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Abstract

We show global wellposedness for the defocusing cubic nonlinear Schrö-
dinger equation (NLS) in H1(R)+H3/2+(T), and for the defocusing NLS
with polynomial nonlinearities in H1(R) +H5/2+(T). This complements
local results for the cubic NLS [6] and global results for the quadratic NLS
[8] in this hybrid setting.

1 Introduction

We consider the wellposedness question for the nonlinear Schrödinger equation

iut + uxx = |u|p−1u,

u(0) = u0 ∈ Hs1(R) +Hs2(T)
(1.1)

with non-decaying initial data. This problem has been an area of active research
for many years now. One of its motivations is the propagation of signals in glass-
fiber cables, where the cubic NLS is used as an approximate model equation [15].
In this model, the roles of space and time are reversed and the initial value u0

describes the signal seen at a fixed point of the cable. Hence, periodic initial
data can be understood as encoding, e.g., an infinite string of ones. Such a
signal carries no information, and we want to consider signals where some of
the ones have been overwritten by a zero. Following [6] this is done by adding a
nonperiodic part v0 ∈ Hs1(R) to the initial data w0 ∈ Hs2(T). Global existence
then translates to having no bound on the length of the cable.

From a mathematical point of view, there is a huge number of directions by
which NLS with non-decaying initial data has been approached, and we will only
name some of them. The most classical one of them is purely periodic initial
data, both in the general case [3] and even earlier in the integrable case p = 3
under assumptions on the spectral properties of the corresponding Lax operator
[17]. A natural generalisation is to consider quasi-periodic, almost periodic and
limit periodic initial data [13, 4, 18]. NLS with prescribed boundary value
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limx→±∞ |u(x)| = 1 is known as the Gross-Pitaevskii equation and describes
Bose gases at zero temperature [15]. For these mentioned types of initial data,
global results exist. Additionally, there are local results in the case of initial
data lying in the modulation spaces Ms

∞,2(R) [2, 7] and the case of analytic
initial data [10].

Our approach is to consider initial data which are the sum of a periodic and
a decaying signal, i.e. u0 ∈ Hs1(R) + Hs2(T). We note that this type of data
is more general than the periodic case, and also includes the emergence of dark
solitons as in the Gross-Pitaevskii case, but is less general than for example
u0 ∈Ms

∞,2(R). Local wellposedness results for this problem have been covered
in [6, 8], and our main interest is to extend them to global solutions. These local
solutions are constructed as follows: By writing u = v + w ∈ Hs1(R) +Hs2(T)
and using the fact that u satisfies (1.1), w is seen to also satisfy (1.1) but on
the torus,

iwt + wxx = |w|p−1w,

w(0) = w0 ∈ Hs2(T),
(1.2)

at least if u, v, w have suitable regularity in space and time. Hence v has to be
the solution of the perturbed problem

ivt + vxx = |v + w|p−1(v + w)− |w|p−1w,

v(0) = v0 ∈ Hs1(R),
(1.3)

where w ∈ C([0,∞), Hs2(T)) is the solution of (1.2). Equation (1.3) is a pertur-
bation of NLS on the real line, and classical methods like Strichartz estimates
can be used to establish local wellposedness [8].

In order to extend local to global solutions, we only need to consider (1.3),
because (1.2) is known to exhibit global solutions. The main problem here is
that the conservation laws that exist both in the periodic and non-periodic case
give rise to a conservation law for (1.3) with an L1 part in it, for example we
have formal conservation of∫

R
|u|2 − |w|2 dx =

∫
R
|v|2 + 2 Re(vw̄) dx,

but not of
∫
|v|2 dx. As a consequence, these exact conservation laws are not

applicable in the L2-based setting. Instead, we want to make use of quantities
for which we can control the growth rate. In this setting, the power of the
nonlinearity plays a crucial role. Indeed, for the quadratic nonlinearity p = 2
[8] showed global wellposedness in low regularity by a Gronwall argument for∫
|v|2 dx. Such a straight forward calculation does not work anymore if p > 2.

To overcome this problem, we will work with higher regularity and assume
v0 ∈ H1(R). Note that the time-dependent Hamiltonian

H(q, r) =

∫
R
qxrx + (q + w)2(r + w̄)2 − |w|4 − 2(qw̄ + rw)|w|2 dx, (1.4)
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gives rise to (1.3) as the Hamiltonian equation

iqt =
δ

δr
H(q, r)

∣∣∣
(q,r)=(v,v̄)

.

Our main idea is to make use of the formula

d

dt
F (t, v(t)) = {F,H}(t, v(t)) + (∂tF )(t, v(t)), (1.5)

which holds for Hamiltonian equations with Poisson bracket {·, ·}, and choosing
F to be the Hamiltonian of the equation (1.3) itself. From (1.5) it follows that
the time derivative of H with respect to the flow induced by itself is non-
zero, but only contains time derivatives that fall on w, because this is the
only explicitly time-dependent part of (1.4). We want to mention that these
calculations were inspired by calculations performed in [11] and the described
Hamiltonian formalism makes also transparent why they work there.

While the Hamiltonian structure lies implicit in all arguments used below,
we choose not to use the Hamiltonian language in what follows. The reason for
this is that the main difficulty in the calculation is not to calculate the formal
time derivative, but rather to make sure that taking time derivatives is allowed.
Still it may help the reader in understanding why the calculations work as they
stand, as it helped the authors in doing so.

The paper is organized as follows: in Section 2 we give a proof that global
solutions on the torus exist, in Section 3 we prove that local solutions on the line
exist, and in Section 4 we show that the local solutions on the line are global.
For the presentation we give simple and self-contained proofs.

Acknowledgements

The authors want to thank Leonid Chaichenets, Dirk Hundertmark and Robert
Schippa for useful discussions. Funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – Project-ID 258734477 – SFB 1173.

2 Global periodic solutions

The wellposedness theory of NLS with periodic data is a classical problem.
When 2 ≤ p < 5, Lebowitz, Rose and Speer [16] (refering to [14] for a proof) and
later Bourgain [3] in lower regularity showed existence of local solutions. These
solutions are global due to conservation of the L2(T)-norm and the dependence
of the guaranteed time of existence on ‖w0‖L2(T).

Theorem 2.1 ([3]). If 2 ≤ p < 5, the Cauchy problem (1.2) is locally wellposed
in L4([−T, T ]× T) for any w0 ∈ L2(T).

The guaranteed time of existence T depends only on ‖w0‖L2(R).

Similar wellposedness results in L2 for 2 ≤ p < 5 can be obtained with the
help of Xs,b spaces, see for example [12, Section 3]. Using these techniques, the

3



second author with Chaichenets, Hundertmark and Pattakos investigated the
local wellposedness theory for 1 ≤ p ≤ 2 [8]. Wellposedness in the mass-critical
case p = 5 is an open problem [12, p. 93]. In general, there is wellposedness in
Hs(T), s ≥ 0 if 2 ≤ p < 1 + 4

1−2s [3].
We only need well-posedness results in spaces Hs(T), s ≥ 1, which are far

away from being critical for any p. To prove global existence in Hs(T), s > 1, we
first prove a local result in H1(T) which due to conservation of energy becomes
immediately global, and then argue by persistence of regularity.

Theorem 2.2 (Local wellposedness for w). Given p ≥ 2, the Cauchy problem
(1.2) is locally wellposed in C0([−T, T ], H1(T)) for any w0 ∈ H1(T).

The guaranteed time of existence T ∗ satisfies T ∗ & ‖w0‖1−pH1(T).

Proof. Let S(t) = eit∂
2
x . The integral formulation of (1.2) is

w(t) = S(t)w0 + i

∫ t

0

S(t− s)(|w|p−1w)(s)ds. (2.1)

We will show that the right-hand side is a contraction on

XR,T = {v ∈ C([0, T ], H1(T)) : ‖v‖C([0,T ],H1(T)) ≤ R}

where R, T will be chosen later. Note that

∂x
(
|f |p−1f

)
= (p− 1)|f |p−3 Re(f̄fx)f + |f |p−1fx

Thus when p ≥ 1, we find by Sobolev’s embedding H1(T) ⊂ L∞(T) that given
f ∈ H1(T), |f |p−1f ∈ H1(T) with ‖|f |p−1f‖H1(T) . ‖f‖pH1(T). Together with

the fact that S(t) is an isometry on Hs(T) we can bound the C([0, T ], H1(R))-
norm of the right-hand side of (2.1) by

‖w0‖H1(T) + cTRp

for some constant c > 0 if w ∈ XR,T . Choosing R = 2‖w0‖H1(T) deals with
the first summand. For the second summand, we choose T = (2c)−1R1−p. This
guarantees that the right-hand side defines a mapping on XR,T . The contractive
property is proven similarly: We have to estimate∫ t

0

S(t− s)
(
|w1|p−1w1 − |w2|p−1w2

)
ds (2.2)

uniformly in H1(T). To this end, we bound

||w1|p−1w1 − |w2|p−1w2| ≤ c|w1 − w2|
(
|w1|p−1 + |w2|p−2

)
and by adding a zero (see also Lemma 3.2 for a more general estimate)

|∂x(|w1|p−1w1 − |w2|p−1w2)| ≤ c
(
|w1|p−1|w1,x − w2,x|

+ (|w1|p−2 + |w2|p−2)|w1 − w2||w2,x|
)
.
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This shows that we can estimate (2.2) in C([0, T ], H1(R)) by

cTRp−1‖w1 − w2‖H1(T).

Hence the contractive property can be achieved by possibly making T ∼ R1−p

a bit smaller.

Together with the conservation of the energy

E(w) =

∫
T

1

2
|wx|2 +

1

p+ 1
|w|p+1 dx (2.3)

we obtain global wellposedness in H1(T). Indeed,

‖wx(t)‖2L2 − ‖wx(0)‖2L2 =
2

p+ 1

(
‖w(0)‖p+1

Lp+1 − ‖w(t)‖p+1
Lp+1

)
. ‖w(0)‖

p+3
2

L2 ‖wx(0)‖
p−1
2

L2 ≤ ‖w0‖p+1
H1 .

Here, we are able to argue without any smallness condition on the L2 norm,
because we are considering the defocusing equation. This shows

‖w(t)‖H1 . ‖w0‖H1 + ‖w0‖
p+1
2

H1 . (2.4)

We turn to higher regularity and will prove that the constructed solutions
are in C([−T, T ], Hs(T)) if the initial data is in Hs(T). As a byproduct, we
obtain an exponential bound for these norms.

We need a small technical result which is a standard result when s is an
integer and which was already used in the previous proof for s = 1. We take
the proof of [19, Lemma A.9] and follow the explicit control on the constant in
the estimate.

We introduce the notation [p] = sup{k ∈ Z, k ≤ p}.

Lemma 2.3. Let 0 ≤ s ≤ [p]. If f ∈ Hs(T)∩L∞(T), then also |f |p−1f ∈ Hs(T)
with bound

‖|f |p−1f‖Hs(T) . ‖f‖p−1
L∞ ‖f‖Hs(T). (2.5)

If p is an odd integer, the same holds for all 0 ≤ s <∞.

Proof. The case of p being an odd integer follows from the classical estimate

‖uv‖Hs(T) . ‖u‖L∞(T)‖v‖Hs(T) + ‖u‖Hs(T)‖v‖L∞(T).

Moreover, we may assume 0 < s < [p] because in the case s = [p] the norm can
be easily estimated by calculating the weak derivatives directly. We denote by
PN the usual Littlewood-Paley projection onto frequencies around the dyadic
number N , which in the torus case is a projection onto a finite number of
frequencies. Similarly, we define P≥N and P<N .

First of all we note that

‖P≤1|f |p−1f‖L2 ≤ ‖f‖p−1
L∞ ‖f‖L2 ,
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meaning that we can restrict to frequencies N > 1 in the sum

‖|f |p−1f‖2Hs(T) ∼s ‖P≤1|f |p−1f‖2L2(T) +
∑
N>1

N2s‖PN |f |p−1f‖2L2 .

We write f = P<Nf + P≥Nf and observe that

‖|f |p−1f − |P<Nf |p−1P<Nf‖L2 ≤ p‖P≥Nf‖L2‖f‖p−1
L∞

since (|x|p−1x)′ = p|x|p−1 and by the fundamental theorem of calculus. The
high-frequency contribution can now be estimated since∑

N>1

N2s‖P≥Nf‖L2 ≤
∑

N ′≥N>1

Ns(N ′)s‖PN ′f‖2L2 .
∑
N ′>1

(N ′)2s‖PN ′f‖2L2 .

We turn to the low-frequency contribution and write for k = [p],

‖PN (|P<Nf |p−1P<Nf)‖2L2 . N−2k‖∂k(|P<Nf |p−1P<Nf)‖2L2 .

From |∂l(|x|p−1x)| .l |x|p−l for l ≤ k and repeatedly using the chain rule, we
see that

|∂k(|P<Nf |p−1P<Nf)| .p ‖f‖p−kL∞

∑
r1+···+rk=k

|∂r1P<Nf | . . . |∂rkP<Nf |.

We can square this bound and estimate the squared sum on the right-hand side
by the sum of the squares, losing a p-dependent factor. Because the number
of such tuples depends only on p, we show the estimate for fixed r1, . . . , rk.
By performing a Littlewood-Paley decomposition in each factor and giving up
another combinatorical factor by ordering the frequencies, we see

‖∂k(|P<Nf |p−1P<Nf)‖2L2

.p ‖f‖2p−2k
L∞

∑
N1≤···≤Nk<N

‖∂r1PN1
f‖2L∞ . . . ‖∂rk−1PNk−1

f‖2L∞‖∂rkPNk
f‖2L2

. ‖f‖2p−2k
L∞

∑
N1≤···≤Nk<N

N2r1
1 . . . N2rk

k ‖PN1
f‖2L∞ . . . ‖PNk−1

f‖2L∞‖PNk
f‖2L2

. ‖f‖2p−2
L∞

∑
N ′<N

(N ′)2k‖PN ′f‖2L2 ,

where from the third to the last line we estimated ‖PNi
f‖L∞ . ‖f‖L∞ to

then do the summation first in N1, then in N2 and lastly in Nk−1, and rename
Nk = N ′. We conclude that∑

N

N2s‖PN (|P<Nf |p−1P<Nf)‖2L2

. ‖f‖2(p−1)
L∞

∑
N

∑
N ′<N

N2s−2k(N ′)2k‖PN ′f‖2L2

.
∑
N ′

(N ′)2s‖PN ′f‖2L2

by summing over N first.
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Theorem 2.4 (Global wellposedness for w ∈ Hs(T)). Let p ≥ 2 and w0 ∈
Hs(T) for 1 ≤ s ≤ [p]. Then the global solution of Theorem 2.2 is an Hs(T)-
solution and satisfies

‖w(t)‖Hs ≤ ec(‖w0‖H1(T))t‖w0‖Hs(T), (2.6)

for some constant c(‖w0‖H1(T)). If p is an odd integer, the same holds for
1 ≤ s <∞.

Proof. Let w satisfy the integral equation (2.1) on some time interval [0, T ]. We
take the Hs(T) norm on both sides and estimate with the help of Lemma 2.3

‖w(t)‖Hs ≤ ‖w0‖Hs(T) +

∫ t

0

‖|w|p−1w‖Hs(T) dt
′

≤ ‖w0‖Hs(T) + c‖w‖p−1
L∞([0,T ]×T)

∫ t

0

‖w‖Hs(T) dt
′.

(2.6) now follows from Gronwall’s lemma, where we get by Sobolev’s inequality
and the bound from energy conservation (2.4),

‖w(t)‖p−1
L∞

. ‖w(t)‖p−1
H1 . ‖w0‖p−1

H1(T)) + ‖w0‖
p2−1

2

H1(T)) ∼ c(‖w0‖H1(T))

for the constant in the exponential.

We end this section by noting that the bound on the Hs(T) norm in Theorem
2.4 is not optimal, but sufficient in our case to prevent blow-up. For example
in the integrable case p = 3, there are infinitely many Hamiltonians which give
immediate control over the HN norms for integer N .

3 Local solutions on the line

To show wellposedness of NLS-type equations on the line in L2(R), one usually
makes use of Strichartz estimates. Indeed, the following result (both for the
focusing and defocusing NLS) holds [8, Theorem 2]:

Theorem 3.1 ([8]). If 1 ≤ p < 5, the Cauchy problem (1.3) is locally wellposed

in C([0, T ], L2(R)) ∩ L
4(p+1)
p−1 ([0, T ], Lp+1(R)) for any v0 ∈ L2(R), w0 ∈ H1(T).

In the case 1 ≤ p < 5, the guaranteed time of existence T depends only on
‖v0‖L2(R) and ‖w0‖H1(T), whereas for p = 5 it depends on the profile of v0 and
‖w0‖H1(T).

The restriction p ≤ 5 comes from the fact that the problem (1.1) is mass-
supercritical when p > 5. On the other hand, we want to consider solutions in
the energy space H1(R), and so we do not run into a supercritical range when
making p large. Moreover, the wellposedness issue in H1(R) is particularly easy
because this space is a Banach algebra.

7



Our goal is to show wellposedness for the perturbed NLS on the line. Both
in [6] and [8], local wellposedness was shown under the assumption of w0 being
more regular than v0. This was due to the fact that the bound

‖vw‖Hs(R) . ‖v‖Hs(R)‖w‖Hs+1(T)

was used (see for example [6, Lemma 11]). A close inspection of the argument
shows that a bound against ‖w‖Hs+1/2+(T) would also work. On the other hand,
the case s = 1 suggests that by localizing in space and using periodicity, one
can also estimate with the same regularity s, because for example

‖vw′‖2L2(R) =
∑
k∈Z

∫ k+1

k

|v|2|w′|2 dx ≤ ‖w′‖2L2(T)

∑
k∈Z
‖v‖2L∞([k,k+1))

. ‖w‖H1(T)

∑
k

‖v‖2H1([k,k+1)) = ‖w‖H1(T)‖v‖H1(T).

This gives a strictly better bound than putting w′ into L∞(T) = L∞(R) in the
first place. With this remark at hand, and using the arguments from [6] and [8],
we will obtain the local wellposedness results with initial data in H1(R)+H1(T).

We need estimates on difference terms. This is done in the next lemma.

Lemma 3.2. Let p ≥ 2 and

G(v1, v2, w) = |v1 + w|p−1(v1 + w)− |v2 + w|p−1(v2 + w).

There exists a constant c > 0 such that the following estimates hold true:

|G(v1, v2, w)| ≤ c|v1 − v2||(v1, v2, w)|p−1, (3.1)

|G(v1, v2, w)x| ≤c|v1,x − v2,x||(v1, v2, w)|p−1+

c|v1 − v2||(v1,x, v2,x, wx)||(v1, v2, w)|p−2.
(3.2)

The same holds true if we replace the function |x|p−1x by |x|p in all of the
arguments.

Proof. Note that ∂s|f(s)|p = p|f(s)|p−2 Re(f̄∂sf). By the fundamental theorem
of calculus we can write with v(s) = v2 + s(v1 − v2) + w

G(v1, v2, w) = (v1 − v2)

∫ 1

0

|v(s)|p−1 ds

+ (p− 1)

∫ 1

0

|v(s)|p−3v(s) Re(v(s))(v1 − v2)) ds

Since |v2 + s(v1 − v2) + w|p−1 . |v1|p−1 + |v2|p−1 + |w|p−1, this shows the first
estimate. For the second estimate, the first summand takes care of when the
derivative falls on (v1 − v2). Moreover,∣∣∣∂|v(s)|p−1

∣∣∣ . (|v1,x + |v2,x|+ |wx|)(|v1|p−2 + |v2|p−2 + |w|p−2)
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which produces the second summand in the estimate coming from the derivative
falling on the integrand. The case of |x|p instead of |x|p−1x is proven analo-
gously.

Theorem 3.3. Let p ≥ 2. The Cauchy problem (1.3) is locally wellposed in
C([0, T ], H1(R)) for any v0 ∈ H1(R), w0 ∈ Hs(T), s ≥ 1.

The guaranteed time of existence T ∗ depends only on the H1 norms ‖v0‖H1(R)

and ‖w0‖H1(T). More precisely,

T ∗ & min
(
‖v0‖1−pH1(R), ‖w0‖1−pH1(T), ‖w0‖

− p2−1
2

H1(T)

)
.

Proof. The proof is a standard Banach fixed point argument. If we let S(t) =

eit∂
2
x , then the integral formulation of (1.3) is

v(t) = S(t)v0 + i

∫ t

0

S(t− t′)(|v + w|p−1(v + w)− |w|p−1w) dt′. (3.3)

We will show that the right-hand side is a contraction on

XR,T = {v ∈ C([0, T ], H1(R)) : ‖v‖C([0,T ],H1(R)) ≤ R}

where R, T will be chosen later. We claim that

‖|v + w|p−1(v + w)− |w|p−1w‖H1(R) . ‖v‖H1(R)(‖w‖p−1
H1(T) + ‖v‖p−1

H1(R)) (3.4)

Indeed by Lemma 3.2 with v2 = 0,∣∣∣|v + w|p−1(v + w)− |w|p−1w
∣∣∣ . |v|(|v|p−1 + |w|p−1

)
,

and ∣∣∣∂(|v + w|p−1(v + w)− |w|p−1w
)∣∣∣

. |vx|
(
|v|p−1 + |w|p−1

)
+ |v||wx|

(
|v|p−2 + |w|p−2

)
.

The L2(R) norm of the first term and the first summand of the second term are
seen to be bounded by the right-hand side of (3.4) simply by putting w ∈ L∞(R)
and Hölder. For the second summand, we localize in space and use Sobolev’s
inequality on the interval [k, k + 1] to find∫

R
|v|2|wx|2

(
|v|p−2 + |w|p−2

)2
dx

≤ ‖wx‖2L2(T)

(
‖v‖p−2

L∞(R) + ‖w‖p−2
L∞(R)

)2∑
k

‖v‖2L∞([k,k+1))

. ‖w‖2H1(T)‖v‖
2
H1(R)

(
‖v‖p−2

H1(R) + ‖w‖p−2
H1(T)

)2
.

This proves (3.4)
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For the H1(T) norm of w we have the energy bound (2.4), and together with
the fact that S(t) is an isometry on H1(R) we can bound the C([0, T ], H1(R))-
norm of the right-hand side of (3.3) by

‖v0‖H1(R) + cTR
(
‖w0‖p+1

H1(T) + ‖w0‖
p2−1

2

H1(T) +Rp−1
)

if v ∈ XR,T . Choosing R = 2‖v0‖H1(R) deals with the first summand, and for
the second summand, we let

T . min
(
‖w0‖1−pH1(T), ‖w0‖

− p2−1
2

H1(T) , R
1−p)

be small enough. This guarantees that the right-hand side of (3.3) defines a
mapping on XR,T . The contractive property is proven similarly: If we keep the
notation from Lemma 3.2 and use it, then

|G(v1, v2, w)| . |v1 − v2|(|v1|p−1 + |v2|p−1 + |w|p−1),

and

|G(v1, v2, w)x| . |v1,x − v2,x|(|v1|p−1 + |v2|p−1 + |w|p−1)

+ |v1 − v2|(|v1,x|+ |v2,x|+ |wx|)(|v1|p−2 + |v2|p−2 + |w|p−2)

When there is no derivative term falling on w, the L2(R) norm of G respectively
Gx can be estimated by putting w in L∞. The worst term is∫

|v1 − v2|2|wx|2(|v1|p−2 + |v2|p−2 + |w|p−2)2 dx

. (‖v1‖p−2
L∞ + ‖v2‖p−2

L∞ + ‖w‖p−2
L∞ )2

∑
k

‖v1 − v2‖2L∞([k,k+1))‖wx‖
2
L2(T),

and we can estimate as before by Sobolev’s embedding. Hence we find∥∥∥∫ t

0

S(t− t′)G(v1, v2, w) dt′
∥∥∥
H1(R)

. ‖v1 − v2‖L∞([0,T ],H1(R))T (Rp−1 + ‖w‖p−1
L∞([0,T ],H1(T)))

. ‖v1 − v2‖L∞([0,T ],H1(R))T (Rp−1 + ‖w0‖p−1
H1(T) + ‖w0‖

p2−1
2

H1(T))

In particular with the same relative smallness condition as before, we obtain a
contraction on XR,T .

As a byproduct of Theorem 3.3 we obtain a blow-up alternative for the
solution v to (1.3): Denote by T ∗ the maximal time of existence. Then either
T ∗ <∞ and

lim sup
t→T∗

‖v(t)‖H1(R) =∞, (3.5)

or T ∗ =∞.
Indeed, we see that if we had a maximal solution of (1.3) with the property

lim supt→T∗ ‖v(t)‖H1(R) < ∞, we could continue it to some time T ∗ + δ by
Theorem 3.3, yielding a contradiction to its definition as a maximal solution.
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4 Global solutions on the line

In this section, we will prove our main theorem. To this end, we define momen-
tum M , energy E and Hamiltonian H as

M(v) =

∫
1

2
|v|2 dx, E(v) =

∫
1

2
|vx|2 +

1

p+ 1
|v|p+1.

and

H(v) =

∫
1

2
|vx|2 +

1

p+ 1

(
|v + w|p+1 − |w|p+1 − (p+ 1)|w|p−1 Re(vw̄)

)
dx.

Moreover, we introduce the notation (f, g) = Re
∫
R f(x)ḡ(x) dx.

Theorem 4.1. Let v ∈ C0([0, T ), H1(R)) be a solution of (1.3). Let p ≥ 3 and
w0 ∈ Hs(T) with

� 3/2 < s <∞, if p = 3,

� 5/2 < s <∞, if p ≥ 5 is an odd integer and

� 5/2 < s ≤ [p], else.

Then there is a constant C = C(T, ‖v0‖H1 , ‖w0‖Hs) > 0 such that

sup
t∈[0,T )

M(v(t)) + E(v(t)) ≤ C (4.1)

In particular, (1.3) is globally wellposed.

The idea of the proof is that by (1.5), we know that there are no derivatives
falling on v, and we essentially just have to count factors of v in the time
derivative of H. Factors that depend on the L∞ norm of w and its derivatives
are allowed since by Theorem 2.4 it is bounded locally in time.

We will see that there are always more than two, but never too many factors
of v. If there are too many factors of v, we are not able to estimate by MαE1−α

anymore, leading to a break down in the Gronwall argument. This is also the
reason of the higher regularity assumption w0 ∈ H5/2+(T) in the case p > 3,
because the estimate∫

|vx||v|p−1 dx . ‖vx‖2αL2‖v‖(1−α)(p+1)
Lp+1

only works for p ≤ 3.
Before proving Theorem 4.1, we need additional estimates in the spirit of

Lemma 3.2.

Lemma 4.2. Let p ≥ 3. There exists a constant c = c(p) > 0 such that the
following estimates hold true:∣∣|v + w|p−1 − |w|p−1 − (p− 1) Re(wv̄)|w|p−3

∣∣ ≤ c|v|2(|w|p−3 + |v|p−3), (4.2)

11



∣∣|v + w|p+1 − |w|p+1 − (p+ 1) Re(wv̄)|w|p−1 − |v|p+1
∣∣

≤ c|v|2|w|(|w|p−2 + |v|p−2),
(4.3)∣∣|v + w|p−1(v + w)− |w|p−1w − ((p− 1) Re(wv̄)|w|p−3w + v|w|p−1)

∣∣
≤ c|v|2(|w|p−2 + |v|p−2).

(4.4)

In particular, there exists a constant c = c(p, ‖w‖L∞(T)) > 0 such that

H ≤ cM + E, E ≤ cM +H. (4.5)

Proof. We define f(s, t) = |sv + tw|q. Note first that

∂sf(s, t) = q|sv + tw|q−2 Re((sv + tw)v̄),

∂tf(s, t) = q|sv + tw|q−2 Re((sv + tw)w̄),

∂2
sf(s, t) = q|sv + tw|q−2|v|2 + q(q − 2)|sv + tw|q−4 Re((sv + tw)v̄)2,

∂s∂tf(s, t) = q|sv + tw|q−2 Re(vw̄)

+ q(q − 2)|sv + tw|q−4 Re((sv + tw)v̄) Re((sv + tw)w̄),

∂2
s∂tf(s, t) = q(q − 2)|sv + tw|q−4 Re((sv + tw)v̄) Re(vw̄)

+ q(q − 2)|sv + tw|q−4|v|2 Re((sv + tw)w̄),

+ q(q − 2)|sv + tw|q−4 Re((sv + tw)v̄) Re(vw̄),

+ q(q − 2)(q − 4)|sv + tw|q−6 Re((sv + tw)v̄)2 Re((sv + tw)w̄).

In particular, we see that for 0 ≤ s, t ≤ 1,

|∂2
sf(s, t)| . |v|2(|v|q−2 + |w|q−2),

|∂2
s∂tf(s, t)| . |v|2|w|(|v|q−3 + |w|q−3).

Now the left-hand side of the first estimate is f(1, 1)− f(0, 1)− ∂sf(0, 1) with
q = p − 1, and so the first estimate follows from the fundamental theorem of
calculus,

|f(1, 1)− f(0, 1)− ∂sf(0, 1)| =
∣∣∣ ∫ 1

0

∂sf(s, 1)− ∂sf(0, 1) ds
∣∣∣

=
∣∣∣ ∫ 1

0

∫ s

0

∂2
sf(s′, 1) ds′ds

∣∣∣ . |v|2(|v|q−2 + |w|q−2).

For the second estimate we note that f(0, 0) = ∂sf(0, 0) = 0 and use the
fundamental theorem of calculus three times to see

|f(1, 1)− f(0, 1)− f(1, 0)− ∂sf(0, 1)| =
∣∣∣ ∫ 1

0

∫ 1

0

∫ s

0

∂2
s∂tf(s′, t) ds′dsdt

∣∣∣
. |v|2|w|(|v|q−3 + |w|q−3).

The third estimate follows similarly by arguing with g(s, t) = |sv+ tw|p−1(sv+

tw). With these estimates, we use Hölder ‖v‖pLp ≤ ‖v‖2/(p−1)
L2 ‖v‖(p+1)(p−2)/(p−1)

Lp+1
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and Young to see

|H(v)− E(v)| .
∫
|v|2|w|(|w|p−2 + |v|p−2) dx

. ‖w‖p−1
L∞(T)M(v) + ‖w‖L∞(T)‖v‖pLp(R)

. ‖w‖p−1
L∞(T)M(v) + ‖w‖L∞(T)M(v)

1
p−1E(v)

p−2
p−1

. εE(v) + C(ε)M(v).

Choosing ε small enough, we arrive at (4.5).

In order to prove Theorem 4.1, we want to take time derivatives of E and
M and hence of v. If v0 ∈ H1(R), then v(t) ∈ H1(R) and hence from (1.3)
we see that vt ∈ H−1(R) for all times. This is enough to rigorously calculate
∂tM = (v, vt), by interpreting the involved integral as a dual pairing between
H1 and H−1. For the bilinear part of the energy, −(vxx, vt), this does not
suffice any more. Our solution is to employ a twisting trick (see for example
[1] and [9]) and to work in the interaction picture, that is with the function

ψ(t) = e−it∂
2
xv(t).

Proof of Theorem 4.1. Fix T > 0. We use Gronwall’s lemma to obtain an expo-
nential bound on M +H. By (4.5), this is enough to bound M + E and hence
the H1 norm.

First of all, note that for any 2 ≤ q ≤ p+ 1, we have by Hölder and Young

‖v‖qLq ≤ ‖v‖
2 p−q+1

p−1

L2 ‖v‖(p+1) q−2
p−1

Lp+1 ≤M(v)
p−q+1
p−1 E(v)

q−2
p−1 ≤M(v) + E(v).

This shows that powers of v ranging from two to p+ 1 are allowed.
We begin with M and see, interpreting the integrals in the first line as a

dual pairing between H1 and H−1,

∂tM(v) = (v, vt) = (iv,−vxx + |v + w|p−1(v + w)− |w|p−1w)

= (iv, |v + w|p−1(v + w)− |w|p−1w)

. E(v) +M(v) . H(v) +M(v).

Here, the summand (iv,−vxx) vanishes by partially integrating once and we
used Lemma 3.2 in the last line. To calculate the time derivative of H, we start
with a formal calculation for the bilinear part,

∂t
1

2

∫
|vx|2 dx = (vt,−vxx) = −

(
vt, |v + w|p−1(v + w)− |w|p−1w

)
,

using (1.3) to rewrite −vxx and (vt, ivt) = 0. As vt ∈ H−1 and vxx ∈ H−1, their
product is not well defined and the middle step in the above calculation needs
to be justified. To make it rigorous, we define ψ(t) = e−it∂

2
xv(t) = S(−t)v(t).

Recall that v(t) satisfies (3.3), and hence ψ(t) satisfies

ψ(t) = v0 +

∫ t

0

S(−t′)
(
|v + w|p−1(v + w)− |w|p−1w

)
dt′.

13



In particular, we see that

i∂tψ = S(−t)(|v + w|p−1(v + w)− |w|p−1w)(t),

which shows ψ ∈ C1((0, T ), H1(R)). Since S(−t) is an isometry on L2 and
commutes with derivatives, we calculate

∂t
1

2

∫
|vx|2 = −(ψxx, ψt)

= −
(
iψxx, S(−t)(|v + w|p−1(v + w)− |w|p−1w)

)
= −

(
ivxx, |v + w|p−1(v + w)− |w|p−1w

)
= −

(
vt + i(|v + w|p−1(v + w)− |w|p−1w), |v + w|p−1(v + w)− |w|p−1w

)
= −

(
vt, |v + w|p−1(v + w)− |w|p−1w

)
.

which is well-defined as a dual pairing, because |v + w|p−1(v + w)− |w|p−1w ∈
H1(R) by Lemma 3.2.

For the nonlinear term of the Hamiltonian, we calculate

∂t
1

p+ 1

∫
|v + w|(p+1) − |w|p+1 − (p+ 1) Re(wv̄)|w|p−1 dx

= Re

∫ (
|v + w|p−1(vt + wt)(v̄ + w̄)− |w|p−1(wtw̄)

− (wtv̄|w|p−1 + vtw̄|w|p−1 + (p− 1)wv̄Re(wtw̄)|w|p−3
)

= Re

∫ (
|v + w|p−1(v̄ + w̄)vt − |w|p−1w̄vt

)
+

∫
R,

where the remainder R only carries time derivatives on w,

R = Re
(
|v+w|p−1(v̄+w̄)wt−|w|p−1(w̄+ v̄)wt

)
−(p−1)|w|p−3 Re(wtw̄) Re(wv̄).

Since the first summand cancels with the time derivative of the bilinear part,
we arrive at ∂tH =

∫
R as predicted by (1.5). We conclude

∂tH =
(
wt, |v + w|p−1(v + w)− |w|p−1(v + w)− (p− 1) Re(wv̄)|w|p−3w

)
=
(
wt, v(|v + w|p−1 − |w|p−1)

)
+
(
wt, w(|v + w|p−1 − |w|p−1 − (p− 1) Re(wv̄)|w|p−3)

)
.

We first argue how to handle this term in the case p > 3. In this case, we
assumed w0 ∈ Hs(T), s > 5/2+ with corresponding upper bound depending on
whether p is an odd integer or not. This means by Theorem 2.4 that we have
local in time boundedness in L∞ of wxx, hence of wt. Now using Lemma 4.2,
this implies ∣∣∂tH∣∣ . ‖wt‖L∞ ∫ |v|2(|v|p−2 + |w|p−2) dx

+ ‖wt‖L∞‖w‖L∞
∫
|v|2(|v|p−3 + |w|p−3) dx

. E(v) +M(v) . H(v) +M(v),
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with a bound depending on p, w0, T . Gronwall gives

H(v(t)) +M(v(t)) . (H(v0) +M(v0))eCt,

and proves the theorem for this case.
We turn to p = 3. By plugging in the equation (1.2) for wt, we obtain two

terms for each summand in ∂tH, one with |w|2w and one with wxx. For the
term with |w|2w, we estimate w in L∞ and argue as above. The other two terms
are (

iwxx, v(|v + w|2 − |w|2)
)

+
(
iwxx, w(|v + w|2 − |w|2 − 2 Re(wv̄))

)
=
(
iwxx, |v|2v + 2vRe(vw̄) + |v|2w

)
.

We integrate by parts once. This produces terms where the derivative falls on
a copy of w, and terms where the derivative falls on a copy of v. The former
case is handled just as above because ‖wx‖L∞ is bounded locally in time by
w0 ∈ H3/2+. In the latter case, we put vx in L2 and estimate∣∣∣(iwx, (|v|2v)x + 2vx Re(vw̄) + 2vRe(vxw̄) + (|v|2)xw

)∣∣∣
. ‖wx‖L∞

(
‖vx‖L2‖v‖2L4 + ‖w‖L∞‖vx‖L2‖v‖L2

)
. E(v) + E(v)

1
2M(v)

1
2

which can be estimated by E(v) +M(v) by Young. As before we conclude via
Gronwall and finish the proof.
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