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Abstract

In this paper we introduce a class of second-order exponential schemes for the time
integration of semilinear wave equations. They are constructed such that the established
error bounds only depend on quantities obtained from a well-posedness result of a classical
solution. To compensate missing regularity of the solution the proofs become considerably
more involved compared to a standard error analysis. Key tools are appropriate filter
functions as well as the integration-by-parts and summation-by-parts formulas. We include
numerical examples to illustrate the advantage of the proposed methods.
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1 Introduction

In this paper we are interested in solving abstract wave equations of the form
q'(1) = —Lq(t) + G(1,4(t)), 1€ [0,tea], q(0) =q0, ¢'(0) =gy, (L.1)

in some Hilbert space H where L is a positive, self-adjoint operator and G is a sufficiently
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regular nonlinearity (e.g., Fréchet-differentiable). Such equations arise in many physical
models. A prominent example is the cubic wave equation

0%q(1,x) = 0%q(t,x) + q(1,x)’, (1,x) € [0, tena] X 1

posed on some interval / C R and equipped with appropriate initial and boundary
conditions.

Our aim is to construct and investigate time integration schemes for (1.1) under
physically realistic assumptions, in particular finite energy conditions. Hence, the solution
will in general be of low regularity and we thus restrict ourselves to second-order schemes.
Clearly, a standard time integrator (e.g., a Runge—Kutta scheme or an exponential inte-
grator) can only be applied to an abstract evolution equation if it is unconditionally
stable due to the unbounded operator L.

In the finite dimensional case (dim H <o0), unconditionally stable integrators (in the
sense that L does not cause any restriction on the time step) for this equation were already
considered in [8, 12, 17, 24]. Such exponential (or trigonometric) integrators were shown
to be second-order convergent while only assuming a finite-energy condition. This was
somewhat surprising since usually, second-order (exponential) schemes need two bounded
time derivatives of the solution in the error analysis. The key ingredient are certain matrix
functions that act as filters. The effect of these filters is that they remove resonances in the
local error, which, in contrast to a standard error analysis, enforce cancellation effects in
the global error. In fact one can prove that local and global error are of the same order if the
filters are chosen appropriately.

Recently, in [2, 3] we presented a completely new technique to prove related results for
ordinary differential equations by reformulating a trigonometric integrator as a Strang
splitting applied to a modified problem. Using ideas from [20, 21], a specific representation
of the local error was derived, which allowed us to separate terms of order three (which can
be treated in a standard way) and the leading local error term, which is of order two only. A
carefully adapted Lady Windermere’s fan argument is employed to treat these terms in the
global error accumulation.

In this paper we prove error bounds for different classes of exponential integrators
applied to an evolution equation (1.1) in a unified way. More precisely, we characterize the
structure of the defects and the properties of filter functions which allow second-order
convergence under a finite-energy condition in different abstract frameworks (i.e., in
different function spaces), which define the assumptions on L, G, and the initial data.
Within this framework we can handle various boundary conditions.

We point out that our results are not restricted to globally Lipschitz continuous func-
tions G, but also apply to locally Lipschitz ones that satisfy certain growth conditions. Our
analysis thus covers the class of nonlinearities for which the existence of a classical
solution can be guaranteed. In particular, this includes polynomial nonlinearities up to a
certain degree which is determined by the spatial dimension and the corresponding
Sobolev embeddings. In the one-dimensional case such equations with periodic boundary
conditions and arbitrary high polynomial degree have been studied in [9] for nonlinearities
with Lipschitz properties on a whole scale of Sobolev spaces. However, this rich structure
is not available in our general framework and, in contrast to our work, well-posedness
cannot be guaranteed.

Further work on exponential integration schemes for the time-integration of semilinear
wave equations was conducted in [1] where a sine-Gordon equation is studied and the
difficulties arise in the proper treatment of a single constant ¢ — co which induces high
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oscillations in time. In the paper [10] the approach from [9] was extended and in the one-
dimensional case a quasilinear wave equation with periodic boundary conditions was
studied. However, they assume smooth coefficients and high regularity for the analysis.
Exponential splitting schemes for linear evolution equations have been analyzed in [15].
The error estimates depend on commutator bounds that are not available in our scenario.
Finally, we point out that we do not address long-term behavior as in [4, 6].

The paper is organized as follows. In Sect. 2, we give an informal overview over the
methods of interest, the main concepts, and the main results and also present numerical
examples illustrating the main results of our work. In particular, the necessity of using
averaging techniques in the regime of low-regularity is shown.

The informal overview is made rigorous in Sect. 3, where we introduce the analytic
framework and a functional calculus which allows us to define the operator-valued filters
and ensures well-posedness of the problem as well as of the schemes.

We further state the assumptions on the operator L, the nonlinearity G, and the initial
data that on the one hand will guarantee the well-posedness of (1.1) and on the other hand
allow to carry out the error analysis.

In Sect. 4 we characterize filter functions which allow to prove that the exact solution of
the original problem and the solution of the averaged problem only differ up to terms of
order 72, where 7 > 0 denotes the step size. Section 5 provides a characterization of
numerical methods in terms of the structure of their defects, which are necessary to derive
error bounds.

Finally, Sects. 6 and 7 contain our main results the error bounds for one-step and for
multistep methods, respectively.

2 Informal overview of methods, concepts and results

Before we present the analytical framework necessary to formulate our results rigorously,
we first give an informal overview of the methods of interest, the main concepts, and the
main results. In the finite dimensional case dim H <oo (which is not the situation of
interest in this paper), all the approximations presented are well-defined and the statements
valid. However, for evolution equations posed in appropriate function spaces, this is no
longer true unless additional assumptions are imposed. Since some of them are rather
technical, we postpone them to Sect. 3.

2.1 Problem statement: Second-order differential equation

Let L be a linear, self-adjoint, and positive-definite operator on H and
G : [0, tena] X H — H. We consider the differential equation

L]//(l‘) = _Lq(t) + G(taq(t))v re [Ovtend]v Q(O) = 40, q/(O) = qép
and assume that the solution g satisfies the finite-energy condition
(Lq(1),q(1))g +(q'(1).4' (1)) <K*  for 1 € [0, tena] , (2.1)

where (-,-)y denotes the inner product on H. In first-order formulation, the differential
equation can be written as

W (6) = Ault) +f(tu(t),  u= (Z) (2.2)
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=5 o) - (G(gm)’

(1, ) = (q1,q2)y + (L', dh)

with

and inner product

Obviously, A is skew-adjoint with respect to (-, -) and hence has a purely imaginary point
spectrum.

2.2 Methods

In the following we shortly present four different types of methods to discretize equation
(2.2) in time with a constant stepsize t > 0.

2.2.1 Strang splitting
The exact flows ¢? and ¢/ of the two subproblems

()= (o) ()= Gn)

are given explicitly by

()= (o) i) - )
P w ) \eBuy )’ M0+Tf (to, uo)

We consider the Strang splitting in the variants (A,f,A) and (f,A,f) given by

Il
( * )—(pf/z O(pr/2 ) (2.3a)
Up1
n+1
o o , 2.3b
() = ehaoetoda( ) @20

respectively. Note that the (f AL ) variant (2.3b) is equivalent to a trigonometric integrator
without filter functions, see, e.g., [13, XIII.2.2].

2.2.2 Corrected Lie Splitting

Next we consider the second-order corrected Lie splitting given by

Up+1 = e™ (un + Tf(tn+1/2: un) + ;r(tn+l/27 un)) (24)

with the correction term

(1) = Iy (1, (AOM) _ A (1),
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It is inspired by a fourth-order method of this type proposed in [22, 4.9.3 (c)]. Note that in
the linear case, where f(#,u) = Fu, the correction term reduces to the commutator

r(t,u) = FAu — AFu = [F,Alu.
Hence, one can consider (2.4) as an approximation to the method

A tF 2[F Al

Uy = e“e e My,

which was considered in [26, (3.37)].
2.2.3 Exponential Runge-Kutta methods

General two-stage exponential Runge—Kutta methods are of the form
U, = eCzTAun + TP (C2TA)f(tn, Mn)7 ( )
2.5
Ups1 = €uy + Thy (rA)f(tn, u,,) + sz(rA)f(z,, + ¢1, U,,) ,

where ¢, € (0,1] is a given quadrature node. Recall that the ¢-functions are defined as

1

ez / - ”Z k>0,
0

If the coefficient functions b, b, satisfy

D)+ b)) = 01(2), eaba(0) =3
the method is second-order convergent for parabolic problems, see [18, Theorem 4.3.].
Popular choices are ¢, =1, by = 0 or ¢, = 1, by(z) = ¢,(z). All our results also apply to
the symmetric, but implicit exponential Runge—Kutta scheme from [5, Example 2.1] and to
ERKN methods, e.g., those considered in [28]. The necessary modifications are straight-
forward so that we omit the details.

2.2.4 Exponential multistep methods

The two-step exponential multistep method from [19, (2.7)]
Uni1 = ey + 10, (TA)f (tn, 1)
+ 10y (TA) (f (tns n) = f(tu-1, 1)), n=>1, (2.6)
uy = e (ug + tf (to, uo)) ,

is derived from the variation-of-constants formula for the exact solution of (1.1) by
approximating the nonlinearity f in the integral term by an interpolation polynomial using
the last two approximations u,_i, u,.

In a similar manner we consider a method that was used in [7, (B 4)], namely

Upt1 = eZTAun—l + ZTeTAf([ny un) 5

(2.7)
U =e" (uo + f (to, uo)) .
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For A = 0 it reduces to an explicit Nystrom method, cf. method (1.13”) in [14].
2.3 Averaged differential equation

Let y = ¢, :iR — R be even (i.e., y(—z) = x(z)) and analytic functions satisfying
%(0) = 1. Then we define
7= 2tL'?)

and an averaged nonlinearity

G(t,q) = ¥G(t, $q).

Using the block diagonal operators

¢:(<7> 9), q/:@ 9>,
0 ¢ 0 v

we consider the averaged differential equation

W) =Au(t) +f(t,u(e)),  flr,0) = Pf(t, ) = (5 (? 6)) ) (2.8)

The averaging is done such that the solution u of (2.8) also satisfies a finite-energy

condition (2.1) (with a modified constant K, which is independent of 7 and n, cf., Lemma
4.2 below). In Theorem 4.1, we provide sufficient conditions on , ¢ such that

u(t) — u(r)|| < C72, t € [0, end),

where ||-|| denotes the norm induced by (-, ).

Remark 2.1 We only consider fixed stepsizes in this paper. Introducing variable stepsizes
would require the investigation of a whole family of averaged problems (2.8). In addition,
our analysis below would involve a much higher technical effort.

2.4 Averaged methods

The main idea is to apply one of the numerical methods to the averaged equation (2.8)
instead of the original one (2.2). Equivalently, one could modify the numerical scheme in
an appropriate way using filter functions. This is illustrated in Fig. 1.

Since the solutions of (2.2) and (2.8) only differ by terms of order 72, one might hope for
second-order accuracy if the method is of order two at least. In fact we will later see that in

Fig. 1 Different ways to llu(tn) — T(ts)| < o2

construct an approximation u,, of L7 G755 I > u(ty)
the solution u(#,) of the original
equation (2.2) and the solution
u(t,) of the averaged equation
(2.8
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the case of evolution equations, this intuition is not always justified, i.e., order reduction
might appear. The main goal in this paper is to characterize the numerical methods, the
assumptions on L and G, and the choice of the filter functions which lead to second-order
error bounds.

2.5 Main results
Our main results, which are detailed in Theorem 6.2 for exponential one-step methods and
in Sect. 7 for exponential multistep methods, are the following error bounds.

(a) The Strang splitting, the exponential Runge—Kutta, and the exponential multistep
methods applied to the original equation (2.2) satisfy

|lu(t,) — u,|| < Cyz.

(b) All methods of Sect. 2.2 applied to the averaged equation (2.8) with appropriate
filters ¢, satisfy

|u(tn) — un|| < C2'52 .
The constants C;, C, only depend on the initial value uy, the finite energy K, properties of

G, and f.,q, but not on n and 7.
The strategy to prove these bounds is to split the error into two terms, namely

(tn) = wal < lua(tn) — w(t) || + [|(2n) — an]- (2.9)

The first term is bounded by Theorem 4.1, the second by Theorem 6.1 or Corollaries 7.1,
and 7.2, respectively. A crucial step is to show that the averaged solution inherits the
regularity of the original solution, which is done in Lemma 4.2.

2.6 Numerical example

In this section we illustrate the effect of averaging within numerical methods by approx-
imating the solution of a variant of the sine-Gordon equation given on the torus T =
R/(2nZ) by
q"(t) = Aq(t) — q(t) + mqsin(m; q(t)) q(1), (2.10)
with ¢ € [0, 1] and m;, m, € L*(T). Note that for g € L*(T) and
G(q)(x) =g ()C) Sin(mi (X) q) q,

we have G(g) in L*(T), but even for ¢ € H'(T) we cannot expect G(q) € H*(T) for any
€ > 0. Hence, the analysis of [9, 10] does not apply to such non-smooth nonlinearities. For
the spatial discretization, we used a Fourier spectral method in order to control the reg-
ularity of the solution. The initial values (qo,vo) € H'(T) x L*(T) are constructed such
that

(q0,v0) € H'(T) x L*(T) \ H'*“(T) x H(T)

for e = 1079, see [16] for details.
In Fig. 2 we computed the approximate solution with the Strang splitting variant (2.3a),
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1072 — N:29

10_8 T T T T

1072 N = 210

10_8 T T T T T T T T T T T T T T T T T T T T T T T T

n

1072

10_8 TTTT[ T T TTTTTT[ T T TTTTTT[ T T T T 1 7T
103 102 10-1

Fig. 2 Discrete L™ ([O, 1,L5(T) x H! (T)) error (on the y-axis) of the numerical solution of (2.10) plotted

against the step size 7 (on the x-axis) with N grid points. The gray lines indicate order one (dotted) and two
(dashed)

ie., (A,f,A), with filters (blue, dots)

$(2) = w(2) = sinhe(d) = 1(¢:16) + 01(-D) (2.11)

and without filters, i.e., ¢ =y = 1, (red, crosses) with N = 2/, j = 9,10, 11, spatial grid
points. The codes are available from the authors on request. We observe order reduction of
the non-averaged scheme to order one in the stiff regime, while in the non-stiff regime, the
two errors of both schemes are quite close. The non-stiff regime is characterized by time
steps T for which ¢,(tA) is invertible for all t<1y. Since ||A|| ~ N/2, this is true for
79 = 47 /N. For abstract evolution equations, only the stiff regime is relevant, i.e., the limit
N — 0.

3 Analytical framework

We fix some notation for the rest of the paper. For Hilbert spaces X, Y, (-,-) = (-,-)y
denotes the scalar product on X and B(X,Y) the set of all bounded operators 7 : X — Y
equipped with the standard operator norm ||T||y. y. Further, C¥(X,Y) is the space of all
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k-times Fréchet-differentiable functions from X to Y. We write W*?(Q), k € Ny, 1 <p < o0,
for the Sobolev space of order k with all (weak) derivatives in LP(Q) and abbreviate
H*(Q) := W*2(Q). For multi-indices o, f € N’ we write o < fif o; <, foralli =1,..., /.

3.1 Second-order equation

Let H be a real, separable Hilbert space and L : D(L) C H — H be a positive, self-adjoint
operator with compact resolvent. We consider the abstract second-order evolution equation
(1.1) in H. To reformulate it as a first-order system we use the intermediate space V =
D(L'/?) with

DL)=Ve=H,  [vly= L],
with dense and compact embeddings, in particular, there is a constant Cepp, such that

Vg < CemvllVlly, ve V., lglly < Cemllglipw), ¢ € DL). (3.1)

We exemplify the abstract framework considered in the rest of the paper by a class of
semilinear wave equations.

Example 3.1 We consider the semilinear evolution equation (1.1) in the following setting:

(@) 0 #Q C R?is a convex, bounded Lipschitz domain with d € {1,2,3}.
(b) L= —div(AV) with uniformly positive definite A € L (Q)"*“.
(c) Forg:[0,fnd] x 2 x R — Rthere is some o = (o, 0y, 0ty) € N3 such that all partial

derivatives 0%g, p <o, exist, are continuous in 7 and y and bounded in x.
(d) Thereisy > 1and a constant Cg > 0 such that for all (¢,x,y) € [0, fena] X Q x R we
have

lg(t,x,y)], [0:g(1,x,y)| < Cg (1 + IyI) ,
10,8 (1, % 3)| < Cg (1+ ™).
For the corrected Lie Splitting (2.4) we assume in addition
181y8(tx,v)| < Cg (1+ y[ ). (3.2b)
For (2,x) € [Ofenq] X Q and g € V we define
G(t,9)(x) := g(t,x,q(x)).

(3.2a)

In Table 1 at the end of this section, details for different choices of H are presented for
these problems.

In the following we recall sufficient conditions on the nonlinearity G to guarantee well-
posedness of the equation and to establish the error analysis presented in Sects. 4, 5, 6,
and 7.

Assumption 3.2 (Well-posedness) For G we have G € C'([0, tena] X V,H), ie., G is
Fréchet-differentiable with Fréchet-derivative Jg(t,q) € B([0,fena] x V,H) for all
q €Vt €0, feng]-
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Table 1 Overview on examples

H H'(Q) L*(Q) H}(Q)
d d=1 d=1,2,3 d=1,2,3
A _ Whee (@) CH Q) A W2 (@) or HH(@)™
Q - - 0Q of class C°
D(L) Hy(Q) H(Q) NHy () {g € H(Q)NH(Q) | Lq € Hy(Q)}
4 (@) Hy(Q) H2(Q) N Hy(RQ)
o (2,0,2) (2,1,2) (3,2,3)
g - g(t,-,0) =0 on 0Q g(t,-,0) =0 on 0Q
Growth bound y<2 <oco d=1,2 -
V{ <3 d=3

The most subtle assumption is given now. It states the necessary regularity for G evaluated
at a sufficiently smooth function.

Assumption 3.3 (Regularity of G evaluated at a smooth function) For ¢ &
CY([0, tena], V) N C([0, tena), D(L)) we have

t— G(t,q(1)) € C'([0, tena], V) with %G(;, q(1)) = JG(l’q([))(q’t;J ’

t s Jo(t,q(t)) € CY([0, tena], B([0, tena] X V,H)) with C > 0 such that

(A1)

| & sett,at <c, c=c(lallpp. @) (A2)

))HH%[O.,tcnd]XV

The next assumption states bounds of G and J;. We point out that the dependency of the
constants arising from different radii is crucial for the error analysis.

Assumption 3.4 (Regularity of G) There are constants C = C(r) such that for given
rv,rp >0 and g with |qll, <ry, ||q|\D(L> <ry, p€V, and t € [0,feq] the following
inequalities are satisfied:

1G(#,9)lly < C(r), (A3)
Vs, q)<;) |, =ctnisi+lply). (Ada)
Jsete.a) (3 )], = cm) s+ ol (ath)

For the corrected Lie Splitting (2.4) we assume in addition for ||p;||, <rv, i =1, 2,
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0
H(JG(tJ’l —Jg(t,p2) (q) HH <C(re,rv)llp1 = p2lly-

Remark 3.5 Note that shifting G to G + ¢I for some ¢ € R does not affect the validity of
Assumptions 3.2 to 3.4. Hence, we can also treat positive semidefinite operators L by
applying a shift.

In Table 1 the main example 3.1 is specified more precisely. We collected three
examples where we stated for a given Hilbert space H the dimension d of the domain
@ and additional assumptions on the data such that Assumptions 3.2 to 3.4 are
satisfied. All examples are posed with homogeneous Dirichlet boundary conditions.
By possibly shifting L, we can also treat Neumann, Robin, or periodic boundary
conditions.

Higher order Sobolev spaces H = H*(Q), k > 2, can be handled as well but the spaces
and conditions for the operators and parameters become more complicated.

Remark 3.6 Note that from Assumption 3.2 and the chain rule one can only conclude that
t = G(t,q(1)) € C'([0, fend], H)
instead of (Al).

(a) In Example 3.1 the additional regularity ¢ € C([0, fena], D(L)) is sufficient to verify
the Assumption (Al).

(b) For G € C'([0,tena] x V, V) the chain rule immediately yields Assumption (Al).
However, in Example 3.1 with H = H~!(Q) and V = L*(Q), this would imply that
G is already affine-linear, see [11, Sect. 3]. Hence, not even the function g+ sin(q)
would be covered by the analysis.

3.2 First-order equation

We consider the first-order formulation (2.2) of equation (1.1) on the separable Hilbert
space X = V x H. The skew-adjoint operator A is given on its domain D(A) = D(L) x V.
Hence, A is the generator of a unitary group (e") We call u a classical solution of (2.2)
on [0,+) if u solves (2.2), u(0) = ug, and

u € CY([0, tena], X) N C([0, tena], D(A)) (3.3)

teR-

for any fenq <t*. The Assumptions 3.2 to 3.4 are translated into this setting by means of the
following three lemmas. The first one provides a classical solution of (2.2) by standard
semigroup theory. All statements in the lemmas directly follow from the special structure
of f and the assumptions in Sect. 3.1.

Lemma 3.7 (Well-posedness) Let G satisfy Assumption 3.2. Then f : [0, tenq] X X — X
defined in (2.2) satisfies f € C([0,tena) X X,X) with Frechet derivative Jy (t, u) €
B([0, tena] X X, X) for all u € X and t € [0, tena)-

The following lemma shows differentiability of f in the stronger D(A) norm.
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Lemma 3.8 (Regularity of f evaluated at a smooth function) Let G satisfy Assumption 3.3
and u satisfy (3.3). Then we have

t— f(t,u(t)) € C'([0, tena), D(A)) with %f(t,u(t)) = J;(t,u(t)) (u/l(t)) (A1)

t — Jp(t,u(t)) € C'([0, tena), B([0, fena] x X, X)) with C > 0 such that

A2
H%#(nu<f>>\\xqo,fm]xxsc<||Au<r>||,||u'<r>||>- ()

The next Lemma contains two Lipschitz properties of f which easily follow from the
corresponding bound on the derivative. They are crucial for the forthcoming error analysis.

Lemma 3.9 (Regularity of f) Let G satisfy Assumption 3.4. Then there are constants
C = C(r) such that for given rx,ra >0 and u; with ||u;| <rx, Hu,-HD(A) <ry, i=1,2,
vEX, and t € [0, tend) the following inequalities are satisfied:

1£(0,0) ) < CCra), (A%)
Jore () < €t + 11, (Ad)
Jora) (2 ), = CCRST 10 (Ad)
(e, ) = £, 2) | < €O s = w2, (AS)
17000 = (610} o) < CCr) e — ] (Ast)

For the corrected Lie Splitting (2.4) we further have for ||v;|| <rx, i = 1,2,
| @rte,v) = Jp(a,2)) ( )H < Clra,rx)vs = wall
1

Lemma 3.7 guarantees local well-posedness of (2.2), see [23, Thm. 6.1.5]. Our error
analysis only requires assumptions on the data, which then implies the following regularity
of the solution.

Proposition 3.10 Ler Assumption 3.2 be satisfied and take an initial value uy € D(A).
Then there exists a time t* > 0 and a classical solution of (2.2) on [0,1*) satisfying (3.3).
Hence, for every 0 <tenq <t* there exists a constant K > 0 with

max {[[Au(t)|[, [ (DI} <K, 1 € [0, fena]- (3.4)

SN Partial Differential Equations and Applications
A SPRINGER NATURE journal



SN Partial Differ. Equ. Appl. (2021)2:23 Page 13 of 27 23

In the following we refer to (3.4) as the generalized finite-energy condition.

Remark 3.11

(a) Note that for u = (g,¢’) in the situation of Example 3.1 with H = H~'(Q), the
generalized finite energy condition implies

2 2 2 2 2
1Au(t)II*= lgllpe)+Hid' Iv= A2 Vall . + 14 I < K.

This corresponds to the finite energy condition used in [8, 12, 17, 24].
(b) The bound (3.4) also implies

2 2 2
e D1 = 4/ ly+ 11" l;y < K>

3.3 Filter

From the compact resolvent property of L and the compact embeddings we can infer that
also A has a compact resolvent. Hence, A admits an orthonormal basis of eigenvectors

(P kews AQr = ilatpr, ¢y € ﬂ D(A),

jeN
where M C N and 4; € R. Any x € X can thus be represented as

x= fomk, % = (X, i)

keM

with the equivalence

x€DA) = > |l <oo.
keM

This enables us to define the following functional calculus on the set
Cp(iR) := {h : iR — C | h is continuous and ||A|| , <oo},
see [25, Theorem 5.9]. It leads to the following properties of operator functions.
Theorem 3.12 Let A:D(A) — H be a skew-adjoint operator on a separable Hilbert
space X with compact resolvent. Then the map W4 : Cp(iR) — L(X),
h(A): X =X
T T b b = 5 i)y

keM
satisfies the following properties:

(a) Wy is linear

(b)  [[hA)][x_x < [IAll

(c) (gh)(A) = g(A)h(A)

(d) For x € D(A) it holds h(A)x € D(A) and Ah(A)x = h(A)Ax

For the construction of the integrators we make use of filter functions.
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Definition 3.13 Let y € C,(iR). We call y a filter of order m, m = 1,2, if the following
properties are satisfied. There exist ¥, @ € C,(iR) such that for all z € iR

lx@)| <1, (F1)
1—y(z) =7"9(2), (F2)
z1(z) = (e = 1)O(2) . (F3)
In addition, for m = 2, y is symmetric, i.e.
2(2) = x(=2). (F4)

Note that (F3) is equivalent to x(z) = ¢,(z)O(z).

By Theorem 3.12 we can define a corresponding class of filter operators that we later use in
the averaged schemes.

Theorem 3.14 Let 1 > 0 and y € C,(iR) be a filter of order m with 9, © from Defini-
tion 3.13. Then we have

Boundedness : 7(TA) ||y x <1 (OF1)
[9(zA)Ixx <[1Vls  10(A)Ixx < 1@l
Smoothing : 1(tA) : X — D(A) is continuous with (OF2)
leAz(zA)]lx. x <2[16)].
Consistency : 9(1A) : X — D(A™),
I — y(zA) = (tA)"9(7A) (OF3)
Cancelation : (tA)(rA) = (et — 1)O(zA) (OF4)
Block structure : Form =2andi € {1,2},
nix = 0 implies m;y(tA)x = 0. (OF5)

Here, ; : X — X denotes the projection onto the i-th component.

Proof The properties (OF1), (OF3), (OF4) directly follow from the functional calculus

and (OF2) is a direct consequence of (OF4). To prove (OF5), we use the fact that we can

approximate y uniformly on iR by even rational functions as lim,_,+., x(ix) = 0, see [27,

Sect. 1.6]. Hence, the assertion is true since it is easily verified for functions of the type
2 1

—_—_— [ —
22-9’ 2-9

Z
with some ¢ > 0. O
Remark 3.15
(a) An example for m = 2 is the short average filter proposed in [8] that we used in

(2.11). We note that in this example y(ix) = sinc(2) holds for all x € R, which relates
our filters to the ones considered in [13, Chapter XIIL].
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(b) We further obtain ||tAd(zA)|%_, <2[|9|,, for m =2 as

2@ = 29I <209, forall zeiR.

4 Averaged problem

In this section we bound the difference between the solution u of the averaged equation
(2.8) and the solution u« of (2.2). Note that by Proposition 3.10, a unique classical solution

u of (2.8) exists since the assumptions on f also hold for f
In order to apply (A5a’) we define ry via

1
max O < CompK =: =
,e[ow””()”— emb STx

with Ceyp, defined in (3.1) and K in (2.1).

Theorem 4.1 Let Assumptions 3.2, to 3.4 be valid and consider the averaged nonlinearity

f defined in (2.8) with second-order filters. Then there is a 19 > 0 and a constant Cy, > 0
such that for all T <1y

lu(z) —u(e)|| < Cav7?, 0<1t<teng - (4.1)

The constant Cay and 1y depend on rx, uy, tend, the finite energy K defined in (2.1), the filter
functions, and the embedding constant Cenyp, but not on .
In particular, U exists on [0, tena] and is bounded by

~ 3
ma N < rx.
tE[O.tc):d]”u( )” _4rX

Proof Let t* > 0 be the maximal existence time of # and define

to := sup{s € (0, ) | max||u(r)|| <rx}.
t€[0,s]
We first observe that for ¢ < min{#, fena } the variation-of-constants formula yields
t
u(t) — a(t) = / (s, ul)) — F (s, 1(s)) ) ds
0

=10+ 50+ [N Flouls) ~ s s) ) ds "
with
L() = /0 (- P)f (s, u(s)) ds,
() = /0 A (£ (s, u(s)) — f (s, Buls))) ds.
By Assumption (A5a’) and since t < £y, the third term in (4.2) is bounded by
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[ /0 A (F (s, u(s) = 75 7(5)) ) ds|| <€) /0 lu(s) — ii(s)]| ds.
It remains to prove
I <ce,  j=12, (4.3)

since these bounds are sufficient to apply a Gronwall lemma which shows the assertion for
all 7 < min{to, fenq }-
To bound /; we use integration-by-parts and (OF3) to obtain

L(t) =1 /, TINATY (A (5, u(s)) ds
0
=7 {—e(’fs)AAl‘}(‘L'A)f(s, u(v))};

12 /Ofe(z—s)AAﬁ(rA)Jf (s,u(s)) (uis)) ds,

where we used that f (s, u(s)) is differentiable in X. By Assumptions (A3'), (A4b’), and the
bound (3.4) on ' we have

1
A (su(s) | <€), (A (s,uts) (u,(s) > | <cwx)
This proves (4.3) for j = 1.

Using the notation u(s, 6) = gu(s) + (1 — ¢)®u(s) and the differentiability (Al’) of f
we get

h(t) = / A (£ (5, u(s)) — (5, Pu(s))) ds
// (= ‘>AlP fsus,a))dads

// (= X>A'I’stusa (
/ / (= S>A‘I’Jf s u(s, o) ( )dads
e l/t()

t 1 0
elI=9A s,u(s, o ods
+./0 /0 'P.If(,ll( )( fe ( 0)))d0d d.

= 12,1(1‘) =+ Iz_g(t).

By (OF3) and integration-by-parts, the first term can be rewritten as
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1 0 t
La(f) —2 [/) Lli=9)A wJ; (s7 u(s, a)) (ﬁ(fA)e‘YAAu()) dO':|

0

t pl 0
+ 7 / / =AApy, (s,u(s, o)) do ds
0 Jo ' 9(tA)e Auy

1 // HAT Jf(v u(s, 6))< ded)e sAAuO)dods.

Hence, we have ||1,1(1)|| < Ct* by (A2'), (A4a), and (A4Y).
By assumption (A1) we also have

s

/ 0470, u(0))d0 € D(A),
0

N s

A [ e r(0.u@)a0 = [ e Oar (0,u(0))ao,

0 0

Again integration-by-parts and Assumptions (Al’) and (A4b’) yield the desired bound
(4.3). Using (4.1) for t < min{fy, fena} We obtain for 7 < 19

3
max |u(s)|| < maXH ()| + Cave® <3rx
s€[0.1] s€(0
This proves #y > tena and hence (4.1) holds on [0, fenq] for all © < 7. O

In the next lemma we show that & inherits the regularity of u uniformly in .

Lemma 4.2 Let Assumptions 3.2 to 3.4 be valid. Then there is a 19 > 0 and a constant
6;/ > 0 such that for all © <1y

|Au(t) — Au(t)]| < Cave, 0 <1< leng. (4.4)
In particular, u satisfies the generalized finite-energy condition uniformly in 1 <19, i.e.,
max{ [|Ai(t)|], [|&' (1) ||} < K,0 <1 < tena, (4.5)

where 1y and the constants Cay and K depend on rx, Uy, tend, the finite energy K defined in
(2.1), the filter functions, and the embedding constant Ceyyp, but not on .

Proof We proceed as in the proof of Theorem 4.1 and define ¢y by
to := sup{s € (0, tena] | max||Au(t)|| <2K}.
tef0,s]

For 0 <1 <1y, (4.1), (4.2), and (A5b’) imply
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nAuu>—Aﬁoﬂ|=\yéﬂmwﬂM(f@ﬂdw)—foﬁw»)dﬂ

<|AL@)|| + [[AL (1) + C(ZK)/0 llu(s) — u(s)|| ds
<AL ()| + [|[AL(2)|| 4 T2 C(2K) Cay.

With Remark 3.15, similar arguments as before yield O(t) bounds for ||Al;(z)|| and
||ALz(?)||- By possibly reducing 1o we obtain the result for 0 <¢ <t.,q. This immediately
implies the first bound in (4.5) and the second bound is then obtained from (2.8). O

Remark 4.3 Note that Theorem 4.1 and Lemma 4.2 remain true for ¥ =1 as for this
choice [;(¢) = 0 and the proof does not require (F3). This case is of interest for methods
(2.5) and (2.6).

5 Abstract assumptions on the methods

In this section we characterize the classes of methods which are covered by our error
analysis.

We recall that u denotes the solution of the original problem (2.2) and u the solution of
the averaged problem (2.8). Further, we denote the numerical flow by S; and the defect by
On, 1.€., @ one-step method is given by

Up+1 = Sr(tna Mn)a (Sn =8; (tm g(tn)) - ﬁ(tn+l)- (51)

We start with an assumption on the stability of the method.

Assumption 5.1 (Stability) The method applied to (2.8) is stable in the sense that for all
ve D), weX,t>0,

Se(1,v) = Se(t,w) = e (v —w) + 1T (1,v,w), (52)
where 7 : R x D(A) x X — X is bounded by

176, v,9) 11 Cor(Wllpgays Il v =, € [0, tnd]: (53)

Next, we consider the consistency.

Assumption 5.2 (Consistency for order one) The method applied to the original equation
(2.2) satisfies Assumption 5.1 (with ¢ =y = 1) and its defect (5.1) satisfies

6]l < c,

where C > 0 is independent of 7 and n.

For second-order methods, our analysis requires a particular structure of the defect. Before
we state this in an abstract way, we briefly motivate it. Most of the methods we consider
are constructed from the variation-of-constants formula
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1
U(tnr1) = e™ulty) +r/e' VAL (1, + 15, Uty + T5)) ds , (5.4)
0

where only the integral term is approximated. Hence, this defect can be expressed as some
quadrature error that contains the second derivative in s of

fi(s) = of (1 + 5, W (1, + 15)) or  fols) =eIHf(s), (5.5)

depending on the precise method. Terms of order 7> do not cause any difficulties. However,
terms of lower order exist which, in general, require more careful treatment. From f; we
obtain the second-order term

I+ o il +79)) < (TA¢D)AT?(tn ) ) G6)

and f, gives in addition the term
2(tAW) e AAS (1, + 15, Pli (1, + 15)). (5.7)
For these terms property (OF4) needs to be used in order to carry over the local conver-
gence order to the global error. Similar terms are obtained for the defect of the splitting

scheme (2.4). Together with the integral in (5.4), equations (5.7) and (5.6) give rise to the
following general structure of J,.

Assumption 5.3 (Structure of defects for order two) The defect 9, defined in (5.1) of a
numerical method applied to the averaged equation (2.8) is of the form

op =0 +6% 4D, (5.8)

with || D,|| < Ct3, where the constant C > 0 is independent of 7 and n. In addition, one of
the following sets of conditions is satisfied:

(a) If ¢,y are filters of order 2, then there exist w, € X and a linear map W, : X —
D(A) which satisfy

[Wallxx <C, (5.9b)
HAW"||X<—X <C, (5.9¢)

with a constant C which is independent of t and n such that 5,@ can be written as
5&1) =7 (‘L’A ‘I’)wn , 5512) = 7?W, (1A<D)Aﬁ(t,,) , (5.10)

(b) Ify =1 and ¢ is a filter of order 2, then (5.9) and (5.10) hold with w,, = 0 for all n.

Remark 5.4 From (5.9) and (OF2) one can directly derive ||5,|| < Ct>. However, this
would only yield a suboptimal first-order bound in the global error.

The following proposition embeds the methods presented in Sect. 2.2 in the abstract
framework.
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Proposition 5.5 Let Assumptions 3.2 to 3.4 be satisfied.

(a) The Strang splitting methods (2.3a) and (2.3b) applied to the averaged equation
(2.8) satisfy Assumptions 5.1, 5.2, and 5.3 (a).

(b) The second-order variant of the Lie splitting (2.4) applied to the averaged equation
(2.8) satisfies Assumptions 5.1 and 5.3 (a).

(c¢) The exponential Runge—Kutta method (2.5) applied to the averaged equation (2.8)
satisfies Assumptions 5.1, 5.2, and 5.3 (b).

Proof Assumption 5.1 is easily verified for all schemes. We only prove part (a) for the
Strang splitting (A, f,A) as the statement for the (]7, A, f ) variant and part (c¢) can be
adapted from this proof. We comment on part (b) below.

Let tyr¢ :=t, + &, Upts := U(tpte), and fn+5 ::f(t,,+§, Uiy+¢). Since we can write the
scheme as
Se (tm ﬁn) = eTAI’A[n + TeiAf (tn+l/23 eiAﬁn)a
the defect is given by

A~ % A~ ~
5n =e Uy + te? f(er—l/Z’ez un) — Upt1

T
0
= fl +1: 2;
where
T
IAl = Te%Aan/z - /6(17€>Afn+5 d¢
0

72 = ‘L'e%A (f(tn+l/2i e%Aﬁn) _fn+l/2) :

Iz 1 is the quadrature error of the midpoint rule. It can be written in terms of the Peano kernel
Ky as

= xz(é)j;(e“@“fﬁg) d
0

1
o / 12 (&) AATYS (1, ¢, DL,y ) dE
0

1
0 (1
+ 0 / 1oy (&)el1 =974 q/Jf(zM,qsﬁ,Hé)( ) dé +D.’

0 ;[n+§
~(1
with HDEI )H < Ct3. Again using the variation-of-constants formula, (OF2), (A5a’), and

(A5b') we obtain
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1
I, =1 / 1 (8)e N MA2YS (1, o, PeAT,) dE
0

1
+T3/K2(é)€(1é)TAlI’Jf([n+§7(pﬁn+§)< ) dé‘f‘ﬁn
0

ADA™ Y,
= CAYw, + °W,APAU, + D, ,

with | D, || < C7.
To bound I recall that f only depends on the first component of #. Using (A5a’), the
variation-of-constants formula, and 7, f | n= 0, we have

Hf(tn+l/27e%Aﬁn) —fn+1/2H = Hf(fn+1/z,7f1€%Aﬁn) —f(fnﬂ/zﬂnﬁnﬂ/z)H

< C(rx) HTL’] (e%A I/Tn — ﬁn+1/2) H
/2

SO MYE PSS
<cr? , O

since this is just a quadrature error of the (right) rectangular rule.
The properties (5.9a) to (5.9c) follow directly from Lemma 3.9. Using the first order
Peano kernel k;, Assumption 5.2 is verified by writing

1
I = T/’Cl(é)dif (eu—é)mfwé) d¢
/ :

as this yields ||| < Cz? for y = ¢ = 1 by (A1) and (A3).
We briefly comment on the scheme (2.4). The defect can be written as
~ ~ ~ 2 ~ ~
On = ™ (un + Tf(tn+l/2a un) + %r(l‘n+1/2, un)) — Un+1

T
2

= /dié(eéA(ﬁanl—cf + & (tar1 /2, Hns1—¢) + %r(tn+1/2a ﬁn+17§))) d¢
= /efA (f(tn+l/27 ﬁnJﬁl*i) _fn+l—§) df.

2 oeald ~ ~ .
+ /%eC’A (d_ér(ln+1/27un+l—§) + Ar(tyy1)2, ”n+176)) d¢
0

=f3+f4

In the first term I3 we add and subtract e/, at+1/2 and get the quadrature error of the
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midpoint rule. The term 1., admits a similar structure as in 7; and hence Assumption 5.3
can be verified as before. O

Remark 5.6 We note that method (2.4) applied to the original equation (2.2) does not
satisfy Assumption 5.2.

6 Main result for exponential one-step methods

The following result is the last step towards our main Theorem 6.2. It states the global
error of a numerical integrator applied to the averaged equation (2.8) with suitable filters
satisfying our assumptions (e.g., all the methods of Sect. 2.2) is second order accurate. As
before, u denotes the solution of the original problem (2.2) and u the solution of the
averaged problem (2.8).

Theorem 6.1 (Global error of the averaged problem) Let Assumptions 3.2 to 3.4 be ful-
filled. Moreover, let (uy,), be the numerical approximations of a scheme applied to the
averaged equation (2.8) that satisfies Assumptions 5.1 and 5.3. Then there is a 1o > 0 and
a constant Ce > 0 such that for all 1 <14

Hun _ﬁ(tn)cheTz» Ogtn :nfgtend-
The constant Ce and to depend on uy, tenq, the finite energy K defined in (2.1), the filter

functions, and the embedding constant Ceyy, but are independent of t and n.

Proof The proof makes use of the error recursion from [12] and adapts techniques from
Theorem 5.3 in [2].

Due to definition (5.1) of the defect 9, the global error ¢, = u(#,) — u, can be written
as

ng—l = S‘r([nv ﬁ(tn)) - S‘c(tm un) - 5n-

By Assumption 5.1, the global error satisfies

Zn+l (n+1)1Ae +,L.Zen /rAj Ze(n j‘L’Aé (61)

Jj=0

The error bound follows from a discrete Gronwall lemma, once we established the bound

n
H S e<”*f>”‘5jH <G5t (6.2)
=0

with a constant Cs being independent of t and n.
The proof is done by induction on n. For n = 0, the statement is obviously true. Hence
we assume that for all 0 <k <n it holds

[l < rx, e — @ (1)| < Ce T, Ce = Cye i,
By Assumption 5.3, the defect is split into three parts, which motivates to write
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n

S el g = o), 12, + 2

rH»l n+l n+l ’
Jj=0

where

Gli=y el r=12 gl =) eI,

Jj=0

Since HDJH < C7? and nt < foq We easily see

o] = | S <ce:

¢ =1,2, we define

E, = Zn:am and  F, =) u(t).

=0 =0

To bound ¢ e +1’

Summation-by-parts, Assumption 5.3, and (OF4) yield
n—1

S = gl + 5 6 - o)
=0 =0

n—1
=PEAYwy + 1 ZE,H«,IA‘I’(WJ-H — wj)
=0

= ?E,(e” —I)O@gpwy
n—1 1
2 A
T (‘L’ jE:() E,_j_1(e” — 1)@'{/; (Wi+1 — w_,-)).

To bound E;(e™ — I) we exploit a telescopic sum to get

J
B = 1) = | Y- e e = )| = et — 1] <2.
k=0

Together with (5.9a) and (OF4) this yields (6.2) for 5(1) instead of §;.
~(2)

Next we consider e Again, Assumption 5.3, summation-by-parts, and (OF4) with

n+1*
7 = @ yield
n n—1
n—j)tA (2 3 3 n—j)t. -
S el I = W ABAF, + 73 eI (W; — e AW, ) ADAF,
j=0 j=0

= *W,04(e™ — I)AF,,
( Z eln=)r — e W) Og(e™ — )AF)

Here, we have

SN Partial Differential Equations and Applications
A SPRINGER NATURE journal



23 Page 24 of 27 SN Partial Differ. Equ. Appl. (2021)2:23

| 1 1
LWy =™ Wia) = 2e7 (W = Wyia) =2 (™ = DW,.
T T ’ T

The terms can be estimated by (5.9b) and (5.9¢)

1
et =i
E

1
X—X - H ; (u/] B VVj+1)HX4—X S C,

St —nyw,

<C,
z .

P

‘X<—X ‘X«—X

since | (z)| <1 for z € iR.
Next we consider (¢”* — I)AF; for j <n. After adding the exact solution we apply the
variation-of-constants formula, (A3’), and (4.5), which gives

H(em - I)AFjH - HA g(emﬁ(rk) — i+ 1)) +A§(ﬁ(tk 1) - ﬁ(tk))H

i e N

- HZ/O el IAT (s + 5)) ds + A1) — o)
k=0

<tenaC(K) 4 2K.

This yields (6.2) for 51(.2) instead of ¢; and together with the results above proves (6.2).
Finally, (5.3), (6.1), (6.2), and ¢y = 0 give

ensill = H’"’ > IR (g, (), ) = Y eI H
=0 j=0

<C 13 CoRm)3]).
=1

A discrete Gronwall Lemma thus yields

@it || < 72 Cs 7 Emotens — Co?

_ ~ 3
et 1| < Nt )| + 1201 ] < 5rx + Cet® <rx

12 ) ..
for < 19 S%(g—xe) /2 and the induction is closed. O

Our main result is the following theorem.

Theorem 6.2 Let Assumptions 3.2 to 3.4 be fulfilled. Further let (u,), be the numerical
approximations of a scheme that satisfies Assumptions 5.1 and 5.3.

(a) If the method also satisfies Assumptions 5.2 and is applied to the original equation
(2.2), then there is a 19 > 0 and a constant Cy; > 0 such that for all T <1y

||un_u(tn)HSClTa Ostn :nTStend-

(b) Let ¢,y such that Assumption 5.3 is satisfied. Then there is a 1o > 0 and a constant
Cy > 0 such that for all © <1

||l/t,, - u(ln)H < C2T2’ 0 <t,=nt< Tend,
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if the method is applied to the averaged equation (2.8).

The constants Cy, Cy and 1o depend on uy, tend, the finite energy K defined in (2.1), the filter
functions, and the embedding constant Cenyp, but are independent of t and n.

Proof Part (a) follows directly from Assumption 5.2 and equation (6.1). For part (b), we
simply combine Theorem 4.1 and Theorem 6.1 by the triangle inequality (2.9). O

7 Main result for exponential multistep methods

We briefly indicate how to extend the developed theory to the exponential multistep
methods of Sect. 2.2.4. The first-order convergence as in part (a) of Theorem 6.2 is easily
shown. To get second order, Assumption 5.1 needs to be modified.

For method (2.6), we denote the numerical flow by S (¢, v,,v,_1) and obtain

Sf(za Vi, anl) - S‘L’(t7 anwnfl) = erA (Vn - Wn) + Tjna
where 7, = j(t, Vis Vi1, W, wn,l) is bounded by
[T all < Cg (IVall, Wall) v — wall
+ CJ(”anl 1[5 w1 H) Va1 = wa-tll, 7 € [0, fena].

This yields the following convergence result.

Corollary 7.1  Let Assumptions 3.2 to 3.4 be valid. Consider the numerical approximations
(un), from (2.6) applied to the averaged equation (2.8) with y = 1 and a filter ¢ of order
2. Then there is a 19 > 0 and a constant C > 0 such that for all © < 1

lu(t) — ] < Ct?, 0<1t, = nt <feng,

where C and 1y depend on uy, teng, the finite energy K defined in (2.1), the filter functions,
and the embedding constant Cenp, but are independent of t and n.

Proof We first employ Theorem 4.1 and Lemma 4.2, so again it remains to prove the error
in approximating the filtered solution. As in the proof of [19, Thm. 4.3] the defect stems
from a quadrature error that yields the dominant terms as in (5.6). Considering the defect

On = Sc(tw, u(tn), u(tu—r)) — U(tns1)

Assumption 5.3 (b) is satisfied and a slight modification of the proof of Theorem 6.1 yields
the assertion. O

For method (2.7) we have
Se(t, Vs Vie1) — Se(t, Wy Wy_y) = €™ (Vae1 = Wuet) + 1T
where J, = J(t,v,;, w,) is bounded by
ITall < C (Ivall, Iwall) v = wall, ¥t € [0, tena]-
In order to apply the techniques from above we define the modification
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and can state the following result.

Corollary 7.2 Let Assumptions 3.2 to 3.4 be valid and u be the classical solution of (2.2).

Consider the numerical approximations (u,), from (2.7) applied to the averaged
equation (2.8) with filters Y\, 3, where \, ¢ are filters of order 2. Then there is a 19 > 0
and a constant C > 0 such that for all T <19

lu(t,) — ] < Ct?, 0<1t, = nt < feng,

where C and 1ty depend on uy, teng, the finite energy K defined in (2.1), the filter functions,
and the embedding constant Ceny, but are independent of t and n.

Proof Since the method stems from a midpoint rule applied to the variation-of-constants
formula the defect is again given with dominant terms similar to (5.6) and (5.7). If we
resolve the error recursion, we only obtain every second defect and the propagation is
driven by ¢?™. As ¢ in (F3) is replaced by e%, this can be combined to conclude the
assertion similar to the proof of Theorem 6.1. O
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