Bioinformatics, 2021, 1-8

doi: 10.1093/bioinformatics/btab399

Advance Access Publication Date: 26 May 2021
Original Paper

Phylogenetics
Exploring parallel MPI fault tolerance mechanisms for

phylogenetic inference with RAXMML-NG

Lukas Hiibner ® ?*, Alexey M. Kozlov ® 2, Demian Hespe', Peter Sanders' and

Alexandros Stamatakis ® 12

'Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Baden, Karlsruhe, Wiirttemberg, Germany and “Computational
Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Baden, Heidelberg, Wiirttemberg, Germany

*To whom correspondence should be addressed.
Associate Editor: Russell Schwartz

Received on January 19, 2021; revised on May 10, 2021, editorial decision on May 17, 2021; accepted on May 25, 2021

Abstract

Abstract: Motivation: Phylogenetic trees are now routinely inferred on large scale high performance computing sys-
tems with thousands of cores as the parallel scalability of phylogenetic inference tools has improved over the past
years to cope with the molecular data avalanche. Thus, the parallel fault tolerance of phylogenetic inference tools has
become arelevant challenge. To this end, we explore parallel fault tolerance mechanisms and algorithms, the software
modifications required and the performance penalties induced via enabling parallel fault tolerance by example of
RAXML-NG, the successor of the widely used RAXML tool for maximum likelihood-based phylogenetic tree inference.
Results: We find that the slowdown induced by the necessary additional recovery mechanisms in RAXML-NG is on
average 1.00 = 0.04. The overall slowdown by using these recovery mechanisms in conjunction with a fault-tolerant
Message Passing Interface implementation amounts to on average 1.7 = 0.6 for large empirical datasets. Via failure
simulations, we show that RAXML-NG can successfully recover from multiple simultaneous failures, subsequent fail-
ures, failures during recovery and failures during checkpointing. Recoveries are automatic and transparent to the user.
Availability and implementation: The modified fault-tolerant RAXML-NG code is available under GNU GPL at https://
github.com/lukashuebner/ft-raxml-ng.

Contact: lukas.huebner@kit.edu or lukas.huebner@h-its.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction calls). Regarding the failure frequency, we can therefore consider the

entire set of MPI ranks as a number of serially connected single systems
which will all fail if one single component fails. The MTTF of an MPI
program running on processing elements (PEs) 721,7,, ..., n; with inde-
pendent failure probabilities are therefore:

1 1
mttf(n1,12,...,1) = (ZW)
i

j

Failing hardware is projected to be one of the main challenges in fu-
ture exascale systems (Shalf er al., 2011). In fact, one may expect
that a hardware failure will occur in exascale-systems every 30-
60 min (Cappello ez al., 2014; Dongarra et al., 2015; Snir et al.,
2014). High Performance Computing (HPC) systems can fail due to
core hangs, kernel panics, file system errors, file server failures, cor-
rupted memories or interconnects, network outages, air condition-
ing failures, or power halts (Gupta et al., 2017; Lu, 2013). Common

metrics to characterize the resilience of hardware are the mean time As the number of cores that can be used by scientific software

between failure (MTBF) for repairable components and the mean
time to failure (MTTF) for non-repairable components. Both de-
scribe the expected average time for which a system will fully func-
tion after repair or replacement (Lu, 2013). For the sake of
simplicity, we will henceforth subsume MTBF and MTTF under the
term MTTF and assume negligible repair and replacement time.
Currently, most message passing interface (MPI) implementations
will terminate upon the failure of a rank (a rank is a process that com-
municates with other ranks running in parallel using explicit messaging

©The Author(s) 2021. Published by Oxford University Press.

increases, the MTTF decreases rapidly. Gupta et al. (2017) report the
MTTF of four systems in the petaflops range containing up to 18 688
nodes (Table 1). Currently, most compute jobs only use a fraction of
these petascale systems. Thus, current HPC jobs are not constantly
aborted due to rank failures. In the not so distant future, on the by then
commonly available exascale systems, scientific codes will run on hun-
dreds to thousands of nodes and therefore experience a core failure
every few hours (Cappello et al., 2014; Dongarra et al., 2015; Snir
et al., 2014). We can therefore no longer ignore compute node or

1

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

1Z0Z Jequiardag gz Uo Jasn | 3 - aiBojouyoa | Inj 1nnsu| Jeynispey Aq /S64829/66S0BIG/SONBUWIONIOIG/SE0 L 0 L/10P/8[01e-80UBAPE/SOIIBWLIOLUIOIG/WOD dNo-oIWwapeoe//:sdny wolj papeojumoq

https://orcid.org/0000-0001-9213-7597
https://orcid.org/0000-0001-7394-2718
https://orcid.org/0000-0003-0353-0691
https://github.com/lukashuebner/ft-raxml-ng
https://github.com/lukashuebner/ft-raxml-ng
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/

L.Hibner et al.

Table 1. MTTF of petascale systems as reported by Gupta et al.
(2017)

System Nodes Cores MTTF

Jaguar XT4 (quad-core) 7832 31328 36.91h
Jaguar XTS5 (four socket dual-core) 18 688 149 504 22.67h
Jaguar XT6 (two socket 16-core) 18 688 298 592 8.93h
Titan XK7 (16-core + GPU) 18 688 560 640 14.51h

network failures, and require failure mitigating codes. To this end, we
explore the current state of MPI failure detection technology and assess
the amount of work required to make a massively parallel application
fault tolerant by example of our RAXML-NG software (Kozlov et al.,
2019), the successor of the widely used RAXML tool for phylogenetic
inference (Stamatakis, 2014).

The remainder of this paper is structured as follows: In
Section 2, we briefly discuss related work on fault-tolerant scientific
software in general and in Bioinformatics in particular. In Sections
3.1 and 3.2, we discuss the most common techniques and tools
for implementing fault tolerance in parallel programs. We then de-
scribe the specific implementation in RAXML-NG in more detail in
Section 3.3 as well as Section 3.4 and present experimental results in
Section 4. We conclude in Section § and discuss future directions of
work.

2 Related work

There already exist some fault-tolerant scientific applications. For
example, Ali et al. (2016) implemented a fault-tolerant numeric lin-
ear equation and partial equation solver. Obersteiner et al. (2017)
extended a plasma simulation, Laguna ef al. (2016) a molecular dy-
namics simulation and Engelmann et al. (2003) a Fast Fourier
Transformation that gracefully handle hardware faults. Kohl et al.
(2017) implemented a checkpoint-recovery system for a material sci-
ence simulation. After a failure, the system initially assigns the work
of the failed PEs to a single PE. The respective load-distribution al-
gorithm (Schornbaum et al., 2018) then recalculates the data distri-
bution for the reduced number of PEs. Next, the PEs exchange the
data residing on the wrong (i.e. overloaded) PE over the network via
point-to-point communication.

In the field of Bioinformatics, some research into automatically
restarting failed sub-jobs exists (Smith ez al., 2006; Varghese et al.,
2014). These methods require each job to be divisible into several
sub-jobs and are not based on the checkpointing and restart
paradigm.

Finally, we are not aware of related work on assessing or imple-
menting fault tolerance mechanisms in any other likelihood-based
(i.e. maximum likelihood (ML) or Bayesian inference) phylogenetic
tree inference tool.

3 Fault tolerance techniques and tools

Despite the currently limited support in MPI for mitigating hard-
ware failures, some research on handling faults at the application
level has been conducted. In the following, we will outline our ap-
proach and the respective design rationales in comparison with
other fault-tolerant scientific software.

3.1 Design rationales and implementation

The three main techniques for making programs fault tolerant are
Algorithm-Based Fault Tolerance, restarting failed sub-jobs and
checkpointing/restart. Algorithm-Based Fault Tolerance is used pre-
dominantly in numerical applications (Bosilca et al., 2009; Vijay
et al., 1997), but requires the algorithm in question to be extensible
such as to include redundancy. The RAXML-NG tree search strategy
is a rather involved algorithm. For example, it comprises a hill

climbing heuristic, Subtree Pruning and Regrafting (SPR)-rounds as
well as Newton—-Raphson, BGFS and Brent numerical optimization
routines. The tree topology, branch lengths, substitution model
parameters and base frequencies are optimized. Individual ranks
typically work on different models and parameters (on distinct parti-
tions of the dataset). We were, therefore, not able to devise an
Algorithm-Based Fault-Tolerant solution that would exhibit a rea-
sonable and manageable degree of software complexity.

Restarting failed sub-jobs as failure mitigation strategy is feasible
when the program at hand can be split up into separate small and
well-defined work packages which can easily be redistributed among
nodes and managed via a (possibly distributed) work queue.
RAXML-NG, however, applies a tightly coupled parallel iterative
optimization strategy which cannot easily be split up this ways, if at
all. Finally, for deploying a checkpointing and restart strategy as
presented here for RAXML-NG, the program has to regularly save
its state to disk or memory.

Checkpoint/restart approaches can be further classified into sys-
tem-level and application-level approaches. System-level approaches
are (almost) transparent to the application, but are agnostic of the
memory state subsets that can easily be recomputed at low computa-
tional cost (Hargrove et al., 2006; Roman, 2002). For instance, in
any tree inference program that conducts phylogenetic likelihood
calculations, the so-called conditional likelihood vectors (CLVs,
which store intermediate results of likelihood computations) domin-
ate the memory requirements of the program and can require tera-
bytes of memory in large-scale analyses (Jarvis et al., 2014; Misof
et al., 2014). However, as these CLVs can be efficiently recomputed,
they should not be saved in a checkpoint. We, therefore, chose to
substantially extend the existing application-level checkpointing
that was already implemented in RAXML-NG (Section 3.3.1) to be
more fine-granular as well as decentralized and therefore more scal-
able. Further, we use a fault-tolerant MPI implementation to make
user interaction for restarts obsolete and lose substantially less work
in case of failure. This removes a major hurdle for scaling to
Exascale systems.

In general, we need to store the model parameters, branch
lengths and tree topology in a checkpoint. Typically, this data only
needs a few megabytes (Supplementary Material) and can be repli-
cated in the local main memory of each rank. We can, therefore,
store a full RAXML-NG checkpoint in the main memory of each
rank. This approach is called diskless checkpointing and has the ad-
vantage of being substantially faster than writing checkpoints to
disk (Plank et al., 1998).

In so-called coordinated checkpointing, all ranks of the program
write their checkpoints at the same time which comes at the cost of
additional synchronization. Gavaskar and Subbarao recommend
coordinated checkpointing for high-bandwidth, low-latency inter-
connections as they are common in modern HPC systems (Gavaskar
et al., 2013). Since the ranks in RAXML-NG are synchronizing thou-
sands of times per second anyway (Kozlov et al., 2015), we chose to
conduct coordinated instead of uncoordinated checkpointing.

The final design decision that needs to be taken, is whether to ei-
ther use spare cores for replacing failed nodes or to simply reduce
the number of nodes the job runs on upon failure. For example,
Teranishi et al. (2014) describe a framework for recovering from
failures by relying on available replacement processors. Making suf-
ficient replacement processors available, however, would constitute
a waste of resources in case there is no failure. Ashraf et al. (2018)
study the performance implications of replacing failed nodes versus
reducing the set of nodes. For their application they observed that
shrinking represents a viable alternative to replacement. The overall
CPU time required increased by a smaller degree when reducing the
number of nodes. This is because the failed nodes were available for
computations until the failure. We, therefore, redistribute the calcu-
lations to the remaining nodes upon failure in RAXML-NG.

We implemented fault tolerance for the most frequently used exe-
cution mode of RAXML-NG, that is, a phylogenetic tree search under
ML. In addition, we focus on the fine-grained tightly coupled MPI
parallelization scheme for supercomputers. Under this parallelization
scheme, all sites of a large whole genome or multi-gene alignment are

1Z0Z Jequiardag gz Uo Jasn | 3 - aiBojouyoa | Inj 1nnsu| Jeynispey Aq /S64829/66S0BIG/SONBUWIONIOIG/SE0 L 0 L/10P/8[01e-80UBAPE/SOIIBWLIOLUIOIG/WOD dNo-oIWwapeoe//:sdny wolj papeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data

MPI fault-tolerance mechanisms for phylogenetic inference

distributed via an appropriate load balancing algorithm (Kobert
et al., 2014) to distinct MPI ranks, each running on a distinct physical
core. In the following, we describe our implementation of the diskless
checkpointing in Section 3.3 and the corresponding recovery mecha-
nisms in Section 3.4. We call the resulting modified code FT-RAXxML-
NG (Fault Tolerant RAXML-NG).

3.2 The new MPI standard and user level failure
mitigation

The upcoming MPI standard 4.0 will support mechanisms to miti-
gate failures of ranks or network components. Currently, there exist
two actively developed MPI implementations which already support
failure mitigation: MPI Chameleon (Gropp, 2002) starting with ver-
sion 3.1 and User Level Failure Mitigation (ULFM) (Bland et al.,
2013). We chose ULFM as the MPI implementation to develop a
failure-mitigating version of RAXML-NG because the authors are
also working on the standardization of MPI 4.0 and ULFM’s failure
mitigation code has been merged into OpenMPIL. We thereby hope
to be as forward compatible as possible. Researchers have already
used ULFM for other scientific software (Ali et al., 2016;
Engelmann et al., 2003; Kohl et al., 2017; Laguna et al., 2016;
Obersteiner et al., 2017).

ULFM reports failures by returning an error on at least one rank
which participated in the failed communication. This rank then
propagates the failure notification to the other ranks via a dedicated
MPI call. The next time a rank calls an MPI operation it will be noti-
fied that another rank revoked the communicator. Different ranks
can, therefore, be in different parts of the code when they detect the
failure. Next, all surviving ranks collectively create a new communi-
cator excluding the failed ranks (ULFM Specification, 2017).

ULFM detects hardware failures via several mechanisms, de-
pending, for example, on the interconnection type. One of the fun-
damental mechanisms to achieve this are regular heartbeat signals:
Ranks send messages called heartbeat signals at regular intervals to
each other in order to indicate that they are still alive. If a rank has
not sent any heartbeat signal for a specified amount of time—the
heartbeat timeout—its observer will report that it failed. The MPI
standard only mandates progress during MPI calls. For ULFM this
means that, for the failure detection to work, at least one thread per
rank has to enter an MPI function at regular intervals. If this is not
the case, a rank cannot guarantee to respond to multiple consecutive
heartbeat intervals. This would cause the rank to be falsely reported
as being dead. We observed this behavior when testing ULFM with
the unmodified (i.e. non-failure-mitigating) version of RAXML-NG
in preliminary tests. All runs aborted because of false-positive failure
reports. After consultation with the authors of ULFM, we adjusted
some ULFM runtime settings. We increased the heartbeat interval,
the heartbeat timeout and enabled a separate dedicated heartbeat
thread on each rank: a dedicated separate thread that executes on
each MPI rank and is solely responsible for sending heartbeat sig-
nals, that is, it is not conducting likelihood computations and does
only use a negligible fraction of the hardware resources on the core.
Dedicated heartbeat threads ensure MPI progress at all times. This is
because they are only responsible for sending heartbeats and can
therefore enter the MPI runtime at all times without having to wait
for the application to invoke an MPI function. In response to our
discussion on the ULFM mailing list, the ULFM team published a
tutorial on this topic on the ULFM website (https:/fault-tolerance.
org/2020/01/21/spurious-errors-lack-of-mpi-progress-and-failure-de
tection/). After incorporating these changes into our configuration,
we observed a substantial reduction of false-positive failure reports.
In theory, these modifications come at the cost of performance.
ULFM will require more time to detect failures because of the
increased heartbeat timeout. The latency will also increase because
multiple threads are now invoking MPI calls. However, in our
experiments, the performance impact seems to be negligible (Fig. 2).

3.3 Fine-grained checkpointing

3.3.1 Modifications of original checkpointing in RAXML-NG
RAXML-NG already supports checkpointing. Thus, if a failure
occurs, one can restart the program from the last checkpoint.
However, these checkpoints are only written infrequently during the
tree search and model parameter optimization procedures (i.e. sev-
eral hours can pass between two checkpoints). To devise an efficient
fault-tolerant version of RAXML-NG we thus need to substantially
increase the checkpointing frequency. We assess the impact of differ-
ent checkpointing-frequencies on the runtime of FT-RAxML-NG in
the Supplementary Material.

The tree search state of RAXML-NG consists of the model par-
ameter values, the tree topology and the branch lengths of the cur-
rently best tree (i.e. the tree with the currently highest likelihood
score). The model parameters include the stationary frequencies, the
nucleotide transition rates and the rate heterogeneity model parame-
ters. By design of the parallelization (Kozlov et al., 2015), the tree
topology (including the branch lengths) being evaluated by the pro-
cessors is identical and consistent across all ranks at all times.
However, the currently best tree is not directly stored in memory.
We, therefore, need to implement mechanisms to recover this cur-
rently best tree. Furthermore, large-scale phylogenetic analyses are
typically partitioned, that is, different parts of the genome or indi-
vidual genes are assumed to evolve under distinct models. Thus, for
each partition, RAXML-NG estimates a separate, independent set of
model parameters (stationary frequencies, transition rates, etc.). The
model parameters of a partition are stored only at those ranks that
have been assigned at least one multiple sequence alignment (MSA)
column of the respective partition. Therefore, the model parameters
for a specific partition may only be saved by a single rank and can
be lost if that rank fails.

3.3.2 Mini-checkpointing

Our goal is to support failure mitigation for any set of ranks.
Therefore, a simple solution consists in storing the model parame-
ters of each partition at all ranks. Together with the copy of the cur-
rent best tree topology (below), we call this procedure ‘mini-
checkpointing’. FT-RAXxML-NG stores a copy of the most recent
mini-checkpoint in the main memory of each rank.

Each time a numerical optimization procedure (e.g. branch
length optimization, substitution rates optimization, etc.) updates
the model parameters of any partition, one dedicated rank per
model broadcast the updated model. All other ranks then save these
parameters to memory, too. We experimentally assess the overhead
induced by introducing mini-checkpoints for model parameters and
mechanisms for restoring the tree search state in Section 4.2.2.

The model parameters of typical empirical datasets require a few
MiB in size (Supplementary Material). Thus, we expect the number of
partitions 7 to have a negligible impact on the runtime of a single
broadcast. It does, however, have an impact on the number of broad-
casts that FT-RAXML-NG needs to execute. The time required for
checkpointing model parameters is thus in O(min(p,7) - Tpeast (P))»
where p is the number of ranks.

As already mentioned, we perform mini-checkpointing each time
an optimization procedure updates the model parameters (Fig. 1).
The mini-checkpoints are, therefore, also consistent across all ranks
when we write a regular checkpoint to disk. Hence, we do not need
to collect the model parameters for regular checkpointing as restor-
ing them only constitutes a local operation that does not require any
additional communication.

3.3.2.1 Saving the currently best tree topology.. All changes to the
tree topology are applied across all ranks simultaneously and con-
sistently. Hence, we do not need to broadcast them. RAXML-NG
does not explicitly store the currently best tree topology. A SPR
round modifies this tree topology and saves the moves needed to re-
store the best tree topology in a rollback list. Modifying this roll-
back data structures to support restoring the best topology at the
time of the last mini-checkpoint would be overly complex. To sim-
plify recovery, we thus chose to copy the currently best tree to a

1Z0Z Jequiardag gz Uo Jasn | 3 - aiBojouyoa | Inj 1nnsu| Jeynispey Aq /S64829/66S0BIG/SONBUWIONIOIG/SE0 L 0 L/10P/8[01e-80UBAPE/SOIIBWLIOLUIOIG/WOD dNo-oIWwapeoe//:sdny wolj papeojumoq

https://fault-tolerance.org/2020/01/21/spurious-errors-lack-of-mpi-progress-and-failure-detection/
https://fault-tolerance.org/2020/01/21/spurious-errors-lack-of-mpi-progress-and-failure-detection/
https://fault-tolerance.org/2020/01/21/spurious-errors-lack-of-mpi-progress-and-failure-detection/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data

L.Hibner et al.

B

Es At

\

parameter
optimization
|

branch longths B g B ;
scalers
substitution 1
rates

base |25 o |BE [proportion| 5[free rates |:
frequencies parameter of invariant and weights|:
sites

‘_£ Dranch length _! b.}n'd.
H soabers

E']C st SPRrcund | DWW Iengtls
modL parameter ©) mini-checkpoints
(T :’ save tree topology and branch lengths :
o ;
lﬂ- e B8 broadcast model parameters
EC fast SPR round - ’ ’ ’ E'] write checkpoint to disk
model parametes . : |:| optimize the branch lengths
optimization

’

optimize the substitution model

[E[. |:| optimize the tree topology

el parameter
optimization

B

phylogenetic tree search

Fig. 1. Frequency of checkpointing. On the left, an overview of the RAXML-NG tree
search mode is given. RAXML-NG writes checkpoints to disk before each step of the
optimization procedure and when optimization is completed. These are the regular
to-disk-checkpoints which were already implemented. To obtain up-to-date model
parameters, the master rank has to collect them first. Depending on the dataset and
number of ranks used, each of these steps can take multiple hours to complete. By
introducing mini-checkpointing, we increase the frequency at which model parame-
ters are shared. The ranks now broadcast them after each sub-step, denoted by the
respective model symbol. Additionally, the tree is saved each time it is changed, that
is, after adjusting the branch lengths and during SPR rounds. Regular checkpoints
are still written do disk, but do not need to collect and contain the model parameters,
as these are already consistent across all ranks. This is a simplified representation of
the procedure. All branch lengths are, in fact, also optimized during each of the
model parameter optimization steps. In addition, branch lengths are also being opti-
mized during the SPR-rounds. The o-parameter is the shape parameter of the
Gamma distribution that models among site rate heterogeneity (Yang, 1994)

separate rollback data structures each time this currently best tree
changes. As we do not need to broadcast the model parameters in
this case, this merely constitutes a local operation on each rank.

3.4 Failure recovery
If FT-RAXML-NG detects a failure during one of the model param-
eter optimization procedures or during an SPR-round that modifies
the tree topology, it will restart the computation from the last mini-
checkpoint. First, the surviving ranks need to agree on the ranks that
are still alive and restore the search to a valid state. Evidently, as lit-
tle computational work as possible should be lost because of a fail-
ure. FT-RAXML-NG thus needs to mitigate the failure, restore the
search state and resume the tree search without user intervention.
After ULFM has established a new communicator that contains
only the surviving ranks, the search is still in an invalid state as no
data has been redistributed or reloaded. Also, no rank is yet respon-
sible for calculating the likelihood scores of the alignment sites
assigned to the failed ranks. To simplify search state recovery, we
implement this as a local operation, that is, no communication be-
tween ranks is required until search state restoration has completed.
To restart the tree search, we re-execute RAXML-NGs load bal-
ancer (Kobert et al., 2014) that strives to determine an even distribu-
tion of the likelihood computation workload (the alignment sites
and/or partitions) across the MPI ranks. Then, we reload the MSA
data and finally, restore the search state. The load balancer redistrib-
utes the MSA sites to the reduced set of ranks. Each rank then loads
its respective MSA sites using partial loading. In partial loading,
each rank selectively reads only those parts of the MSA file from
disk that it requires for its fraction of the likelihood computations.
To restore the search state, we locally copy over the model

100
=
(]
€
= 10
>
[
>
3
o
o
1 <O < <>
N NS N S N N
O e o S S >
Lo & Lo O S e
S 5 5 NG % RS
R MY R SHN SHN RS
A &V SA &V &V A
KOS K o R e OIS
oS S S e O S
> o F & 0 & & &
s KON &S NN &S SN
S &P N N & &

Fig. 2. Violin plot of the time required by ULFM to detect and recover from a node
failure. This includes the time for all ranks to agree on which nodes have failed
(handled by ULFM) and creating the new communicator. We measured 2 heartbeat
timeouts: 300ms (default and false-positives) and 1000 ms (no false-positives).
Measurements marked with a * had additional nodes allocated which our code did
not use, leaving them free for ULFM. The hbt (heartbeat thread) symbol indicates
whether we enabled a thread responsible solely for sending heartbeat signals. Each
measurement was performed at least 49 times

parameters from the last successful mini-checkpoint and the current-
ly best tree from the local backup copy. Additionally, we need to in-
validate and recompute internal caches, for example, the CLVs at
the inner nodes of the tree.

Note, that the now changed number of nodes — among for ex-
ample compiler optimizations or available hardware instructions—
may hinder the bit-wise reproducibility of the result (Shen et al.,
2020). We further elaborate on this in the Supplementary Material.

3.5 Failures during checkpointing or recovery

If FT-RAXML-NG detects a failure during mini-checkpointing, it will
restart from the preceding mini-checkpoint. Upon broadcasting of the
model parameters, the ranks gather the received models in a tempor-
ary copy. All ranks then determine if a node failed during these broad-
casts using MPI_Comm_agree(), which consists of three consecutive
collective operations. If a failure occurred during checkpointing or
the first two of these collective operations, a failure will be reported
at all ranks. In this case, we discard the temporary checkpoint copies
and start over from the preceding checkpoint that is still valid and
stored in the working copy. If a failure occurs during the last collect-
ive operation which is part of MPI_Comm_agree(), all ranks defer
reporting this failure to the next MPI call. At this point, all ranks are
aware of the failure and can subsequently report it. As the first two
collective operations of MPI_Comm_agree() did not report an error,
the checkpoints stored in the temporary copies are valid and consist-
ent across all ranks. Mini-checkpointing the tree topology is a local
operation, if a rank fails during this step, the created mini-checkpoints
is still valid on all other ranks. The surviving ranks can then restart
the computation after detecting the failure.

The checkpoint-to-disk procedure will only fail if the master
rank fails while writing the checkpoint to disk. In this case, the last
checkpoint will still be valid and can be used to restart the search. If
any other rank fails while the master rank writes the checkpoint, we
will detect this failure at the beginning of the next optimization
round. In this case, we can restart the computation from the check-
point that was just written.

As recovery is a local operation, it completes on each rank that
does not crash. If additional ranks fail during the recovery, all sur-
viving ranks will first complete the restoration process and subse-
quently handle the additional failure(s).

4 Results

4.1 Experimental setup
We conduct our experiments on the ForHLR II (https://www.scc.kit.
edu/en/services/10835.php) and SuperMUC-NG (https://doku.lrz.

1Z0Z Jequiardag gz Uo Jasn | 3 - aiBojouyoa | Inj 1nnsu| Jeynispey Aq /S64829/66S0BIG/SONBUWIONIOIG/SE0 L 0 L/10P/8[01e-80UBAPE/SOIIBWLIOLUIOIG/WOD dNo-oIWwapeoe//:sdny wolj papeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://www.scc.kit.edu/en/services/10835.php
https://www.scc.kit.edu/en/services/10835.php
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

MPI fault-tolerance mechanisms for phylogenetic inference

de/display/PUBLIC/SuperMUC-NG) supercomputers. The ForHLR
II comprises 1178 worker nodes. Each node is equipped with two
sockets of Intel Xeon E5-2660 v3 (Haswell) Deca-Core CPUs. All
nodes are connected via an InfiniBand 4X EDR interconnection
(Steinbruch Center for Computing (SCC), 2020). The files are served
by two file server nodes from a DDN ES7K RAID with 14 volumes.
The SuperMUC-NG comprises 6336 worker nodes. Each node is
equipped with 2 sockets of Intel Xeon Platinum 8174 (Skylake)
CPUs. All nodes are connected via a 100 Gbit s™' OmniPath
interconnect.

We use OpenMPI v4.0, ULFM v4.0.2ul, and GCC 9.2 for our
experiments where not mentioned otherwise. FT-RAXML-NG is
based upon RAXML-NG c2af275ae6 on branch coarse released on
March 5, 2020. See Supplementary Material for more details on the
hardware and software setup as well as the RAXML-NG/FT-
RAxML-NG invocations.

4.1.1 Datasets used

For our experiments, we use empirical protein [amino acid (AA)]
and desoxyribonucleic acid (DNA) datasets with a varying number
of taxa (36 up to 815 species/sequences), alignment lengths (20 364
up to 21 410 970 sites) and partition counts (1 to 4116) [see
the Supplementary Material for a description; all datasets are
available Supplementary ~ Material (https:/figshare.com/s/
6123932e0a43280095ef)].

4.1.2 Failure simulation

We simulate failures by sending the SIGKILL signal to the respective
MPI processes when using ULFM v4.0.2u1 and by splitting the com-
municator when using OpenMPI v4.0 (see Supplementary Material
for options and a respective rationale).

4.2 Experimental results

4.2.1 ULFM overhead

We determined the impact of the heartbeat timeout and heartbeat
thread settings on the failure recovery time of ULFM by repeatedly
simulating failures and measuring the time until a new communica-
tor is created. (Fig. 2). First, we measured the time required for fail-
ure recovery under the default configuration (300 ms no heartbeat
thread) on 4 nodes on the ForHLR II. Enabling the heartbeat thread
decreased detection time from 8s (median) to 900 ms (median). As
the heartbeat thread also decreases the probability of false-positive
failures, we therefore decided to keep this setting for all subsequent
experiments. Next, we investigated the impact on failure detection
speed when setting the timeout to 1000 ms. Contrary to our expecta-
tions, increasing the heartbeat interval did not change the result sig-
nificantly (effect below standard deviation). We also investigated if
slow failure detection is related to the computational load on the
cores. For this, we executed three runs with different heartbeat
thread and timeout settings. In these experiments, we did not use all
available cores for phylogenetic likelihood computations to exclu-
sively reserve some for the ULFM runtime. This did however not
change the ULFM failure recovery times. We also performed one ex-
periment with 400 ranks to assess failure detection scalability. With
the heartbeat thread enabled and a 300 ms timeout, 11.4% of the
recoveries required more than 2s and 8.9% of the recoveries
required more than 90s. These results are probably highly depend-
ent on the specific HPC system used and should, therefore, not be
generalized. Laguna et al. (2016) reported that ULFM required 11 s
to recover when using 260 ranks on another system. These delays
are induced by the underlying fault-tolerant MPI implementations.
When more optimized fault-tolerant MPI implementations become
available, FT-RAXML-NG will recover from failures faster.

To evaluate the slowdown induced by using a fault-tolerant MPI
implementation, we also compare the runtimes of wummodified
RAXML-NG using ULFM with heartbeat threads enabled and dis-
abled versus OpenMPI v4.0 as a baseline on three different datasets
and PE counts (Table 2). We chose OpenMPI v4.0 as reference be-
cause ULFM v4.0.2ul is based upon OpenMPI v4.0. The slowdown

Table 2. Influence of ULFM on the runtime of unmodified RAXML-
NG

Slowdown [%]

Dataset Nodes Ranks OpenMPI ULFM ULFM

[s] hbt: ON hbt: OFF
ChenA4 8 160 5582 0.1 -0.6
SoltD10 18 360 1437 1.9 2.5
ShiD9 1 20 20911 6.4 8.6

Notes: We show the runtime using OpenMPI v4.0 and ULFM v4.0.2ul
with heartbeat thread (hbt, a dedicated thread for sending heartbeat signals)
enabled and disabled. The slowdown is calculated relative to OpenMPI v4.0.

induced by ULFM ranges between —0.6% and 8.6% of the reference
runtime. The additional slowdown induced by using a separate
heartbeat thread compared to not using one ranges between —-0.7%
and 2.2%-points of the reference runtime. The ULFM run that is
faster than the OpenMPI reference run might be due to measure-
ment fluctuations, but we did not further investigate this.

Finally, we observed that ULFM sometimes reported a single
rank failure but ULFM’s MPI_Comm_shrink() did not return the
same communicator on all ranks. Multiple ranks reported their rank
id as being 0 and a world size of 1. We reported this behavior on the
ULFM mailing list and the authors of ULFM reproduced and con-
firmed the bug (Bosilca, 2020). There is no patched version available
yet (As of 2020-11-30). For this reason, we use OpenMPI v4.0 as de-
fault MPI implementation and simulate failures as described in the
Supplementary Material for all performance evaluation experiments
where we need to simulate failures.

4.2.2 Overhead of mini-checkpointing

We also assess the slowdown induced by mini-checkpointing
(model-parameter updates and updates of the best known tree) as a
function of the number of models (partitions) and ranks used. We
perform these experiments on the ForHLR II supercomputer.

As the number of model-parameter updates and tree updates per-
formed during a tree search is not the same, we show the overall
amount of time spent performing either of those two in relation to
the overall runtime of the tree search itself (Fig. 3). For all test data-
sets mini-checkpointing requires <0.3% of overall runtime. In the
tree searches we executed, RAXML-NG performed 29 to 5814
model parameter updates and 242 to 14 203 updates of the current-
ly best known tree.

4.2.2.1 Time required for restoring the search state.. We further pro-
file the different phases of the recovery procedure on the ForHLR II
and show the results in Figure 4. For this, we simulate failures as
described in Section 4.1.2 and measure the time required for distinct
phases of the recovery procedure. For each run with 20 ranks, we
simulate 19 rank failures; for each run with at least 40 ranks, we
simulate at least 39 rank failures.

We expect the time required for reloading the MSA data to in-
crease with the product over the total number of sites and the num-
ber of taxa. On the ForHLR II, two file servers (Supplementary
Material) handle disk accesses. This holds independently of the
number of ranks used for the run. Thus, we expect the time for load-
ing the MSA data to be independent of the number of ranks used.
We further expect the time required for invalidating and recomput-
ing the caches (e.g. CLVs) to increase with the number of sites allo-
cated to each rank.

The time required for restoring the search state is below 100 ms
in 5 out of 8 runs, including 1 with 400 ranks. The remaining three
runs are on datasets with more than 500 000 sites as well as at least
95 taxa, and required up to 532 ms. The restoring times depend on
the number of sites and the number of taxa. Considering DNA and
AA datasets separately, the total restoring times required show a

1Z0Z Jequiardag gz Uo Jasn | 3 - aiBojouyoa | Inj 1nnsu| Jeynispey Aq /S64829/66S0BIG/SONBUWIONIOIG/SE0 L 0 L/10P/8[01e-80UBAPE/SOIIBWLIOLUIOIG/WOD dNo-oIWwapeoe//:sdny wolj papeojumoq

https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data

6 L.Hiibner et al.
2 E 1200+
b= further load op. }
. e~ initial load op.
£To29 900+
35 -
€
G 5 2
L= =
£ 600
£0 —_— o
€' £
g =
L
o —_— ——— 3004
E
E oo —— . , e ¥}
¥ > ~ > Y ~ o 04
23 Q@ Q@ Q@ @ 23 Q@
S S€» 8Fr Sfe S e €2 - - - - - : : :
NSRS &8 S&SF DD o &L L @ DL C3 3 & 3 & 3 & &
AT & & L& & NS & & & & & &
O & S8 Do & Yo L NS S L IS S50 S S50 S0 Sg® S50 S S50
O IOKEN SRS S VE I .8 o & SO& NS A N A S e® SAL S G
< sT99® ¢ Tg Ve SR R OE RS g8 ST e S
- @ ~ S o Qo N ® 0 @ D @
~ A Wl O MA@ @ M@ N@ R D &
3¢ Ned .2 2 S ¥ S . 2D g
dataset LS N LN o L
S SEX S SN OF S S QS
I S & s NN ST
Fig. 3. Proportion of overall runtime required for model parameter broadcasting dntaset
atasel

and tree updates (‘mini-checkpointing’). The mean (dots) and standard deviation
(error bars) of the fraction of overall runtime required for mini-checkpointing across
all ranks is shown. Each node has 20 CPU cores and executes 20 MPI ranks. The
empirical datasets are described in the Supplementary Material. Only if the number
of models and the number of ranks increases, the time required for redistributing
model parameters also increases

400 timer

LoadAssignmentData
300 Other
RedoPartitionAssignment
Treeinfolnit

. TreeinfoUpdatePartialsAndCLVs

1004

time [ms]
N
° S

Fig. 4. Time required for recovery from a checkpoint. ‘LoadAssignmentData’ is the
time required to load the MSA data from disk for which a rank is responsible.
‘RedoPartitionAssignment’ is the time required for re-running the load balancer.
‘Treeinfolnit’ is the time required for updating the Treelnfo data structure, including
hundreds of memory allocations. ‘TreeinfoUpdatePartialsAndCLVs® is the time
required for updating cached likelihoods. ‘Other’ includes, for example, the time
required for memory management and updating the data structures for mini-
checkpointing

perfect rank correlation with the product of the number of taxa
times the number of sites. That is, if a dataset A has more number of
taxa times number of sites than a dataset B, A required more time to
recover than B. The number of sites assigned to each rank directly
influences the time required for updating the caches. For example,
updating the CLVs of the MisoD2a dataset (Section 4.1.1) which
has over 62 000 sites per rank required 258 ms.

4.2.2.2 Time required for reloading the MSA data. We also investi-
gate the time required to (re-)load MSA data from disk on the
ForHLR II in a separate experiment as the MSA is (re-)loaded from
a central disk array. Therefore, reloading these data can constitute a
bottleneck. We measure the MSA loading time required for different
datasets on ForHLR II. We distinguish between the initial (first time
a rank loads data) load operation and further load operations (a
rank loads data it has not previously loaded).

In each experiment, the load balancer decides which rank loads
which part of the MSA. This is the initial load operation. Next, the
load balancer shifts the data destination ranks by one, that is, rank 2
now loads the data of rank 1, rank 3 the data of rank 2 etc. We re-
peat this process until each rank has loaded each part of the MSA
exactly once. We call all data loading operations after the initial one

Fig. 5. Time required for reloading the MSA from disk on the ForHLR II. Blue dots
and error bars (‘initial load op.’) indicate the time required to load the rank’s part of
the MSA the first time these data are accessed by any rank, that is, on program start-
up. The red dots and error bars (‘further load op.”) represent the time it took a rank
to load a part of the MSA it had never loaded before, but that had already been
loaded by other ranks. These data can be assumed to be cached by the file servers

“further load operations’. Figure 5 shows the average time and
standard deviation required to load a rank’s part of the MSA. The
ForHLR II system has two separate file server nodes connected to
the compute nodes via an EDR InfiniBand network. The initial load
operation represents an upper bound for the loading operation as
the cache of the file system does not contain any copy of the data
yet. The repeated loading of parts of the MSA, albeit from different
ranks, is representative of the subsequent read performance as the
file system cache already contains a copy of the data.

We provide the file sizes of the corresponding MSA files in the
Supplementary Material. For example, the DNA dataset PeteD8 has
3011 000 sites and 174 taxa and a size of 500 MiB. This file size cor-
responds to the expected encoding size of 8 bit per site and per taxon.

In case of frequent failures, the cluster’s file system will cache the
MSA data. This reduces the potential performance gain by an alter-
native approach that would store the data redundantly in the main
memory of the compute nodes. If few failures occur, the MSA data
will be accessed infrequently. In this case, the 1.2s overhead for
reloading the data can be amortized. As we performed these meas-
urements on ForHLR II only, they cannot be generalized.

With the goal of avoiding these disk accesses, we also imple-
mented and tested a technique for tree-based compression of MSAs
described by Ané et al. (2005). This would allow to store a com-
pressed copy of the entire MSA on each rank and could thus yield
reloading the MSA from disk upon failure obsolete. Unfortunately,
we found that the compression ratio (4 = 6,6 = 7, not normally dis-
tributed) varies substantially across different empirical datasets.
Thus, we conclude that this dedicated phylogeny-aware compression
scheme is impractical for addressing the problem at hand (see
Supplementary Material for further details).

4.2.2.3 Owerall runtime overhead. We measure the runtime over-
head of FT-RAXML-NG running under OpenMPI v4.0 and ULFM
v4.0.2ul compared to unmodified RAXML-NG running under
OpenMPI v4.0. We use the SuperMUC-NG supercomputer and up
to 4000 ranks for these experiments. If no failure occurs, that is the
only additional work is the creation of mini-checkpoints, FT-
RAXML-NG is 1.00 * 0.04 times slower when using OpenMPI v4.0
and 1.7 = 0.6 times slower when using ULFM v4.0.2ul. We also
measure the runtime overhead for 10 (simulated) failures. We use
OpenMPI v4.0 for these measurements and do not reduce the num-
ber of compute ranks following simulated failures. This way we can
measure the overhead induced by the recovery procedure. In our
measurements, FT-RAXML-NG with 10 (simulated failures) was
1.4%0.3 times slower than unmodified RAXML-NG. For an in
depth discussion of these results as well as an assessment of the nu-
merical stability of the results, see Supplementary Material.

1Z0Z Jequiardag gz Uo Jasn | 3 - aiBojouyoa | Inj 1nnsu| Jeynispey Aq /S64829/66S0BIG/SONBUWIONIOIG/SE0 L 0 L/10P/8[01e-80UBAPE/SOIIBWLIOLUIOIG/WOD dNo-oIWwapeoe//:sdny wolj papeojumoq

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab399#supplementary-data

MPI fault-tolerance mechanisms for phylogenetic inference

5 Discussion and future work

We present the, to the best of our knowledge, first study on
fault-tolerant parallel phylogenetic inference and one of the
first studies on fault tolerance for Bioinformatics applications
in general. It required approximately three person-months to
design the fault-tolerant version of RAXML-NG. We estimate
that it would have required two person-months if the first au-
thor had been familiar with the RAXML-NG code beforehand.
We demonstrate that our fault-tolerant implementation can
successfully handle and recover from multiple successive fail-
ures, including during critical parts of the program (e.g. during
checkpointing and recovery). It can indeed also handle failures
of rank 0 and has no limit regarding the number of ranks that
can fail simultaneously or successively. As long as there is at
least one rank still alive, the tree inference will terminate. In add-
ition, we provide a detailed study of the associated overheads for
using a fault-tolerant MPI version, executing the additional check-
pointing mechanisms, re-loading and redistributing data from disk
etc. With the goal of avoiding the disk-access when reloading the
alignment data during recovery, we implemented MSA compres-
sion. As the compression ratio was not as good as expected, we
might explore other options to accelerate data reloading in the fu-
ture. The program slowdown due to the additional checkpointing
machinery amounts to 1.00 = 0.04 on average, while the overall
slowdown including the deployment of ULFM amounts to
1.7 £ 0.6 on average.

Given a sufficiently high frequency of job failures, we believe
that a slowdown of 1.00 = 0.04 is alleviated by the corresponding
savings in man hours and a shorter walltime-to-completion as man-
ual job re-submissions are not required any more. The failure recov-
ery time of but a few seconds is negligible assuming an MTTF of at
least a few hours. Overall, the runtime overhead induced by check-
pointing as well as the recovery times scale well with an increasing
number of ranks. Nonetheless, the ULFM overhead of 70% = 60%
is unacceptably high. As ULFM is still in its beta version, we are
confident that this overhead will be reduced in future versions as it
is critical for designing fault-tolerant parallel production-level
applications.

Future work will focus on implementing and assessing alter-
native data redistribution and redundant storage mechanisms.

Funding

This work was partly supported by the Klaus Tschira Foundation. This pro-
ject has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (Grant
agreement No. §82500).

European Research Council

Established by the European Commission

The authors gratefully acknowledge the Gauss Center for Supercomputing
e. V. (www.gauss-center.eu) for funding this project by providing computing
time on the GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing
Center (www.Irz.de). This work was supported by a grant from the Ministry of
Science, Research and the Arts of Baden-Wiirttemberg (Az: 33-7533.-9-10/20/
2toP.S. and A.S.) to Peter Sanders and Alexandros Stamatakis.

Conflict of Interest: none declared.

References

Ali,M.M. et al. (2016) Complex scientific applications made fault-tolerant
with the sparse grid combination technique. Int. J. High Perform. Comput.
Appl., 30, 335-359.

Ané,C. et al. (2005) Missing the forest for the trees: phylogenetic compression
and its implications for inferring complex evolutionary histories. Syst. Biol.,
54,146-157.

Ashraf,R.A. et al. (2018) Shrink or substitute: handling process failures in
HPC systems using in-situ recovery. In: 26th Euromicro International
Conference on Parallel, Distributed and Network-based Processing (PDP),
Cambridge, UK, 21-23 March 2018.

Bland,W. et al. (2013) Post-failure recovery of MPI communication capability.
Int. . High Perform. Comput. Appl., 27,244-254.

Bosilca,G. (2020) Post pbSToy94RhI/xUrFBx_1DAA]J on the ULFM mailing list.

Bosilca,G. et al. (2009) Algorithmic based fault tolerance applied to high per-
formance computing. J. Parallel Distributed Comput. 69: 410-416.

Cappello,F. et al. (2014) Toward exascale resilience: 2014 update.
Supercomput. Front. Innovations, 1, 5-28.

Dongarra,]. et al. (2015) Fault tolerance techniques for high-performance
computing. In Fault-Tolerance Techniques for High-Performance
Computing (pp. 3-85). Springer, Cham.

Engelmann,C. et al. (2003) A diskless checkpointing algorithm for super-scale
architectures applied to the Fast Fourier Transform. In: Proceedings of the 1st
International Workshop on Challenges of Large Applications in Distributed
Environments, CLADE "03, IEEE Computer Society, USA, pp. 47.

Gavaskar,S.P. et al. (2013) A survey of distributed fault tolerance strategies.
Int. J. Adv. Res. Comput. Commun. Eng., 2.,4323-4327.

Gropp,W. (2002) MPICH2: a new start for MPI implementations. In:
Proceedings of the 9th European PVM/MPI Users’ Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing
Interface, Springer-Verlag, Berlin, Heidelberg 7.

Gupta,S. et al. (2017) Failures in large scale systems. In: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, Association for Computing Machinery, New York,
NY, USA, Article 44, pp. 1-12.

Hargrove,P.H. et al. (2006) Berkeley lab checkpoint/restart (BLCR) for Linux
clusters. J. Phys. Conference Ser., 46,494-499.

Jarvis,E.D. et al. (2014) Whole-genome analyses resolve early branches in the
tree of life of modern birds. Science, 346, 1320-1331.

Kobert,K. et al. (2014) The divisible load balance problem and its application
to phylogenetic inference. In: Lecture Notes in Computer Science. Springer,
Berlin Heidelberg, pp. 204-216.

Kohl,N. et al. (2017) A scalable and extensible checkpointing scheme for mas-
sively parallel simulations. Int. |. High Perform. Comput. Appl. 33, 571-589.

Kozlov,A.M. et al. (2015) ExaML version 3 a tool for phylogenomic analyses
on supercomputers. Bioinformatics, 31,2577-2579.

Kozlov,A.M. et al. (2019) RAXML-NG: a fast, scalable and user-friendly tool for
maximum likelihood phylogenetic inference. Bioinformatics, 35, 4453-445S5.

Laguna,l. et al. (2016) Evaluating and extending user-level fault tolerance in
MPI applications. Int. J. High Perform. Comput. Appl., 30, 305-319.

Lu,C.-D. (2013) Failure data analysis of HPC systems. Comput. Sci. arXiv pre-
print arXiv:1302.4779.

ULFM Specification. (2017) http://fault-tolerance.org/wp-content/uploads/
2012/10/20170221-ft.pdf (21 February 2017, date last accessed).

Misof,B. et al. (2014) Phylogenomics resolves the timing and pattern of insect
evolution. Science, 346, 763-767.

Obersteiner,M. et al. (2017) A highly scalable, algorithm-based fault-tolerant
solver for gyrokinetic plasma simulations. In: Proceedings of the 8th
Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems—ScalA 2017. ACM Press., New York, NY, USA

Plank,].S. et al. (1998) Diskless checkpointing. IEEE Trans. Parallel Distrib.
Syst., 9, 972-986.

Roman,E. (2002) A survey of checkpoint/restart implementations. Technical
Report. Lawrence Berkeley National Laboratory.

Schornbaum,F. ez al. (2018) Extreme-scale block-structured adaptive mesh re-
finement. SIAM J. Sci. Comput. (SISC), 40, C358-C387.

Shalf,]. et al. (2011) Exascale computing technology challenges. In: Lecture
Notes in Computer Science. Springer, Berlin Heidelberg, pp. 1-25.

Shen,X.-X. et al. (2020) An investigation of irreproducibility in maximum
likelihood phylogenetic inference. Nat. Commun., 11, 1-14.

Smith,A. et al. (2006) Andy: a general, fault-tolerant tool for database search-
ing on computer clusters. Bioinformatics, 22, 618-620.

Snir,M. et al. (2014) Addressing failures in exascale computing. Int. J. High
Perform. Comput. Appl., 28,129-173.

1Z0Z Jequiardag gz Uo Jasn | 3 - aiBojouyoa | Inj 1nnsu| Jeynispey Aq /S64829/66S0BIG/SONBUWIONIOIG/SE0 L 0 L/10P/8[01e-80UBAPE/SOIIBWLIOLUIOIG/WOD dNo-oIWwapeoe//:sdny wolj papeojumoq

http://fault-tolerance.org/wp-content/uploads/2012/10/20170221-ft.pdf
http://fault-tolerance.org/wp-content/uploads/2012/10/20170221-ft.pdf

L.Hibner et al.

Stamatakis,A. (2014) RAXML version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies. Bioinformatics, 30, 1312-1313.

Steinbruch Center for Computing (SCC). (2020) Konfiguration des ForHLR
IL. https://www.scc.kit.edu/dienste/forhlr2.php (21 February 2017, date last
accessed).

Teranishi,K. et al. (2014) Toward local failure local recovery resilience model
using MPI-ULFM. In: Proceedings of the 21st European MPI Users’ Group
Meeting on-EuroMPI/ASIA 2014. ACM Press, New York, NY, USA

Varghese,B. et al. (2014) Automating fault tolerance in high-performance
computational biological jobs using multi-agent approaches. Comput. Biol.
Med., 48, 28-41.

Vijay,M. et al. (1997) Algorithm-based fault tolerance: a review.
Microprocessors Microsyst., 21, 151-161.

Yang,Z. (1994) Maximum likelihood phylogenetic estimation from DNA
sequences with variable rates over sites: approximate methods. J. Mol.
Ewvol., 39, 306-314.

1Z0Z Jequiardag gz Uo Jasn | 3 - aiBojouyoa | Inj 1nnsu| Jeynispey Aq /S64829/66S0BIG/SONBUWIONIOIG/SE0 L 0 L/10P/8[01e-80UBAPE/SOIIBWLIOLUIOIG/WOD dNo-oIWwapeoe//:sdny wolj papeojumoq

https://www.scc.kit.edu/dienste/forhlr2.php
https://www.scc.kit.edu/dienste/forhlr2.php

	l
	l
	tblfn1

