7. Taylor RL, Beresford PJ, Wilson EL. A non-conforming element for stress analysis. Int J Numer Meth Eng. 1976;10(6):1211-1219. https://

doi.org/10.1002/nme.1620100602
8. Pian THH, Sumihara K. Rational approach for assumed stress finite elements. Int J Numer Meth Eng. 1984;20(9):1685-1695. https://doi.

org/10.1002/nme.1620200911
9. Simo JC, Rifai MS. A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Meth Eng.

1990;29(8):1595-1638. https://doi.org/10.1002/nme.1620290802
10. Stolarski H, Belytschko T. Limitation principles for mixed finite elements based on the Hu-Washizu variational formulation. Comput

Methods Appl Mech Eng. 1987;60(2):195-216. https://doi.org/10.1016/0045-7825(87)90109-5
11. MacNeal RH. On the limits of finite element perfectability. Int J Numer Meth Eng. 1992;35(8):1589-1601. https://doi.org/10.1002/nme.

1620350804
12. MacNeal RH. A theorem regarding the locking of tapered four-noded membrane elements. Int J Numer Meth Eng. 1987;24(9):1793-1799.

https://doi.org/10.1002/nme.1620240913
13. Cen S, Zhou PL, Li CF, Wu CJ. An unsymmetric 4-node, 8-DOF plane membrane element perfectly breaking through MacNeal’s theorem.

Int J Numer Meth Eng. 2015;103(7):469-500. https://doi.org/10.1002/nme.4899
14. Wu CC, Cheung YK. On optimization approaches of hybrid stress elements. Finite Elem Anal Des. 1995;21(1):111-128. https://doi.org/10.

1016/0168-874X(95)00023-0
15. Sze KY. On immunizing five-beta hybrid-stress element models from ’trapezoidal locking’ in practical analyses. Int J Numer Meth Eng.

2000;47(4):907-920. https://doi.org/10.1002/(SICI)1097-0207(20000210)47:4<907::AID-NME808>3.0.CO;2-A
16. Wilson EL, Taylor RL, Doherty WP, Ghaboussi J. Incompatible displacement models. In: Fenves SJ, Perrone N, Robinson AR, eds.

Numerical and Computer Methods in Structural Mechanics. Elsevier; 1973:43-57.
17. Hu S, Xu J, Liu X, Yan M. Eight-node nonconforming hexahedral element based on reverse adjustment to patch test for solids, beams,

plates, and shells. Int J Numer Meth Eng. 2019;119(5):361-382. https://doi.org/10.1002/nme.6053
18. Hu S, Xu J, Liu X, Yan M. Reverse adjustment to patch test and two 8-node hexahedral elements. Eur J Mech A/Solids. 2019;73:430-436.

https://doi.org/10.1016/j.euromechsol.2018.10.010
19. Rajendran S, Liew KM. A novel unsymmetric 8-node plane element immune to mesh distortion under a quadratic displacement field. Int

J Numer Meth Eng. 2003;58(11):1713-1748. https://doi.org/10.1002/nme.836
20. Rajendran S. A technique to develop mesh-distortion immune finite elements. Comput Methods Appl Mech Eng. 2010;199(17):1044-1063.

https://doi.org/10.1016/j.cma.2009.11.017
21. Xie Q, Sze KY, Zhou YX. Modified and Trefftz unsymmetric finite element models. Int J Mech Mater Des. 2016;12(1):53-70. https://doi.

org/10.1007/s10999-014-9289-3
22. Rajendran S, Liew KM. Completeness requirements of shape functions for higher order finite elements. Struct Eng Mech.

2000;10(2):93-110. https://doi.org/10.12989/sem.2000.10.2.093
23. Ooi ET, Rajendran S, Yeo JH. Remedies to rotational frame dependence and interpolation failure of US-QUAD8 element. Commun Numer

Meth Eng. 2008;24(11):1203-1217. https://doi.org/10.1002/cnm.1026
24. Reddy BD. Introductory Functional Analysis: With Applications to Boundary Value Problems and Finite Elements. Springer; 1998.

https://orcid.org/0000-0002-2153-1236
https://orcid.org/0000-0002-2153-1236
https://orcid.org/0000-0002-0596-2503
https://orcid.org/0000-0002-0596-2503
https://doi.org/10.1002/nme.1620170504
https://doi.org/10.1016/0045-7825(84)90067-7
https://doi.org/10.1016/0045-7825(93)90124-G
https://doi.org/10.1002/nme.1620100602
https://doi.org/10.1002/nme.1620100602
https://doi.org/10.1002/nme.1620200911
https://doi.org/10.1002/nme.1620200911
https://doi.org/10.1002/nme.1620290802
https://doi.org/10.1016/0045-7825(87)90109-5
https://doi.org/10.1002/nme.1620350804
https://doi.org/10.1002/nme.1620350804
https://doi.org/10.1002/nme.1620240913
https://doi.org/10.1002/nme.4899
https://doi.org/10.1016/0168-874X(95)00023-0
https://doi.org/10.1016/0168-874X(95)00023-0
https://doi.org/10.1002/(SICI)1097-0207(20000210)47:4%3C907::AID-NME808%3E3.0.CO;2-A
https://doi.org/10.1002/(SICI)1097-0207(20000210)47:4%3C907::AID-NME808%3E3.0.CO;2-A
https://doi.org/10.1002/nme.6053
https://doi.org/10.1016/j.euromechsol.2018.10.010
https://doi.org/10.1002/nme.836
https://doi.org/10.1016/j.cma.2009.11.017
https://doi.org/10.1007/s10999-014-9289-3
https://doi.org/10.1007/s10999-014-9289-3
https://doi.org/10.12989/sem.2000.10.2.093
https://doi.org/10.1002/cnm.1026


28 PFEFFERKORN and BETSCH

25. Yuan KY, Huang YS, Pian THH. New strategy for assumed stresses for 4-node hybrid stress membrane element. Int J Numer Meth Eng.
1993;36(10):1747-1763. https://doi.org/10.1002/nme.1620361009

26. Wisniewski K, Turska E. Improved four-node Hellinger–Reissner elements based on skew coordinates. Int J Numer Meth Eng.
2008;76(6):798-836. https://doi.org/10.1002/nme.2343

27. Piltner R, Taylor RL. A quadrilateral mixed finite element with two enhanced strain modes. Int J Numer Meth Eng. 1995;38(11):1783-1808.
https://doi.org/10.1002/nme.1620381102

28. Piltner R, Taylor RL. A systematic construction of B-bar functions for linear and non-linear mixed-enhanced finite elements for plane
elasticity problems. Int J Numer Meth Eng. 1999;44(5):615-639. https://doi.org/10.1002/(SICI)1097-0207(19990220)44:5&lt;615::AID-
NME518&gt;3.0.CO;2-U

29. Wisniewski K, Turska E. Improved 4-node Hu–Washizu elements based on skew coordinates. Comput Struct. 2009;87(7):407-424. https://
doi.org/10.1016/j.compstruc.2009.01.011

30. Wisniewski K, Wagner W, Turska E, Gruttmann F. Four-Node Hu–Washizu elements based on skew coordinates and contravariant
assumed strain. Comput Struct. 2010;88(21):1278-1284. https://doi.org/10.1016/j.compstruc.2010.07.008

31. Huang Y, Huan Y, Chen H. An incompatible and unsymmetric four-node quadrilateral plane element with high numerical performance.
Int J Numer Meth Eng. 2020;121(15):3382-3396. https://doi.org/10.1002/nme.6363

32. Zhou PL, Cen S, Huang JB, Li CF, Zhang Q. An unsymmetric 8-node hexahedral element with high distortion tolerance. Int J Numer Meth
Eng. 2017;109(8):1130-1158. https://doi.org/10.1002/nme.5318

33. Ooi ET, Rajendran S, Yeo JH. A 20-node hexahedron element with enhanced distortion tolerance. Int J Numer Meth Eng.
2004;60(15):2501-2530. https://doi.org/10.1002/nme.1056

34. Ooi ET, Rajendran S, Yeo JH. Extension of unsymmetric finite elements US-QUAD8 and US-HEXA20 for geometric nonlinear analyses.
Eng Comput. 2007;24(4):407-431. https://doi.org/10.1108/02644400710748715

35. Huang J, Cen S, Li Z, Li CF. An unsymmetric 8-node hexahedral solid-shell element with high distortion tolerance: linear formulations.
Int J Numer Meth Eng. 2018;116(12-13):759-783. https://doi.org/10.1002/nme.5945

36. Li Z, Cen S, Wu CJ, Shang Y, Li CF. High-performance geometric nonlinear analysis with the unsymmetric 4-node, 8-DOF plane element
US-ATFQ4. Int J Numer Meth Eng. 2018;114(9):931-954. https://doi.org/10.1002/nme.5771

37. Li Z, Cen S, Huang J, Li CF. Hyperelastic finite deformation analysis with the unsymmetric finite element method containing homoge-
neous solutions of linear elasticity. Int J Numer Meth Eng. 2020. https://doi.org/10.1002/nme.6378

38. Simo JC, Armero F. Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Meth
Eng. 1992;33(7):1413-1449. https://doi.org/10.1002/nme.1620330705

39. Simo JC, Armero F, Taylor RL. Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems.
Comput Methods Appl Mech Eng. 1993;110(3-4):359-386. https://doi.org/10.1016/0045-7825(93)90215-J

40. Glaser S, Armero F. On the formulation of enhanced strain finite elements in finite deformations. Eng Comput. 1997;14(7):759-791. https://
doi.org/10.1108/02644409710188664

41. Andelfinger U, Ramm E. EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to
HR-elements. Int J Numer Meth Eng. 1993;36(8):1311-1337. https://doi.org/10.1002/nme.1620360805

42. Klinkel S, Wagner W. A geometrical non-linear brick element based on the EAS-method. Int J Numer Meth Eng. 1997;40(24):4529-4545.
https://doi.org/10.1002/(SICI)1097-0207(19971230)40:24<4529::AID-NME271>3.0.CO;2-I

43. Armero F. On the locking and stability of finite elements in finite deformation plane strain problems. Comput Struct. 2000;75(3):261-290.
https://doi.org/10.1016/s0045-7949(99)00136-4

44. Lovadina C, Auricchio F. On the enhanced strain technique for elasticity problems. Comput Struct. 2003;81(8):777-787. https://doi.org/
10.1016/S0045-7949(02)00412-1

45. Linder C, Armero F. Finite elements with embedded strong discontinuities for the modeling of failure in solids. Int J Numer Meth Eng.
2007;72(12):1391-1433. https://doi.org/10.1002/nme.2042

46. Korelc J, Šolinc U, Wriggers P. An improved EAS brick element for finite deformation. Comput Mech. 2010;46(4):641-659. https://doi.org/
10.1007/s00466-010-0506-0

47. Pfefferkorn R, Betsch P. On transformations and shape functions for enhanced assumed strain elements. Int J Numer Meth Eng.
2019;120(2):231-261. https://doi.org/10.1002/nme.6133

48. Pfefferkorn R, Betsch P. Extension of the enhanced assumed strain method based on the structure of polyconvex strain-energy functions.
Int J Numer Meth Eng. 2020;121(8):1695-1737. https://doi.org/10.1002/nme.6284

49. Pfefferkorn R, Bieber S, Oesterle B, Bischoff M, Betsch P. Improving efficiency and robustness of EAS elements for nonlinear problems.
Int J Numer Meth Eng. 2021;122(8):1911-1939. https://doi.org/10.1002/nme.6605

50. Pian THH, Tong P. Relations between incompatible displacement model and hybrid stress model. Int J Numer Meth Eng.
1986;22(1):173-181. https://doi.org/10.1002/nme.1620220112

51. Bischoff M, Romero I. A generalization of the method of incompatible modes. Int J Numer Meth Eng. 2007;69(9):1851-1868. https://doi.
org/10.1002/nme.1830

52. Jabareen M, Rubin MB. A 3-D brick cosserat point element (CPE) for nonlinear elasticity. In: Silberschmidt VV, ed. Computational and
Experimental Mechanics of Advanced Materials. Springer; 2010:83-140.

53. Petersen KB, Pedersen MS. The Matrix Cookbook. Technical University of Denmark; 2012.
54. Fraeijs de Veubeke B. Displacement and equilibrium models in the finite element method. In: Zienkiewicz OC, Holister GS, eds. Stress

Analysis. John Wiley & Sons; 1965:145-197.

https://doi.org/10.1002/nme.1620361009
https://doi.org/10.1002/nme.2343
https://doi.org/10.1002/nme.1620381102
https://doi.org/10.1002/(SICI)1097-0207(19990220)44:5%3C615::AID-NME518%3E3.0.CO;2-U
https://doi.org/10.1002/(SICI)1097-0207(19990220)44:5%3C615::AID-NME518%3E3.0.CO;2-U
https://doi.org/10.1016/j.compstruc.2009.01.011
https://doi.org/10.1016/j.compstruc.2009.01.011
https://doi.org/10.1016/j.compstruc.2010.07.008
https://doi.org/10.1002/nme.6363
https://doi.org/10.1002/nme.5318
https://doi.org/10.1002/nme.1056
https://doi.org/10.1108/02644400710748715
https://doi.org/10.1002/nme.5945
https://doi.org/10.1002/nme.5771
https://doi.org/10.1002/nme.6378
https://doi.org/10.1002/nme.1620330705
https://doi.org/10.1016/0045-7825(93)90215-J
https://doi.org/10.1108/02644409710188664
https://doi.org/10.1108/02644409710188664
https://doi.org/10.1002/nme.1620360805
https://doi.org/10.1002/(SICI)1097-0207(19971230)40:24%3C4529::AID-NME271%3E3.0.CO;2-I
https://doi.org/10.1002/(SICI)1097-0207(19971230)40:24%3C4529::AID-NME271%3E3.0.CO;2-I
https://doi.org/10.1016/s0045-7949(99)00136-4
https://doi.org/10.1016/S0045-7949(02)00412-1
https://doi.org/10.1016/S0045-7949(02)00412-1
https://doi.org/10.1002/nme.2042
https://doi.org/10.1007/s00466-010-0506-0
https://doi.org/10.1007/s00466-010-0506-0
https://doi.org/10.1002/nme.6133
https://doi.org/10.1002/nme.6284
https://doi.org/10.1002/nme.6605
https://doi.org/10.1002/nme.1620220112
https://doi.org/10.1002/nme.1830
https://doi.org/10.1002/nme.1830


PFEFFERKORN and BETSCH 29

55. Braess D. Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory. 3rd ed. Cambridge University Press; 2007.
56. Washizu K. Variational Methods in Elasticity and Plasticity. 3rd ed. Pergamon Press; 1982.
57. Huang YQ, Li QS. Four-node incompatible plane and axisymmetric elements with quadratic completeness in the physical space. Int

J Numer Meth Eng. 2004;61(10):1603-1624. https://doi.org/10.1002/nme.1122
58. Kasper EP, Taylor RL. A mixed-enhanced strain method. part II: geometrically nonlinear problems. Comput Struct. 2000;75(3):251-260.

https://doi.org/10.1016/S0045-7949(99)00135-2
59. Bonet J, Gil AJ, Ortigosa R. A computational framework for polyconvex large strain elasticity. Comput Methods Appl Mech Eng.

2015;283:1061-1094. https://doi.org/10.1016/j.cma.2014.10.002
60. Pian THH, Chen D. On the suppression of zero energy deformation modes. Int J Numer Meth Eng. 1983;19(12):1741-1752. https://doi.org/

10.1002/nme.1620191202
61. Loikkanen MJ, Irons BM. An 8-node brick finite element. Int J Numer Meth Eng. 1984;20(3):523-528. https://doi.org/10.1002/nme.

1620200310
62. Di S, Ramm E. On alternative hybrid stress 2D and 3Delements. Eng Comput. 1994;11(1):49-68. https://doi.org/10.1108/

02644409410799155
63. Viebahn N, Schröder J, Wriggers P. An extension of assumed stress finite elements to a general hyperelastic framework. Adv Model Simul

Eng Sci. 2019;6(9);1-22. https://doi.org/10.1186/s40323-019-0133-z
64. Sze KY, Chow CL, Wanji C. On invariance of isoparametric hybrid/mixed elements. Commun Numer Meth Eng. 1992;8(6):385-406. https://

doi.org/10.1002/cnm.1630080605
65. Andelfinger U, Ramm E, Roehl D. 2D and 3D enhanced assumed strain elements and their application in plasticity. In: DRJ O, Oñate E,

Hinton E, eds. Proceedings of the 3rd International Conference on Computational Plasticity (Complas) Fundamentals and Applications.
Pineridge Press; 1992.

66. Alves de Sousa RJ, Natal Jorge RM, Fontes Valente RA, De Sá JC. A new volumetric and shear locking-free 3D enhanced strain element.
Eng Comput. 2003;20(7):896-925. https://doi.org/10.1108/02644400310502036

67. Kasper EP, Taylor RL. A mixed-enhanced strain method. part I: geometrically linear problems. Comput Struct. 2000;75(3):237-250. https://
doi.org/10.1016/S0045-7949(99)00134-0

68. Simo JC, Taylor RL, Pister KS. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput
Methods Appl Mech Eng. 1985;51(1):177-208. https://doi.org/10.1016/0045-7825(85)90033-7

69. MacNeal RH, Harder RL. A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des. 1985;1(1):3-20. https://
doi.org/10.1016/0168-874X(85)90003-4

70. Schröder J, Wick T, Reese S, et al. A selection of benchmark problems in solid mechanics and applied mathematics. Arch Comput Meth
Eng. 2020. https://doi.org/10.1007/s11831-020-09477-3

71. Wriggers P. Nonlinear Finite Element Methods. Springer; 2008.
72. MATLAB 9.8.0.1323502 (R2020a); 2019; The MathWorks Inc.

How to cite this article: Pfefferkorn R, Betsch P. Mesh distortion insensitive and locking-free Petrov–Galerkin
low-order EAS elements for linear elasticity. Int J Numer Methods Eng. 2021;1–31. https://doi.org/10.1002/nme.
6817

APPENDIX A. GENERALIZATIONS OF MACNEAL’S THEOREM

A.1 MACNEAL’S THEOREM WITH b∗
≠ 0

The first simplification made in Section 2 was considering only modes without body force (5). However, higher order
modes can in general not be represented without appropriate b∗ computed using (2). These non-zero body forces b∗ ≠ 0
have to be considered in (6). Fortunately, it is still possible to write the external part of the weak form as

G∗,e
ext =

M∑
m,n=1

𝛽mF∗
mn𝛼n, (A1)

where F∗
mn now includes contributions form t∗ and b∗. Since there is no change of the internal part (8), all conclusions

on the structure of F∗
mn remain the same. Thus it is symmetric and by proper choice of u∗

m diagonal.
The external part of the weak form from the finite element solution (17) changes accordingly with the only neces-

sary change being the addition of the body force integral. Furthermore, there is no change in the conclusions drawn for
nodal equilibrium. This follows from the fact that the body force concerns only the internal of the element while nodal
equilibrium is determined by balancing the forces on the surface.
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All in all, it is straightforward to consider modes with b∗ ≠ 0 by simply adding the missing integral in all external parts
of the weak form.

A.2 PETROV–GALERKIN APPROACH
Choosing the Bubnov–Galerkin approach in Section 2.1.2 does not limit the generality of the present proof. Any proper set
of M linear independent modes v∗

m for the test function yields a generally unsymmetric F∗
mn as (6) and (8) show. However,

by use of the singular value decomposition and transformation of the weights 𝛼n, 𝛽m using the unitary matrices of said
decomposition, the virtual work of the external forces can always be expressed in the form (6) with a diagonal matrix F∗

mn.
Thus, it is possible to get the same structure with the Petrov–Galerkin approach as with the Bubnov–Galerkin

approach and all further conclusions apply.

A.3 GENERALIZED DISPLACEMENT APPROXIMATIONS
As mentioned in Section 2.2.1 the approximation (11) is not very general and especially excludes cases of high practical
importance where Me

i do not have the Kronecker-delta property and thus ue
i are not the nodal displacements. Widely used

examples of such non-interpolatory approaches are hierarchical higher order elements2 and the isogeometric analysis.3
Fortunately, it is still possible to find unique u∗,e

im such that ue
i can be computed according to (12). Considering an even

more general displacement ansatz with matrix-valued ansatz functions such that

uh,e(x) =
N∑

i=1
Me

i (x)u
e
i (A2)

still allows to compute ue
i from equation system uh,e(xj) = u∗(xj), j = 1, … ,N if the fixed locations xj are chosen

appropriately (usually the nodes). Examples for matrix valued ansatz functions for the displacement can be found for
example, for Petrov–Galerkin finite elements in References 13,21,32,37 or as special cases of incompatible mode elements
in Reference 51.

The general approximation (A2) can also be applied to the test function. If this is done, the forces Ph,e
i defined in

(17) should not be termed nodal force anymore since the do not directly correspond to a single node anymore due to the
lost Kronecker-delta property. Accordingly, the expression nodal equilibrium should not be used. We use the expression
generalized nodal force and equilibrium instead. Apart from this terminology, however, there are no changes.

In view of the restrictions due to equilibrium of generalized nodal forces, which apply accordingly, it is question-
able if matrix valued functions are sensible for the test functions of the displacement. As shown in Section 2.2.3 nodal
equilibrium severely restricts the choice of ansatz functions and one does not gain much flexibility with the matrix
valued functions if standard assumption (21) is made. Furthermore, the matrix valued functions are restricted due to
isotropy requirements and must be chosen such that changes of coordinate system do not alter the results. Ultimately,
we conclude that using scalar functions for the test function of the displacement is most likely the only reasonable
choice.

APPENDIX B. SKEW COORDINATE FRAME

This Appendix describes how the direct link between the skew coordinates 𝝃 and the isoparametric coordinates 𝝃 given
in (35) can be established. We present the 3D case which can easily be reduced to the corresponding 2D formulation. By
virtue of (32) and (30) we get in a first step

𝝃 = J−1
0

( 8∑
i=1

Ni(𝝃)xe
i − Ni(0)xe

i

)
. (B1)

Now we use an alternative representation of shape functions frequently used in the context of hourglass-stabilization
(see e.g., the works47,71). The vector of all eight Lagrangian shape functions is given by

N = 1
8

a0 + 1
8

3∑
I=1

aI𝜉I +
1
8

4∑
A=1

hAHA(𝝃). (B2)
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where

H1 = 𝜂𝜁, H2 = 𝜉𝜁, H3 = 𝜉𝜂, H4 = 𝜉𝜂𝜁 , (B3)

a0 =
[
+ 1 +1 +1 +1 +1 +1 +1 +1

]T
, h1 =

[
+ 1 +1 −1 −1 −1 −1 +1 +1

]T
,

a1 =
[
− 1 +1 +1 −1 −1 +1 +1 −1

]T
, h2 =

[
+ 1 −1 −1 +1 −1 +1 +1 −1

]T
,

a2 =
[
− 1 −1 +1 +1 −1 −1 +1 +1

]T
, h3 =

[
+ 1 −1 +1 −1 +1 −1 +1 −1

]T
,

a3 =
[
− 1 −1 −1 −1 +1 +1 +1 +1

]T
, h4 =

[
− 1 +1 −1 +1 +1 −1 +1 −1

]T
.

(B4)

Inserting this relation into (B2) together with x̃e =
[
xe

1 … xe
8
]

allows to recast (B2) as

𝝃 = J−1
0 x̃e [N(𝝃) − N(0)] = J−1

0 x̃e

[
1
8
a0 + 1

8

3∑
I=1

aI𝜉I + 1
8

4∑
A=1

hAHA(𝝃) − 1
8
a0

]
= J−1

0

[( 8∑
i=1

xe
i ⊗ ∇𝝃Ni||𝝃=0

)
𝝃 + 1

8

4∑
A=1

8∑
i=1

xe
i hA

i HA(𝝃)

] , (B5)

where use has been made of the fact that

∇𝝃Ni||𝝃=0 = 1
8

⎡⎢⎢⎢⎣
aT

1

aT
2

aT
3

⎤⎥⎥⎥⎦ . (B6)

The term in parentheses in the last expression of (B5) is J0. The last step is to introduce auxiliary variable

cA ∶= 1
8

8∑
i=1

xe
i hA

i , A = 1, 2, 3, 4, (B7)

which only depends on the nodal positions. With this information at hand we can now cast the skew coordinates in the
form

𝝃 = 𝝃 + J−1
0

4∑
A=1

cAHA(𝝃), (B8)

which is the 3D equivalent of (35). The final step to get the 2D form given in (35) is to adopt the equation above for the 2D
case. There is then only one hourglass vector h1 =

[
+ 1 −1 +1 −1

]T and function H1 = 𝜉𝜂. Furthermore, the factor
1
8

in (B7) has to be replaced by 1
4
.


