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ABSTRACT: Noncovalent interactions (NCIs) play an essential role in soft
matter and biomolecular simulations. The ab initio method symmetry

adapted perturbation theory allows a precise quantitative analysis of NCls
and offers an inherent energy decomposition, enabling a deeper under

standing of the nature of intermolecular interactions. However, this method is
limited to small systems, for instance, dimers of molecules. Here, we present a
scale bridging approach to systematically derive an intermolecular force field
from ab ini%io ata while  preserving the energy decomposition of the
underlying method. We apply the model in molecular dynamics simulations
of several solvents and compare two predicted thermodynamic observables—
mass density and enthalpy of vaporization—to experiments and established
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force fields. For a data set limited to hydrocarbons, we investigate the extrapolation capabilities to molecules absent from the training
set. Overall, despite the affordable moderate quality of the reference ab initio data, we find promising results. With the
straightforward data set generation procedure and the lack of target data in the fitting process, we have developed a method that

enables the rapid development of predictive force fields with an extra dimension of insights into the balance of NClIs.

1. INTRODUCTION

Soft matter and biomolecular simulations cover a wide range of
material classes such as solvents, polymers, liquid crystals, and
proteins. The common characteristic of these systems is that
many of their kinetic and thermodynamic properties are
governed by noncovalent interactions (NCIs). The correct
modeling of NClIs is, therefore, essential for quantitative and
predictive results. On an ab initio level, there are several

methods that describe NClIs at different levels of theory. In the
supermolecular approach, NCIs are deducted from the

difference of monomer energies and the total energy of the
complex. Due to the inadequate treatment of electron

correlation, many computationally efficient electronic structure
methods, such as semiempirical methods and density func
tional theory (DFT), use dispersion corrections to yield
meaningful results for this approach.'~® Alternatively, the use
of nonlocal density functionals can also enable the modeling of
NCIs within the DFT framework.”™ Post Hartree—Fock
methods that explicitly include electron correlation can provide
an accurate description of NCIs from first principles, popular
examples are the Moller—Plesset perturbation theory ang the
coupled cluster method.'™"*> A variant of the latter, CCSD
(T)"*™'¢ extrapolated to the complete basis set limit,'” is often
appointed as the “gold standard” for NCI benchmark data
sets.'"?

An alternative to the supermolecular approach for the
computation of NClIs is the symmetry adapted perturbation
theory (SAPT), where the interaction is computed from a
perturbative expansion up to a limited order.”” The resulting

separate contributions can be grouped into electrostatics,
dispersion, exchange, and induction energy components.
Various truncations and flavors of the method offer a broad
range of compromises between accuracy and computational
cost. While SAPTO gives qualitative results for systems up to
several hundreds of atoms, higher level SAPT methods can
approach the gold standard quality.”'~>*

However, the modeling of many soft matter and
bioapplications requires simulations of many thousands to
millions of atoms.” ™" In the spirit of multiscale modeling, the
traditional solution is the development of analytical force fields
to enable simulations at larger scales. For the description of
molecular systems, force fields are divided into an intra and
intermolecular part. The intramolecular potential is mainly
determined by the covalent interactions between the atoms of
the molecules. A combination of harmonic contributions and
periodic dihedral potentials is a common choice to model
these intramolecular interactions. The harmonic parameters
can be chosen to reproduce structural data and vibrational
frequencies, either from the experiment or quantum
mechanics. The parameters of the soft dihedral potentials
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can be fitted to torsional angle scans at the ab initio level. The
intermolecular potential constitutes a more significant
challenge due to the complex interplay of attractive and
repulsive regimes and its long range and many body character.
Therefore, the parameter fitting process often includes
experimental target properties. This allows the choice of
simple and computationally cheap functional forms, such as the
pairwise additive Lennard—Jones potential combined with
atomic partial charge interactions. The top down approach
ensures that errors for the cumulative target properties are
minimized.** "

An alternative is the bottom up generation of intermolecular
force fields from ab initio reference calculations, either for
custom applications or as general transferable force fields.”*™*
Using reference methods that offer energy decomposition,
such as SAPT, the individual components can even be derived
independently or partially grouped to decouple the fit
parameters.””~*’ The components are fitted against predefined
pairwise functions, often exponential terms or power laws, and
as for empirical force fields, can be combined with a baseline
model fitted to the electrostatic potential of the monomer such
as partial charges in combination with a long range solver.**™*
In addition to the pairwise additive interactions, many body
contributions can explicitly be added to the model. ***"*"
For the transferable approaches, atom types are assigned based
on the functional group and chemical intuition. Mixing rules
for unlike atom type pairings can further reduce the number of
model parameters. Besides strict top down and bottom up
approaches, the fitting process of NCIs can also combine ab
initio and experimental data.>"**

A more recent development is the use of artificial neural
networks (ANNs) in surrogate models for the potential energy
surface, the so called neural network potentials (NNPs). Here,
an important concept is the Behler—Parrinello approach to
divide the total model into additive submodels.>® This concept
was successfully applied for the atomization energy from DFT,
where the total energy is divided into atomistic contributions,
which are evaluated by subnets that share parameters for atoms
of the same chemical element.** In general, the input for the
subnets is a descriptor of the local atomic environment such as
symmetry functions, which map the occurrence of distances
and angles with neighboring atoms into several fuzzy shells
around the considered atom,”* but other representations are
also possible.”> " One advantage of NNPs is their flexibility to
fit complex potential energy surfaces due to the excellent
approximation capabilities of their building blocks, the fully
connected ANNs. In contrast to conventional analytical
methods, there is no need for the manual definition of types,
facilitating the development of transferable models.”*

The division of the model into additive partial contributions
for dimensionality reduction that comes with the Behler—
Parrinello approach is a general concept and can also be
exploited for other quantities than the atomization energy.”*>’
For NClIs, the partitioning scheme, which has proven useful in
many analytical models, splits the total interaction energy into
atomic pairwise additive contributions. The general applic
ability of a pairwise decomposition for NNPs was already
shown in a study on atomization energies of methanol, copper
clusters, and bulk copper.”’ In the context of NCIs, recent
studies applied NNPs based on symmetry function descriptors
for a data set of hydrogen bonded complexes, one with atomic
and one with pairwise partitioning®""*” It could be shown that
on the same data set, the pairwise model outperforms the

model with atomic contributions.”> Alternatively, machine
learning models can predict partial charges or multipole
coeﬂici%glt_s“that describe electrostatic intermolecular inter
actions, which combined with an NNP for covalent
interactions and a dispersion correction results in a model that
can be applied to the dynamic modeling of reactions in
molecular systems similar to ReaxFF potentials.®>%7%
Symmetry functions are powerful descriptors that can result
in a good performance for energy predictions. However, the
application in molecular simulations requires the implementa
tion of an expensive on the fly calculation. More importantly,
accurate loc)arlpeenergy predictions do not guarantee a smoo
distance dependence; consequently, rippled energy curves can
cause unphysical forces.”"*> These are some of the challenges
that need to be addressed when developing an NCI model for
molecular mechanics applications, and definitive conclusions
about the numerical stability and predictive performance for
large systems can only be delivered by applying the model in
the target simulation method such as molecular dynamics
Here, we present the component separable noncovalent
interaction network (CONI Net), which uses an alternative to

the symmetry function descriptor designed for efficient large
scale simulations. Like other bottom up force fields, the model

is trained on separable dimer interaction energies obtained
from SAPT theory, and for each energy component, we train a
separate model. The network architecture is based on a
Behler—Parrinello network with atomic pairwise energy
partitioning.°”®> The subnets for each pair contribution
consist of fully connected neural networks that interpolate
between pair fingerprints and a function layer containing
several power law terms that model the distance dependence.
This approach has two main advantages. Since the distance
dependence is treated separately, we can use a pair fingerprint

only depends on equilibrium monomer properties of the
involved molecules. Therefore, the neural network results can
be precomputed for efficient additive pair interaction
evaluations 'in MD. The second advantage is that with
appropriate constraints, the power law terms can ensure

monotony and counteract artifacts from overfitting, while the

use of multiple terms in the function layer still provides flexible
regression capabilities.

In this study, we present two independent applications of
the model. First, we train a custom model on a data set of
several organic solvents. We acquire thermodynamic properties
from MD simulations for all molecules in the data set and
compare them to the literature values from experiments and
two established force fields. In the second example, we explore
the extrapolation capabilities of a model trained on a diverse
range of hydrocarbons. Here, the MD prediction is conducted
for molecules that do not occur in the training data set.

2. METHODOLOGY
In this work, we developed an NNP for the intermolecular

interactions, which can be used as part of a force field for MD
simulations. For the intramolecular force field, which is not the
scope of this work, we use the established GROMOS force

field.?® In the following sections, we will describe our workflow
for the preparation and training of our model, which consists of

determining the fingerprint descriptor and partial charges from
monomer calculations, the generation of a data set from dimer
calculations, and the model training. Finally, the performance
of the model to predict thermodynamic properties is tested in
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Figure 1. Overview of the CONI Net model for one energy component. For each intermolecular pair of a dimer, the pair fingerprint, the distances,
and the RESP charges are fed into a pair network of the corresponding element combination. Parameters are shared for pair network instances of
the same type. The pair network consists of two fully connected networks that use the pair fingerprint to evaluate prefactors and exponents, which
are used in a function layer together with the distance to compute the pair interaction. For the electrostatic component, an additional baseline

energy is computed based on the interaction of the partial charges.

MD simulations. The molecular visualizations in this work
were rendered using the OVITO package.%”

2.1. Fingerprint Descriptor and Partial Charges. For
each atom within each molecule, a fingerprint emerging from
the local environment inside the molecule is computed. First,
the monomer geometry is optimized with the DFT code
ORCA’’ using the B3LYP functional’'~"* and the aug cc
pVTZ basis set.”* With the external tool Multiwf,” we
compute the partial charges for the baseline electrostatics
model in a one stage RESP fitting procedure’® with additional
constraints to obey the symmetry of the MD force field. From
an additional single point calculation using the cc pVTZ basis
set,’” Mayer bond orders’”® and Hirshfeld charges’® are
extracted by the postprocessing modules of ORCA. The
Hirshfeld charge and the four highest Mayer bond order
parameters describe an atomic fingerprint. In order to describe
an intermolecular pair, the two atomic fingerprints are
combined to a 10 digit pair fingerprint, and the restrained
electrostatic potential (RESP) charges and the distance are
stored separately. The order of the two atomic fingerprints is
fixed for pairs consisting of different chemical elements. For
identical elements, the sizes of the individual fingerprint values
are compared one by one, and the first differing entries
determine the order.

2.2. Data Set Generation. As a reference method for the
intermolecular interaction energy, we use SAPT based on
monomer wavefunctions from Hartree—Fock theory.”” The
perturbative approach of this method yields separate
contributions to the energy and allows grouping into the
physically motivated component dispersion, exchange, electro
statics, and induction®

Egmer = Egigp + Eqxen + Eq + Eig (1)

A detailed description of the method is given in ref 80. An
overview and benchmarks of the different available truncations
can be found in ref 21. For our data set calculations, we chose
the SAPT2+3 level with the augcc pVDZ’™* basis set and
density fitting approximation as implemented in Psi4,'>*'~**
which delivers a favorable computational cost to accuracy ratio
and moderate disk and memory requirements for the
considered molecules. The data set contains various dimer
structures for each considered combination. These are
prepared the following way:

1. Random rotation of both equilibrium monomer geo
metries

2. Determination of dimer distance d,., corresponding to
E timate = 1 keal/mol (repulsive regime)
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d. + 5.0

3. Choice of dimer distance from interval (drep, rep

A), weighed according to exp(—aE gimate)

Here, E gmat is an estimate for the dimer energy, which in
this work is the sum of the Lennard—Jones energy from an
automatically assi§ned general Amber force field (GAFF)*
using Ambertools * and the electrostatic interaction of the
partial charges obtained from the RESP fit, and « is a sampling
parameter. With the definition of a sampling temperature T by
the relation @ = 1/(kgT,), at room temperature, this

1.69 . .
corresponds to & = ————, which we use for all calculations
keal / mol

in this study.

2.3. Model Description and Training Parameters. The
total energy is obtained as the combined result of four separate
models trained on the dispersion, exchange, electrostatics, and
induction components of the SAPT decomposition. The
schematic overview of the CONI Net model for one energy
component is shown in Figure 1. It is based on the Behler—
Parrinello scheme of describing a surrogate model as a sum of
contributing submodels.>® In our model, the submodels are
represented by pair networks that describe the interaction of
an intermolecular pair of atoms. Parameter sharing is employed
for pair networks of the same energy component and element
combination. Each pair network consists of the following
modules:

e Two fully connected ANNs for the computation of
exponents and prefactors that use the pair fingerprint as
input

e A function layer that combines the exponents,
prefactors, and distances in a sum of power law terms
to compute the energy contribution of the pair

e For the electrostatic component, a baseline model based
on RESP charges.

The weights and biases of the fully connected ANNs
represent the learnable parameters of the model. They contain
two hidden layers with four nodes each that use a ReLU
activation function. The output layers of both ANNs consist of
three nodes with different transformations for exponents and
prefactors. The exponents k; are limited to a fixed range around
predefined bias values kP

k, = k™ + 2.0-(sig(k®™) = 0.5) )

Here, the sigmoid function is defined as sig(x) = (1 + ¢™)™"
and k™ is the unprocessed value of output node i of the ANN
for the exponents. For k?i“, we choose 8, 10, and 12 for the
exchange interaction and 6, 8, and 10 for all other components.
For the prefactors, the signs are constrained to positive values
for the exchange component and to negative values for the
dispersion, induction, and electrostatics components. Further
more, the prefactors are multiplied by a constant factor of 1000
kcal/mol, which has a similar effect as using different optimizer
settings and initializations for the prefactor and exponent
networks. Finally, a taper function is applied to all negative pair
contributions for distances r below r,;,, the smallest distance
seen during training of the corresponding pair network. This
prevents the pair interaction to diverge to negative infinite
values, which could cause unstable MD simulations due to rare
close encounters. We use a taper factor f as proposed in ref 85

0 = Tmin — 0.5 (3)

x(r) =

7

Tmin — %o (4)

fx) = (1 = x)*(1 + 3x + 6x%) (5)

The taper factor f is applied to the pair interaction E,(r) in the
interval from 7, to 7.y, and the final pair interaction E,(r) is
defined as

0, r<r,
Ep(r) ={01 _f)Ep("); o <71 < Tuin
EP(V), T2 Toin (6)

For the implementation of the network model, we use the
Python library PyTorch.*® The weights and biases of the fully
connected hidden and output layers are initialized from the
uniform distribution

W(—\/E, \/E) )

with n¢ being the number of input features of the layer. For the
model training, we apply the Adam optimizer”’ with the
recommended settings (B, = 0.9, f, = 0.999, ¢ = 107%), a
learning rate of 0.001 and a mean squared error loss function.
The overall data set is randomly split into a training set, which
is used for model training, and a validation set, which is applied
for early stopping of the training if the validation loss does not
improve for 800 epochs while checking every 100 epochs. The
ratio between the number of training and validation data points
is 3:1 throughout this work. Furthermore, the pair fingerprints
are normalized, and normally distributed noise with a standard
deviation of 0.1 is added during training to increase the
robustness against overfitting. After early stopping, the noise is
switched off, and the model is slightly relaxed by training from
the best checkpoint for an additional 100 epochs.

2.4. Thermodynamic Properties from MD. In order to
compare the model to other force fields and experimental data,
we conduct MD simulations of the liquid bulk phase. The
intramolecular GROMOS force field parameters are obtained
using the web accessible Automated Topology Builder.***%*’
The intermolecular force field is derived from the trained
CONI Net models as follows. For each unique pair fingerprint,
we sum the four energy components at 500 discrete distances
in the range of 0.5—15.0 A. The resulting energy curves are
then derived numerically using the NumPy library”™® to
compute the force. Both quantities are stored in a force field
table file and can directly be used with the MD package
LAMMPS.”" Furthermore, the partial charges are set to the
RESP charges acquired during molecule preparation. For the
short range interactions, we use a cutoff of 15.0 A, and long
range electrostatics are computed by Ewald summation as
implemented in LAMMPS. The computational efficiency of
the tabulated approach is lower compared to Lennard—Jones
force fields but of comparable order of magnitude.

The bulk liquid simulation is set up by placing 1000
randomly rotated molecules on a lattice with a sufficiently large
lattice constant to avoid initial overlaps. This starting
configuration is equilibrated with a series of MD runs using
Nosé—Hoover style thermostatting and barostatting. Addition
ally, a vacuum simulation of a single molecule is conducted to
acquire the baseline of the intramolecular potential energy for
the following analysis. Here, we apply a Langevin thermostat
with a time step of 0.2 fs and a coupling parameter 7 of 1 ps in
an initialization run of 100 ns followed by a production run of
100 ns. An overview of the run parameters for each step of the
bulk simulation is given in Table 1, including the simulated



Table 1. MD Parameters of the Preparation Steps 1—3 and
the Production Step 4

step 1 2 3 4
time (ps) 200 200 400 2000
time step (fs) 1 1 02 02
p (atm) 100 = 1 1 1 1
7, (ps) 1 1 S S
7r (ps) 0.1 0.1 1 1

kspace rel. err. 1x107* 1x 107 1x10°° 1x107°
time, the time step, the pressure p, the pressure coupling 7,, the
temperature coupling 71, and the relative target error in forces
of the kspace solver. Since in part we want to compare our
values to GAFF>® and OPLS AA* results of ref 92, we use
similar simulation parameters in the production runs.

From the production data of the bulk liquid simulation, we
extract the average volume and potential energy. Together with
the average potential energy from the vacuum simulation, we
compute the density and the enthalpy of vaporization of the
liquid at the given temperature. We use equivalent expressions
to those used in ref 92

_ M
P V) (8)

AI_Ivap = E;;‘t: - E}l:;lt + kBT 9)

Here, M is the total mass, kg is Boltzmann’s constant, T is
the temperature, (V) is the average volume during the liquid
simulation, and E}; and E]f”‘!, are the average potential energies
per molecule determined from the vacuum and liquid
simulation, respectively.

3. RESULTS AND DISCUSSION
First, we discuss the learning curve for a single molecule to

assess the data efficiency of the model. Then, we present the
results of two independent applications of our model. While

both models are trained on different data sets, they both use
e same set of hyperparameters as described in the
methodology section.
3.1. Learning Curve for a Single Molecule. In order to

investigate the influence of data set size on the performance of
the model to interpolate between different dimer arrange

ments, we generate a learning curve for the organic molecule
methanol. For several total data set sizes, five different random
training/validation splits (3:1 ratio) are drawn. The
independent test set contains 2000 samples. For each split,
five models per energy component are trained. The best model
per component and split is selected in two ways. First, by the
mean absolute error (MAE) for the validation set of the split,
and for comparison, according to the optimum MAE for the
test set. The resulting best models for the energy components

of a specific split can then be combined to a best total energy
model for this split. Hence, we acquire two ensembles of five
total energy models for each data set size, corresponding to the

two selection criteria and the five unique training/validation
splits. In Figure 2, the mean and range of the MAE:s for the test

set are plotted for different training set sizes and both
selections.

As expected, with a growing number of training samples, the
average model error for the independent test set decreases. On
the one hand, this is caused by the increasing variety of dimer
arrangements in the training set. On the other hand, a larger

0.300 » Selection by validation set
e Selection by test set

102 10°
Training set size

Figure 2. Learning curve for methanol. The points and bars show the
arithmetic mean and range of test set errors of the total energy models
for the different training/validation splits of the data set. For each split
and energy component, the best of five models is used for the total
energy model, either selected by the validation set of the split
(orange) or by the independent test set (blue).

and more representative validation set size, which scales
proportionally to the training set size and controls the early
stopping criterion, is less prone to cause under or overfitting
and is less sensitive to the random sample of the training/
validation split. Therefore, with increasing data set sizes, the
range of MAE values decreases, and the test set performances
of the models selected by the validation sets converge to the
optimally performing models.

3.2. Custom Model for Specific Small Organic
Molecules. The first example is the generation of a potential
that interpolates between a set of small organic molecules
containing the elements carbon, hydrogen, nitrogen, and
oxygen. The considered molecules are specified in Table 2.

Table 2. Molecules Included in the CHNO Data Set Used to
Train the CONI Net(CHNO) Model”

CHNO data set and MD ensemble

formula name
C,H,O dimethylether
CH,0 formaldehyde
C;HO acetone
C,H;N acetonitrile
CH,0 methanol
C,H,O ethanol
CH,0, formic acid
CH;NO formamide

“Here, the same molecules also represent the MD ensemble used to
test the prediction of observables.

The data set, in the following referred to as CHNO data set,
contains 2000 homodimers per molecule, which gives a total of
12,000 data points in the training and 4000 data points in the
validation set. In addition, an independent test set is generated,
which contains 4000 data points with the same composition.
We train five models for each energy component while
keeping the choice of training and validation set fixed. Finally,
we choose the best model for each component according to
the MAE for the validation set. In Figure 3, the test set results
for the component and total energy models are shown. First,
we want to emphasize that the MAEs of the components and
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Figure 3. (a) Total energies and (b) energy components obtained
with CONI Net(CHNO) versus SAPT2+3 for the CHNO test set. In
(a), the color coding represents the local point density in the scatter
plot computed via a Gaussian kernel density estimate as implemented
in SciPy, * violet corresponds to low and yellow to high values.

the total energy are primarily relative indicators to compare
models for a specific data set. The absolute magnitude of the
MAE is heavily dependent on the composition of the
considered data set. The importance of the so called chemical
accuracy of 1 kcal/mol, which is a significant sound barrier for
the modeling of covalent interactions, should therefore be
taken with care for NCI models, especially since the energy
ranges are considerably lower.

When comparing the errors of the different energy
components, we observe significant differences. One reason
is that the different interactions of the model cope differently
with the approximations. Charge penetration and Pauli
repulsion are emerging from overlapping orbitals. Therefore,
the electrostatic and exchange component can have an angle
dependence, which is averaged in the isotropic pairwise model.
Furthermore, the partial charges of the electrostatic baseline
model have to be symmetrized artificially to obey the
symmetry of the intramolecular force field, which introduces
another obstacle for the model fit. In comparison, the
dispersion component with its more long range character
copes better with the approximations of the model even for
high absolute energies, which is not surprising given the
success of analytical dispersion corrections for DFT methods."

Similarly, the induction component also shows a low MAE.
Here, the range of values the model has to span is smaller than
for the other energy components, a characteristic of the
considered molecules in the data set. However, it is important
to note that all contributions are fitted into a pairwise additive
model to reproduce dimer energies. Especially for the
dispersion and induction component, this can constitute a
source of error when expanding the system to bulk structures.
For instance, in polar or ionic liquids, many body interactions
can make up a considerable part of the interaction energy.”*”

In order to test the model performance beyond dimer
structures, for each molecule (Table 2), we conduct an MD
simulation and compare the calculated values for the enthalpy
of vaporization AH,,, and the mass density p to the literature
values from experiments and for the force fields GAFF and
OPLS AA,”” and the results are shown in Figure 4. From the
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Figure 4. Comparison of observables (a) enthalpy of vaporization
AH,,, and (b) mass density p obtained from MD simulations and
from experiments. All molecules are included in the CHNO data set
used to train the CONI Net(CHNO) model. Values for GAFF and
OPLS AA were taken from ref 92. Numerical values and references for
the experimental values can be found in Table S1 of Supporting
Information.

mean absolute percentage errors (MAPEs), it is evident that
for all force fields, the prediction of the enthalpy of
vaporization is a more challenging task compared to the
mass density. The OPLS AA force field shows excellent
performance for both tasks, which is not surprising since it was
developed for modeling organic liquids. The GAFF results also
show an overall solid performance apart from a large deviation
for formic acid. The CONI Net model performs well on
predicting the mass density and the MAPE positions between
OPLS AA and GAFF for this task. For the enthalpy of

vaporization, both under and overbinding values are observed,
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resulting in an MAPE slightly larger than the conventional
force fields but of a similar order of magnitude. When
considering that, in addition to the discussed sources of errors,
the limited ab initio accuracy is propagating from the data set
to the MD results, the overall performance is promising,
particularly since the data set quality still has room for
improvement.

In conclusion, the test set results for the CHNO data set
(Figure 3) show that the CONI Net model is capable of
interpolating the ab initio target energies between both the
space of pair fingerprints and different dimer arrangements for
a set of specific molecules. The subsequent application in MD
simulations of the liquid phase to predict thermodynamic
observables (Figure 4) demonstrates the transferability of the
model to larger arrangements. However, in order to extrapolate
to unknown molecules of the chemical space of organic
molecules, more chemical elements and functional groups
would have to be considered in the data set generation.

3.3. Transferable Model for Hydrocarbons. For the
following application of the model, we limit the chemical space
to hydrocarbon molecules. The goal is to generate a prototype
of a transferable model. Therefore, the training ensemble
should span a variety of characteristic functional groups while
keeping the number of carbon atoms low due to the steep
scaling of the computational cost of the reference SAPT2+3
calculations. We include molecules with up to three carbon
atoms into the training ensemble, with the exception of
benzene with six carbon atoms, in order to capture atoms in
aromatic bonds. A complete list is given in Table 3.

Table 3. Molecules Included in the CH Data Set Used to
Train the CONI Net(CH) Model and Molecules in the MD
Ensemble Used to Test the Prediction of Observables

CH data set MD ensemble
formula name formula name
CH, methane CsHo 1-pentene
C,Hq ethane CH,, pentane
C,H, ethylene CsHg cyclopentene
C,H, acetylene CsHy 1-pentyne
C;Hg propane CgHyy isohexane
C;Hy propene CeH,, hexane
C;H, propyne CeHy, cyclohexane
C¢Hg benzene C,Hg toluene
CsH,p o-xylene
CoHg naphthalene

In the data set, the CH data set, each molecule of the
training ensemble is represented by 2000 homodimers, and for
each combination, 400 heterodimers are included. Accordingly,
the training set contains 20,400 and the validation set contains
6800 data points. Furthermore, a test set with the same
composition is created containing 6800 data points. As for the
previous application, for each component, we choose the best
of five models, all trained with a fixed training/validation split
of the data set. The results of the best component and total
energy models are shown in Figure 5. Again, we see a
component dependent magnitude of the test set error.
However, the total energy range and the corresponding MAE
are smaller compared to the values of the CHNO test set.

In contrast to the MD simulations for the CONI
Net(CHNO) model, here, the molecules of the MD ensemble
are not included in the CH data set. Therefore, the
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Figure 5. (a) Total energies and (b) energy components obtained
with CONI Net(CH) versus SAPT2+3 for the CH test set. In (a), the
color coding represents the local point density in the scatter plot
computed via a Gaussian kernel density estimate as implemented in
SciPy,” violet corresponds to low and yellow to high values.

computational limitations are not as strict, and we can use
significantly larger molecules (Table 3) since only the
fingerprints and partial charges have to be computed in QM
calculations once before the MD run. The calculated values for
the enthalpy of vaporization AH,,;, and the mass density p are
shown in Figure 6 and compared to experimental values. The
overall more consistent performance for both properties in
comparison with the CONI Net(CHNO) model indicates a
smaller variation in the systematic errors. This can be explained
by the limited set of functional groups of the two considered
molecule classes, aliphatic and aromatic compounds. We
continue the discussion based on the points of the previous
section about the potential sources of errors since they also
apply to the CH data set. They include the propagation of the
ab initio inaccuracy to the model and the enforced symmetry
of RESP charges due to the symmetric intramolecular force
field. Additionally, for the molecules of the CH data set,
another effect can arise. For the linear alkane molecules, such
as pentane and hexane, the RESP charges are fitted to highly
symmetric optimized ground state geometries. In the MD
simulation, the soft degrees of freedom of the backbone
dihedral angles allow the molecule to deviate from this
conformation significantly at a low energetic cost. A solution to
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Figure 6. Comparison of observables (a) enthalpy of vaporization
AH,,, and (b) mass density p obtained from MD simulations and
from experiments. None of the molecules are included in the CH data
set used to train the CONI Net(CH) model. Numerical values and
references for the experimental values can be found in Table S2 of
Supporting Information.

get a more consistent compromise for the charges could be a
more complex RESP fitting procedure that includes multiple
conformers.

Nevertheless, despite the discussed approximations and the
limited accuracy of the reference calculations, the model
already shows promising extrapolation capabilities. The MD
ensemble includes longer chains, unseen branched and cyclic
aliphatic molecules, and new combinations of different
functional groups from the training set. In order to go beyond
this proof of principle, the minimalistic data set would have to
be expanded to include all relevant functional groups and to

reveal the nuances of slightly different pair fingerprints, such as
from the same functional group in differently sized molecules.

4. CONCLUSIONS

In this study, we presented a systematic bottom up approach
for developing an NNP for separable NClIs. It is applicable for
custom models comprising one or several specific molecules
and transferable models trained on diverse data sets to obtain
extrapolation capabilities. The resulting intermolecular force

field allows stable MD simulations approaching the predictive
and computational performance of established force fields

while offering separable interaction contributions and a
straightforward parametrization procedure, which does not

rely on empirical data. Thus, it represents an alternative for
compounds where the existing general force fields do not
provide parameters. All steps from data set generation over
descriptor preparation to model training are designed to be

performed without manual intervention and can be imple
mented in an automated workflow. Therefore, upscaling and
extension of the data set are only limited by computational
resources.

The method has the potential for improvement at different
levels. One way to improve the predictive performance could
be to increase the accuracy of the ab initio method, for
example, through larger basis sets. In order to cope with the
more demanding scaling of computational cost with system
size, an active learning method could decrease the required
number of training samples. Here, in a feedback loop, new
candidates for data points are chosen based on the current data
set. An example is the query by committee selection method
that was successfully applied to develop the ANI 1x model,
which, despite decreased data set size, has been shown to
outperform the original ANI 1 model across several bench
marks 549697

In order to improve the transferability of the model to
distorted monomers, the dimer sampling, fingerprint calcu
lation, and partial charge fit could be extended to include
nonequilibrium monomer geometries. Furthermore, an
advanced baseline model could include multipole or many
body contributions. The pair fingerprint could be extended by
other suitable descriptors that improve the ability of the neural
network to capture subtle differences in the atomic bonding
environments. Finally, an aspect we have not addressed in this
study is the intramolecular force field. A fit of bonded
potentials to ab initio vibrational spectra and conformer scans
would be the last missing piece to a consistent bottom up force
field entirely from first principles.

Regardless of the many possibilities for future enhance
ments, the present results already represent a step toward
elevating separable NCIs from the quantum world to
molecular mechanics without relying on prior empirical
knowledge. The general procedure allows force field develop
ment for many molecular materials, provided a reliable and
separable ab initio method is available. Therefore, our model is
a potentially useful tool for the molecular design of unknown
compounds and opens up new possibilities for analyzing the
nature of intermolecular interactions at large scales.
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