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Abstract 

Due to the hydroxyl generation, the silica network ahead of crack tips is 
damaged. The consequence is a damaged crack-tip zone showing a reduced 
Young’s modulus. The linear-elastic fracture mechanical treatment by appli-
cation of stress intensity factors becomes doubtful especially for large zones. 
In this report, we use a description via well-known models of Elastic-Plastic 
Fracture Mechanics, namely, the models by Irwin and Dugdale. 
As an application we compared the results with experimental observations on 
crack profiles from literature. The computed and observed Crack-Tip Opening 
Displacements (CTOD) were found to be in good agreement.  
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1. Introduction 

The reaction of water and silica in the surface diffusion zone affects the fracture 
mechanics stress intensity factor K at the tips of cracks. At temperatures T < 450°C, 
the equilibrium constant k1 of the water/silica-reaction  

 Si-O-Si +H2O  SiOH+HOSi (1) 

is given by 

 
C

S
k 1 .  (2) 

where, S = [SiOH], is the concentration of the hydroxyl groups in the silica network 
and C = [H2O] the concentration of unreacted water. 
According to Le Chatelier [1], the equation governing the equilibrium constant is 
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where p is pressure, V  is the reaction volume, R the universal gas constant, and T the 
temperature in °K.  
In gases and liquids, the loading is always hydrostatic. In a solid the situation is more 
complicated, since the individual stress components x, y, z are in general indepen-
dent of each other and are not necessarily hydrostatic. Especially in uniaxial tension or 
compression, the hydrostatic stress deviates clearly from the tensile stress. In contrast 
to this, the stress state ahead of crack tips is more hydrostatic since the stress in the 
prospective plane and the stress normal on this plane are identical, x=y, and the 
stress z is very close to the tip: z=(x+y), =Poisson’s ratio. 
By replacing the hydrostatic pressure p by the hydrostatic stress h in a solid  
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1
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we obtain with the hydroxyl concentration S0 for h=0 
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The singular hydrostatic near-tip stresses together with eq.(5) implies that in the high 
crack-tip stress field nearly all water is present exclusively in form of hydroxyl S.  

2. Motivation for the application of the plasticity models 

Subcritical crack growth tests in heavy water were carried out on DCDC specimens of 
silica by Lechenault et al. [2]. The water entrance into the fracture surfaces, formed by 
the passage of the crack exposed to deuterium oxide D2O, was evaluated with a 
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neutron reflection technique to measure the penetration of the deuterium oxide into the 
silica glass. The authors found a satisfactory fit to the reflection data by assuming that 
the water concentration was constant at the surface up to a distance of L, followed by 
an exponential decrease in concentration for distances greater than L. 

 

 
Fig. 1 Water profiles expressed by the neutron reflectivity  measured by Lechenault et al. [2] on 

DCDC specimens fractured in heavy water. 

Lechenault et al. [2] fitted their results by the expression 
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and found the parameters L=4.3 nm, =3.5 nm for a region of low crack rates (v10-8 
m/s) at K= 0.61 MPa∙m1/2 and L=4.6 nm, =2.3 nm for higher crack rates (v4 10-6 m/s) 
at K= 0.77 MPa∙m1/2. These water profiles are illustrated in Fig. 1. Their flat behaviour 
over an extended region calls for the application of the Dugdale- and the Irwin-model 
developed for linear-elastic perfectly plastic materials.   

3 Hydroxyl damage and Young’s modulus 
The hydroxyl generation by the reaction eq.(1) causes damage since the originally 
intact silica ring structure is cracked by the water attack. One of the consequences of 
such damage is the reduction of Young’s modulus E. In order to describe this E-
decrease, we used in [3] the rather simple damage model proposed by Phani and 
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Niyogi [4]. When ED is the modulus in the damaged state and E0 the value for un-
damaged silica, we could derive the relation [3] 

 2
max

2

0

)/1()1( SSS
E

ED    (7) 

with =5.3 [4.35, 6.25] (90%-CI in brackets). The hydroxyl concentration at which the 
Young's modulus disappears is Smax =1/= 0.188 [0.16, 0.23]. Under the condition that 
the damage is isotropic and Poisson’s ratio  remains sufficiently constant [5], the 
multiaxiality in damaged states remains unchanged.  
When the reaction (1) has taken place, the applied stresses h,appl decrease according to 
eq.(5) to h and the hydroxyl concentration is 

 ]exp[0 hSS  ,     
RT

V
   (8) 

Consequently, the hydroxyl concentration as a function of the hydrostatic stress, eq.(5), 
can be written in terms of the applied ones as 

 ])/1(exp[ 2
max,0 SSSS applh     (9) 

Equation (9) is an implicit equation since the unknown concentration S occurs on both 
sides. The solution can be found by numerical methods (e.g. by the subroutine Find-
Root of Mathematica [6]). 
Figure 2a shows the hydroxyl concentration as a function of h,appl and S0. Figure 2b 
represents the hydrostatic stress under damage conditions as a function of the external-
ly applied hydrostatic stress for several initial hydroxyl concentrations S0. The maxi-
mum hydrostatic stress, asymptotically reached for h.appl, is according to eq.(5) 
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The true stresses h,D of Fig. 2b may be simplified by a bi-linear description as intro-
duced by the dash-dotted lines in Fig. 2b. In this case, the maximum possible stress in 
the damaged state is depending on the parameter , containing the temperature. In the 
sense of an upper limit solution, the stresses can be approximated as  
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It is clear that use of the approximation of the curves in Fig. 2b by eq.(11) must over-
estimate the real stresses. 
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Fig. 2 a) Hydroxyl concentration vs. applied stress under condition of constant strains, b) hydrostatic 
stress in the damaged material h,D as a function of the applied hydrostatic stress h,appl and the initial 
hydroxyl concentration S0 with the abbreviation  defined by eq.(8), limits of hydrostatic stress and 

approximation by an upper bound description (dash-dotted straight lines). 

4 Irwin and Dugdale model 

Due to the damage via hydroxyl generation, the stress-strain behavior at a crack tip is 
no longer linear. By application of the bi-linearized dependency, eq.(11), fracture 
mechanics problems can be approximately solved applying the well-known Irwin and 
Dugdale models, originally developed for elastic/plastic material behaviour.  
Whereas the Irwin model [7] is preferred for circular “plastic zones”, the Dugdale 
model [8] describes also plastic deformations in a narrow strip in front of the crack.  
According to these models the “length” L of the “plastic” zone, (Fig. 3a), is under plane 
stress conditions 
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where Y is the “yield stress” for the case of a linear-elastic/ideal-plastic material. 
Whereas in the Irwin model the size of the “plastic zone” was computed from “yield”-
condition appl,y=Y and along the prospective crack plane by force equilibrium, the 
size of the Dugdale zone results from the condition that the stress intensity factor for 
the fictive crack in Fig. 3a disappears. So the shape of the zones is not fixed, especially 
not for the Dugdale zone. The latter is mostly concentrated along the x-axis. 
In the Dugdale model the stresses are normal to the crack plane, =y. In this case, the 
ratio of the hydrostatic stress to the normal stress is  
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 3
1/ yh   (13) 

The opening at the tip of the physical crack, called Crack Tip Opening Displacement 
(CTOD), t, is illustrated in Fig. 3b and determined in Fig. 4b 
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For the damage zone ahead a crack, the Irwin model may be preferred here. The normal 
stress along the prospective crack plane is according to (13): 

 max.,3 DhY    (15) 

In the derivation of the Dugdale formula, it was assumed that there exists an internal 
through-the-thickness crack in an infinite plate and that the yield stress is constant over 
the zone size L regardless of the locally varying strains. 

 

 
Fig. 3 a) Stress distribution curve near a crack tip (black curve) approximated by an elastic-“plastic” 

material behaviour (red curve) in the crack-tip region (zone shape is not necessarily a circle), b) crack 
tip opening displacement (CTOD) t, c) observable crack profile. 

5. Experimental observation 
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been given. In their paper the authors show COD-profiles of cracks under load which 
were produced in thin silica sheets of 20-40nm thickness. Two of the images by Bando 
et al. [9] show cracks which were damaged in air and rather rapidly transferred into the 
TEM-device. The squares of the COD are shown in Fig 4a (Fig. 1B and Fig. 2A).  
A specimen was cracked with a needle and then soaked for 7 days in water of 90°C. 
The squares of COD are given by the black data points in Fig. 4a. The opening at the 
tip of the physical crack, called Crack Tip Opening Displacement (CTOD), t, is in 
fracture mechanics defined somewhat arbitrarily as twice the COD in a distance of r = 

½ t [10], ensuring the 90° angle, as is indicated in Fig. 4b. 

 

 

 

Fig. 4 a) Squares of crack opening displacements in dependence of the crack-tip distance, b) crack 
opening displacements for the water-soaked specimen, Fig. 2B of [9]. 
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On the basis of this profile, Bando et al. [9] claimed that crack-tip blunting would 
occur at the tip. For an explanation of their blunting effect, they discussed a process of 
dissolution and precipitation, depending on the local curvature. 

Very early this conclusion was questioned by Lawn et al. [11]. It was shown by these 
authors that an evaluation of crack opening displacements via the Irwin parabola 
results in an impossibly high stress intensity factor which was by a factor of 3-4 larger 
than the fracture toughness of KIc=0.8 MPam. Similar argumentation holds for the 
other cracks, too.   
Lawn et al. [11] evaluated the COD of the crack in Fig. 2A (measured in humid air). 
They obtained over the distance of 150 nm from the crack tip:  

 mMPa2.07.2 K  (16) 

In Fig.4a the squares of the displacements, (uy)
2, are plotted versus the crack tip 

distance r for all cracks. Using the near-tip solution for the displacements (counted 
from the symmetry line to the crack surface), the so-called Irwin parabola,  

 )(
8 2/3rOr

E

K
uy 


 (17) 

suggests linearity of the plots (uy)
2=f(r) with the slope resulting in K. It should be 

mentioned that in fracture mechanics the displacements are the difference of the 
deformed structure to the undeformed one. From linear regression it results for the 
tests in air (90% CI in brackets) 

 mMPa]68.2,62.2[65.21B K  (18) 

 mMPa]51.2,45.2[48.22A K  (19) 

and for the 7 days water-soaked crack 

 mMPa]04.3,69.2[87.22B K  (20) 

The stress intensity factors obtained from the far-field displacements are all in good 
agreement with each other and agree with the result by Lawn et al. [11]. 
Results for zone length and CTOD were obtained by using the molar volume of 

/molcm 5.7 3V [12] and Kappl = 2.87 MPam. Depending on the model, the zone 
lengths L are about L  75 nm and the crack tip opening displacements at about t  20 
nm as compiled in Table 1. The CTOD are in good agreement with the evaluation of 
the crack surface observations yielding 22 nm. The computations were performed 
with E =E0 =72000 MPa.  
The CODs in the near-tip region of Fig. 4b are somewhat blurred. There are several 
contours visible in the original image (Fig. 2B in [9]), shown in Fig. 5. We believe that 
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the thick contour represents the physical crack. The dashed curve shows a zone that 
extends over a distance of about 55 nm. A further shadowy recognizable contour is 
introduced in Fig. 5 by the dotted line. Under the assumption that this line might show 
the damaged zone, a zone length of L>75nm would result. This result agrees with the 
zone lengths for V =7.5 cm3/mol. This is also the case for the CTOD results. The 
zone lengths of Table 1 are introduced in Fig. 5 as the shaded regions ahead the crack 
tip (red: Irwin, blue: Dugdale). 

 
Model h,D,max Y Zone length  L CTOD  t  

Irwin 2109 MPa 6326 MPa 66 nm 23.0 nm   

Dugdale 2109 MPa 6326 MPa 81 nm 18.1 nm 

Table 1 Size L of the Irwin zone and of crack tip opening, t, for the COD-profiles in Fig. 4. 
Applied stress intensity factor: Kappl=2.87 MPam. Computations carried out with E0=72000 MPa and 

S0=10-3 according to measurements by Zouine et al. (see [13] and [14]). 

 

 
Fig. 5 Zone contours visible in the image 2B for the soaked specimen by Bando et al. [9], computed 
crack-tip zones compared with experimental ones, blue: model by Dugdale, red: model by Irwin. 

6 Discussion 

We evaluated the crack-tip opening displacement of the water-soaked specimen and 
obtained CTOD = 22.0 nm. In addition, we computed the CTOD by using the Irwin and 
the Dugdale models. These evaluations yielded CTOD = 18.1 nm for the Dugdale 
model and CTOD = 23 nm for the Irwin model. These astonishing agreements between 
experiment and computations suggest applying the elastic-plastic models for hydroxyl-
damaged silica although the material remains elastic. The reason for this procedure is 
the rather good description of the deformation behavior by the bi-linear relation eq.(11).  
A certain disadvantage of the elastic-plastic approach is the fact that the method does 
not provide an explanation for the high K-factors. In a purely elastic analysis [15] we 
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could show, why the high applied stress intensity factors occurred. From this point of 
view, the purely linear-elastic approach in [15] is advantageous. 
The transfer of relations (12) and (14) to the problem of hydroxyl-damaged crack tip 
zones is only possible if it is ensured that the water diffusion zone is greater than or 
equal to L. In the absence of molecular water, no damage can occur. This requirement 
is fulfilled in the experiments according to Bando et al. [9]. 
The thin sheet, which was water-soaked for 7 days at 90°C must show a stationary 
water concentration distribution. The reason is that water can diffuse from the two side 
surfaces (Fig. 6) with a diffusion length of  

 tDb   (21) 

The diffusivity is according to Zouine et al. [13] D = 310-19m2/s. With t = 7 days = 6 

105s it results b  400 nm. This is much more than the half sheet thickness of B/2 = 10-
20 nm. Therefore, any diffusion effects can be ignored for this test. In this case, the 
stress-enhanced water diffusion in the singular stress field cannot result in a separate 
diffusion zone. Even in the absence of stress enhancement, the diffusion depth 
compared to the specimen thickness is noteworthy.   

 

 
Fig. 6 Thin sheet of silica soaked with water from the side surfaces. 
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