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1. Introduction

Einstein’s gravitational field equation [1] gives, in a cosmological context, the Friedmann–Lemaître–
Robertson–Walker (FLRW) solution of a homogeneous and isotropic expanding universe with
relativistic matter [2–8]. This solution has, however, a singularity with diverging energy density
and curvature: the big bang singularity at cosmic-time coordinate t = 0.

Recently, we have suggested another solution [9], which has an additional length parameter b.
This solution has maximum values of energy density and Kretschmann curvature scalar proportional
to b−2 and b−4, respectively. In a way, the length parameter b acts as a “regulator” of the big bang
singularity, and the new solution has been called the regularized big bang solution. This new solution
replaces the Friedmann big bang curvature singularity at t = 0 by a “spacetime defect” localized at
t = 0. The spacetime defect is, in fact, described by a degenerate metric with a vanishing determinant
at t = 0. The details of this new cosmological solution are discussed in Refs. [10–12], and further
information on this particular type of spacetime defect appears in Refs. [13–15].

Up until now, the length parameter b of the degenerate metric is a mathematical artifact (regulator).
But it is also possible that b is actually a remnant of a new physics phase that replaces Einstein gravity.
In Appendix B of Ref. [10] and Appendix C of Ref. [12], we have explicitly mentioned loop quantum
gravity [16] and string theory [17] as possible candidates for the physics of this new phase. Especially
interesting may be the nonperturbative formulation of string theory, which may hold some surprises
in store on the nature of the new phase [18].

A particular formulation of nonperturbative type-IIB superstring theory (M-theory) is given by
the so-called IIB matrix model [19,20]. As this model involves only a finite number of matrices
(traceless Hermitian matrices of size N × N , where N is taken to infinity), spacetime and gravity
must emerge dynamically. Numerical simulations [21,22] of the Lorentzian version of the IIB matrix
model suggest, in fact, that a ten-dimensional classical spacetime emerges with three “large” spatial
dimensions behaving differently from six “small” spatial dimensions. The previous literature [19–22]
is, however, not entirely clear on from where precisely the spacetime points and metric come.

About a year ago, we suggested that, in the context of matrix models, the large-N master field [23]
may play a crucial role for the emergence of a classical spacetime. This suggestion was detailed in
Ref. [24] and several toy-model calculations were presented in two follow-up papers [25,26].
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We now pose the following question: does the master field of the Lorentzian IIB matrix model
(assumed to be relevant for the physics of the Universe) give an emerging spacetime with a particular
degenerate metric that corresponds to the regularized big bang solution of general relativity? At this
moment, we cannot provide a definite answer, as we do not know the IIB-matrix-model master field.
However, awaiting the final result on the master field, we can already investigate what properties
the master field would need to have in order to be able to produce, if at all possible, an emerging
metric resembling the metric of the regularized big bang solution. (It is far from obvious that the
IIB-matrix-model expression for the emergent metric can give rise to such a type of metric.) The
present paper is, therefore, solely exploratory in character.

2. Background material
2.1. Regularized big bang solution

In Sect. 1, we have already mentioned the main properties of the regularized big bang solution in
general relativity. Here, we will briefly recall the relevant expressions of this metric.

The new line element is given by [5–9]

ds2
∣∣∣(RWK) ≡ gμν(x) dxμ dxν

∣∣∣(RWK) = − t2

b2 + t2 dt2 + a2(t) δij dxi dxj, (1a)

b > 0, a2(t) > 0, (1b)

t ∈ (−∞, ∞), xi ∈ (−∞, ∞), (1c)

where we have set x0 = c t and c = 1. The spacetime indices μ and ν run over {0, 1, 2, 3}, and the
spatial indices i, j over {1, 2, 3}. Observe that the cosmic-time coordinate t covers the whole of the
real line. The real function a(t) corresponds to the cosmic scale factor.

The metric from Eq. (1) is degenerate, having a vanishing determinant at t = 0, and describes a
spacetime defect with a characteristic length scale b. Further references on this type of spacetime
defect have been given in Refs. [9,10]. The similarities and differences of the standard Robertson
Walker (RW) metric and the degenerate metric (1) are discussed in a recent review [27].

Assuming a homogeneous perfect fluid for the matter, with energy density ρM (t) and pressure
PM (t), and inserting the metric (1) in the Einstein gravitational field equation (taking the appropriate
limits [14] for t = 0) produces a modified Friedmann equation for a(t), which has a bounce-type
solution with a nonsingular behavior of the energy density and curvature at t = 0. The matter of
the homogeneous perfect fluid is assumed to satisfy the standard energy conditions, for example the
null energy condition ρM + PM ≥ 0.

Specifically, the modified spatially flat Friedmann equation, the energy-conservation equation of
the matter, and the equation of state of the matter are [10]

[
1 + b2

t2

] (
ȧ

a

)2

= 8πG

3
ρM , (2a)

ρ̇M + 3
ȧ

a

[
ρM + PM

]
= 0, (2b)

PM = PM
(
ρM
)
, (2c)
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where the overdot stands for differentiation with respect to t and G is Newton’s gravitational coupling
constant. For relativistic matter (PM /ρM = 1/3), the regular solution of Eq. (2) reads [2–9]

a(t)
∣∣∣(FLRWK)

(rel. mat.)
∝ (

t2 + b2)1/4, (3)

with ρM (t) ∝ 1/(t2 + b2). The new solution (3) appears, in slightly different notation, as Eq. (3.7)
in Ref. [9]. The review [27] elaborates on how the degenerate metric (1) with cosmic scale factor
a(t) from Eq. (3) satisfies the Hawking–Penrose cosmological singularity theorems [28]. Further
discussion of the resulting bouncing cosmology appears in Refs. [11,12], but here we highlight only
one result.

Consider a perturbative Ansatz around the “bounce” at t = 0:

a(t) = 1 + a2
(
t/b
) 2 + · · · , (4a)

ρM (t) = ρM ,0

(
1 + r2

(
t/b
) 2 + · · ·

)
, (4b)

with the energy-density scale ρM ,0 > 0 and real constants an and rn, for n ≥ 2. The modified
Friedmann equation (2a) then gives the following parametric relation:

1/G ≡ 1/(lPlanck)
2 ∼ b2 ρM ,0, (5)

where we have assumed a2 ∼ 1 and have set � = 1 and c = 1 in the definition of the Planck
length

[
recall that, in general, we have (lPlanck)

2 ≡ � G/c3
]
. From the measured value of G, we get

lPlanck ≈ 1.62 × 10−35 m; see Chapter 43 of Ref. [29] for further discussion. The relation (5) will
be used in Sect. 4.

For comparison with later results, we give explicitly the degenerate metric (a rank-2 covariant
tensor) corresponding to the line element (1),

gμν

∣∣∣(RWK) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− t2

t2 + b2 , for μ = ν = 0,

a2(t), for μ = ν = m ∈ {1, 2, 3},

0, otherwise.

(6)

The inverse metric (a rank-2 contravariant tensor) is simply given by the matrix inverse (cf. p. 201
of Ref. [29])

gμν
∣∣∣(RWK) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− t2 + b2

t2 , for μ = ν = 0,

a−2(t), for μ = ν = m ∈ {1, 2, 3},

0, otherwise,

(7)

which, for b2 > 0, has a divergent g00 component at t = 0.

2.2. Emergent spacetime metric

The IIB matrix model is extremely simple to formulate, having a finite number of matrices, but
extremely hard to evaluate and interpret. More specifically, the model has a finite number of N × N
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traceless Hermitian matrices (N is taken to infinity later). Details of the IIB matrix model are given
in the original papers [19,20] and have been briefly reviewed in Ref. [24]. Here, we only recall what
is needed for the further discussion.

Adapting Eq. (4.16) of Ref. [20] to our master-field approach, we have obtained the following
expression for the emergent inverse metric [24]:

gμν(x) ∼
∫

RD
dDy 〈〈 ρ(y) 〉〉 (y − x)μ (y − x)ν f (y − x) r(x, y), (8)

with spacetime dimension D = 10 for the original matrix model and continuous spacetime coor-
dinates xμ. These spacetime coordinates xμ have the dimension of length, which traces back to
the IIB-matrix-model length scale � that has been introduced in the path integral [24]. The average
〈〈 . . . 〉〉 in the integrand of Eq. (8) will be discussed shortly, after some other explanations have been
given.

We refer to Refs. [24,25] for the details on how the discrete spacetime points x̂ μ

k , with index
k ∈ {1, . . . , K}, are extracted from the bosonic master field Â

μ
. This bosonic master field corresponds

to a set of ten N × N traceless Hermitian matrices for N = Kn, with positive integers K and n. The
limit K → ∞ carries along the limit N → ∞, provided n stays constant or increases (the role of n
will be explained below).

The quantities entering the integral (8) are the density function

ρ(x) ≡
K∑

k=1

δ(D)
(
x − x̂k

)
(9)

for the emergent spacetime points x̂ μ

k as obtained in Refs. [24,25] and the dimensionless density
correlation function r(x, y) defined by

〈〈 ρ(x) ρ(y) 〉〉 ≡ 〈〈 ρ(x) 〉〉 〈〈 ρ(y) 〉〉 r(x, y). (10)

In Eq. (8), there is also a localized symmetric real function f (y − x), which appears in the effective
action [20,24] of a low-energy scalar degree of freedom σ hopping over the discrete spacetime points
x̂ μ

k :

Seff[σ ] ∼
∑
k , l

1

2
f
(̂
xk − x̂l

) (
σk − σl

)2, (11)

where σk is the field value at the point x̂k (the scalar degree of freedom σ arises from a perturbation of
the master field Â

μ
and σ has the dimension of length; see Appendix A of Ref. [24] for a toy-model

calculation). As this function f (x) = f
(
x0, x1, . . . , xD−1

)
has the dimension of 1/(length)2, the

inverse metric gμν(x) from Eq. (8) is manifestly dimensionless. The metric gμν is obtained as the
matrix inverse of gμν .

The extraction procedure [24,25] of the discrete spacetime points x̂ μ

k relies on n × n blocks
positioned adjacently along the diagonal of the N ×N matrices Â

μ
of the bosonic master field (there

are K blocks on each diagonal).Very briefly, the coordinates of the K discrete spacetime points x̂ μ

k are
obtained as follows: the kth n×n block on the diagonal of the single N ×N matrix Â

σ
(where σ is a

fixed index) gives a single coordinate x̂ σ
k as the average of the real eigenvalues of this particular n×n

block. The average 〈〈 . . . 〉〉 entering Eqs. (8) and (10) then corresponds to averaging over different
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block sizes n and different block positions along the diagonal in the master field. The details of this
averaging procedure still need to be clarified, but this does not affect the present discussion.

A few heuristic remarks may help to clarify expression (8) for the emergent inverse metric. In the
standard continuum theory [i.e., a scalar field σ(x) propagating over a given continuous spacetime
manifold with metric gμν(x)], two nearby points x′ and x′′ have approximately equal field values,
σ(x′) ∼ σ(x′′), and two distant points x′ and x′′′ generically have different field values, σ(x′) �=
σ(x′′′). The logic is inverted for our discussion. Two approximately equal field values, σ1 ∼ σ2, still
have a relatively small action (11) if f (̂x1 − x̂2) ∼ 1, and inserting f ∼ 1 in Eq. (8) gives a “large”
value for the inverse metric gμν and, hence, a “small” value for the metric gμν , meaning that the
spacetime points x̂1 and x̂2 are close (in units of �). Similarly, two very different field values σ1 and
σ3 have a relatively small action (11) if f (̂x1 − x̂3) ∼ 0, and inserting f ∼ 0 in Eq. (8) gives a “small”
value for the inverse metric gμν and, hence, a “large” value for the metric gμν , meaning that the
spacetime points x̂1 and x̂3 are separated by a large distance (in units of �).

In the following, we will focus on the four “large” spacetime dimensions [21,22] and we have, for
the emergent inverse metric,

gμν(x) ∼
∫

R4
d4y ρav(y) (y − x)μ (y − x)ν f (y − x) r(x, y), (12a)

ρav(y) ≡ 〈〈 ρ(y) 〉〉, (12b)

with an effective spacetime dimension D = 4 and the abbreviated notation ρav. Perhaps it is not even
necessary to do this additional averaging of ρ in the integrand of Eq. (12a), as that is already taken
care of by the N → ∞ limit [26].

In Ref. [26], we have rewritten the integral (12a) somewhat by using the integration variables
zμ ≡ yμ − xμ and introducing new functions h and r. The resulting integral and the required
definitions are

gμν(x) ∼
∫

R4
d4z ρav(z + x) zμ zν h(z) r(x, z + x), (13a)

h(y − x) ≡ f (y − x) r̃(y − x), (13b)

r(x, y) ≡ r̃(y − x) r(x, y), (13c)

where the new function r(x, y) has a more complicated dependence on x and y than the combination
x − y, but the function is still symmetric, r(x, y) = r(y, x). The advantage of using Eq. (13a) is that
the x-dependence in the integrand has now been insolated in only two functions, ρav and r.

For later use, we recall that the action of the ten-dimensional Lorentzian IIB matrix model [19–22]
contains coupling constants η̃μν , for indices μ, ν ∈ {0, 1, . . . , 9}. Reduced to D = 4 dimensions,
these coupling constants are given by

η̃μν =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1, for μ = ν = 0,

+1, for μ = ν = m ∈ {1, 2, 3},
0, otherwise.

(14)

We emphasize that the above 16 numbers are only coupling constants and not yet a metric.
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The purpose of the present paper is to investigate the integral (13a). It is not at all obvious that
a Lorentzian inverse metric could appear with the required singular behavior. Indeed, we want to
determine what would be required of the unknown functions ρav, h, and r (which trace back to the
IIB-matrix-model master field), so that the integral (13a) gives the inverse metric (7), which has a
divergent g00 component at t = 0.

3. Emergent degenerate metric
3.1. Basic idea

By choosing an appropriate length unit, we set the IIB-matrix-model length scale � to unity, � = 1. In
this way, the coordinates x̂ μ

k of the discrete emerging spacetime points are effectively dimensionless,
and the same holds for the continuous spacetime coordinates xμ used in Sect. 2.2. Moreover, we
write, in a cosmological context, these continuous spacetime coordinates as follows:

xμ = (
x0, x1, x2, x3), (15a)

x0 = c̃ t = t, (15b)

where t is interpreted as the cosmic-time coordinate and c̃ is set to unity by an appropriate choice of
the time unit. The cosmic-time coordinate t is also effectively dimensionless.

In order to obtain an emergent inverse metric with a possibly divergent g00 component at t = 0,
the convergence properties of the z0 integral in Eq. (13a) need to be relaxed. Instead of the factor
exp

[ − (
z0
)2] in h(z) as used by Ref. [26] for the standard spatially flat RW inverse metric, we

consider the following structure of the function h(z) entering Eq. (13a):

h(z) ∼ 1(
z0
)2 + 1

exp
[

− (
z1)2 − (

z2)2 − (
z3)2 ]. (16)

Focussing on the z0 integral and neglecting other contributions, we then have

g00 ∼
∫ z0

cutoff

−z0
cutoff

dz0

(
z0
)2(

z0
)2 + 1

, (17a)

g11 ∼
∫ z0

cutoff

−z0
cutoff

dz0 1(
z0
)2 + 1

, (17b)

where the first integral diverges linearly as z0
cutoff → ∞ but the second does not.

Next, we must obtain z0
cutoff ∼ 1/t2 and we use, for that, the following Ansatz:

r(x, z + x) ∼ p1

1 + (
z0
)2 (x0

)4 + p2

1 + (
z0
)2 (z0 + x0

)4 , (18)

where x0 is identified with the cosmic-time coordinate t and where, later, we set p1 = p2 = 1/π .
Note that the above function r(x, z + x), with equal p1 and p2, is symmetric in its arguments x and
z + x, which explains the appearance of the second term proportional to p2.

From Eq. (13) with ρav = 1 and the Ansatze (16) and (18), we find that the integrals with p1 can
be done analytically. The integrals with p2 are more complicated but can be dealt with after a Taylor
expansion with respect to x0 = t. The following structure is obtained:∣∣g00

∣∣ ∝ 1

t2 + O(1), (19a)
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∣∣ ∼ O(1). (19b)

Further work is needed to get a t-independent term in
∣∣g00

∣∣ exactly equal to unity and the Lorentzian
signature. In a first reading, it is possible to skip the technical details and move forward to Sec. 4.

3.2. Core structure

With the basic idea of the previous subsection [namely, a mild cutoff on the z0 integral of Eq. (13)
at values of order ± t−2 ], we have not yet obtained the core structure of the desired inverse metric
(7). For that, we need an extended Ansatz with additional freedom carried by four real parameters
{α, β, γ , δ}. Remark that “core structure” refers to the inner structure of the spacetime defect [9],
which, in this case, concerns the time coordinate and corresponds to a divergent g00 component.

Specifically, we take the following Ansatz functions:

r(x, z + x) = p1

1 + α
(
z0
)2 (x0

)4 + p2

1 + α
(
z0
)2 (z0 + x0

)4 , (20a)

h(z) = ξ
β

1 + γ
(
z0
)2 exp

[
− (

z1)2 − (
z2)2 − (

z3)2 ] (η̃00

+ η̃11 δ
[
ζ
(
z1)2 − 1

]
+ η̃22 δ

[
ζ
(
z2)2 − 1

]
+ η̃33 δ

[
ζ
(
z3)2 − 1

] )
, (20b)

ρav(z + x) = 1, (20c)

α > 0, γ > 0, (20d)

where we set, as before, x0 = t and p1 = p2 = 1/π . One of the constants ξ or β in Eq. (20b) is
superfluous, but we keep them both in order to ease the comparison with the previous calculation of
Ref. [26]. The h(z) Ansatz involves, in addition, the coupling constants η̃μν from the Lorentzian IIB
matrix model reduced to D = 4 dimensions, as given by Eq. (14). For a different way of obtaining a
Lorentzian signature in the emergent inverse metric, see Appendix B of Ref. [24] and Appendix D
of Ref. [27].

Inserting the Ansatz functions (20) into the emergent-inverse-metric expression (13), we can per-
form all integrals analytically, except for the z0 integral involving the p2 term. For that integral, we
make a Taylor expansion in x0 = t and then integrate analytically the resulting Taylor coefficients.
As explained in Ref. [26], we set

ζ = 2, (21a)

ξ = 1/π3/2, (21b)

and obtain the following result (m ∈ {1, . . . , 3} is the spatial index):

g00 ∼ (−1)
[
c00−2 t−2 + c00

0 + O(t2)
]
, (22a)

gmm ∼ (+1)
[
cmm

0 + O(t2)
]
, (22b)

with all other components gμν vanishing by symmetry [the integrand of Eq. (13) then has a single
factor z1, z2, or z3 ]. The coefficients cμν

n in Eq. (22) are functions of the four real Ansatz parameters
{α, β, γ , δ}.
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In order to simplify the discussion, we immediately fix

α = 1, β = 102, (23)

so that we only need to determine the appropriate values of the parameters γ and δ. In fact, the c00
0

coefficient now only depends on the parameter γ , as δ is absent and α and β have been fixed to the
numerical values (23). From the requirement

c̃ 00
0 = 1, (24)

where the tilde indicates the use of Eq. (23), we obtain a seventh-order algebraic equation for
√

γ ,
which has two positive real roots. The analytic expressions for these two roots are rather cumbersome
and we will just give their numerical values:

γ1 ≈ 10.1337, (25a)

γ2 ≈ 34.5392. (25b)

For definiteness, we take the first root from Eq. (25) and set

γ = γ1 ≈ 10.1337. (26)

Having found a suitable value for γ , we turn to the resulting coefficient cmm
0 of the inverse-metric

component gmm. From the requirement

c̃ mm
0 = 1, (27)

where the tilde indicates the use of Eqs. (23) and (26), we obtain a linear equation for δ and find the
following solution:

δ ≈ 0.517689. (28)

To summarize, we have, from the Ansatz functions (20) and the parameters{
α, β, γ , δ

} = {
1, 102, 10.1337, 0.517689

}
, (29)

the following result for the emergent inverse metric as given by the expression (13):

gμν
∣∣∣(core-structure) ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)

[(
β/γ

)
t−2 + 1 + O(t2)

]
, for μ = ν = 0,

(+1)
[
1 + O(t2)

]
, for μ = ν = m ∈ {1, 2, 3},

0, otherwise,

(30)

where the numerical value of β/γ is of the order of 10 (the actual numerical value will be given
shortly).

Comparing to the general-relativity inverse metric (7), we interpret the first two nontrivial terms
of g00 from Eq. (30) as follows:

g00
∣∣∣(core-structure) ∼ (−1)

[
b2/�2 + t2/�2

t2/�2 + . . .

]
, (31a)
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b2/�2 = β/γ , (31b)

where � is the length scale of the IIB matrix model that we have previously set to unity. With the
parameter values (29), we have

b2/�2 = β/γ ≈ 9.8681, (32)

but different numerical values are obtained if, for example, the β value is changed away from the
value 102 or if the root γ2 is chosen instead of γ1. The general parametric behavior of the t−2

coefficient in g00 follows by adapting the elementary integral for g00 in Sect. 3.1 and gives

b2 ∼ β√
α γ

�2, (33)

for the particular Ansatz (20).

3.3. First approximation

In the previous subsection, we have shown that, in principle, the emergent inverse-metric expression
(13) can give the core structure of the inverse metric (7), with an explicit numerical value of the
classical-gravity length parameter b in units of the IIB-matrix-model length scale �. See, in particular,
the results of Eqs. (31), (32), and (33).

We now want to check that the higher-order terms in t of Eq. (31a) can be made to vanish. For
that, we will use, instead of Eq. (20c), a nontrivial Ansatz of the ρav function. Specifically, we take

ρav(z + x) = 1 +
(

2∑
k=0

r2k
(
z0 + x0)2k

)
exp

[
− (

z0 + x0)2 ], (34)

with real parameters rn and an explicit exponential factor to guarantee the convergence of the z0

integral
(
the rn terms will, for this reason, not modify the coefficient of the t−2 term in g00

)
. Keeping

the γ parameter equal to the numerical value γ from Eq. (26) but allowing for a change in the
numerical value of δ, we find that the coefficients cμν

n of Eq. (22) have the following dependence:

c 00
0 = c 00

0

(
r0, r2, r4

)
, (35a)

c 00
2 = c 00

2

(
r0, r2, r4

)
, (35b)

c 11
0 = c 11

0

(
r0, r2, r4, δ

)
, (35c)

where the overbar indicates the use of the numerical values (23) and (26).
Demanding

c 00
0 = 1, c 00

2 = 0, c 11
0 = 1 (36)

gives three algebraic equations for the three parameters {r0, r2, δ} with the following solutions:

r0 ≈ −0.297254 − 0.305679 r4, (37a)

r2 ≈ +0.491944 − 0.850548 r4, (37b)
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δ ≈ 12.013 − 3.77531 r4

23.026 − 7.55061 r4
; (37c)

which are still functions of the free parameter r4. [Note that r0 = r2 = r4 = 0 is not a solution of
the the conditions (36).] The corresponding inverse metric reads

gμν
∣∣∣(first approx.) ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)

[(
β/γ

)
t−2 + 1 + O(t4)

]
, for μ = ν = 0,

(+1)
[
1 + c2 t2 + O(t4)

]
, for μ = ν = m ∈ {1, 2, 3},

0, otherwise,

(38a)

β/γ ≈ 9.8681, (38b)

c2 ≈ 4.17896 + 0.862081 r4

23.026 − 7.55061 r4
, (38c)

which is a significant improvement compared to the core-structure result (30). The result in Eq. (38)
corresponds, in fact, to a first approximation of the desired inverse metric valid to order t4.

We can invert the map (38c) and obtain the required input value r4 for a desired value of c2 ,

r4, input ≈ −4.84753 − 26.7098 c2, desired

1 + 8.75859 c2, desired
. (39)

In this way, we can get any Taylor coefficient c2 in the gmm component from Eq. (38) by choosing
an appropriate value of the Ansatz parameter r4.

From Eq. (38a), we obtain by matrix inversion the diagonal metric gμν which has the following
00 component:

g00

∣∣∣(first approx.) ∼ (−1)
t2

β/γ + t2 + O(t6)
. (40)

It is already clear that this metric is degenerate, with a vanishing determinant at t = 0, but we
postpone further discussion of this point to the next subsection.

3.4. Conjectured final result

As indicated on the left-hand side of Eq. (38a), we consider that result to be a first approximation
of the inverse metric (7), as derived from the IIB-matrix-model master field under the assumptions
stated. Better approximations, with more and more Taylor coefficients for gmm and more and more
tn terms vanishing in g00, will follow from higher orders in the Ansatz function ρav from Eq. (34)
and possible further extensions of the Ansatz functions r and h. This procedure has been tested in
Ref. [26] for the standard spatially flat RW inverse metric.

The final result for the emergent inverse metric is expected to have the following structure (in units
with � = 1):

gμν
∣∣∣(final-result) ?∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− t2 + c−2

t2 , for μ = ν = 0,

1 + c2 t2 + c4 t4 + . . . , for μ = ν = m ∈ {1, 2, 3},

0, otherwise,

(41)
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where the question mark indicates that, strictly speaking, this is a conjectured result. The real dimen-
sionless coefficients cn in gmm of (41) result from the requirement that t2n terms, for integer n > 0,
vanish in g00. The emergent metric is given by the matrix inverse of Eq. (41),

gμν

∣∣∣(final-result) ?∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− t2

t2 + c−2
, for μ = ν = 0,

1

1 + c2 t2 + c4 t4 + . . .
, for μ = ν = m ∈ {1, 2, 3},

0, otherwise,

(42)

which has, for c−2 > 0, a vanishing determinant at t = 0. In short, the emergent metric (42), obtained
from the expression (13) with appropriate Ansatz functions and parameters, is degenerate.

The emergent metric (42) has indeed the structure of the metric (6), with the following effective
parameters:

b2
eff ∼ c−2 �2, (43a)

a2
eff(t) ∼ 1 − c2

(
t/�
)2 + O(t4/�4), (43b)

where the IIB-matrix-model length scale � has been restored and where we omit the question marks
as we have explicit results for the coefficients shown. Indeed, the leading coefficients are given by
c−2 ≈ β/γ > 0 from Eq. (32) and c2 ≈ c2(r4) from Eq. (38c), for the particular Ansatz functions
(20a), (20b), and (34) and Ansatz parameters (23) and (26). If the Ansatz parameter r4 in Eq. (38c) is
chosen appropriately, we get c2 ≈ c2 < 0 in the square of the cosmic scale factor (43b), so that the
emergent classical spacetime corresponds to the spacetime of a nonsingular cosmic bounce at t = 0,
as obtained in Refs. [9,10] from Einstein’s gravitational field equation. The proper cosmological
interpretation of the emergent classical spacetime will be discussed further in Sect. 4.

4. Conclusion

In the present article, we have started an exploratory investigation of how a new physics phase can
give an emerging classical spacetime with an effective metric where the big bang singularity has
been tamed [9].

In order to be explicit, we have used the IIB matrix model [19,20], which has been suggested as a
nonperturbative definition of type-IIB superstring theory. If we interpret the numerical results [21,22]
from the Lorentzian IIB matrix model as corresponding to an approximation of the genuine master
field [23], then it appears that spacetime points emerge with three “large” spatial dimensions and
six “small” spatial dimensions. But the numerical simulations are still far removed from providing
results on the required density and correlation functions that build the inverse metric [20,24].

For the moment, we have adopted a leapfrogging strategy by jumping over the actual analytic or
numeric evaluation of the IIB-matrix-model master field and by simply assuming certain types of
behavior of the density and correlation functions that enter the inverse-metric expression (8). The
explicit goal of the present article is to establish what type of functions are required in Eq. (8) to get,
if at all possible, an inverse metric with the behavior shown in Eq. (7). [Note that, in principle, the
origin of the expression (8) need not be the IIB matrix model but can be an entirely different theory,
as long as the emerging inverse metric is given by a multiple integral with the same basic structure.]

For the integral (8), we have indeed been able to find suitable functions (these functions are,
most likely, not unique), which give an emerging classical spacetime with an effective metric where

11/13

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/6/063B05/6279748 by KIT Library user on 28 Septem

ber 2021



PTEP 2021, 063B05 F.R. Klinkhamer

the big bang singularity has been tamed. In fact, the big bang singularity is effectively regularized
by a nonzero length parameter beff that is now calculated in terms of the IIB-matrix-model length
scale � ; see the last paragraph of Sect. 3.4. One important lesson, from the comparison with our
previous calculation [26] of the Minkowski and RW metrics, appears to be that the relevant correlation
functions must have long-range tails in the time direction, in order to get a divergent behavior of g00,
as explained in Sect. 3.1.

Note that we have not yet obtained the effective (Einstein?) gravitational field equation and the
corresponding solution of the metric. Instead, we have used a general constructive expression for the
inverse metric, as given by Eq. (13) after some redefinitions. The further consistency of the emerging
field theories may then restrict the values of some of the parameters entering our explicit Ansatz
functions (20a), (20b), and (34), fixing, for example, the values of α and β, or even demanding
different functional forms of the functions ρav(z + x), h(z), and r(x, z + x).

Expanding on the previous paragraph, we observe that the IIB matrix model not only produces a
classical spacetime but also its matter content [20]. Now, the IIB matrix model in the formulation
of Ref. [24] has a single length scale �, so that, for the cosmological quantities (4) near the bounce
at t = 0, we expect an energy-density scale ρM ,0 ∼ 1/�4. If, moreover, general covariance [20] and
the Einstein gravitational field equation are recovered, we have from the relation (5) with b ∼ � the
following parametric relation:

lPlanck, eff
?∼ �, (44)

where lPlanck, eff corresponds to
√

Geff (using units to set �eff and ceff to unity) and where the question
mark indicates that this is a conjectured result. If correct, the emergent Planck length would, not
surprisingly, be of the same order as the IIB-matrix-model length scale �. Reading Eq. (44) from
right to left and inserting the experimental values for G, �, and c on the left-hand side, we would
also have an estimate for the actual value of the unknown IIB-matrix-model length scale �,

�
?∼ 1.62 × 10−35 m, (45)

where the “experimental” numerical value for the Planck length was already given a few lines below
Eq. (5).

The cosmological interpretation of the emergent classical spacetime is perhaps as follows. The new
physics phase is assumed to be described by the IIB matrix model and the corresponding large-N
master field gives rise to the points and the metric of a classical spacetime. If the master field has an
appropriate structure, the emergent metric has a tamed big bang, with a metric similar the degenerate
metric (6) of general relativity, but now having an effective length parameter beff proportional to the
IIB-matrix-model length scale � . In fact, one possible interpretation is that the new physics phase
has produced a universe–antiuniverse pair [30], that is, a “universe” for t > 0 and an “antiuniverse”
for t < 0.

As a final comment on our main result beff ∼ � from Eq. (43a) and the conjectured result (44),
we recall that we have used a IIB-matrix-model length scale � that was introduced directly into the
path integral [24]. However, a more subtle origin of the length scale � is certainly not excluded.
One example of such an origin would be, in the emerging massless relativistic quantum field theory
from the matrix model, the appearance of a length scale by the phenomenon of dimensional trans-
mutation [31]. In any case, assuming the IIB matrix model to be relevant for physics, progress on
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fundamental questions such as the origin of the length scale or the birth of the Universe will only
happen if more is known about the IIB-matrix-model master field.

Funding

Open Access funding: SCOAP3.

References
[1] A. Einstein, Ann. Phys. 49, 769 (1916).
[2] A. Friedmann, Z. Phys. 10, 377 (1922).
[3] A. Friedmann, Z. Phys. 21, 326 (1924).
[4] G. Lemaître, Ann. Soc. Sci. Bruxelles A47, 49 (1927).
[5] H. P. Robertson, ApJ 82, 284 (1935).
[6] H. P. Robertson, ApJ 83, 187 (1936).
[7] H. P. Robertson, ApJ 83, 257 (1936).
[8] A. G. Walker, Proc. Lond. Math. Soc. 42, 90 (1937).
[9] F. R. Klinkhamer, Phys. Rev. D 100, 023536 (2019) [arXiv:1903.10450 [gr-qc]] [Search INSPIRE].

[10] F. R. Klinkhamer, Phys. Rev. D 101, 064029 (2020) [arXiv:1907.06547 [gr-qc]] [Search INSPIRE].
[11] F. R. Klinkhamer and Z. L. Wang, Phys. Rev. D 100, 083534 (2019) [arXiv:1904.09961 [gr-qc]]

[Search INSPIRE].
[12] F. R. Klinkhamer and Z. L. Wang, Phys. Rev. D 101, 064061 (2020) [arXiv:1911.06173 [gr-qc]]

[Search INSPIRE].
[13] F. R. Klinkhamer and F. Sorba, J. Math. Phys. 55, 112503 (2014) [arXiv:1404.2901 [hep-th]] [Search

INSPIRE].
[14] M. Guenther, Master’s thesis, Karlsruhe Institute of Technology (2017).
[15] F. R. Klinkhamer, J. Phys. Conf. Ser. 1275, 012012 (2019) [arXiv:1811.01078 [gr-qc]] [Search

INSPIRE].
[16] A. Ashtekar and P. Singh, Class. Quantum Grav. 28, 213001 (2011) [arXiv:1108.0893 [gr-qc]] [Search

INSPIRE].
[17] M. Gasperini and G. Veneziano, Phys. Rep. 373, 1 (2003) [arXiv:hep-th/0207130] [Search INSPIRE].
[18] E. Witten, Proc. Int. Congress of Mathematicians, p. 495 (2002) [arXiv:hep-th/0212349] [Search

INSPIRE].
[19] N. Ishibashi, H. Kawai, Y. Kitazawa, and A. Tsuchiya, Nucl. Phys. B 498, 467 (1997)

[arXiv:hep-th/9612115] [Search INSPIRE].
[20] H. Aoki, S. Iso, H. Kawai, Y. Kitazawa, A. Tsuchiya, and T. Tada, Prog. Theor. Phys. Suppl.

134, 47 (1999) [arXiv:hep-th/9908038] [Search INSPIRE].
[21] S.-W. Kim, J. Nishimura, and A. Tsuchiya, Phys. Rev. Lett. 108, 011601 (2012) [arXiv:1108.1540

[hep-th]] [Search INSPIRE].
[22] J. Nishimura and A. Tsuchiya, J. High Energy Phys. 1906, 077 (2019) [arXiv:1904.05919 [hep-th]]

[Search INSPIRE].
[23] E. Witten, The 1/N expansion in atomic and particle physics, in Recent Developments in Gauge

Theories, eds. G. ’t Hooft et al. (Plenum Press, New York, 1980), pp. 403–419..
[24] F. R. Klinkhamer, Prog. Theor. Exp. Phys. 2021, 013B04 (2021) [arXiv:2007.08485 [hep-th]] [Search

INSPIRE].
[25] F. R. Klinkhamer, arXiv:2008.01058 [hep-th] [Search INSPIRE].
[26] F. R. Klinkhamer, arXiv:2008.11699 [hep-th] [Search INSPIRE].
[27] F. R. Klinkhamer, arXiv:2102.11202 [hep-th] [Search INSPIRE].
[28] S. W. Hawking and R. Penrose, Proc. Roy. Soc. Lond. A 314, 529 (1970).
[29] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Princeton University Press, Princeton,

2017), pp. 201.
[30] L. Boyle, K. Finn, and N. Turok, Phys. Rev. Lett. 121, 251301 (2018) [arXiv:1803.08928 [hep-ph]]

[Search INSPIRE]
[31] S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).

13/13

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/6/063B05/6279748 by KIT Library user on 28 Septem

ber 2021

http://dx.doi.org/10.1002/andp.19163540702
http://dx.doi.org/10.1007/BF01332580
http://dx.doi.org/10.1007/BF01328280
http://adsabs.harvard.edu/full/1927ASSB...47...49L
http://adsabs.harvard.edu/full/1935ApJ....82..284R
https://ui.adsabs.harvard.edu/abs/1936ApJ....83..187R
https://ui.adsabs.harvard.edu/abs/1936ApJ....83..257R
http://dx.doi.org/10.1112/plms/s2-42.1.90
https://doi.org/10.1103/PhysRevD.100.023536
http://www.arxiv.org/abs/1903.10450
http://www.inspirehep.net/search?p=find+EPRINT+1903.10450
http://www.inspirehep.net/search?p=find+EPRINT+1903.10450
https://doi.org/10.1103/PhysRevD.101.064029
http://www.arxiv.org/abs/1907.06547
http://www.inspirehep.net/search?p=find+EPRINT+1907.06547
http://www.inspirehep.net/search?p=find+EPRINT+1907.06547
https://doi.org/10.1103/PhysRevD.100.083534
http://www.arxiv.org/abs/1904.09961
http://www.inspirehep.net/search?p=find+EPRINT+1904.09961
http://www.inspirehep.net/search?p=find+EPRINT+1904.09961
https://doi.org/10.1103/PhysRevD.101.064061
http://www.arxiv.org/abs/1911.06173
http://www.inspirehep.net/search?p=find+EPRINT+1911.06173
http://www.inspirehep.net/search?p=find+EPRINT+1911.06173
https://doi.org/10.1063/1.4900883
http://www.arxiv.org/abs/1404.2901
http://www.inspirehep.net/search?p=find+EPRINT+1404.2901
http://www.inspirehep.net/search?p=find+EPRINT+1404.2901
https://doi.org/10.1088/1742-6596/1275/1/012012
http://www.arxiv.org/abs/1811.01078
http://www.inspirehep.net/search?p=find+EPRINT+1811.01078
http://www.inspirehep.net/search?p=find+EPRINT+1811.01078
https://doi.org/10.1088/0264-9381/28/21/213001
http://www.arxiv.org/abs/1108.0893
http://www.inspirehep.net/search?p=find+EPRINT+1108.0893
http://www.inspirehep.net/search?p=find+EPRINT+1108.0893
https://doi.org/10.1016/S0370-1573(02)00389-7
http://www.arxiv.org/abs/hep-th/0207130
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0207130
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0207130
http://www.arxiv.org/abs/hep-th/0212349
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0212349
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0212349
https://doi.org/10.1016/S0550-3213(97)00290-3
http://www.arxiv.org/abs/hep-th/9612115
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9612115
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9612115
http://www.arxiv.org/abs/hep-th/9908038
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9908038
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9908038
https://doi.org/10.1103/PhysRevLett.108.011601
http://www.arxiv.org/abs/1108.1540
http://www.inspirehep.net/search?p=find+EPRINT+1108.1540
http://www.inspirehep.net/search?p=find+EPRINT+1108.1540
https://doi.org/10.1007/JHEP06(2019)077
http://www.arxiv.org/abs/1904.05919
http://www.inspirehep.net/search?p=find+EPRINT+1904.05919
http://www.inspirehep.net/search?p=find+EPRINT+1904.05919
https://doi.org/10.1093/ptep/ptaa168
http://www.arxiv.org/abs/2007.08485
http://www.inspirehep.net/search?p=find+EPRINT+2007.08485
http://www.inspirehep.net/search?p=find+EPRINT+2007.08485
http://www.arxiv.org/abs/2008.01058
http://www.inspirehep.net/search?p=find+EPRINT+2008.01058
http://www.inspirehep.net/search?p=find+EPRINT+2008.01058
http://www.arxiv.org/abs/2008.11699
http://www.inspirehep.net/search?p=find+EPRINT+2008.11699
http://www.inspirehep.net/search?p=find+EPRINT+2008.11699
http://www.arxiv.org/abs/2102.11202
http://www.inspirehep.net/search?p=find+EPRINT+2102.11202
http://www.inspirehep.net/search?p=find+EPRINT+2102.11202
http://dx.doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRevLett.121.251301
http://www.arxiv.org/abs/1803.08928
http://www.inspirehep.net/search?p=find+EPRINT+1803.08928
http://www.inspirehep.net/search?p=find+EPRINT+1803.08928
http://dx.doi.org/10.1103/PhysRevD.7.1888

