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Abstract
In this paper we introduce a class of second-order exponential schemes for the time

integration of semilinear wave equations. They are constructed such that the established

error bounds only depend on quantities obtained from a well-posedness result of a classical

solution. To compensate missing regularity of the solution the proofs become considerably

more involved compared to a standard error analysis. Key tools are appropriate filter

functions as well as the integration-by-parts and summation-by-parts formulas. We include

numerical examples to illustrate the advantage of the proposed methods.
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1 Introduction

In this paper we are interested in solving abstract wave equations of the form

q00ðtÞ ¼ �LqðtÞ þ Gðt; qðtÞÞ; t 2 ½0; tend�; qð0Þ ¼ q0; q0ð0Þ ¼ q00; ð1:1Þ

in some Hilbert space H where L is a positive, self-adjoint operator and G is a sufficiently
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regular nonlinearity (e.g., Fréchet-differentiable). Such equations arise in many physical

models. A prominent example is the cubic wave equation

o2t qðt; xÞ ¼ o2xqðt; xÞ þ qðt; xÞ3; ðt; xÞ 2 ½0; tend� � I

posed on some interval I � R and equipped with appropriate initial and boundary

conditions.

Our aim is to construct and investigate time integration schemes for (1.1) under

physically realistic assumptions, in particular finite energy conditions. Hence, the solution

will in general be of low regularity and we thus restrict ourselves to second-order schemes.

Clearly, a standard time integrator (e.g., a Runge–Kutta scheme or an exponential inte-

grator) can only be applied to an abstract evolution equation if it is unconditionally

stable due to the unbounded operator L.
In the finite dimensional case (dimH\1), unconditionally stable integrators (in the

sense that L does not cause any restriction on the time step) for this equation were already

considered in [8, 12, 17, 24]. Such exponential (or trigonometric) integrators were shown

to be second-order convergent while only assuming a finite-energy condition. This was

somewhat surprising since usually, second-order (exponential) schemes need two bounded

time derivatives of the solution in the error analysis. The key ingredient are certain matrix

functions that act as filters. The effect of these filters is that they remove resonances in the

local error, which, in contrast to a standard error analysis, enforce cancellation effects in

the global error. In fact one can prove that local and global error are of the same order if the

filters are chosen appropriately.

Recently, in [2, 3] we presented a completely new technique to prove related results for

ordinary differential equations by reformulating a trigonometric integrator as a Strang

splitting applied to a modified problem. Using ideas from [20, 21], a specific representation

of the local error was derived, which allowed us to separate terms of order three (which can

be treated in a standard way) and the leading local error term, which is of order two only. A

carefully adapted Lady Windermere’s fan argument is employed to treat these terms in the

global error accumulation.

In this paper we prove error bounds for different classes of exponential integrators

applied to an evolution equation (1.1) in a unified way. More precisely, we characterize the

structure of the defects and the properties of filter functions which allow second-order

convergence under a finite-energy condition in different abstract frameworks (i.e., in

different function spaces), which define the assumptions on L, G, and the initial data.

Within this framework we can handle various boundary conditions.

We point out that our results are not restricted to globally Lipschitz continuous func-

tions G, but also apply to locally Lipschitz ones that satisfy certain growth conditions. Our

analysis thus covers the class of nonlinearities for which the existence of a classical

solution can be guaranteed. In particular, this includes polynomial nonlinearities up to a

certain degree which is determined by the spatial dimension and the corresponding

Sobolev embeddings. In the one-dimensional case such equations with periodic boundary

conditions and arbitrary high polynomial degree have been studied in [9] for nonlinearities

with Lipschitz properties on a whole scale of Sobolev spaces. However, this rich structure

is not available in our general framework and, in contrast to our work, well-posedness

cannot be guaranteed.

Further work on exponential integration schemes for the time-integration of semilinear

wave equations was conducted in [1] where a sine-Gordon equation is studied and the

difficulties arise in the proper treatment of a single constant c!1 which induces high
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oscillations in time. In the paper [10] the approach from [9] was extended and in the one-

dimensional case a quasilinear wave equation with periodic boundary conditions was

studied. However, they assume smooth coefficients and high regularity for the analysis.

Exponential splitting schemes for linear evolution equations have been analyzed in [15].

The error estimates depend on commutator bounds that are not available in our scenario.

Finally, we point out that we do not address long-term behavior as in [4, 6].

The paper is organized as follows. In Sect. 2, we give an informal overview over the

methods of interest, the main concepts, and the main results and also present numerical

examples illustrating the main results of our work. In particular, the necessity of using

averaging techniques in the regime of low-regularity is shown.

The informal overview is made rigorous in Sect. 3, where we introduce the analytic

framework and a functional calculus which allows us to define the operator-valued filters

and ensures well-posedness of the problem as well as of the schemes.

We further state the assumptions on the operator L, the nonlinearity G, and the initial

data that on the one hand will guarantee the well-posedness of (1.1) and on the other hand

allow to carry out the error analysis.

In Sect. 4 we characterize filter functions which allow to prove that the exact solution of

the original problem and the solution of the averaged problem only differ up to terms of

order s2, where s[ 0 denotes the step size. Section 5 provides a characterization of

numerical methods in terms of the structure of their defects, which are necessary to derive

error bounds.

Finally, Sects. 6 and 7 contain our main results the error bounds for one-step and for

multistep methods, respectively.

2 Informal overview of methods, concepts and results

Before we present the analytical framework necessary to formulate our results rigorously,

we first give an informal overview of the methods of interest, the main concepts, and the

main results. In the finite dimensional case dimH\1 (which is not the situation of

interest in this paper), all the approximations presented are well-defined and the statements

valid. However, for evolution equations posed in appropriate function spaces, this is no

longer true unless additional assumptions are imposed. Since some of them are rather

technical, we postpone them to Sect. 3.

2.1 Problem statement: Second-order differential equation

Let L be a linear, self-adjoint, and positive-definite operator on H and

G : ½0; tend� � H ! H. We consider the differential equation

q00ðtÞ ¼ �LqðtÞ þ Gðt; qðtÞÞ; t 2 ½0; tend�; qð0Þ ¼ q0; q0ð0Þ ¼ q00;

and assume that the solution q satisfies the finite-energy condition

hLqðtÞ; qðtÞiH þ hq0ðtÞ; q0ðtÞiH �K2 for t 2 ½0; tend� ; ð2:1Þ

where h�; �iH denotes the inner product on H. In first-order formulation, the differential

equation can be written as

u0ðtÞ ¼ AuðtÞ þ f ðt; uðtÞÞ; u ¼
q

q0

� �
; ð2:2Þ
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with

A ¼
0 I

�L 0

� �
; f ðt; uÞ ¼

0

Gðt; qÞ

� �
;

and inner product

hu1; u2i ¼ hq1; q2iH þ hL�1q01; q02iH :

Obviously, A is skew-adjoint with respect to h�; �i and hence has a purely imaginary point

spectrum.

2.2 Methods

In the following we shortly present four different types of methods to discretize equation

(2.2) in time with a constant stepsize s[ 0.

2.2.1 Strang splitting

The exact flows uA
s and uf

s of the two subproblems

t0

u0

� �
¼

1

Au

� �
;

t0

u0

� �
¼

0

f ðt; uÞ

� �
;

are given explicitly by

uA
s

t0

u0

� �
¼

t0 þ s

esAu0

� �
; uf

s

t0

u0

� �
¼

t0

u0 þ sf ðt0; u0Þ

� �
:

We consider the Strang splitting in the variants
�
A; f ;A

�
and

�
f ;A; f

�
given by

tnþ1

unþ1

� �
¼ uA

s=2 � uf
s � uA

s=2

tn

un

� �
; ð2:3aÞ

tnþ1

unþ1

� �
¼ uf

s=2 � u
A
s � u

f
s=2

tn

un

� �
; ð2:3bÞ

respectively. Note that the
�
f ;A; f

�
variant (2.3b) is equivalent to a trigonometric integrator

without filter functions, see, e.g., [13, XIII.2.2].

2.2.2 Corrected Lie Splitting

Next we consider the second-order corrected Lie splitting given by

unþ1 ¼ esA
�
un þ sf

�
tnþ1=2; un

�
þ s2

2
r
�
tnþ1=2; un

��
ð2:4Þ

with the correction term

rðt; uÞ :¼ Jf
�
t; u
� 0

Au

� �
� Af

�
t; u
�
:
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It is inspired by a fourth-order method of this type proposed in [22, 4.9.3 (c)]. Note that in

the linear case, where f ðt; uÞ ¼ Fu, the correction term reduces to the commutator

rðt; uÞ ¼ FAu� AFu ¼ F;A½ �u :

Hence, one can consider (2.4) as an approximation to the method

unþ1 ¼ esAesFe
s2
2
F;A½ �un ;

which was considered in [26, (3.37)].

2.2.3 Exponential Runge–Kutta methods

General two-stage exponential Runge–Kutta methods are of the form

Un ¼ ec2sAun þ c2su1ðc2sAÞf
�
tn; un

�
;

unþ1 ¼ esAun þ sb1ðsAÞf
�
tn; un

�
þ sb2ðsAÞf

�
tn þ c2s;Un

�
;

ð2:5Þ

where c2 2 ð0; 1� is a given quadrature node. Recall that the u-functions are defined as

ukþ1ðzÞ :¼
Z1

0

eð1�sÞz
sk

k!
ds; k	 0:

If the coefficient functions b1; b2 satisfy

b1ðzÞ þ b2ðzÞ ¼ u1ðzÞ; c2b2ð0Þ ¼
1

2
;

the method is second-order convergent for parabolic problems, see [18, Theorem 4.3.].

Popular choices are c2 ¼ 1
2
, b1 ¼ 0 or c2 ¼ 1, b2ðzÞ ¼ u2ðzÞ. All our results also apply to

the symmetric, but implicit exponential Runge–Kutta scheme from [5, Example 2.1] and to

ERKN methods, e.g., those considered in [28]. The necessary modifications are straight-

forward so that we omit the details.

2.2.4 Exponential multistep methods

The two-step exponential multistep method from [19, (2.7)]

unþ1 ¼ esAun þ su1ðsAÞf tn; unð Þ

þ su2ðsAÞ f tn; unð Þ � f tn�1; un�1ð Þð Þ; n	 1 ;

u1 ¼ esA u0 þ sf t0; u0ð Þð Þ ;

ð2:6Þ

is derived from the variation-of-constants formula for the exact solution of (1.1) by

approximating the nonlinearity f in the integral term by an interpolation polynomial using

the last two approximations un�1; un.
In a similar manner we consider a method that was used in [7, (B 4)], namely

unþ1 ¼ e2sAun�1 þ 2sesAf ðtn; unÞ ;

u1 ¼ esA
�
u0 þ sf ðt0; u0Þ

�
:

ð2:7Þ
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For A ¼ 0 it reduces to an explicit Nyström method, cf. method (1.13’) in [14].

2.3 Averaged differential equation

Let v ¼ /;w : iR! R be even (i.e., vð�zÞ ¼ vðzÞ) and analytic functions satisfying

vð0Þ ¼ 1. Then we define

ev ¼ vðisL1=2Þ

and an averaged nonlinearity

eGðt; qÞ :¼ ewGðt; e/qÞ :
Using the block diagonal operators

U ¼
e/ 0

0 e/
 !

; W ¼
ew 0

0 ew
 !

;

we consider the averaged differential equation

eu0ðtÞ ¼ AeuðtÞ þ ef ðt; euðtÞÞ; ef ðt; euÞ ¼ Wf ðt;UeuÞ ¼ 0

eGðt; eqÞ
� �

: ð2:8Þ

The averaging is done such that the solution eu of (2.8) also satisfies a finite-energy

condition (2.1) (with a modified constant eK , which is independent of s and n, cf., Lemma

4.2 below). In Theorem 4.1, we provide sufficient conditions on w;/ such that

uðtÞ � euðtÞk k�Cs2; t 2 ½0; tend�;

where �k k denotes the norm induced by h�; �i.

Remark 2.1 We only consider fixed stepsizes in this paper. Introducing variable stepsizes

would require the investigation of a whole family of averaged problems (2.8). In addition,

our analysis below would involve a much higher technical effort.

2.4 Averaged methods

The main idea is to apply one of the numerical methods to the averaged equation (2.8)

instead of the original one (2.2). Equivalently, one could modify the numerical scheme in

an appropriate way using filter functions. This is illustrated in Fig. 1.

Since the solutions of (2.2) and (2.8) only differ by terms of order s2, one might hope for

second-order accuracy if the method is of order two at least. In fact we will later see that in

u(tn)

un

ũ(tn)
‖u(tn) − ũ(tn)‖ ≤ Cτ2

clas
sica

l sc
hem

eaveraged scheme

Fig. 1 Different ways to
construct an approximation un of
the solution uðtnÞ of the original
equation (2.2) and the solutioneuðtnÞ of the averaged equation
(2.8)
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the case of evolution equations, this intuition is not always justified, i.e., order reduction
might appear. The main goal in this paper is to characterize the numerical methods, the

assumptions on L and G, and the choice of the filter functions which lead to second-order

error bounds.

2.5 Main results

Our main results, which are detailed in Theorem 6.2 for exponential one-step methods and

in Sect. 7 for exponential multistep methods, are the following error bounds.

(a) The Strang splitting, the exponential Runge–Kutta, and the exponential multistep

methods applied to the original equation (2.2) satisfy

kuðtnÞ � unk�C1s :

(b) All methods of Sect. 2.2 applied to the averaged equation (2.8) with appropriate

filters /;w satisfy

kuðtnÞ � unk�C2s
2 :

The constants C1;C2 only depend on the initial value u0, the finite energy K, properties of
G, and tend, but not on n and s.

The strategy to prove these bounds is to split the error into two terms, namely

uðtnÞ � unk k� uðtnÞ � euðtnÞk k þ euðtnÞ � unk k: ð2:9Þ

The first term is bounded by Theorem 4.1, the second by Theorem 6.1 or Corollaries 7.1,

and 7.2, respectively. A crucial step is to show that the averaged solution inherits the

regularity of the original solution, which is done in Lemma 4.2.

2.6 Numerical example

In this section we illustrate the effect of averaging within numerical methods by approx-

imating the solution of a variant of the sine-Gordon equation given on the torus T ¼
R=ð2pZÞ by

q00ðtÞ ¼ DqðtÞ � qðtÞ þ ma sinðmi qðtÞÞ qðtÞ; ð2:10Þ

with t 2 ½0; 1� and mi;ma 2 L1ðTÞ. Note that for q 2 L2ðTÞ and

GðqÞðxÞ :¼ maðxÞ sinðmiðxÞ qÞ q ;

we have G(q) in L2ðTÞ, but even for q 2 H1ðTÞ we cannot expect GðqÞ 2 H�ðTÞ for any
�[ 0. Hence, the analysis of [9, 10] does not apply to such non-smooth nonlinearities. For

the spatial discretization, we used a Fourier spectral method in order to control the reg-

ularity of the solution. The initial values ðq0; v0Þ 2 H1ðTÞ � L2ðTÞ are constructed such

that

ðq0; v0Þ 2 H1ðTÞ � L2ðTÞ n H1þ�ðTÞ � H�ðTÞ

for � ¼ 10�6, see [16] for details.

In Fig. 2 we computed the approximate solution with the Strang splitting variant (2.3a),
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i.e.,
�
A; ef ;A�, with filters (blue, dots)

/ðzÞ ¼ wðzÞ ¼ sinhcðz
2
Þ ¼ 1

2

�
u1ð

z

2
Þ þ u1ð�

z

2
Þ
�

ð2:11Þ

and without filters, i.e., / ¼ w ¼ 1, (red, crosses) with N ¼ 2j, j ¼ 9; 10; 11, spatial grid
points. The codes are available from the authors on request. We observe order reduction of

the non-averaged scheme to order one in the stiff regime, while in the non-stiff regime, the

two errors of both schemes are quite close. The non-stiff regime is characterized by time

steps s for which u1ðsAÞ is invertible for all s\s0. Since Ak k 
 N=2, this is true for

s0 
 4p=N. For abstract evolution equations, only the stiff regime is relevant, i.e., the limit

N !1.

3 Analytical framework

We fix some notation for the rest of the paper. For Hilbert spaces X, Y, h�; �i ¼ h�; �iX
denotes the scalar product on X and BðX; YÞ the set of all bounded operators T : X ! Y

equipped with the standard operator norm kTkY X . Further, C
kðX; YÞ is the space of all

10−8

10−5

10−2 N = 29

10−8

10−5

10−2 N = 210

10−3 10−2 10−1
10−8

10−5

10−2 N = 211

Fig. 2 Discrete L1
�
½0; 1�;L2ðTÞ � H�1ðTÞ

�
error (on the y-axis) of the numerical solution of (2.10) plotted

against the step size s (on the x-axis) with N grid points. The gray lines indicate order one (dotted) and two
(dashed)
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k-times Fréchet-differentiable functions from X to Y. We writeWk;pðXÞ, k 2 N0, 1� p�1,

for the Sobolev space of order k with all (weak) derivatives in LpðXÞ and abbreviate

HkðXÞ :¼ Wk;2ðXÞ. For multi-indices a; b 2 N‘ we write a� b if ai�bi for all i ¼ 1; . . .; ‘.

3.1 Second-order equation

Let H be a real, separable Hilbert space and L : DðLÞ � H ! H be a positive, self-adjoint

operator with compact resolvent. We consider the abstract second-order evolution equation

(1.1) in H. To reformulate it as a first-order system we use the intermediate space V ¼
DðL1=2Þ with

DðLÞ,!V,!H; vk kV¼ L1=2v
�� ��

H
;

with dense and compact embeddings, in particular, there is a constant Cemb such that

vk kH �Cemb vk kV ; v 2 V; qk kV �Cemb qk kDðLÞ; q 2 DðLÞ : ð3:1Þ

We exemplify the abstract framework considered in the rest of the paper by a class of

semilinear wave equations.

Example 3.1 We consider the semilinear evolution equation (1.1) in the following setting:

(a) ; 6¼ X � Rd is a convex, bounded Lipschitz domain with d 2 f1; 2; 3g.
(b) L ¼ � divðArÞ with uniformly positive definite A 2 L1ðXÞd�d .
(c) For g : ½0; tend� � X� R! R there is some a ¼ ðat; ax; ayÞ 2 N3 such that all partial

derivatives obg, b� a, exist, are continuous in t and y and bounded in x.
(d) There is c[ 1 and a constant Cg[ 0 such that for all ðt; x; yÞ 2 ½0; tend� � X� R we

have

jgðt; x; yÞj; jotgðt; x; yÞj �Cg
�
1þ jyjc

�
;

joygðt; x; yÞj �Cg
�
1þ jyjc�1

�
:

ð3:2aÞ

For the corrected Lie Splitting (2.4) we assume in addition

joyygðt; x; yÞj �Cg
�
1þ jyjc�1

�
: ð3:2bÞ

For ðt; xÞ 2 ½0tend� � X and q 2 V we define

Gðt; qÞðxÞ :¼ gðt; x; qðxÞÞ:

In Table 1 at the end of this section, details for different choices of H are presented for

these problems.

In the following we recall sufficient conditions on the nonlinearity G to guarantee well-

posedness of the equation and to establish the error analysis presented in Sects. 4, 5, 6,

and 7.

Assumption 3.2 (Well-posedness) For G we have G 2 C1ð½0; tend� � V;HÞ, i.e., G is

Fréchet-differentiable with Fréchet-derivative JGðt; qÞ 2 B
�
½0; tend� � V;H

�
for all

q 2 V; t 2 ½0; tend�.
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The most subtle assumption is given now. It states the necessary regularity for G evaluated

at a sufficiently smooth function.

Assumption 3.3 (Regularity of G evaluated at a smooth function) For q 2
C1ð½0; tend�;VÞ \ Cð½0; tend�;DðLÞÞ we have

t 7! Gðt; qðtÞÞ 2 C1 ½0; tend�;Vð Þ with d

dt
Gðt; qðtÞÞ ¼ JGðt; qðtÞÞ

1

q0ðtÞ

� �
;

t 7! JGðt; qðtÞÞ 2 C1 ½0; tend�;B ½0; tend� � V;Hð Þð Þ with C[ 0 such that

ðA1Þ

��� d

dt
JGðt; qðtÞÞ

���
H ½0;tend��V

�C; C ¼ C qðtÞk kDðLÞ; q0ðtÞk kV
� �

ðA2Þ

The next assumption states bounds of G and JG. We point out that the dependency of the

constants arising from different radii is crucial for the error analysis.

Assumption 3.4 (Regularity of G) There are constants C ¼ CðrÞ such that for given

rV ; rL [ 0 and q with qk kV � rV , qk kDðLÞ � rL, p 2 V , and t 2 ½0; tend� the following

inequalities are satisfied:

Gðt; qÞk kV �CðrLÞ; ðA3Þ

���JGðt; qÞ s

p

� ����
H
�CðrVÞ sj j þ pk kV

� �
; ðA4aÞ

���JGðt; qÞ s

p

� ����
V
�CðrLÞ sj j þ pk kV

� �
: ðA4bÞ

For the corrected Lie Splitting (2.4) we assume in addition for pik kV � rV ; i ¼ 1; 2;

Table 1 Overview on examples

H H�1ðXÞ L2ðXÞ H1
0ðXÞ

d d ¼ 1 d ¼ 1; 2; 3 d ¼ 1; 2; 3

A – W1;1ðXÞd�d C1;1ðXÞd�d \W2;1ðXÞd�d or H4ðXÞd�d

X – – oX of class C3

DðLÞ H1
0ðXÞ H2ðXÞ \ H1

0ðXÞ fq 2 H3ðXÞ \ H1
0ðXÞ j Lq 2 H1

0ðXÞg
V L2ðXÞ H1

0ðXÞ H2ðXÞ \ H1
0ðXÞ

a 2; 0; 2ð Þ 2; 1; 2ð Þ 3; 2; 3ð Þ
g – gðt; �; 0Þ ¼ 0 on oX gðt; �; 0Þ ¼ 0 on oX

Growth bound c� 2
c

\1 d ¼ 1; 2
� 3 d ¼ 3

	
–
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���ðJGðt; p1 � JGðt; p2Þ
0

q

� ����
H
�CðrL; rVÞ p1 � p2k kV :

Remark 3.5 Note that shifting G to Gþ cI for some c 2 R does not affect the validity of

Assumptions 3.2 to 3.4. Hence, we can also treat positive semidefinite operators L by

applying a shift.

In Table 1 the main example 3.1 is specified more precisely. We collected three

examples where we stated for a given Hilbert space H the dimension d of the domain

X and additional assumptions on the data such that Assumptions 3.2 to 3.4 are

satisfied. All examples are posed with homogeneous Dirichlet boundary conditions.

By possibly shifting L, we can also treat Neumann, Robin, or periodic boundary

conditions.

Higher order Sobolev spaces H ¼ HkðXÞ, k	 2, can be handled as well but the spaces

and conditions for the operators and parameters become more complicated.

Remark 3.6 Note that from Assumption 3.2 and the chain rule one can only conclude that

t 7! Gðt; qðtÞÞ 2 C1 ½0; tend�;Hð Þ

instead of (A1).

(a) In Example 3.1 the additional regularity q 2 Cð½0; tend�;DðLÞÞ is sufficient to verify

the Assumption (A1).

(b) For G 2 C1ð½0; tend� � V;VÞ the chain rule immediately yields Assumption (A1).

However, in Example 3.1 with H ¼ H�1ðXÞ and V ¼ L2ðXÞ, this would imply that

G is already affine-linear, see [11, Sect. 3]. Hence, not even the function q 7! sinðqÞ
would be covered by the analysis.

3.2 First-order equation

We consider the first-order formulation (2.2) of equation (1.1) on the separable Hilbert

space X ¼ V � H. The skew-adjoint operator A is given on its domain DðAÞ ¼ DðLÞ � V .

Hence, A is the generator of a unitary group etAð Þt2R. We call u a classical solution of (2.2)

on ½0; t�Þ if u solves (2.2), uð0Þ ¼ u0, and

u 2 C1ð½0; tend�;XÞ \ Cð½0; tend�;DðAÞÞ ð3:3Þ

for any tend\t�. The Assumptions 3.2 to 3.4 are translated into this setting by means of the

following three lemmas. The first one provides a classical solution of (2.2) by standard

semigroup theory. All statements in the lemmas directly follow from the special structure

of f and the assumptions in Sect. 3.1.

Lemma 3.7 (Well-posedness) Let G satisfy Assumption 3.2. Then f : ½0; tend� � X ! X

defined in (2.2) satisfies f 2 C1ð½0; tend� � X;XÞ with Fréchet derivative Jf
�
t; u
�
2

B ½0; tend� � X;Xð Þ for all u 2 X and t 2 ½0; tend�.

The following lemma shows differentiability of f in the stronger DðAÞ norm.
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Lemma 3.8 (Regularity of f evaluated at a smooth function) Let G satisfy Assumption 3.3
and u satisfy (3.3). Then we have

t 7! f
�
t; uðtÞ

�
2 C1 ½0; tend�;DðAÞð Þ with d

dt
f
�
t; uðtÞ

�
¼ Jf

�
t; uðtÞ

� 1

u0ðtÞ

� �
ðA10Þ

t 7! Jf
�
t; uðtÞ

�
2 C1 ½0; tend�;B ½0; tend� � X;Xð Þð Þ with C[ 0 such that��� d

dt
Jf
�
t; uðtÞ

����
X ½0;tend��X

�C AuðtÞk k; u0ðtÞk kð Þ :
ðA20Þ

The next Lemma contains two Lipschitz properties of f which easily follow from the

corresponding bound on the derivative. They are crucial for the forthcoming error analysis.

Lemma 3.9 (Regularity of f ) Let G satisfy Assumption 3.4. Then there are constants
C ¼ CðrÞ such that for given rX; rA [ 0 and ui with uik k� rX , uik kDðAÞ � rA, i ¼ 1; 2,

v 2 X, and t 2 ½0; tend� the following inequalities are satisfied:

f ðt; u1Þk kDðAÞ �CðrAÞ; ðA30Þ

���Jf ðt; u1Þ s

v

� �����CðrXÞ sj j þ vk kð Þ; ðA4a0Þ

���Jf ðt; u1Þ s

v

� ����
DðAÞ
�CðrAÞ sj j þ vk kð Þ; ðA4b0Þ

���f ðt; u1Þ � f ðt; u2Þ
����C rXð Þ u1 � u2k k; ðA5a0Þ

f ðt; u1Þ � f ðt; u2Þk kDðAÞ �C rAð Þ u1 � u2k k: ðA5b0Þ

For the corrected Lie Splitting (2.4) we further have for vik k� rX , i ¼ 1; 2;��� Jf ðt; v1Þ � Jf ðt; v2Þ
� � 0

u1

� �����C rA; rXð Þ v1 � v2k k:

Lemma 3.7 guarantees local well-posedness of (2.2), see [23, Thm. 6.1.5]. Our error

analysis only requires assumptions on the data, which then implies the following regularity

of the solution.

Proposition 3.10 Let Assumption 3.2 be satisfied and take an initial value u0 2 DðAÞ.
Then there exists a time t�[ 0 and a classical solution of (2.2) on ½0; t�Þ satisfying (3.3).
Hence, for every 0\tend\t� there exists a constant K[ 0 with

max AuðtÞk k; u0ðtÞk kf g�K; t 2 ½0; tend�: ð3:4Þ
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In the following we refer to (3.4) as the generalized finite-energy condition.

Remark 3.11

(a) Note that for u ¼
�
q; q0

�
in the situation of Example 3.1 with H ¼ H�1ðXÞ, the

generalized finite energy condition implies

AuðtÞk k2¼ qk k2DðLÞþ q0k k2V¼
��A1=2rq

��2
L2
þ q0k k2L2 �K2 :

This corresponds to the finite energy condition used in [8, 12, 17, 24].

(b) The bound (3.4) also implies

u0ðtÞk k2¼ q0k k2Vþ q00k k2H �K2 :

3.3 Filter

From the compact resolvent property of L and the compact embeddings we can infer that

also A has a compact resolvent. Hence, A admits an orthonormal basis of eigenvectors

ð/kÞk2M ; A/k ¼ ikk/k; /k 2
\
j2N
DðAjÞ ;

where M � N and kk 2 R. Any x 2 X can thus be represented as

x ¼
X
k2M

ak/k; ak ¼ hx;/kiX ;

with the equivalence

x 2 DðAÞ ()
X
k2M
jkkakj2\1 :

This enables us to define the following functional calculus on the set

Cb iRð Þ :¼ fh : iR! C j h is continuous and khk1\1g ;

see [25, Theorem 5.9]. It leads to the following properties of operator functions.

Theorem 3.12 Let A : DðAÞ ! H be a skew-adjoint operator on a separable Hilbert
space X with compact resolvent. Then the map WA : Cb iRð Þ ! LðXÞ,

h 7!
hðAÞ : X ! X

x ¼
P
k2M

ak/k 7! hðAÞx ¼
P
k2M

hðikkÞak/k

8<
:

satisfies the following properties:

(a) WA is linear
(b) hðAÞk kX X �khk1
(c) ðghÞðAÞ ¼ gðAÞhðAÞ
(d) For x 2 DðAÞ it holds hðAÞx 2 DðAÞ and AhðAÞx ¼ hðAÞAx

For the construction of the integrators we make use of filter functions.
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Definition 3.13 Let v 2 Cb iRð Þ. We call v a filter of order m, m ¼ 1; 2, if the following

properties are satisfied. There exist #;H 2 Cb iRð Þ such that for all z 2 iR

jvðzÞj � 1 ; ðF1Þ

1� vðzÞ ¼ zm#ðzÞ ; ðF2Þ

zvðzÞ ¼ ðez � 1ÞHðzÞ : ðF3Þ

In addition, for m ¼ 2, v is symmetric, i.e.

vðzÞ ¼ vð�zÞ : ðF4Þ

Note that (F3) is equivalent to vðzÞ ¼ u1ðzÞHðzÞ.

By Theorem 3.12 we can define a corresponding class of filter operators that we later use in

the averaged schemes.

Theorem 3.14 Let s[ 0 and v 2 Cb iRð Þ be a filter of order m with #;H from Defini-
tion 3.13. Then we have

Boundedness : kvðsAÞkX X � 1 ðOF1Þ
#ðsAÞk kX X �k#k1; HðsAÞk kX X �kHk1

Smoothing : vðsAÞ : X ! DðAÞ is continuous with ðOF2Þ
sAvðsAÞk kX X � 2 kHk1

Consistency : #ðsAÞ : X ! DðAmÞ;
I � vðsAÞ ¼ sAð Þm#ðsAÞ ðOF3Þ

Cancelation : ðsAÞvðsAÞ ¼ ðesA � IÞHðsAÞ ðOF4Þ
Block structure : For m ¼ 2 and i 2 f1; 2g;

pix ¼ 0 implies pivðsAÞx ¼ 0: ðOF5Þ

Here, pi : X ! X denotes the projection onto the i-th component.

Proof The properties (OF1), (OF3), (OF4) directly follow from the functional calculus

and (OF2) is a direct consequence of (OF4). To prove (OF5), we use the fact that we can

approximate v uniformly on iR by even rational functions as limx!�1 vðixÞ ¼ 0, see [27,

Sect. 1.6]. Hence, the assertion is true since it is easily verified for functions of the type

z 7! z2

z2 � d
; z 7! 1

z2 � d

with some d[ 0. h

Remark 3.15

(a) An example for m ¼ 2 is the short average filter proposed in [8] that we used in

(2.11). We note that in this example vðixÞ ¼ sincðx
2
Þ holds for all x 2 R, which relates

our filters to the ones considered in [13, Chapter XIII.].
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(b) We further obtain sA#ðsAÞk k2X X � 2k#k1 for m ¼ 2 as

jz#ðzÞj2 ¼ jz2#ðzÞj j#ðzÞj � 2k#k1 for all z 2 iR :

4 Averaged problem

In this section we bound the difference between the solution eu of the averaged equation

(2.8) and the solution u of (2.2). Note that by Proposition 3.10, a unique classical solution

eu of (2.8) exists since the assumptions on f also hold for ef .
In order to apply (A5a0) we define rX via

max
t2½0;tend�

uðtÞk k�CembK ¼: 1

2
rX

with Cemb defined in (3.1) and K in (2.1).

Theorem 4.1 Let Assumptions 3.2, to 3.4 be valid and consider the averaged nonlinearityef defined in (2.8) with second-order filters. Then there is a s0 [ 0 and a constant Cav [ 0

such that for all s� s0

uðtÞ � euðtÞk k�Cavs
2; 0� t� tend : ð4:1Þ

The constant Cav and s0 depend on rX , u0, tend, the finite energy K defined in (2.1), the filter
functions, and the embedding constant Cemb, but not on s.

In particular, eu exists on ½0; tend� and is bounded by

max
t2½0;tend�

euðtÞk k� 3

4
rX :

Proof Let et�[ 0 be the maximal existence time of eu and define

t0 :¼ supfs 2 ð0; et�Þ j max
t2½0;s�

euðtÞk k� rXg :

We first observe that for t� minft0; tendg the variation-of-constants formula yields

uðtÞ � euðtÞ ¼
Z t

0

eðt�sÞA f
�
s; uðsÞ

�
� ef �s; euðsÞ�� �

ds

¼ I1ðtÞ þ I2ðtÞ þ
Z t

0

eðt�sÞA ef �s; uðsÞ�� ef �s; euðsÞ�� �
ds

ð4:2Þ

with

I1ðtÞ ¼
Z t

0

eðt�sÞA I �Wð Þf
�
s; uðsÞ

�
ds;

I2ðtÞ ¼
Z t

0

eðt�sÞAW f
�
s; uðsÞ

�
� f
�
s;UuðsÞ

�� �
ds:

By Assumption (A5a0) and since t� t0, the third term in (4.2) is bounded by
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���
Z t

0

eðt�sÞA ef �s; uðsÞ�� ef �s; euðsÞ�� �
ds
����C

�
rX
� Z t

0

uðsÞ � euðsÞk k ds:

It remains to prove

IjðtÞ
�� ���Cs2; j ¼ 1; 2; ð4:3Þ

since these bounds are sufficient to apply a Gronwall lemma which shows the assertion for

all t� minft0; tendg.
To bound I1 we use integration-by-parts and (OF3) to obtain

I1ðtÞ ¼ s2
Z t

0

eðt�sÞAA2#ðsAÞf
�
s; uðsÞ

�
ds

¼ s2 �eðt�sÞAA#ðsAÞf
�
s; uðsÞ

�h it
0

þ s2
Z t

0

eðt�sÞAA#ðsAÞJf
�
s; uðsÞ

� 1

u0ðsÞ

 !
ds;

where we used that f
�
s; uðsÞ

�
is differentiable in X. By Assumptions (A30), (A4b0), and the

bound (3.4) on u0 we have

Af
�
s; uðsÞ

��� ���C Kð Þ;
���AJf �s; uðsÞ� 1

u0ðsÞ

 !����C Kð Þ:

This proves (4.3) for j ¼ 1.

Using the notation uðs; rÞ ¼ ruðsÞ þ ð1� rÞUuðsÞ and the differentiability (A10) of f
we get

I2ðtÞ ¼
Z t

0

eðt�sÞAW f
�
s; uðsÞ

�
� f
�
s;UuðsÞ

�� �
ds

¼
Z t

0

Z 1

0

eðt�sÞAW d

dr
f
�
s; uðs; rÞ

�
dr ds

¼
Z t

0

Z 1

0

eðt�sÞAWJf
�
s; uðs; rÞ

� 0

I � Uð ÞuðsÞ

� �
dr ds

¼
Z t

0

Z 1

0

eðt�sÞAWJf
�
s; uðs; rÞ

� 0

I � Uð ÞesAu0

� �
dr ds

þ
Z t

0

Z 1

0

eðt�sÞAWJf
�
s; uðs; rÞ

� 0

I � Uð Þ
Rs
0

eðs�hÞAf
�
h; uðhÞ

�
0
@

1
A dh dr ds

¼ I2;1ðtÞ þ I2;2ðtÞ:

By (OF3) and integration-by-parts, the first term can be rewritten as
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I2;1ðtÞ ¼s2
Z 1

0

eðt�sÞAWJf
�
s; uðs; rÞ

� 0

#ðsAÞesAAu0

 !
dr

" #t
0

þ s2
Z t

0

Z 1

0

eðt�sÞAAWJf
�
s; uðs; rÞ

� 0

#ðsAÞesAAu0

 !
dr ds

� s2
Z t

0

Z 1

0

eðt�sÞAW d

ds
Jf
�
s; uðs; rÞ

� 0

#ðsAÞesAAu0

 !
dr ds :

Hence, we have I2;1ðtÞ
�� ���Cs2 by (A20), (A4a0), and (A4b0).

By assumption (A10) we also have

Zs

0

eðs�hÞAf
�
h; uðhÞ

�
dh 2 DðAÞ;

A

Zs

0

eðs�hÞAf
�
h; uðhÞ

�
dh ¼

Zs

0

eðs�hÞAAf
�
h; uðhÞ

�
dh:

Again integration-by-parts and Assumptions (A10) and (A4b0) yield the desired bound

(4.3). Using (4.1) for t� minft0; tendg we obtain for s� s0

max
s2½0;t�

euðsÞk k� max
s2½0;t�

uðsÞk k þ Cavs
2� 3

4
rX :

This proves t0	 tend and hence (4.1) holds on ½0; tend� for all s� s0. h

In the next lemma we show that eu inherits the regularity of u uniformly in s.

Lemma 4.2 Let Assumptions 3.2 to 3.4 be valid. Then there is a s0 [ 0 and a constant
dCav [ 0 such that for all s� s0

AuðtÞ � AeuðtÞk k�dCavs; 0� t� tend: ð4:4Þ

In particular, eu satisfies the generalized finite-energy condition uniformly in s� s0, i.e.,

max AeuðtÞk k; eu0ðtÞ�� ��
 �
� eK ; 0� t� tend; ð4:5Þ

where s0 and the constants dCav and eK depend on rX , u0, tend, the finite energy K defined in
(2.1), the filter functions, and the embedding constant Cemb, but not on s.

Proof We proceed as in the proof of Theorem 4.1 and define t0 by

t0 :¼ supfs 2 ð0; tend� j max
t2½0;s�

AeuðtÞk k� 2Kg :

For 0� t� t0, (4.1), (4.2), and (A5b0) imply
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AuðtÞ � AeuðtÞk k ¼
���
Z t

0

Aeðt�sÞA f
�
s; uðsÞ

�
� ef �s; euðsÞ�� �

ds
���

� AI1ðtÞk k þ AI2ðtÞk k þ C 2Kð Þ
Z t

0

uðsÞ � euðsÞk k ds

� AI1ðtÞk k þ AI2ðtÞk k þ s2tC 2Kð ÞCav:

With Remark 3.15, similar arguments as before yield OðsÞ bounds for AI1ðtÞk k and

AI2ðtÞk k. By possibly reducing s0 we obtain the result for 0� t� tend. This immediately

implies the first bound in (4.5) and the second bound is then obtained from (2.8). h

Remark 4.3 Note that Theorem 4.1 and Lemma 4.2 remain true for W ¼ I as for this

choice I1ðtÞ ¼ 0 and the proof does not require (F3). This case is of interest for methods

(2.5) and (2.6).

5 Abstract assumptions on the methods

In this section we characterize the classes of methods which are covered by our error

analysis.

We recall that u denotes the solution of the original problem (2.2) and eu the solution of

the averaged problem (2.8). Further, we denote the numerical flow by Ss and the defect by

dn, i.e., a one-step method is given by

unþ1 ¼ Ssðtn; unÞ; dn ¼ Ss
�
tn; euðtnÞ�� euðtnþ1Þ: ð5:1Þ

We start with an assumption on the stability of the method.

Assumption 5.1 (Stability) The method applied to (2.8) is stable in the sense that for all

v 2 DðAÞ; w 2 X, t	 0,

Ssðt; vÞ � Ssðt;wÞ ¼ esA v� wð Þ þ sJ t; v;wð Þ; ð5:2Þ

where J : R�DðAÞ � X ! X is bounded by

J t; v;wð Þk k�CJ vk kDðAÞ; wk k
� �

v� wk k; t 2 ½0; tend�: ð5:3Þ

Next, we consider the consistency.

Assumption 5.2 (Consistency for order one) The method applied to the original equation

(2.2) satisfies Assumption 5.1 (with / ¼ w ¼ 1) and its defect (5.1) satisfies

dnk k�Cs2 ;

where C[ 0 is independent of s and n.

For second-order methods, our analysis requires a particular structure of the defect. Before

we state this in an abstract way, we briefly motivate it. Most of the methods we consider

are constructed from the variation-of-constants formula
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euðtnþ1Þ ¼ esAeuðtnÞ þ s
Z1

0

eð1�sÞsA ef ðtn þ ss; euðtn þ ssÞÞ ds ; ð5:4Þ

where only the integral term is approximated. Hence, this defect can be expressed as some

quadrature error that contains the second derivative in s of

f1ðsÞ ¼ sef ðtn þ ss; euðtn þ ssÞÞ or f2ðsÞ ¼ eð1�sÞsAf1ðsÞ ; ð5:5Þ

depending on the precise method. Terms of order s3 do not cause any difficulties. However,
terms of lower order exist which, in general, require more careful treatment. From f1 we

obtain the second-order term

s2Jef
�
tn þ ss; euðtn þ ssÞ

� 0

sAUð ÞAeuðtn þ ssÞ

� �
ð5:6Þ

and f2 gives in addition the term

s2 sAWð Þeð1�sÞsAAf ðtn þ ss;Ueuðtn þ ssÞÞ: ð5:7Þ

For these terms property (OF4) needs to be used in order to carry over the local conver-

gence order to the global error. Similar terms are obtained for the defect of the splitting

scheme (2.4). Together with the integral in (5.4), equations (5.7) and (5.6) give rise to the

following general structure of dn.

Assumption 5.3 (Structure of defects for order two) The defect dn defined in (5.1) of a

numerical method applied to the averaged equation (2.8) is of the form

dn ¼ dð1Þn þ dð2Þn þ Dn ð5:8Þ

with Dnk k�Cs3, where the constant C[ 0 is independent of s and n. In addition, one of

the following sets of conditions is satisfied:

(a) If /;w are filters of order 2, then there exist wn 2 X and a linear map Wn : X !
DðAÞ which satisfy

wnk k�C; ð5:9aÞ

Wnk kX X �C; ð5:9bÞ

AWnk kX X �C; ð5:9cÞ

with a constant C which is independent of s and n such that dðiÞn can be written as

dð1Þn ¼ s2
�
sAW

�
wn ; dð2Þn ¼ s2Wn

�
sAU

�
AeuðtnÞ ; ð5:10Þ

(b) If w ¼ 1 and / is a filter of order 2, then (5.9) and (5.10) hold with wn ¼ 0 for all n.

Remark 5.4 From (5.9) and (OF2) one can directly derive dnk k�Cs2. However, this
would only yield a suboptimal first-order bound in the global error.

The following proposition embeds the methods presented in Sect. 2.2 in the abstract

framework.
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Proposition 5.5 Let Assumptions 3.2 to 3.4 be satisfied.

(a) The Strang splitting methods (2.3a) and (2.3b) applied to the averaged equation
(2.8) satisfy Assumptions 5.1, 5.2, and 5.3 (a).

(b) The second-order variant of the Lie splitting (2.4) applied to the averaged equation
(2.8) satisfies Assumptions 5.1 and 5.3 (a).

(c) The exponential Runge–Kutta method (2.5) applied to the averaged equation (2.8)

satisfies Assumptions 5.1, 5.2, and 5.3 (b).

Proof Assumption 5.1 is easily verified for all schemes. We only prove part (a) for the

Strang splitting
�
A; ef ;A� as the statement for the

�ef ;A; ef � variant and part (c) can be

adapted from this proof. We comment on part (b) below.

Let tnþn :¼ tn þ sn, eunþn :¼ euðtnþnÞ, and ef nþn :¼ ef ðtnþn; eunþnÞ. Since we can write the

scheme as

Ss
�
tn; eun� ¼ esAeun þ se

s
2
A ef �tnþ1=2; es

2
Aeun�;

the defect is given by

dn ¼ esAeun þ se
s
2
Aef �tnþ1=2; es

2
Aeun�� eunþ1

¼ se
s
2Aef �tnþ1=2; es

2Aeun��
Zs

0

eðs�nÞA ef nþn dn
¼ bI1 þ bI2;

where

bI1 ¼ se
s
2
A ef nþ1=2 �

Zs

0

eðs�nÞAef nþn dn
bI2 ¼ se

s
2
A
�ef �tnþ1=2; es

2
Aeun�� ef nþ1=2� :

bI1 is the quadrature error of the midpoint rule. It can be written in terms of the Peano kernel

j2 as

bI1 ¼ s
Z1

0

j2ðnÞ
d2

dn2

�
eð1�nÞsA ef nþn

�
dn

¼ s3
Z1

0

j2ðnÞeð1�nÞsAA2Wf ðtnþn;UeunþnÞ dn

þ s3
Z1

0

j2ðnÞeð1�nÞsAWJf
�
tnþn;Ueunþn� 0

AUAeunþn
 !

dnþ bDð1Þn

with bDð1Þn

��� ����Cs3. Again using the variation-of-constants formula, (OF2), (A5a0), and

(A5b0) we obtain
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bI1 ¼ s3
Z1

0

j2ðnÞeð1�nÞsAA2Wf ðtnþn;UensAeunÞ dn

þ s3
Z1

0

j2ðnÞeð1�nÞsAWJf
�
tnþn;Ueunþn� 0

AUAensAeun
 !

dnþ bDn

¼: s3AWwn þ s3WnAUAeun þ bDn ;

with
�� bDn

���Cs3.

To bound bI2 recall that ef only depends on the first component of eu. Using (A5a0), the

variation-of-constants formula, and p1ef nþ1=2 ¼ 0, we have

ef �tnþ1=2; es
2
Aeun�� ef nþ1=2

��� ��� ¼ ef �tnþ1=2; p1es
2
Aeun�� ef �tnþ1=2; p1eunþ1=2�

��� ���
�CðrXÞ p1

�
e
s
2
Aeun � eunþ1=2

���� ���

¼ CðrXÞ
���p1
�
s
2
ef nþ1=2 �

Zs=2

0

eðs=2�nÞAef nþn dn
����

�Cs2 ;

since this is just a quadrature error of the (right) rectangular rule.

The properties (5.9a) to (5.9c) follow directly from Lemma 3.9. Using the first order

Peano kernel j1, Assumption 5.2 is verified by writing

bI1 ¼ s
Z1

0

j1ðnÞ
d

dn

�
eð1�nÞsAef nþn

�
dn

as this yields
��bI1���Cs2 for w ¼ / ¼ 1 by (A10) and (A30).

We briefly comment on the scheme (2.4). The defect can be written as

dn ¼ esA
�eun þ sef �tnþ1=2; eun�þ s2

2
r
�
tnþ1=2; eun�

�
� eunþ1

¼
Zs

0

d

dn

�
enA
�eunþ1�n þ nef �tnþ1=2; eunþ1�n�þ n2

2
r
�
tnþ1=2; eunþ1�n��

�
dn

¼
Zs

0

enA
�ef �tnþ1=2; eunþ1�n�� ef nþ1�n

�
dn

þ
Zs

0

n2

2
enA
�
d

dn
r
�
tnþ1=2; eunþ1�n�þ Ar

�
tnþ1=2; eunþ1�n�

�
dn

¼ bI3 þ bI4 :
In the first term bI3 we add and subtract ses=2Aef nþ1=2 and get the quadrature error of the
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midpoint rule. The term bI4 admits a similar structure as in bI1 and hence Assumption 5.3

can be verified as before. h

Remark 5.6 We note that method (2.4) applied to the original equation (2.2) does not

satisfy Assumption 5.2.

6 Main result for exponential one-step methods

The following result is the last step towards our main Theorem 6.2. It states the global

error of a numerical integrator applied to the averaged equation (2.8) with suitable filters

satisfying our assumptions (e.g., all the methods of Sect. 2.2) is second order accurate. As

before, u denotes the solution of the original problem (2.2) and eu the solution of the

averaged problem (2.8).

Theorem 6.1 (Global error of the averaged problem) Let Assumptions 3.2 to 3.4 be ful-
filled. Moreover, let ðunÞn be the numerical approximations of a scheme applied to the

averaged equation (2.8) that satisfies Assumptions 5.1 and 5.3. Then there is a s0 [ 0 and
a constant Ce[ 0 such that for all s� s0

un � euðtnÞk k�Ce s
2; 0� tn ¼ ns� tend:

The constant Ce and s0 depend on u0, tend, the finite energy K defined in (2.1), the filter
functions, and the embedding constant Cemb, but are independent of s and n.

Proof The proof makes use of the error recursion from [12] and adapts techniques from

Theorem 5.3 in [2].

Due to definition (5.1) of the defect dn, the global error een ¼ euðtnÞ � un can be written

as

eenþ1 ¼ Ssðtn; euðtnÞÞ � Ssðtn; unÞ � dn:

By Assumption 5.1, the global error satisfies

eenþ1 ¼ eðnþ1ÞsAee0 þ s
Xn
j¼0

eðn�jÞsAJ
�
tj; euðtjÞ; uj��X

n

j¼0
eðn�jÞsAdj: ð6:1Þ

The error bound follows from a discrete Gronwall lemma, once we established the bound

���Xn
j¼0

eðn�jÞsAdj
����Cds

2 ð6:2Þ

with a constant Cd being independent of s and n.
The proof is done by induction on n. For n ¼ 0, the statement is obviously true. Hence

we assume that for all 0� k� n it holds

ukk k� rX; uk � euðtkÞk k�Ce s
2; Ce :¼ Cd e

CJ ðeK ;rXÞtend :

By Assumption 5.3, the defect is split into three parts, which motivates to write
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Xn
j¼0

eðn�jÞsAdj ¼ eeð1Þnþ1 þ eeð2Þnþ1 þ eeðDÞnþ1;

where

eeð‘Þnþ1 ¼
Xn
j¼0

eðn�jÞsAdð‘Þj ; ‘ ¼ 1; 2; eeðDÞnþ1 ¼
Xn
j¼0

eðn�jÞsADj:

Since Dj

�� ���Cs3 and ns� tend we easily see

���eeðDÞnþ1

��� ¼ ���Xn
j¼0

eðn�jÞsADj

����Cs2:

To bound eeð‘Þnþ1, ‘ ¼ 1; 2, we define

En ¼
Xn
j¼0

ejsA and Fn ¼
Xn
j¼0
euðtjÞ:

Summation-by-parts, Assumption 5.3, and (OF4) yield

Xn
j¼0

eðn�jÞsAdð1Þj ¼ End
ð1Þ
0 þ

Xn�1
j¼0

En�j�1
�
dð1Þjþ1 � dð1Þj

�

¼ s3EnAWw0 þ s3
Xn�1
j¼0

En�j�1AW
�
wjþ1 � wj

�

¼ s2EnðesA � IÞHWw0

þ s2
�
s
Xn�1
j¼0

En�j�1ðesA � IÞHW
1

s

�
wjþ1 � wj

��
:

To bound EjðesA � IÞ we exploit a telescopic sum to get

EjðesA � IÞ
�� �� ¼ ���X

j

k¼0
eksAðesA � IÞ

��� ¼ eðjþ1ÞsA � I
�� ��� 2:

Together with (5.9a) and (OF4) this yields (6.2) for dð1Þj instead of dj.

Next we consider eeð2Þnþ1. Again, Assumption 5.3, summation-by-parts, and (OF4) with

v ¼ U yield

Xn
j¼0

eðn�jÞsAdð2Þj ¼ s3WnAUAFn þ s3
Xn�1
j¼0

eðn�jÞsA
�
Wj � e�sAWjþ1

�
AUAFj

¼ s2WnHUðesA � IÞAFn

þ s2
�
s
Xn�1
j¼0

eðn�jÞsA
1

s

�
Wj � e�sAWjþ1

�
HUðesA � IÞAFj

�
:

Here, we have
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1

s

�
Wj � e�sAWjþ1

�
¼ 1

s
e�sA

�
Wj �Wjþ1

�
� 1

s
ðe�sA � IÞWj:

The terms can be estimated by (5.9b) and (5.9c)

��� 1
s
e�sA

�
Wj �Wjþ1

����
X X
¼
��� 1
s

�
Wj �Wjþ1

����
X X
�C;

��� 1
s
ðe�sA � IÞWj

���
X X
¼
���u1ð�sAÞAWj

���
X X
�C;

since u1ðzÞj j � 1 for z 2 iR.

Next we consider ðesA � IÞAFj for j� n. After adding the exact solution we apply the

variation-of-constants formula, (A30), and (4.5), which gives

���ðesA � IÞAFj

��� ¼ ���AX
j

k¼0
ðesAeuðtkÞ � euðtk þ sÞÞ þ A

Xj
k¼0
ðeuðtk þ sÞ � euðtkÞÞ

���

¼
���X

j

k¼0

Z s

0

eðs�sÞAAef ðeuðtk þ sÞÞ dsþ Aðeuðtjþ1Þ � eu0Þ
���

� tendCð eKÞ þ 2 eK :

This yields (6.2) for dð2Þj instead of dj and together with the results above proves (6.2).

Finally, (5.3), (6.1), (6.2), and ee0 ¼ 0 give

eenþ1k k ¼
���sXn

j¼0
eðn�jÞsAJ

�
tj; euðtjÞ; uj��X

n

j¼0
eðn�jÞsAdj

���

�Cds
2 þ s

Xn
j¼1

CJ ð eK ; rXÞ eej�� �� :
A discrete Gronwall Lemma thus yields

eenþ1k k� s2 Cd e
CJ ðeK ;rXÞtend ¼ Ces

2;

unþ1k k� euðtnþ1Þk k þ eenþ1k k� 3

4
rX þ Ces

2� rX

for s� s0� 1
2

�
rX
Ce

�1=2
and the induction is closed. h

Our main result is the following theorem.

Theorem 6.2 Let Assumptions 3.2 to 3.4 be fulfilled. Further let ðunÞn be the numerical

approximations of a scheme that satisfies Assumptions 5.1 and 5.3.

(a) If the method also satisfies Assumptions 5.2 and is applied to the original equation
(2.2), then there is a s0 [ 0 and a constant C1 [ 0 such that for all s� s0

un � uðtnÞk k�C1s; 0� tn ¼ ns� tend :

(b) Let /;w such that Assumption 5.3 is satisfied. Then there is a s0 [ 0 and a constant
C2 [ 0 such that for all s� s0

un � uðtnÞk k�C2s
2; 0� tn ¼ ns� tend;
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if the method is applied to the averaged equation (2.8).

The constants C1;C2 and s0 depend on u0, tend, the finite energy K defined in (2.1), the filter
functions, and the embedding constant Cemb, but are independent of s and n.

Proof Part (a) follows directly from Assumption 5.2 and equation (6.1). For part (b), we
simply combine Theorem 4.1 and Theorem 6.1 by the triangle inequality (2.9). h

7 Main result for exponential multistep methods

We briefly indicate how to extend the developed theory to the exponential multistep

methods of Sect. 2.2.4. The first-order convergence as in part (a) of Theorem 6.2 is easily

shown. To get second order, Assumption 5.1 needs to be modified.

For method (2.6), we denote the numerical flow by Ssðt; vn; vn�1Þ and obtain

Ssðt; vn; vn�1Þ � Ssðt;wn;wn�1Þ ¼ esA
�
vn � wn

�
þ sJ n;

where J n ¼ J
�
t; vn; vn�1;wn;wn�1

�
is bounded by

J nk k�CJ
�
vnk k; wnk k

�
vn � wnk k

þ CJ
�
vn�1k k; wn�1k k

�
vn�1 � wn�1k k; t 2 ½0; tend�:

This yields the following convergence result.

Corollary 7.1 Let Assumptions 3.2 to 3.4 be valid. Consider the numerical approximations
ðunÞn from (2.6) applied to the averaged equation (2.8) with w ¼ 1 and a filter / of order

2. Then there is a s0 [ 0 and a constant C[ 0 such that for all s� s0

uðtnÞ � unk k�Cs2; 0� tn ¼ ns� tend;

where C and s0 depend on u0, tend, the finite energy K defined in (2.1), the filter functions,
and the embedding constant Cemb, but are independent of s and n.

Proof We first employ Theorem 4.1 and Lemma 4.2, so again it remains to prove the error

in approximating the filtered solution. As in the proof of [19, Thm. 4.3] the defect stems

from a quadrature error that yields the dominant terms as in (5.6). Considering the defect

dn ¼ Ss
�
tn; euðtnÞ; euðtn�1Þ�� euðtnþ1Þ ;

Assumption 5.3 (b) is satisfied and a slight modification of the proof of Theorem 6.1 yields

the assertion. h

For method (2.7) we have

Ssðt; vn; vn�1Þ � Ssðt;wn;wn�1Þ ¼ e2sA
�
vn�1 � wn�1

�
þ sJ n

where J n ¼ J t; vn;wnð Þ is bounded by

J nk k�CJ
�
vnk k; wnk k

�
vn � wnk k; 8t 2 ½0; tend�:

In order to apply the techniques from above we define the modification
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v2 : Cb
�
iR
�
! Cb

�
iR
�
; vð�Þ 7! vð2�Þ ;

and can state the following result.

Corollary 7.2 Let Assumptions 3.2 to 3.4 be valid and u be the classical solution of (2.2).
Consider the numerical approximations ðunÞn from (2.7) applied to the averaged

equation (2.8) with filters v2w; v2/ where w;/ are filters of order 2. Then there is a s0 [ 0

and a constant C[ 0 such that for all s� s0

uðtnÞ � unk k�Cs2; 0� tn ¼ ns� tend;

where C and s0 depend on u0, tend, the finite energy K defined in (2.1), the filter functions,
and the embedding constant Cemb, but are independent of s and n.

Proof Since the method stems from a midpoint rule applied to the variation-of-constants

formula the defect is again given with dominant terms similar to (5.6) and (5.7). If we

resolve the error recursion, we only obtain every second defect and the propagation is

driven by e2sA. As ez in (F3) is replaced by e2z, this can be combined to conclude the

assertion similar to the proof of Theorem 6.1. h
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