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During drought, trees reduce water loss and hydraulic failure by closing their

stomata, which also limits photosynthesis. Under severe drought stress, other

acclimation mechanisms are trigged to further reduce transpiration to prevent irreversible

conductance loss. Here, we investigate two of them: the reversible impacts on the

photosynthetic apparatus, lumped as non-stomatal limitations (NSL) of photosynthesis,

and the irreversible effect of premature leaf shedding.We integrate NSL and leaf shedding

with a state-of-the-art tree hydraulic simulation model (SOX+) and parameterize them

with example field measurements to demonstrate the stress-mitigating impact of these

processes. We measured xylem vulnerability, transpiration, and leaf litter fall dynamics in

Pinus sylvestris (L.) saplings grown for 54 days under severe dry-down. The observations

showed that, once transpiration stopped, the rate of leaf shedding strongly increased

until about 30% of leaf area was lost on average. We trained the SOX+ model with the

observations and simulated changes in root-to-canopy conductance with and without

including NSL and leaf shedding. Accounting for NSL improved model representation

of transpiration, while model projections about root-to-canopy conductance loss were

reduced by an overall 6%. Together, NSL and observed leaf shedding reduced projected

losses in conductance by about 13%. In summary, the results highlight the importance

of other than purely stomatal conductance-driven adjustments of drought resistance in

Scots pine. Accounting for acclimation responses to drought, such as morphological

(leaf shedding) and physiological (NSL) adjustments, has the potential to improve tree

hydraulic simulation models, particularly when applied in predicting drought-induced

tree mortality.

Keywords: leaf shedding, non-stomatal limitations of photosynthesis, Scots pine, tree hydraulic simulation

models, xylem vulnerability
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INTRODUCTION

There is increasing evidence that hydraulic failure is a main
trigger of tree death in response to drought and hot drought
(Allen et al., 2015; McDowell et al., 2018; Brodribb et al., 2020).
While trees are well-adapted to respond to seasonal and short-
term increases in soil and atmospheric drought, extreme climatic
conditions, e.g., anomalously high summer temperatures coupled
with low soil water availability, as experienced, for instance,
in central Europe during the summer of 2018 (Hari et al.,
2020; Schuldt et al., 2020), can cause substantial hot drought-
induced damage. Increasing soil and atmospheric drought result
in increasing tree internal water column tensions. As such
tensions rise, air bubbles, i.e., emboli, can form in the xylem,
reducing xylem hydraulic conductance (Tyree and Ewers, 1991).
Reduced xylem conductance limits water transport upward, from
soil to the leaves, which may lead to dehydration of cambium
and apical meristems, canopy dieback, and ultimately tree death
(e.g., Carnicer et al., 2011; Anderegg et al., 2012; Allen et al., 2015;
Choat et al., 2018; Reich et al., 2018; Hesse et al., 2019).

It is well-established that stomatal closure is the first and
foremost mechanism that limits water loss and buildup of
excessive xylem tension (Hall and Kaufmann, 1975; Monteith,
1995; Choat et al., 2018). This comes at a cost of reduced leaf
permeability to CO2, which limits C assimilation (Martorell
et al., 2014; Reich et al., 2018). Much research has focused on
modeling stomatal conductance (gs) to water deficit (Damour
et al., 2010; Mencuccini et al., 2019), as well as tree internal
water balance after stomatal closure (e.g., Martin-St. Paul et al.,
2017; Cochard et al., 2021). To date, many approaches exist that
combine gs responses to decreasing soil water content (SWC)
and increasing vapor pressure deficit (VPD). The approaches
range from empirical relationships (e.g., Leuning, 1995), to
mechanistical descriptions based on optimality theory such as
maximizing C gain per unit of transpiration (e.g., Medlyn et al.,
2011), maximizing transpiration while reducing conductivity loss
(Sperry and Love, 2015), or maximizing C gain while minimizing
loss in hydraulic conductivity (e.g., Sperry et al., 2017; Eller
et al., 2018; 2020). The success of these models has been mixed,
leading to a good representation of broad monthly and annual
transpiration and productivity patterns but often failing to
capture subtler responses arising when drought stress intensifies
(e.g., Drake et al., 2017; Yang et al., 2019; De Kauwe et al., 2020;
Bassiouni and Vico, 2021; Mu et al., 2021; Nadal-Sala et al., 2021).
Hence, challenges to model tree drought responses and mortality
persists albeit increasing developments of optimization-based
tree hydraulic models over the recent years. Therefore, further
model improvements regarding tree acclimation responses to
drought beyond stomatal closure have been recommended (e.g.,
Keenan et al., 2010; Wolfe et al., 2016; Martin-St. Paul et al., 2017;
Sperry et al., 2019; Gourlez de la Motte et al., 2020). To do so,
controlled experiments that address specific tree physiological
responses to drought provide an opportunity to improve and
evaluate the performance of tree hydraulic models (e.g., Hartig
et al., 2012; Medlyn et al., 2015; Dietze et al., 2018).

Under sustained drought, stomatal regulation in response to
CO2 demand on the one hand and evaporation demand on

the other may not be enough to mitigate hydraulic tension and
prevent embolism formation in the xylem. Other responses are,
thus, often triggered to reduce water loss, such as metabolic
changes or increased internal resistance that then feedback
to stomatal conductance, as well as accelerated senescence of
various tissues. In particular, many studies report a slowdown
of the photosynthetic activity during drought (e.g., Xu and
Baldocchi, 2003; Keenan et al., 2010; Yang et al., 2019; Gourlez
de la Motte et al., 2020). Such slowdown may have different
causes such as increased mesophyll resistance (Flexas et al., 2007,
2012; Evans, 2021), drought-related enzymatic down-regulation
(e.g., Flexas et al., 2004; Niinemets and Sack, 2006; Niinemets
et al., 2006; Sugiura et al., 2020), and/or decreasing carbon
demand (Fatichi et al., 2014). Since all these mechanisms lead to
a reduction in water loss, here, we consider them in a lumped
manner as non-stomatal limitations of photosynthesis (NSL),
thereby enabling the consideration of this additional response
process in models that are simulating stand productivity and
transpiration in dependence on water availability (Zhou et al.,
2013; Drake et al., 2017; Yang et al., 2019).

Another key mechanism of how trees can respond to drought
is reducing their leaf area (e.g., Munné-Bosch and Alegre, 2004;
Sala et al., 2010; Martin-St. Paul et al., 2013; Wolfe et al., 2016;
Hochberg et al., 2017; Li et al., 2020; Schuldt et al., 2020).
Drought-induced leaf senescence reduces total tree transpiration,
at the expense of growth at mid-term, as rebuilding canopy
structure requires extra C investment, either from non-structural
carbohydrate reserves or from the assimilation of the remaining
or newly grown leaves once drought stress has been released
(Yan et al., 2017; Ruehr et al., 2019). Additionally, shedding
leaves without full nutrient resorption imply net nutrient losses
(Marchin et al., 2010; Chen et al., 2015), which may further
limit photosynthesis post-drought with consequences for tree
performance in the long term. Leaf shedding tends to occur
after stomata closure; hence, it mainly reduces marginal loss
in water via residual cuticular conductance and incomplete
stomatal closure (e.g., Martin-St. Paul et al., 2017; Cardoso et al.,
2020; Li et al., 2020). Under sustained drought, such water loss
may be critical for tree survival (e.g., Blackman et al., 2016,
2019), especially considering that residual cuticular conductance
increases with temperature (Schuster et al., 2016), leading to
faster dehydration of plants particularly during heat waves.While
leaf shedding, in response to drought, is routine in drought-
deciduous trees (e.g., Ichie et al., 2004; Pineda-García et al.,
2013; Ruehr et al., 2016), it can be rather seen as an emergency
response in temperate conifers, with profound consequences for
drought recovery.

Here, we aim to quantify the importance of NSL and leaf
shedding mechanisms regarding hydraulic safety. To do so, we
measured hydraulic vulnerability, and transpiration and leaf
shedding dynamics in potted P. sylvestris L. saplings exposed to
2-month severe dry-down. Then, we trained a big-leaf canopy
gas exchange simulation model based on the optimization of
stomatal conductance as xylem tension increases (SOX model,
Eller et al., 2018, 2020). The SOX model assumes that trees
regulate stomatal conductance to maximize C uptake while
minimizing loss in soil-to-root hydraulic conductance. Once the
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model was trained, we evaluated the importance of NSL and
leaf shedding for hydraulic regulation. The initial hypotheses
were the following: (1) including non-stomatal limitations of
photosynthesis will improve the representation of transpiration
during drought; (2) seasonal leaf shedding in pine trees is
coordinated with stomata closure to reduce dehydration, and
(3) according to the “leaf fuse” hypothesis (e.g., Hochberg
et al., 2017) leaf shedding will mitigate mid-term losses in
hydraulic conductance.

MATERIALS AND METHODS

Experimental Setup
Potted P sylvestris L. saplings were grown in Garmisch-
Partenkirchen, Germany (708m above sea level, 47◦28′32.9′′N,
11◦3′44.2′′E). Three-year-old Scots pine saplings were purchased
from a local tree nursery in 2018 and planted in individual pots
(120 l, 55 cm in diameter, 70 cm in height; Brute, Rubbermaid,
Atlanta, GA, United States) in a 6:3:1 mixture of potting substrate
(No. 170, Klasmann-Deilmann, Geeste, Germany), perlite
(Perligran Premium, Knauf Performance Materials GmbH,
Dortmund, Germany), and quartz sand (3–6 and 0.1–0.3mm).
Slow-release fertilizer (100 g, Osmocote R© Exact Standard 5-
6M 15-9-12+2MgO+TE, ICL Specialty Fertilizers Benelux, The
Netherlands) was added to the mixture and supplemented by
liquid fertilizer (Manna R© Wuxal Super; Wilhelm HaugGmbh,
Ammerbuch, Germany). FromMay to October 2019, the saplings
were kept inside the adjacent greenhouse and exposed to mild
soil water limitation with air temperature ranging between 10
and 35◦C, to prime the trees for the upcoming experiment.
From October 2019 to July 2020, the saplings were again grown
outside and irrigated once a week fromMay 2020 onwards. After
leaf elongation was finished (mid of July), the then 5-year-old
saplings (n = 16) were transferred to the greenhouse once more
and irrigated to field capacity (SWC ∼0.35 m3 m−3) before the
drought experiment was started. To minimize soil evaporation,
the top of the soil was covered with an opaque plastic sheet, which
was periodically ventilated.

The greenhouse is equipped with special UV-transmissive
glass, and incoming light was supplemented with plant
growth lamps (T-agro 400W; Philips, Hamburg, Germany). Air
temperature and air humidity were computer-regulated (CC600,
RAM Regel- und Messtechnische Apparate GmbH, Herrsching,
Germany). Environmental conditions at canopy height such as
photosynthetic active radiation (PQS 1, Kipp&Zonen, Delft, The
Netherlands), air temperature, and relative humidity (CS215,
Campbell Scientific Inc., Logan, UT, United States) were
monitored and logged at 10-min intervals (CR1000; Campbell
Scientific Inc., Logan, UT, United States). The environmental
conditions during the experiment are shown in Figure 1.

Soil Water Content and Transpiration
We continuously measured soil water content (SWC) and
sap flow in six randomly selected saplings. Measurements
started on DOY 206, but the first week was excluded
from this analysis because of plant acclimation to the new
conditions, and sensor malfunction and re-calibration (data not

shown). Therefore, valid measurements started on DOY 212.
Volumetric SWC was monitored at 0–10 c and 40–50 cm depth
(10HS; Decagon Devices Inc., Pullman, WA, United States,
Supplementary Figure 1) to cover the entire rooting area. To
estimate the water available for each tree, SWC data from the
two depths was averaged. Each SWC sensor was pre-calibrated
to the potting medium following the recommendation of the
manufacturer. Stem sap flow was measured using the heat-
balance method (EMS 62, EMS, Brno, Czech Republic). Sap flow
sensors were installed in the upper part of the canopy (height∼1–
1.5m) as the cylindrical build does not support stem diameters
>2 cm. The sensors were shielded with aluminum bubble foil
to minimize error due to temperature fluctuations. Sap flow
measurements were stored in 30-min intervals. Daily whole-
tree transpiration was calculated by assuming that transpiration
per unit of leaf area (see section Tree Biomass Compartment
Measurement) was equal above and below the sensor, as in a
homogeneously coupled non-shadowed canopy we expected the
environmental drivers to be homogeneous for the leaves above
and below. Therefore, transpiration was calculated as the sum
of the measured sap flow plus the sap flow needed to supply the
transpiration of the leaves below the sensor (Equation 1)

Tr = J∗(1+
LAbelow

LAabove
) (1)

where Tr is the daily whole-tree transpiration (in kg day−1

tree−1), J is the daily sap flow (in kg day−1 tree−1), and
LAbelow/LAabove is the proportion between the leaf area below
the sensor in relation to the leaf area above the sensor (in
m−2 tree−1).

Tree Biomass Compartment Measurement
Loss in leaf biomass was assessed once a week as follows. We
collected and carefully removed already brown needles from the
branches of each individual tree. Leaves were oven-dried at 60◦C
for 48 h, and the dry weight was measured. Total tree biomass
was determined at the end of the experiment and separated
into needles, wood, and roots (Supplementary Table 1). We
separately assessed leaf biomass above and below the sap
flow sensor in order to derive total tree transpiration (see
section Soil Water Content and Transpiration). As needle
elongation was finished before the experiment started, initial leaf
biomass per tree was considered as the sum of the remaining
needles at the end of the experiment plus leaf biomass shed
during the experiment, assuming a constant above-sensor leaf
biomass/below-sensor biomass ratio. In order to obtain the actual
daily leaf biomass time series, we linearly interpolated cumulative
leaf shedding between measurement campaigns and subtracted
it from the initial leaf biomass. For each tree, conversion from
leaf biomass to leaf area was done based on specific leaf area
(SLA, cm2 g−1), obtained by measuring the width and the length
of a representative sub-sample per tree (in total n = 18). No
significant differences were detected between monitored and
not-monitored individuals regarding SLA and tree biomass in
different compartments (see Supplementary Table 1).
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FIGURE 1 | Daily meteorological conditions during the experiment. Upper panel: daylight average photosynthetic active radiation (PAR, in µmol m−2 s−1); middle

panel: maximum (red), minimum (blue), and average (orange) air temperature (in ◦C); bottom panel: maximum (red), minimum (blue), and average (orange) atmospheric

vapor pressure deficit (VPD, in kPa). Note that on DOY 216–217, vapor pressure deficit (VPD) and temperature conditions were lowest because of a cold weather front

that was not compensated by heating the greenhouse.

Xylem Loss in Hydraulic Conductance
Wemeasured xylem vulnerability of branches using the Cavitron
technique (Cochard, 2002). Briefly, the centrifugal force of the
Cavitron increases the negative pressure in the stem while
the hydraulic conductivity and the loss thereof is measured
concurrently. At the beginning of the experiment, we sampled
the terminal part of the lowest branch (∼33 cm long) in five
randomly selected non-monitored trees. Branches were tightly
wrapped in cling film and additionally sealed in plastic bags
before being transported to Innsbruck where they were kept at
4◦C for 2 days. Samples were prepared for the Cavitron as follows:
first, side twigs and needles were removed, and branches were
re-cut under water several times to relax xylem tension, until
a sample length of ∼28 cm was reached and debarked at both
ends (∼5 cm) to avoid clogging of tracheids by resin. The cut
and debarked ends were cleaned with a sharp razor blade. To
remove native embolisms via vacuum infiltration, submerged
samples were subjected to a low-pressure water flow (0.08
MPa) for 30min with distilled, filtered (0.22µm), and degassed
water containing 0.005% (v/v) Micropur. Then, branch segments
were fixed into a custom-made, honeycomb 28-cm rotor and
positioned in a Sorvall RC-5 centrifuge (Thermo Fisher Scientific,
Waltham, MA, United States). Distilled, filtered (0.22-µm pore
size), and degassed water with 0.005% (v/v) Micropur water

purifier (Katadyn Products, Wallisellen, Switzerland) preventing
microbial growth, was used for the measurements. Percent loss
of conductivity (PLC, in %) measurements started at a force of
about −0.5 MPa, which was gradually increased until minimum
xylem hydraulic conductivity (Kxylem, mol m−1 s−1 MPa−1) was
reached. PLC was recorded at about −0.5 MPa pressure increase
steps. We assumed that losses in conductivity reflect losses in
xylem conductance (kxylem, in mol m−2 s−1 MPa−1). In order to
model normalized kxylem (knorm, 0–1) responses to xylem water
potential increase (Ψxylem), we evaluated three different response
functions: a Weibull function (WB), a sigmoid exponential (SE)
function, and the original SOX model function (SOXf)

knorm,WB = 1− (1− e
−(

9xylem
9ref

)
Acoef

) (2)

knorm,SE = 1−
1

(1+ (expAcoef (9xylem−950))
(3)

knorm,SOXf = (
1

1+
(

9xylem

950

)A
coef

) (4)

where knorm,WB, knorm,SE, and knorm,SOXf are the predicted
normalized kxylem of theWB, SE, and SOXf formulations,
respectively. Ψxylem (MPa) is the xylem water potential. In WB,
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Ψref is the reference xylem water potential (MPa) when knorm,WB

is equal to exp(−1) ∼0.37. In SE and SOXf, Ψ50 is the xylem water
potential at which knorm = 0.5. In all the three formulations, Acoef
is a unit-less shaping parameter. See section Xylem Vulnerability
for details about the fitting procedure.

Photosynthesis An/Ci Curves
In order to provide estimates for photosynthetic parameters in
the FvB model, An/Ci curves were measured on trees grown in
the greenhouse in June, 2019. Measurements were made on sun-
exposed needles, using a portable infrared gas analyzer system
(LI-6800, Li-Cor, Inc., Lincoln, NE, United States) with a 6-
cm2 leaf chamber. The measurements were taken at saturating
PAR (PAR ≥ 1,200 µmol m−2s−1). Assimilation in relation to
[CO2] in the intercellular space (An/Ci) curves was generated
by increasing atmospheric CO2 concentration (Ca) inside the
chamber in five steps, starting at ∼400 µmol mol−1 and then
progressively increasing Ca by ∼200 µmol mol−1 each step, up
to a maximum of ∼1,200 µmol mol−1. Leaf temperature (Tleaf,
in ◦C) and other standard variables were also measured. These
measurements were taken under prevailing leaf temperature
(∼25◦C) and humidity conditions within the greenhouse. A total
of 19 An/Ci curves were measured this way. We used these data
to determine carboxylation velocity limited by rubisco activity at
25◦C (Vcmax,25 in µmol m−2 s−1) and the carboxylation velocity
limited by RuBP regeneration rate (Jmax,25 in µmol m−2 s−1).

Modeling Approach
The tree hydraulic modeling approach is based on the process-
based model SOX (Eller et al., 2018, 2020). We have modified
the photosynthetic module, added the possibility to address
non-stomatal-limitations of photosynthesis (see below), and
included a third conductance node (i.e., the soil-to-root hydraulic
conductance, Figure 2). In the following, we refer to themodified
model version as the SOX+ model. Briefly, the model operates
on the assumption that plants regulate stomatal conductance to
maximize photosynthesis, while minimizing the loss in root-to-
canopy water conductance. The model is relatively simple in
terms of parameterization and computational power required
and, hence, applicable for a wide range of ecosystem models.
The environmental drivers required as an input to run the model
are air temperature, PAR, soil water content, and air relative
humidity. Here, we describe the main processes involved such as
the modification for SOX+, while a more in-depth description
of the original SOX model and the analytical solutions for its
equations can be found in Eller et al. (2020).

Water flow within the tree is described as a three-step pathway
with three different hydraulic conductance nodes: the soil-to-root
hydraulic conductance (ksr ,mol m−2 s−1MPa−1), the root-to-
canopy hydraulic conductance (krc, molm−2 s−1MPa−1), and the
leaf-atmosphere hydraulic conductance (gs, mol m−2 s−1). The
model assumes a steady state of tree water status, i.e., it does not
account for tree capacitance. The soil-to-root conductance ksr is
calculated following Campbell (1985):

ksr = ksr,max∗(
SWC

SWCFC
)
(2+ 3

b
)

(5)

FIGURE 2 | Scheme of the SOX+ model. Soil-to-atmosphere is described as

a hydraulic pathway considering three nodes: hydraulic flow from soil to the

roots, mediated by soil-to-root conductance (ksr), hydraulic flow from roots to

the canopy, mediated by root-to-canopy conductance (krc), and hydraulic flow

from the canopy to the atmosphere, mediated by stomatal conductance (gs).

The optimum gs is determined by considering the photosynthetic gain (A)

multiplied by the hydraulic cost function (kcost), which describes the decreases

in krc as Ψcanopy becomes more negative. Transpiration is calculated at the tree

level by multiplying gs and leaf area, and it has a direct effect on canopy water

potential, an indirect effect on soil water content, and therefore on Ψsoil .

Non-stomatal limitations of photosynthesis (NSL) decrease optimum stomatal

conductance because of limiting A when Ψcanopy declines below a predefined

threshold.

where ksr,max is the ksrwhen SWC is at field capacity, SWC
is the volumetric soil water content (m3 m−3), SWCFC is the
volumetric SWC at field capacity (m3 m−3), and b is an empirical
coefficient depending on average soil particle size characteristic,
calculated as described in Campbell (1985). Using ksr on the one
hand, and transpiration per unit of leaf area (E, mol m−2 s−1)
on the other, the model calculates the water potential within the
roots (Ψroot,t) based on Darcy’s law at hourly time-steps as

9root,t = 9soil,t −
E(t−1)

ksr(t−1)
(6)

where Ψsoil,t is the soil water potential at time step t (in MPa),
calculated according to Campbell (1985) from soil physical
properties. Canopy water potential (Ψcanopy,t) is closely linked
to root water potential, which in turn strongly depends on soil
water availability. We assume a simple gravimetrical decline with
height, neglecting a potential influence of stored plant water:

9canopy,t = 9root,t −
E(t−1)

krc(t−1)
− hρg∗10−6 (7)
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where krc(t−1) is the hydraulic conductance from the roots
to the canopy at t – 1 (mol m−2 s−1MPa−1) based on the
canopy water potential at that time. Therefore, we assume that
Ψcanopy,m equals Ψxylem and that krc(Ψcanopy,m) follows the shape
of knorm(Ψxylem), multiplied by the maximum root-to-canopy
hydraulic conductance (krc,max, in mol m−2s−1 Mpa−1). For
representing knorm(Ψxylem), we selected Equation 2, as we found it
represented measured data best (see section Leaf Shedding Speed
Increased Concurrently With Transpiration Stop). Further, h is
the plant height (in m), ρ is the density of water (997 kg m−3),
and g is gravity (9.8m s−2). The 10−6 multiplier transforms Pa
to MPa. For each day, we calculated pre-dawn canopy water
potential (Ψcanopy,PD, MPa) using equation 7 but assuming E(t−1)
≈ 0, which results in Ψcanopy,PD being dependent on Ψsoil minus
the gravimetric component. As in the previous SOX model
iterations (Eller et al., 2018, 2020), SOX+ represents the water
potential in the xylem with a dampened canopy water potential

(Ψcanopy,m, MPa), calculated as
9canopy,t+9canopy,PD

2 for all the hourly
calculations to account for the gradual decline in water potential
along the plant hydraulic pathway. Such assumption greatly
simplifies the calculation of water potential drop within the tree
(e.g., Sperry and Love, 2015; Sperry et al., 2017).

The core assumption in SOX+ is that stomatal conductance
(gs, mol m−2 s−1) is regulated to maximize photosynthetic net
assimilation (An, µmol m−2 s−1) while minimizing the decrease
in xylem hydraulic conductance, represented by root-to-canopy
conductance (krc) here. Eller et al. (2020) solved for gs using an
analytical approximation based on the partial derivatives of An

with respect to CO2 concentration in the chloroplast (Ci, µmol
mol−1) and krc with respect to Ψcanopy,m.

gsSOX = 0.5
∂An

∂Ci
(

√

(
4ξ

∂An/∂Ci
+ 1)− 1) (8)

where δAn/δCi represents the gain in net photosynthesis per unit
of Ci increase, i.e., the positive effect of opening the stomata on
An, solved numerically as in Eller et al. (2020), while ξ represents
the cost in terms of loss in hydraulic conductance of opening the
stomata as canopy water potential declines and/or vapor pressure
deficit increases (Equation 9). Specifically, the lower the ξ, the
lower the stomatal conductance projected by SOX+. If estimates
of gsSOX are lower than a predefined minimum leaf conductance,
representing leaf leakiness once stomata are fully closed (gmin,
in mmol m−2 s−1; here 2 mmol m−2 s−1), we considered gs
equal to gmin, otherwise gs = gsSOX, following Duursma et al.
(2019). Note that in the approach, gmin integrates leaf water losses
both because of imperfect stomatal closure and leaf cuticular
conductance, considering a well-coupled canopy and low wind
speed conditions (e.g., Cochard et al., 2021).

ξ =
2

1
knorm,rc

∗
δknorm,rc

δ9canopy,m
∗rplantmin, 9∗1.6∗VPD

(9)

rplantmin,9 =
rplantmin

knorm,r,c(9canopy,m)
(10)

where VPD is the vapor pressure deficit at leaf level (kPa) and
δknorm,rc

δ9canopy,m
represents the decrease in conductance as mean canopy

water potential increases, solved numerically as described in Eller
et al. (2020). rplant,min is the minimum plant resistance (in MPa
m2 s mol−2), a parameter used to describe the increase in whole
tree resistance with decreasing Ψcanopy,m.

Net assimilation (An) is calculated according to the Farquhar,
von Caemmerer, and Bell photosynthesis model (FvCB, Farquhar
et al., 1980; De Pury and Farquhar, 1997). Briefly, the FvCB
assumes that An is limited by either rubisco carboxylation
velocity (Avc) or RuBP regeneration (Aj), and is calculated
considering dark respiration (Rd). All of these processes depend
on leaf temperature (Farquhar et al., 1980; Harley et al., 1992;
Bernacchi et al., 2001), which we assume to equal air temperature.

An = argmin
(

Avc,Aj

)

− Rd (11)

As novelty compared with the original SOX model, SOX+
accounts for non-stomatal limitations (NSL) in photosynthesis,
as have been repeatedly found important to properly represent
reductions of transpiration and productivity under drought stress
(e.g., Keenan et al., 2010; Duursma and Medlyn, 2012; Drake
et al., 2017; Yang et al., 2019, Gourlez de laMotte et al., 2020). NSL
assume that additional constrains on An arise with decreasing
Ψcanopy from mesophyll conductance reductions, biochemical
limitations, or other indirect effects (e.g., Fatichi et al., 2014).
Here, note that in SOX+ and according to Equation 8, NSL will
result in a reduction in δAn/δCi, thus also indirectly leading to
reduced gsSOX. In SOX+, declining Ψcanopy,m[f (Ψcanopy,m), unit-
less, its value ranging between 1 (no limitation) and 0 (complete
limitation)] is calculated based on Tuzet et al. (2003) as follows:

f
(

9canopy,m
)

= (
1+ exp(a

∗
Tuz9ref ,Tuz)

1+ exp[a
∗
Tuz

(

9ref ,Tuz−9canopy,m
)

]
) (12)

where Ψref ,Tuz and aTuz are two empirically determined
parameters, Ψref ,Tuz being a reference canopy water potential (in
MPa), as defined in Tuzet et al. (2003), and aTuz being a unit-less
coefficient that determines the sensitivity of the sigmoid curve
to Ψcanopy,mreductions. After simulating f (Ψcanopy,m), apparent
Vcmax and apparent Jmax are computed as

Xapparent = X∗
max,25f

(

9canopy,m
)

(13)

where the Xapparent (µmol m−2 s−1) is the apparent kinetic
parameter value for either Vcmax or Jmax for a Xmax,25 (µmol
m−2 s−1) reference value (see Table 2) multiplied by the
NSL (Equation 12), represented by the unit-less stress term f
(Ψcanopy,m). These new kinetic parameters accounting for direct
impacts of Ψcanopy decline on photosynthesis are then used to
calculate Avc and Aj in Equation 11.

Because of the feedbackmechanism betweenAn and gs, SOX+
solves both processes iteratively for the equilibrium Ci.

Model Parameterization and Calibration
Photosynthesis in the FvCB Model
Temperature dependencies of rubisco kinetics were obtained
from Bernacchi et al. (2001). Temperature dependencies for
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TABLE 1 | Fixed, not previously calibrated parameters used in the SOX+ model.

Parameter Units Value Source

EaVcmax J mol−1 52,750 Wang et al. (1996)

EdVcmax J mol−1 202,600 Wang et al. (1996)

SVcmax J mol−1 K−1 669 Wang et al. (1996)

EaJmax J mol−1 61,750 Wang et al. (1996)

EdJmax J mol−1 185,600 Wang et al. (1996)

SJmax J mol−1K−1 621 Wang et al. (1996)

Rd25 µmol m−2 s−1 0.5 Calculated as Vcmax,25

* 0.015

Q10 unitless 2 This study

Γ *
25 µmol mol−1 42.2 Bernacchi et al. (2001)

EaΓ * J mol−1 37,830 Bernacchi et al. (2001)

Kc,25 µmol mol−1 404 Bernacchi et al. (2001)

EaKc J mol−1 84,200 Bernacchi et al. (2001)

KO,25 µmol mol−1 278,000 Bernacchi et al. (2001)

EaKO J mol−1 15,200 Bernacchi et al. (2001)

gmin mmol m−2 s−1 2 This study

LA m−2 1.35 This study

Height M 2 This study

SoilDensity g cm−3 1.3 This study

FieldCapacity cm−3cm−3 0.35 This study

EaVcmax , EdVcmax , and SVcmax are the activation energy, deactivation energy, and entropy

for the Vcmax temperature response, respectively. EaJmax , EdJmax , and SJmax are the

activation energy, deactivation energy, and entropy for the Jmax temperature response.

Rd25 is the dark respiration at 25
◦C, calculated from Vcmax,25 according to Collatz et al.

(1991), and Q10 is the increase rate of Rd as temperature increases. Γ *
25 and EaΓ * are

the CO2 compensation point at 25◦C and the activation energy of the compensation

point. KO,25 and Kc,25 are the kinetic constants of oxidase and carboxylase activity for

rubisco at 25◦C, respectively. EaKO and EaKc are the energy activation for the oxidase and

carboxylase activity of rubisco, respectively. gmin is the minimum leaf conductance, which

integrates both residual stomatal conductance because of imperfect stomatal closure and

leaf cuticular conductance. LA is the average tree leaf area on day 1 of the experiment.

Height is the average tree height. Soil density and field capacity are the dry soil weight per

unit of soil volume and the volumetric soil water content at saturation, respectively. Given

are parameter names, units, values, and reference.

the FvCB model were obtained for P. sylvestris from Wang
et al. (1996), see Table 1 for the parameter values. To obtain
the carboxylation velocity limited by rubisco activity at 25◦C
(Vcmax,25 in µmol m−2 s−1) and the carboxylation velocity
limited by RuBP regeneration rate (Jmax,25 in µmol m−2 s−1), we
used measured An/Ci curves under no drought stress to calibrate
the FvCB model for each curve individually, using the package
“DEOptim” (Mullen et al., 2011). The algorithm obtains the
most likely parameters providing the observations, a parameter
distribution and a likelihood function, by performing differential
evolution optimization (see below for more details). We used
the default three-chain settings to establish non-informative
priors within the biological meaningful range (Table 2). The
objective function for optimization was a Gaussian log-likelihood
distribution. This provided a Vcmax,25 and a Jmax,k25 value for
each curve. To summarize the average photosynthesis kinetics
of the P. sylvestris population, we used the median calibrated
values of Vcmax,25 and Jmax,25 to run the SOX+ model (Table 2).
We calculated the dark respiration rate at 25◦C (Rd,25 in µmol

m−2 s−1) as Rd,25 = 0.015∗Vcmax,25, according to Collatz et al.
(1991). After FvCB model optimization, Anestimates were very
close to observations [Figure 3, slope not significantly different
than 1(p > 0.1) and intercept not significantly different than zero
(p > 0.1)]. The median Jmax,25 to Vcmax,25 ratio was ∼1.7, with
Vcmax,25 values of 33.3[27.7–38.9] µmol m−2 s−1 (median [95%
CI]), and Jmax,25 values of 51[45.1–56.8]µmolm−2 s−1 (Table 2).
To run the SOX+ model, we used the median values of Vcmax,25

and Jmax,25.

Xylem Vulnerability
In order to decide for an appropriate response function and
define the respective parameters describing kxylem(Ψxylem),
we first inversely calibrated each of the proposed equations
(Equations 2–4) with the kxylem(Ψxylem) observations.
Independent of the equation we proceeded as follows: we
calibrated one vulnerability curve per sample using each of the
three equations, using broadly set but biologically meaningful
priors (Table 2) and a Gaussian likelihood function. The
sampler used was a differential evolution Markov Monte-Carlo
Chain (MCMC) with memory and a snooker update (DEzs,
terBraak and Vrugt, 2008), implemented in the “BayesianTools”
R package (Hartig et al., 2017). We ran each calibration for
50 k iterations, and then the first 30 k where discarded as a
burn-in. For initial trials, we ran tree calibrations for each
vulnerability curve and addressed between-chain convergence
via Gelman-Rubin convergence diagnosis (Gelman and Rubin,
1992). As running the model this way is time-consuming and
the initial trials provided very low Gelman–Rubin scores for
all the three equations (G-R < 1.02, n = 2 for each model),
which indicates fast convergence, we visually inspected the
MCMC to confirm convergence afterward. Once all individual
curves were calibrated, we merged the five posteriors to obtain
the average response by sampling with replacement 1 k times
the posterior distribution for each curve. We then merged the
samples together into a new combined posterior distribution.
From this combined posterior distribution, we obtained the
median parameter value ±95% confidence intervals. Model
predictions were performed by sampling 1 k samples from the
combined posterior. Goodness of fit was assessed for each run
through the root mean square error (RMSE) and a pseudo-R2

calculated from Spearman’s correlation coefficient as pseudo-R2

= [cor (Observed, Modeled)]2. Finally, SOX+ was run with the
median parameters of the equation that presented the best fit
(i.e., the Weibull equation, Equation 2).

SOX+ Model
We calibrated the SOX+ model based on average daily
transpiration rates of the tree population (n = 6). To do so,
we performed Bayesian inverse model calibration (e.g., Ellison,
2004; Hartig et al., 2012) selecting the parameters ksr,max, krc,max,
rplantmin, Ψref ,Tuz , and aTuz . Since we were primarily interested
in the initial transpiration response to decreasing soil water
content to see if SOX+ was able to capture the dry-down phase,
we only used the initial 19 days (DOY 212–230) for calibration,
further excluding days 216 and 217 because of low VPD and
PAR conditions in the greenhouse (Figure 1). As including or
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TABLE 2 | Results of the three-step SOX+ model parameterization.

Prior Parameters (n = 19)

Model Parameter Units Distribution Min Max Median 95%CI

FvCB

(Optimization)

Vcmax,25 µmol m−2 s−1 Uniform 10 80 33.3 [26.8–38.8]

Jmax,25 µmol m−2 s−1 Uniform 30 140 51 [45.1–56.8]

kxylem (Ψxylem),WB Prior Combined posterior (n = 5)

(Calibration) Parameter Units Distribution Min Max Q2.5% Median Q97.5%

Ψref MPa Uniform −1.5 −3.5 −3.21 −3.01 −2.12

Acoef unitless Uniform 1 8 2.03 2.85 3.16

Prior Posterior (Hydraulic + NSL) Posterior (Hydraulic)

SOX+

(Calibration)

Parameter Units Distribution Min Max Q2.5% Median Q97.5% Q2.5% Median Q97.5%

ksr,max mol m−2 s−1 MPa−1 Uniform 0.01 1 0.36 0.77 0.99 0.01 0.01 0.01

Mean SD

krc,max mol m−2 s−1 MPa−1 Gaussian 0.025 0.01 0.024 0.035 0.043 0.033 0.042 0.045

Rplantmin m2 s MPa mol−1 Gaussian 10 3 4.75 4.87 4.92 4.75 4.77 4.8

RefTuz MPa Gaussian −1.5 0.5 −1.75 −1.72 −1.71 NA NA NA

ATuz unitless Gaussian 3 0.5 2.75 2.92 2.97 NA NA NA

For the FvCB photosynthesis model, the prior assumed for each individual An/Ci curve (n = 19) for Vcmax,25 and Jmax,25 is provided, together with the median and 95%CI parameter

value calculated from the 19 individual optimizations. For the Weibull (WB) xylem vulnerability model kyxlem(Ψxylem ),WB calibration, the prior parameter distribution assumed for each

individual curve (n = 5) is provided for Ψref and Acoef parameters. The median and the 95% credible interval are reported from the combined posterior distribution for the five curves.

Two different SOX+ model calibrations were performed, one accounting for non-stomatal limitations (NSL, Hydraulic + NSL) and one not accounting for NSL (Hydraulic). SOX+ model

calibrations are reported as median posterior parameter estimates ± 95% credible interval for the five (three) parameters included in the calibration for the Hydraulic + NSL (Hydraulic).

For each model and parameter, assumed prior parameter distributions are also reported.

not a given process changes the whole structure of the model, and
because wewanted to run SOX+with andwithout accounting for
NSL, we performed two different calibrations (hereafter referred
as “Hydraulic,” i.e., SOX + model without including NSL,
and “Hydraulic+NSL,” i.e., SOX + model including NSL). The
procedure was the same in both cases, though the “Hydraulic”
calibration did not include the Ψref ,Tuzand aTuz parameters.
Again, we used broadly set, biologically meaningful priors
(Table 2), a Gaussian likelihood function, and the differential
evolution MCMC with memory and a snooker update (DEzs,
terBraak andVrugt, 2008) as implemented in the “BayesianTools”
R package (Hartig et al., 2017). We ran each calibration three
times, 30 k iterations each, and then we discarded the first
20 k iterations as a burn-in. Between-MCMC convergence was
addressed by the Gelman–Rubin convergence diagnosis (G-R
< 1.1 for both calibrations, G-R < 1.1 considered being a
conservative threshold; Brooks and Gelman, 1998). To assess
the calibrated SOX+ performance, we ran for 500 times both
the “Hydraulic” and “Hydraulic+NSL” model formulations for
the entire time series (DOY 212–265), by sampling resulting
posterior parameter distribution. For each run, we compared
projected daily cumulated transpiration with the observations
using a linear model accounting for temporal autocorrelation
with an auto-regressive [corAR()] correlation structure centered
in DOY. This was done with the package “nlme” (Pinheiro et al.,
2021). Goodness of fit was assessed through the RMSE and a
pseudo-R2 [R2

cs; Cox and Snell, 1989), based on the deviance from
the regressive model with respect to the null model and reported
as the median RMSE and R2

cs for the 500 runs.

Simulation Scenarios
NSL and Leaf Shedding Importance in Preventing

Loss in Hydraulic Conductance
To quantify the importance of non-stomatal limitations (NSL)
of photosynthesis and leaf shedding in preventing krc decline,
we ran the calibrated SOX+model for 54 days (DOYs 212–
265) under the following scenarios: (1) hydraulic limitations
with observed leaf shedding dynamics, i.e., accounting for the
daily leaf area reduction (Hydraulic scenario, ran with the
“Hydraulic” calibration); (2) Hydraulic limitations and NSL,
but considering leaf area constant at the initial value during
the entire simulation (Hydraulic + NSL scenario, ran with the
“Hydraulic+NSL” calibration); and (3) Hydraulic limitations
and NSL plus observed leaf shedding dynamics (Hydraulic +

NSL + leaf shedding scenario, ran with the “Hydraulic+NSL”
calibration). This setup enabled to assess the importance of
NSL and leaf shedding on krcloss separately. To obtain model
projections for each scenario, we sampled 500 times the posterior
parameter distribution. We report the daily evolution of percent
loss in krc(PLkrc, in %), calculated as 100∗krc(Ψcanopy,PD)/krc,max,
as the median± 95% CI of the 500 runs.

Importance of Leaf Shedding at Different Degrees of

Leaf Leakiness
We tested the sensitivity of the model to variations in minimum
leaf conductance (gmin). This highly uncertain parameter is
assumed to vary strongly between plants, while being extremely
important for water loss and leaf shedding under extreme
drought stress (e.g., Vilagrosa et al., 2003; Hochberg et al., 2017;

Frontiers in Plant Science | www.frontiersin.org 8 September 2021 | Volume 12 | Article 715127

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Nadal-Sala et al. Leaf Shedding + NSL in Scots Pine

FIGURE 3 | Comparison between FvCB model net assimilation (An, µmol m−2

s−1) projections with observations after parameter optimization for each An/Ci

curve (n = 19), for the P. sylvestris saplings grown in the greenhouse in year

2019. Reported are the fit (R2), the median optimum Vcmax,25 ± 95%

confidence interval, and the median optimum Jmax,25 ± 95% confidence

interval. The solid line indicates the trend between observed and modeled An

(p < 0.01), with the gray area representing the 95% CI. The slope was not

significantly different than 1 (p > 0.1), and intercept was not significantly

different than 0 (p > 0.1) based on a t-test. Dashed line represents the 1:1 fit.

Duursma et al., 2019; Li et al., 2020). It is assumed that plants
with higher gmin will likely benefit more from leaf shedding, as
the reduction in water loss per unit of leaf shed will be higher. The
model formulation “Hydraulic+NSL” was run with two different
gmin values (gmin = 2 mmol m−2 s−1 and gmin = 3 mmol m−2

s−1, a 50% increase), considering either constant leaf area, i.e.,
no leaf shedding, or observed leaf dynamics, i.e., observed leaf
shedding. Again, posterior parameter sampling with replacement
was carried out for 500 model runs for each of the 2 × 2
scenarios (leaf dynamics× gmin assumption). Then, for each gmin

scenario, we calculated the daily average cumulative benefits of
leaf shedding as

BenefitLS,i =

∑i
i=1 PLkrc,NoShed,i−PLkrc,Shed,i

i
(14)

where BenefitLS,i is the daily average cumulative reduction in
percent loss of krc if trees dynamically shed their leaves relative to
the same trees in the absence of leaf shedding, “i” is the day since
the beginning of the experiment, and PLkrc,NoShed,i and PLkrc,Shed,i
are the percent loss in krc on day “i” in the absence or presence of
leaf shedding, respectively. For this and all the other statistical
analyses described before, as well as to develop and implement
the SOX+ model, we used the R statistical program (R Core
Team, 2021, Version 3.6.1).

RESULTS

Calibration of Xylem Vulnerability Models
All the three equations to describe hydraulic vulnerability
[Weibull (WB); sigmoid exponential (SE), and original SOX+
formulation (SOXf)] provided similar, overlapping results. The
median xylem water potentials at which 50% of loss in
hydraulic conductivity occurred were: WB −2.53 MPa, SE −2.6
MPa, and SOXf−2.6 MPa. The WB function described the
observed trends slightly better than the other functions while
also maintaining the assumption in the original SOX model
that loss of hydraulic conductivity does not occur at Ψxylem

values ≈ 0 (Figure 4). Therefore, WB was selected to run
SOX+ for P. sylvestris in this experiment. Parameter values
describing prior and the posterior parameters are listed in
Table 2.

Leaf Shedding Speed Increased
Concurrently With Transpiration Stop
After starting the drought experiment at DOY 212, transpiration
of all six measured P. sylvestris saplings decreased from 1–
2.6 kg tree−1 day−1 to about 10% of the starting value within
2 weeks (DOY 226). Within this period, transpiration was
strongly reduced for 2 days (DOY 216–217), most likely
because of exceptionally cloudy days with low temperature
conditions outside the greenhouse that were not compensated
(see Supplementary Figure 2). From DOY 227 onward, tree
transpiration almost stopped, with median [95% CI] values
of 0.034 [0.001–0.19] kg tree−1 day−1 (Figure 5). At the
same time, leaf shedding increased, which was only marginal
during the initial phase of the experiment (0.2 [0.02–0.2] %
day−1 between DOY 212 and 225). Once transpiration was
close to zero, litterfall tripled to 0.55[0.03–0.9] % day−1. At
the end of the experiment (DOY 265), the trees had lost
30.2% [16.9–37.8] of the initial leaves. We observed that
only 2 and 3 year-old needles were shed but never current
year needles.

SOX+ Performance Improved When
Including Non-Stomatal Limitations of
Photosynthesis
SOX+ model calibration accounting for non-stomatal
limitations (Hydraulic + NSL) outperformed the standard
SOX+ model (Figure 6) during the entire experiment. It also
provided a more realistic set of posterior parameter estimates,
especially regarding ksr,max (Table 2). For the calibration
period (DOY 212–230), the standard “Hydraulic” model setup
led to 27.8 ± 17% (Median ± SE) overestimation of daily
transpiration, while with “Hydraulic+NSL,” the error reduced
to 2.5 ± 16.9% (Figure 6C). Such differences were especially
important during the dry-down phase (DOY 220–228). The
differences in accuracy between the two model simulations
strongly declined during the second half of the experiment, when
both model setups resulted in full stomatal closure (gs = gmin,
DOY 240–265).
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FIGURE 4 | Calibration of the three different xylem vulnerability models [Weibull model (WB, A), the Sigmoid Exponential (SE, B), and the original SOX formulation

(SOXf, C)] for the P. sylvestris saplings. Solid transparent lines are the five measured curves of the observed percent loss in xylem conductivity (PLC, in %) in relation to

xylem water potential decrease (Ψxylem, in -MPa). Solid blue line ± shadowed blue area is the median ± 95 CI obtained from 1 k model runs sampling the combined

posterior parameter estimate, resulting from curve-individual calibrations for each model, as described in section Xylem Vulnerability. The vertical solid line shows the

Ψ50 value; this is when xylem has lost 50% of its conductivity (±95% CI, vertical dashed lines). For each model, formulation and median ± 95% CI values for each

parameter are provided. Note that in the WB model Ψref parameter meaning is not equivalent to the Ψ50 parameter from the other two models. Goodness of fit is given

as the median pseudo-R2 and the median root mean square error (RMSE) of all model runs.

FIGURE 5 | Temporal evolution of whole-tree transpiration (in kg tree−1 day−1)

and percent of leaf shed for the six monitored P. sylvestris saplings growing in

the greenhouse during the whole length of the experiment (DOY 212–265).

Blue line represents the average daily transpiration ±1 SD, whereas red line

represents the daily cumulated percent of leaf shed since the beginning of the

experiment ±1 SD. Transparent dotted lines are the observed daily

transpiration for each tree, and transparent dashed lines are the cumulated

percent of leaf shed for each tree.

NSL and Leaf Shedding Reduce Projected
Loss in Root-To-Canopy Hydraulic
Conductance
Compared to the original “Hydraulic” SOX+ setup, projected
percent loss in root-to-canopy conductance (PLkrc, in %) at the

end of the experiment when accounting for NSL (Hydraulic
+ NSL) was smaller by 6.3 ± 0.2%. Including observed leaf
shedding (Hydraulic + NSL + leaf shedding scenario) further
reduced projected PLkrc by a 13± 0.2 % (Figure 7). Interestingly,
with NSL and leaf shedding considered, the median simulated
PLkrcafter 54 days of water shortage was below 80%, an important
threshold for pine mortality (Hammond et al., 2019). Leaf
shedding speed drastically increased between DOYs 225 and
231, when trees had lost between 44 and 53% of their root-to-
canopy conductance, according to the SOX+ model (Figure 8)
and their stomata were fully closed (daily maximum gs <

10% of maximum simulated gs). After full stomatal closure,
tree water losses were highly dependent on leaf leakiness,
here summarized as gmin. Increasing gmin by 50% resulted in
shedding of leaves that was significantly beneficial in reducing
krc losses compared with no shedding leaves 6 days earlier
than assuming gmin = 2 mmol m−2 s−1 (DOY 244 vs. DOY
250). The benefits of leaf shedding were significantly higher
at gmin = 3 mmol m−2 s−1 than at gmin = 2 mmol m−2

s−1 after DOY 232 (p < 0.05, after a Kolmogorov–Smirnov
non-parametric test), and for the rest of the period simulated
(Figure 9).

DISCUSSION

The findings suggest that non-stomatal limitations (NSL) of
photosynthesis and leaf shedding processes play an important
role as hydraulic safety mechanisms in P. sylvestris, as they
reduce losses in root-to-canopy conductance during severe
drought stress (Figure 7). Drought-induced leaf shedding in
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FIGURE 6 | Performance of the SOX+ model calibrated without (“Hydraulic,” A, in red) and with (“Hydraulic + NSL,” B, in blue) non-stomatal limitations of

photosynthesis. (A,B) show the comparison between simulated and observed transpiration (in kg tree−1day−1, points ± SD error bars), during the experiment (DOY

212–265). Daily simulated transpiration is the projected median by sampling 500 times each of the SOX+ model formulation posterior parameter estimates. Noted is

the generalized linear model accounting for temporal autocorrelation, model fit (R2
cs), and the RMSE. In both formulations, the slope was not significantly different than

1 (p < 0.01), and the intercept was not significantly different than 0 (p < 0.01). (C) represents the SOX+ error in transpiration estimates for the calibration period (DOY

212–230), and for the Hydraulic (red, dashed lines) and Hydraulic + NSL (blue, continuous lines) formulations. Simulation error was calculated as Trsim−Trobs
Trobs

, where

Trsim is the daily median transpiration from the 500 model, and Trobs is the daily observed transpiration, both in kg tree−1 day−1. Horizontal lines represent the median

simulated error for each SOX+ formulation.

P. sylvestris saplings started when predicted loss of root-
to-canopy hydraulic conductance was close to 50%. This is
in accordance with the “hydraulic fuse” hypothesis, which
states that cavitation in leaves would occur earlier than xylem
cavitation to avoid irreversible xylem conductance losses (e.g.,
Hochberg et al., 2017, Choat et al., 2018), as leaves are
cheaper to rebuild than new vessels in the xylem (Tyree
and Ewers, 1991). The results also concur with previous
observations of leaf shedding delaying the time to reach lethal
dehydration thresholds (Blackman et al., 2019) while also
identifying gmin as a key trait involved in plant dehydration
processes (Duursma et al., 2019; Cochard, 2020). These findings
highlight the importance of including non-stomatal processes
(i.e., NSL and leaf area adjustments) into simulation models in
order to account for tree physiological feedback responses to
drought stress.

Non-Stomatal Limitations of
Photosynthesis as a Hydraulic Safety
Mechanism
Including NSL to restrict photosynthesis improved the SOX+
model representation of observed transpiration reductions
during the dehydration phase, especially when stomata were not
fully closed. Model improvements based on similar observations
have been reported previously (e.g., Yang et al., 2019; Gourlez
de la Motte et al., 2020). Including NSL reduced projected
losses in root-to-canopy conductance by overall 6% after 54 days
without irrigation. It also delayed reaching 80% of PLkrc, an
important threshold for pine mortality (Hammond et al., 2019),
by 8 days. As plants dehydrate, considering NSL led to lower
optimum stomatal conductance per photosynthetic gain (i.e., it
led to decreased δAn/δCi in Equation 8). We identified a Ψcanopy
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FIGURE 7 | Simulated percent loss in root-to-canopy conductance during the

experiment (PLkrc, in %) with three different SOX+ model formulations. Only

hydraulic constraints on stomatal conductance (Hydraulic, in gray); hydraulic

constrains on stomatal conductance and non-stomatal limitations of

photosynthesis accounting for equal leaf area during the whole experiment

(Hydraulic + NSL, in green); and hydraulic constraints on stomatal

conductance, non-stomatal limitations of photosynthesis, and observed leaf

shedding (Hydraulic + NSL + leaf shedding, in orange). Posterior parameter

distributions are different for (Hydraulic) and (Hydraulic + NSL, Hydraulic +

NSL + leaf shedding), see Table 2. For each model formulation, the figure

shows the daily pre-dawn median ± 95% CI PLkrc, obtained from running the

simulation by sampling 500 times the posterior parameter distribution.

Horizontal lines indicate when krc = 0.5 * krc,max (PLkrc50, dashed line), and

when krc = 0.2 * krc,max (PLkrc80, dotted line), a threshold that has been found

to be critical for pine survival probability (Hammond et al., 2019).

FIGURE 8 | Time series of averaged leaf area (in m2 tree−1, blue dashed line)

for the six monitored Pinus sylvestris saplings and simulated dynamics in

percent loss in root-to-canopy conductance (PLkrc, in %, black continuous

line) according to the complete SOX+ model scheme (Hydraulic + NSL + leaf

shedding). Daily leaf area is represented as the mean ± SD. Daily simulated

PLkrc is represented as the median ± 95% CI after 500 model simulation runs

by sampling the posterior parameter estimate. The horizontal line indicates

when krc = 0.5 * krc,max (PLkrc50, dashed line), while the light gray area

represents the uncertainty of when the leaf shedding rate accelerated.

Because of weekly sampling campaigns, the area is relatively broad.

FIGURE 9 | Daily averaged cumulated benefit of observed leaf shedding in

preventing loss in root-to-canopy conductance (PLkrc, in %) for minimum leaf

conductance (gmin) = 2 mmol m−2 s−1 (blue continuous line), and gmin = 3

mmol m−2 s−1 (red dashed line). Results represent the median ± 95% CI of

500 model simulations obtained by randomly sampling the posterior parameter

distribution for each of the following scenarios and their combination:with and

without leaf shedding, and the two gmin values considered. The daily average

cumulated difference in PLkrc between shedding and no shedding is

calculated according to Equation 14. The vertical lines for both scenarios

indicate the DOY at which the benefit of leaf shedding is significantly >0.

reference value of −1.7 MPa for a 50% strength of the NSL
limitation, this value being lower than the observed Ψxylem,50
(−2.6 MPa). This implies that NSL mechanisms are acting at
the onset of embolism formation, which may be indicative of an
active hydraulic safety mechanism (Choat et al., 2018).

We acknowledge that simulating NSL as a decline in apparent
Vcmax and Jmax summarizes the effects from a multiplicity
of interacting plant physiological responses to drought, which
might be better considered separately. For example, water and
carbon transport in the mesophyll might be described as a
function of aquaporin expression in dependence on cell water
potential (Flexas et al., 2012; Paudel et al., 2019), and the
effects on photosynthesis could be separated into suppression of
rubisco regeneration (Rizhsky et al., 2002; Pilon et al., 2018), and
reduction in rubisco activity. Also, reduced sink strength of tissue
experiencing drought limitations (Hsiao et al., 1976; Fatichi et al.,
2014) could eventually be used to describe the down-regulation of
photosynthesis explicitly, e.g., via higher leaf sugar concentration
due to reduced phloem load (Riesmeier et al., 1994; Sevanto,
2014). These mechanisms, however, have not been sufficiently
resolved to be used in general models.

Shedding Leaves After Stomatal Closure
Buffered Projected Loss in Conductance
Reducing leaf area is a well-known phenomenon that decreases
whole tree transpiration (e.g., Whitehead et al., 1984; Martínez-
Vilalta et al., 2014; Wolfe et al., 2016). During the first phase of
the dry-down, leaf shedding was only marginal, but it increased
after full stomatal closure (Figures 5, 8), when reducing leaf
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area was the only possibility to further reduce leaf leakiness and
leaf C maintenance cost. We found that leaf shedding reduced
projected krs losses by 7% at the end of the experiment. Also,
when including leaf shedding dynamics, the pines did not reach
the lethal PLkrc80 threshold. Interestingly, increasing gmin by
50% further underscored the benefits of leaf shedding, which then
even started earlier during the dry-down. Since gmin seems to
depend on environmental conditions during leaf development
(Duursma et al., 2019) and also increases with leaf temperature
(e.g., Schuster et al., 2016; Cochard, 2020), leaf shedding may
represent an acclimation strategy to counteract leaf leakiness
during later growth stages (Blackman et al., 2019) and heat
waves. This is supported by findings that less sclerophyllous
trees (i.e., those with higher gmin) are likely to shed more leaves
earlier during heat-drought stress development (e.g., Ogaya and
Penuelas, 2004; Montserrat-Marti et al., 2009).

In accordance with recent findings (Wolfe et al., 2016;
Cardoso et al., 2020; Li et al., 2020), Scots pine shed its 2 and
3 year-old needles once krs was halved and leaf conductance
was strongly reduced (approximately gs = gmin). This implies
that in P. sylvestris, leaf shedding has likely been triggered as
a last-chance hydraulic safety mechanism, as pines do not re-
grow shed leaves until the next growing season. This may lead to
severe C uptake reductions after drought release, especially if the
drought occurs early during the growing season (Eilmann et al.,
2013), with consequences that may extend up to 4 years after
drought (e.g., Galiano et al., 2011). In the experiment, the trees
shed about 30% of their leaves, which may imply an equivalent
loss in photosynthesis capacity after re-watering. Such C uptake
reductions may still have severe implications for post-drought
xylem and canopy recovery (e.g., Yan et al., 2017; Ruehr et al.,
2019; Kannenberg et al., 2020). However, negative impacts of leaf
losses are probably less severe because mostly the older leaves,
which are less efficient in terms of photosynthesis, were shed first
(Escudero and Mediavilla, 2003; Niinemets et al., 2005, but see
Poyatos et al., 2013). Also, the C balance during drought is less
negative because of reduced maintenance respiration; thus, lower
depletion of non-structural carbohydrates reserves is expected.
The inclusion of the SOX+ model in a whole-tree dynamics
simulation model may shed more light upon the benefits and
drawbacks of leaf shedding in terms of whole tree C balance
and growth.

Uncertainties and Lines to Proceed Further
Trees may respond to soil drought with various physiological
reactions in order to save water and protect their conductive
tissue. Besides stomatal regulation of evaporation demand
and potential photosynthesis, additional processes are involved
that affect the relationship between stomatal opening and
photosynthesis activity, particularly under drought as has been
described, e.g., by Eller et al. (2018, 2020). In this study,
we have accounted for these processes in a lumped way by
training a process-based tree hydraulic model (SOX+) from
“in situ” observations (e.g., Medlyn et al., 2015; Dietze et al.,
2018). However, we acknowledge that the experimental basis
for this new mechanism is still poor, based on a small number
of repetitions and a relatively high variability in individual
plants. Also, it would be more convincing that loss in xylem

conductance is a driving force for drought responses if it would
have been directly measured instead of indirectly calculated from
water potential and transpiration. It should also be noted that
the additional parameters required to describe the new model
features are yet uncertain with respect to their generality; thus,
further studies are needed to evaluate their precision, species-
dependency, or relationship to wood or leaf anatomical traits
(Schumann et al., 2019, Velikova et al., 2020).

Similar caution needs to be applied to the second investigated
process of leaf shedding. It seems that there is a clear threshold
of loss in root-to-canopy hydraulic conductance at which leaf
shedding began. Therefore, we suggest a generalization of
drought-induced leaf shedding dynamics that may be included
in simulationmodels accounting for tree hydraulics. This is based
on a basal leaf turnover rate and a drought-induced leaf shedding
rate that is considered after a given threshold of loss in hydraulic
conductanceis reached:

LAi = LA(i−1) − basalLSLA(i−1)if PLkrc < x (15a)

LAi = LA(i−1) − drougthLSLA(i−1)if PLkrc≥x (15b)

where LAi is the whole tree leaf area on day “i” (in m2 tree−1),
basalLS is the basal rate of leaf shedding without drought stress,
droughtLS is the leaf shedding rate under drought stress, and x
is the threshold of conductance loss at which drought-induced
leaf shedding occurs. For instance, in the experiment (Section
Leaf Shedding Speed Increased ConcurrentlyWith Transpiration
Stop), basalLS would equal to 0.002, droughtLS to 0.0055, and x
to 50%. According to recent observations, 50% loss in hydraulic
conductance seems to be a realistic threshold, occurring within a
wide range of environments and plant types (e.g., Wolfe et al.,
2016; Cardoso et al., 2020; Li et al., 2020). Nonetheless, we
acknowledge that depending on the species-specific strategies to
face hydraulic stress, such threshold may vary (e.g., Ruehr et al.,
2016). We hypothesize further that this strategy may be linked to
differences in gmin, as the benefits of leaf shedding appear earlier
and to a larger degree when leaf leakiness is higher.

The suggested model modifications account for non-stomatal
acclimation mechanisms affecting canopy conductance, which
are commonly accepted as an important driver of plant water
use regulation but are still poorly tested in simulation models.
Nevertheless, we are aware that other potential acclimation
processes such as changes in rooting depth, root distribution,
or soil-to-root conductance (e.g., Mu et al., 2021), as well as
changes in leaf distribution or traits, such as leaf thickness and
stomatal density, affect whole plant conductance. Also, short-
term responses, such as an increase in leaf cuticular conductance
(gmin) in response to rising temperature (e.g., Cochard et al.,
2021), are not addressed in this version of SOX+, which
leaves room for model improvement. Furthermore, the SOX+
model has, so far, been tested only for small trees growing
under controlled conditions. Thus, model performance should
be assessed under field conditions, particularly for trees of
different sizes and species. Still, the inclusion of NSL and leaf
shedding processes enhanced model transpiration estimates,
which were identified as key mechanisms that trees trigger to
buffer conductance losses under drought stress.
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Relevance for Climate-Change Scenario
Analyses
Including the proposed processes into ecosystem models would
improve water consumption estimates during drought and hot
drought events. Because heat waves alongside increased VPD are
supposed to increase in intensity and frequency (Basarin et al.,
2020), this may potentially improve model projections of forest
drought responses. Parametrizing species in order to consider
tradeoffs between elongating carbon gain and reducing hydraulic
stress via leaf shedding will also enable to better represent
the differences in competition strength between tree species
under future environmental conditions. This is particularly
useful in ecosystem models addressing the interactive impacts
of increased atmospheric CO2 and a hotter and drier climate
on forests. In addition, the mechanistic simulation of loss in
xylem conductance also considering feedback responses may
lead to an improvement in tree mortality process description
(Bugmann et al., 2019). In contrast to empirical approaches,
it allows to consider species- and environmental-specific
adaptation strategies, represented by species traits that indicate
different hydraulic vulnerabilities. Since tree mortality is an
underrepresented but highly important process when addressing
forest dynamics under global warming (Meir et al., 2015),
incorporating leaf area acclimation to drought and non-stomatal
limitations of photosynthesis in larger-scale forest simulation
models will likely improve climate change scenario assessments.
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