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Abstract
Polarization-type methods are among the fastest solution methods for
FFT-based computational micromechanics. However, their performance
depends critically on the choice of the reference material. Only for finitely con-
trasted materials, optimum-selection strategies are known. This work focuses
on adaptive strategies for choosing the reference material, details their efficient
implementation, and investigates the computational performance. The case of
porous materials is explicitly included. As a byproduct, we introduce a suitable
convergence criterion that permits a fair comparison to strain-based FFT solvers
and Eyre–Milton type implementations.
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1 INTRODUCTION

1.1 State of the art

As a typical model for computational homogenization1,2 on a periodic cell Q and at small strains, we are concerned with
the optimization problem

W(𝜀) → min
𝜀∈

, (1)

seeking the total strain field 𝜀 on the cell Q minimizing the average elastic energy

W(𝜀) = ⟨w(⋅, 𝜀)⟩Q

under the kinematic constraints  which encode compatibility and fixed macroscopic strain 𝜀. A prototype for primal
methods for solving the problem (1) is projected gradient descent, which iterates

𝜀k+1 = 

(
𝜀k − sk ∇W(𝜀k)

)

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

6800 wileyonlinelibrary.com/journal/nme Int J Numer Methods Eng. 2021;122:6800–6821.

 10970207, 2021, 22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6812 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0001-7017-3618
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnme.6812&domain=pdf&date_stamp=2021-09-08


SCHNEIDER 6801

for step sizes sk, where ∇W denotes the gradient of W and  refers to the orthogonal projection onto the kinematic
constraint . More explicitly, for the L2 inner product, we are led to the basic scheme3,4 of Moulinec and Suquet

𝜀k+1 = 𝜀 − Γk ∶ (𝜎(𝜀k) − Ck ∶ 𝜀k), (2)

where 𝜀 is the average strain, Ck is an elastic reference material and the Γk-operator is defined by Γk = ∇s(div Ck∇s)−1div
in terms of the symmetrized gradient ∇s and the associated divergence div. We denote by 𝜎 = 𝜕w∕𝜕𝜀 the stress operator,
which maps a strain field to the associated stress field.

The basic scheme (2) is the prototype of a primal method, that is, a method where the kinematic constraints are
satisfied at every iteration. Extensions of the basic scheme lead to fast and robust solution methods for FFT-based compu-
tational micromechanics. These include conjugate gradient methods,5-7 fast gradient methods8,9 as well as Newton,10-12

and Quasi-Newton methods.13-15 Please note that purely dual methods may be developed as well.16,17 These are, however,
conceptually similar to the primal methods.

An alternative to the primal methods are primal-dual methods, where primal and dual feasibility, that is, kinematic
compatibility and stress equilibrium, are satisfied only at convergence, in general. Michel et al.18,19 suggested to rewrite
the optimization problem (1) in split form

𝜄(𝜀) + W(e) → min
𝜀=e

, (3)

where 𝜄 denotes the indicator function of the kinematic constraint, attaining the value 0 if 𝜀 ∈  and +∞ otherwise. For
fixed reference material C0, the associated augmented Lagrangian function reads

L(𝜀, e, 𝜆) = 𝜄(𝜀) + W(e) + ⟨𝜆 ∶ (𝜀 − e)⟩Q + 1
2

⟨
(𝜀 − e) ∶ C0 ∶ (𝜀 − e)

⟩
Q ,

where 𝜆 is the field of Lagrange multipliers. Michel et al.19(sec.4.1.2) suggested to utilize the associated alternating direction
method of multipliers (ADMM)20-22

𝜀k+1 = 𝜀 − Γ0 ∶ (𝜆k − C0 ∶ ek),
𝜎(ek+1) + C0 ∶ ek+1 = 𝜆k + C0 ∶ 𝜀k+1,

𝜆k+1 = 𝜆k + C0 ∶ (𝜀k+1 − ek+1). (4)

Upon convergence, the two strain fields coincide, that is, 𝜀 = e holds, and the field 𝜆 represents the associated stress
field 𝜆 = 𝜎(𝜀). Please note that the second line of ADMM (4) involves an implicit stress update, that is, the mapping
e → 𝜎(e) + C0 ∶ e needs to be inverted. This contrasts with the basic scheme (2) and its descendants which involve an
explicit stress update 𝜀 → 𝜎(𝜀).

We distinguish the stress operator 𝜎 and the stress field, which we denote by 𝜆. Upon convergence of the algorithm
(4), the stress field 𝜆 arises from the strain field 𝜀 via the stress operator 𝜆 = 𝜎(𝜀). Taking care of this distinction in the
notation helps to clarify the structure of polarization-type methods, as they crucially rely upon implicit stress updates.

For linear elastic material behavior, Monchiet and Bonnet23 introduced a family of methods iterating on the stress
polarization P = 𝜎(𝜀) + C0 ∶ 𝜀. As pointed out by Moulinec and Silva,24 these methods included the Eyre–Milton
method19,25 and, for the linear elastic case, the ADMM (4) as special cases.23,24 For linear elastic material behavior and
a finite contrast between the phases, Moulinec and Silva24 showed convergence of polarization schemes for any refer-
ence material (and reasonable damping coefficient). Also, in the class of reference materials proportional to the identity,
C0 = 𝛼0 Id, they identified the optimum convergence rate at 𝛼0 =

√
𝛼−𝛼+ and vanishing damping, where 𝛼± refer to the

minimum and maximum eigenvalues of the elastic stiffnesses of the phases.
Building upon earlier work for nonlinear polarization methods,26,27 Schneider et al.28 considered nonlinear polariza-

tion methods. Based on optimum parameter selection for the Douglas–Rachford splitting29 (equivalent to ADMM for our
case), the parameter choice 𝛼0 =

√
𝛼−𝛼+ could also be established for nonlinear material behavior, where 𝛼± refers to

the modulus of strong convexity and the Lipschitz constant of the stress operator 𝜎. Furthermore, Schneider et al.28 gen-
eralized previous work19,27,30 and showed that the implicit stress update (4) can be evaluated explicitly for small-strain
inelastic materials where the stress is related to the elastic strain be Hooke’s law.
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6802 SCHNEIDER

Renewed interest in polarization methods arose due to possible advantages in parallelization31 and for treating non-
differentiable energies.32,33 Still, treating microstructures with pores remained out of scope for polarization methods. For
a start, it was not even clear whether polarization methods converged for porous microstructures, or, to be more pre-
cise, for which reference materials convergence could be ensured. Secondly, the simple rule 𝛼0 =

√
𝛼−𝛼+ for choosing the

reference material does not make sense if 𝛼− = 0.
For primal methods, it was realized that the original spectral discretization of Moulinec and Suquet3,4,34 was numer-

ically unstable for porous microstructures. By changing the discretization to finite difference35,36 or finite element
schemes,37,38 convergent computational methods could be obtained. In particular, the convergence speed of the solution
methods were reduced to judicious parameter selection.7,39

Anderson acceleration40,41 is a Quasi-Newton method applicable to generic fixed point schemes that was success-
fully applied to primal FFT-based methods13-15. Combined with polarization schemes, the resulting Anderson-accelerated
polarization schemes42 showed robust and fast convergence, also for porous microstructures. Unfortunately, Anderson
acceleration comes with a severe memory demand. For this reason, renewed interest was sparked concerning an adaptive
selection of the reference material in polarization methods.

1.2 Contributions

In recent years, primal FFT-based computational homogenization methods have experienced renewed interest. Solution
strategies are sought which unite fast convergence with a low memory footprint. For this reason, modifications and exten-
sions of the basic scheme (2) of Moulinec and Suquet3,4 were studied.5-8,39 One of the insights of these works is that it is
generally advantageous to select the solver parameters adaptively instead of requiring a clever user input. For instance,
the Barzilai–Borwein method39 is nothing but the basic scheme where the reference material is updated for every iteration
based on the Barzilai–Borwein rule.43

To the best of the author’s knowledge, adaptively changing the reference material has not been considered for
polarization methods, and the work at hand is aimed at closing this gap. We consider the general iterative scheme

𝜀k+ 1
2 = 𝜀 + Dk ∶ 𝜎 −

(
Γk + Dk ∶ Q ∶ ⟨⋅⟩Q

)
∶ (𝜆k − Ck ∶ ek),

𝜀k+1 = 2(1 − 𝛾)𝜀k+ 1
2 − (1 − 2𝛾)ek,

𝜎(ek+1) + Ck ∶ ek+1 = 𝜆k + Ck ∶ 𝜀k+1,

𝜆k+1 = 𝜆k + Ck ∶ (𝜀k+1 − ek+1). (5)

involving a damping (or relaxation) factor 𝛾 ∈ [0, 1) and a reference material Ck that may change from one iteration to
the next, as for the basic scheme (2). We consider mixed “boundary conditions”44 and Dk = (Ck)−1. More precisely, the
mixed boundary conditions are given in terms of a pair (P,Q) of complementary and orthogonal projectors and prescribed
partial strains 𝜀 and stresses 𝜎 which satisfy the compatibility conditions

P ∶ 𝜀 = 𝜀 and Q ∶ 𝜎 = 𝜎.

The algorithm (5) represents a (more or less trivial) extension of the one considered by Moulinec and Silva24(eq.13) to
nonlinear material behavior and mixed boundary conditions, with the parameter conversion 𝛼 = 2(1 − 𝛾) and 𝛽 = 𝛼. By
a similar reasoning as in Moulinec and Silva,24 it is not difficult to see that the algorithm (5) reduces to the classical
ADMM scheme (4) for 𝛾 = 1

2
and Ck ≡ C0. The damping coefficient 𝛾 ∈ [0, 1) allows to represent, both, the Eyre–Milton

method25 and the Monchiet–Bonnet scheme23 as special cases, see Monchiet and Bonnet23 and Moulinec and Silva24.
More generally, the abstract nonlinear polarization schemes considered in Schneider et al.28 are included. The reason for
considering the form (5) rather than the polarization form28 is that the former allows for adaptively changing reference
material in a more natural way. Indeed, for fixed strain field 𝜀∗, but changing reference material Ck, the polarization field
Pk = 𝜎(𝜀∗) + Ck ∶ 𝜀∗ changes, as well.

How to choose the reference material Ck in the polarization scheme (5) is treated in Section 2. We discuss theoretical
convergence results, available in the literature, specialized to our case. We also present general strategies for selecting
the reference material in ADMM, including the classical residual-balancing strategy,45 a procedure46 developed for the
non-stationary Douglas–Rachford scheme, and a Barzilai–Borwein stepsize.47,48 In Section 3, we discuss the efficient
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SCHNEIDER 6803

implementation of the non-stationary polarization method (5), and also provide details on evaluating the residual during
the iterations. In particular, comparability to strain-based solvers and the polarization schemes28 is ensured. Section 4
contains computational examples, evaluating the benefits of non-stationary polarization methods, but also demonstrating
their limitations.

2 CONVERGENCE AND ADAPTIVE CHOICE OF THE REFERENCE
MATERIAL

2.1 Convergence statements

In this section, we provide a guide to convergence assertions for the ADMM (5) with adaptive relaxation parameter 𝛾k ∈
[0, 1) and a reference material Ck = 𝛼k Id proportional to the identity, that is, a linear elastic reference material with
vanishing Poisson’s ratio and shear modulus 𝜇k = 𝛼k∕2. The results may be extended to truly isotropic reference materials
provided the phases are isotropic as well. For the work at hand, we restrict to the choice Ck = 𝛼k Id.

We assume that the stress operator 𝜎 arises from a (possibly condensed) free energy density w which we assume convex
and continuously differentiable in the strain variable, that is,

𝜎(x, 𝜀(x)) = 𝜕w
𝜕𝜀

(x, 𝜀(x)), x ∈ Q,

is assumed to hold for any square-integrable strain field. Furthermore, we suppose that w satisfies a growth
condition,49(sec.2.1) s.t. the optimization problem (1) admits a solution.

For the general case, suppose that the relaxation parameters 𝛾k and the coefficients 𝛼k satisfy the conditions:

1. The relaxation parameter is restricted as follows: 0 < 𝛾k ≤ 1∕2 for all k.
2. There is some 𝛼∞ > 0, s.t. 𝛼k ≥ 𝛼∞ for some k.
3. The summability condition

∞∑
k=1

1 − 𝛾k

𝛾k
max

{
𝛼2

k

𝛼2
k−1

, 0

}
< ∞

holds.

Then, for any initial point, the ADMM algorithm (5) converges in the sense that 𝜀k − ek goes to zero in L2 and the
effective free energy at ek converges to a minimum. We refer to Xu et al.48(sec.5) for a proof. Let us briefly comment on
the conditions. The first condition excludes the case 𝛾k = 0, that is, damping is necessary for the general case. Condition
2 ensures that the shear moduli of the reference materials are bounded. Interpreted in terms of a step size,28(sec.3) this
ensures that the step size does not go to infinity. Condition 3 ensures that decreases in the reference constant 𝛼k have
a sufficiently fast decay. There is a version for increasing 𝛼k,48(Ass.2) but this is not relevant for our problem. Indeed, the
linear elastic stiffness typically provides a (pessimistic) upper bound for the reference material.

Please note that, for this general case, only a slow convergence rate can be expected. Indeed, the considered scenario
covers also degenerate cases such as porous materials with fractal interfaces. For the general case, and fixed parameters,
ADMM converges with a 1∕k-rate.50,51 This rate is similar to what may be achieved by projected gradient descent.49

After treating the general case, let us consider the best-case scenario.28,29 More precisely, suppose that there are positive
constants 𝛼− and 𝛼+, s.t. the stress operator 𝜎 is uniformly 𝛼−-strongly convex

[𝜎(x, 𝜀1) − 𝜎(x, 𝜀2)] ∶ (𝜀1 − 𝜀2) ≥ 𝛼− ||𝜀1 − 𝜀2||2, x ∈ Q, 𝜀1, 𝜀2 ∈ Sym(d), (6)

and 𝛼+-Lipschitz-continuous

||𝜎(x, 𝜀1) − 𝜎(x, 𝜀1)|| ≤ 𝛼+ ||𝜀1 − 𝜀2||, x ∈ Q, 𝜀1, 𝜀2 ∈ Sym(d), (7)

for the Frobenius inner product ||𝜀|| = √
𝜀 ∶ 𝜀 on Sym(d). Then, for any reference material Ck ≡ C0 = 𝛼0 Id with 𝛼0 > 0

and relaxation parameter 𝛾k ≡ 𝛾 ∈ [0, 1), the iterates (𝜀k, ek, 𝜆k) produced by the ADMM algorithm (5) converge to the
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6804 SCHNEIDER

(unique) fixed point (𝜀∗, 𝜀∗, 𝜎(𝜀∗)). Moreover, the estimate

||Pk+1 − P∗||L2 ≤

(
𝛾 + (1 − 𝛾)max

{
𝛼+ − 𝛼0

𝛼+ + 𝛼0
,
𝛼0 − 𝛼−
𝛼0 + 𝛼−

})||Pk − P∗||L2 (8)

holds for the stress polarizations

Pk = 𝜆k + 𝛼0 ek and P∗ = 𝜎(𝜀∗) + 𝛼0 𝜀∗.

The fastest convergence rate is achieved for 𝛾 = 0 and 𝛼0 =
√
𝛼−𝛼+. In particular, for fixed precision, the number of nec-

essary iterations is proportional to the square root of the material contrast
√
𝛼+∕𝛼−. The linear elastic case was discussed

by Moulinec and Silva.24

Please keep in mind that the choice 𝛾 = 0 and 𝛼0 =
√
𝛼−𝛼+ leads to the fastest overall convergence rate. This does not

necessarily correspond to the minimum iterations for prescribed tolerance. Rather, the rationale behind optimizing the
convergence rate is that, for high accuracy, the number of required iterations depends on the convergence rate, in the first
place.

The contraction estimate (8) was established for the Douglas–Rachford rewriting52 of the ADMM, which is more
convenient to analyze. The assertion (8) reveals a few things. For a start, zero damping 𝛾 = 0, is permitted, and even
favorable. This possibility was excluded for the general case treated earlier. In computational practice, however, small
positive values of 𝛾 are typically preferred over 𝛾 = 0.

Secondly, by the same reasoning as for obtaining the estimate (8), it is possible to derive the bound

||𝜆k+1 − 𝜆k + 𝛼k (ek+1 − ek)||L2 ≤

(
𝛾 + (1 − 𝛾)max

{
𝛼+ − 𝛼k

𝛼+ + 𝛼k
,
𝛼k − 𝛼−
𝛼k + 𝛼−

})||𝜆k − 𝜆k−1 + 𝛼k (ek − ek−1)||L2 .

Thus, as long as the sequence 𝛼k is convergent to 𝛼∗ ∈ [0, 1), the adaptive ADMM converges linearly, as well.
The third insight from the estimate (8) is that a clever choice of the reference constant 𝛼0 is crucial. For instance,

inserting the upper bound 𝛼0 = 𝛼+ into the estimate (8) with 𝛾 = 0 produces

||Pk+1 − P∗||L2 ≤
𝛼+ − 𝛼−

𝛼+ + 𝛼−
||Pk − P∗||L2 .

For fixed tolerance, the latter estimate implies that the necessary iteration count is proportional to the material contrast
𝛼+∕𝛼−. Thus, no advantage is gained over the basic scheme.19 In particular, due to the character of the optimum reference
constant

𝛼0 =
√
𝛼−𝛼+, (9)

expressed as a geometric mean of the constants 𝛼±, a good guess for the lower bound 𝛼− is critical. In contrast, a good
upper bound 𝛼+ is usually inferred from the elastic stiffness of the material.

To conclude this section, let us briefly comment on the case of porous microstructures, where the stress operator 𝜎 is
identically zero on a non-trivial subdomain of the unit cell Q. Then, the stress operator is no longer strongly monotone,
and the Giselsson–Boyd estimate (8) no longer applies. The general convergence statement discussed at the beginning
of this section ensures convergence, at least in theory. However, this convergence behavior can be excruciatingly slow
in practice, even leading to divergence in case of accumulated round-off errors. This is the reason for debates in the
community concerning whether polarization schemes converge for porous materials or not.23,24,39

Recently, the convergence behavior of primal algorithms for porous microstructures was analyzed.49 It was found,
both computationally and numerically, that the discretization scheme plays an important role in the stability of such
numerical methods for porous microstructures. Furthermore, in the continuous (non-discretized) case, the convergence
behavior of the basic scheme (and its descendants) is closely tied to a specific subspace of compatible strain fields, on
which the stress operator is strongly monotone. The monotonicity constant, however, strongly depends on the geometry
of the solid-pore interface, and is not readily accessible.

Without going into details, it is readily seen from the iterative scheme (5) that the strain field 𝜀k+ 1
2 is always compatible,

and even lives in the specific subspace on which the stress operator is strongly monotone. Unfortunately, in the ADMM
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SCHNEIDER 6805

scheme, the stress operator is only applied to the incompatible strain field e via 𝜆 = 𝜎(e), and the non-degeneracy of the
stress operator 𝜎 cannot be transferred to the compatible strains, invoking a rigorous convergence statement. However, it
seems reasonable that, if the residual ||||||𝜀k+ 1

2 − ek||||||L2
is sufficiently small (and a stable discretization is used), then ADMM

(5) will enter a regime of linear convergence. This statement can be made rigorous, see Liang et al.53 We will further study
this issue numerically in Section 4.

The plan for the remainder of this section is to discuss a number of strategies for adaptively estimating the reference
constant 𝛼k, fixing the damping factor 𝛾k ≡ 𝛾 .

2.2 Finite material contrast

Let us start with the simplest case of (non-degenerate) linear elastic materials.23,24,54 Denote by 𝛼±(x) the smallest and
largest eigenvalue of the local stiffness tensor C(x) at the point x ∈ Q. Then, we may compute

𝛼− = min
x∈Q

𝛼−(x) as well as 𝛼+ = max
x∈Q

𝛼+(x),

and choose 𝛼0 =
√
𝛼−𝛼+. For the case of non-linear materials at small strains, the following strategy proves useful.28

Denote by 𝛼k,±(x) the smallest and the largest eigenvalue of the material tangent

𝜕2w
𝜕2𝜀

(x, ek(x)), x ∈ Q,

evaluated for the current strain field ek at iteration k. Then, we may set

𝛼k,− = min{min
x∈Q

𝛼k,−(x), 𝛼k−1,−} as well as 𝛼k,+ = max{max
x∈Q

𝛼k,+(x), 𝛼k−1,+}

and define 𝛼k+1 =
√
𝛼k,−𝛼k,+. Typically, 𝛼k,+ is independent of k, and 𝛼k is a monotonically decreasing sequence, compare

condition 3 in Section 2.1.
This approach comes with the advantage that, for inelastic materials featuring an elastic region, loadings at small strain

lead to convergence rates in the polarization scheme like for the elastic case. Clearly, care has to be taken for materials
whose material contrast goes to infinity for increased loading28(sec.7).

2.3 Residual balancing

A classical approach, introduced by He et al.,45 for adapting the step size in ADMM is residual balancing. For the case at
hand (5) and unrelaxed ADMM 𝛾 = 1∕2, we define the primal

pk+1 = 𝜀k+1 − ek+1 (10)

and the dual residual

dk+1 = 𝛼k (ek+1 − ek). (11)

The letters p and d were chosen to stand for primal and dual, respectively. In particular, no confusion with the stress
polarization is intended. The quantity pk+1 (10) measures the feasibility condition 𝜀

!
= e in the primal form of the opti-

mization problem (1), whereas the increment dk+1 (11) may be interpreted as quantifying feasibility for the Lagrangian
dual of problem (1), see Boyd et al.22(sec.3.3)

In our case, please note the following. For a start, algebraic manipulations reveal the estimates

‖‖‖𝜀 − P ∶
⟨

ek+1⟩
Q
‖‖‖L2

+ ‖‖‖(Id − Γ − ⟨⋅⟩Q
)
∶ ek+1‖‖‖L2

≤ ||pk+1||L2 (12)
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6806 SCHNEIDER

and ‖‖‖𝜎 − Q ∶
⟨
𝜆k+1⟩

Q
‖‖‖L2

+ ‖‖‖Γ ∶ 𝜆k+1‖‖‖L2
≤ ||dk+1||L2 , (13)

where Γ ≡ Γk ∶ Ck is independent of 𝛼k. We refer to Appendix A for a derivation. Thus, the primal and the dual residual
measure the compatibility and the strain boundary condition as well as the equilibrium and the stress boundary condition
individually. Also, due to the identity

pk+1 + dk+1∕𝛼k = 𝜀k+1 − ek,

the primal and dual residuals may be interpreted as a decomposition of the total (consistent) residual (22), to be discussed
below in Section 3.

He et al.45 suggested that the primal and dual residuals should decay at the same rate in order to ensure fast conver-
gence of ADMM, and to adapt the step size 𝛼k if necessary. Some care has to be taken, as the primal residual (10) is a
strain field and the dual residual (11) is a stress field. Due to the mismatch of dimensions, no direct comparison is possi-
ble. Rather, it is necessary to define a suitable interval of salient stress values [𝜆min, 𝜆max] that is considered appropriate
and to ensure the condition ‖‖dk+1‖‖L2‖‖pk+1‖‖L2

∈ [𝜆min, 𝜆max]

directly via an amplification factor A > 1 in terms of the adaptive rule

𝛼k+1 =
⎧⎪⎨⎪⎩
𝛼k∕A, ||dk+1||L2 > 𝜆max ||pk+1||L2 ,

A 𝛼k, ||dk+1||L2 < 𝜆min ||pk+1||L2 ,

𝛼k, otherwise.

The rationale behind this strategy is that, if the primal residual is large, increasing the penalty factor 𝛼k should lead to a
decrease of the term penalizing the difference 𝜀 − e.

Typical values for parameters are A = 2, 𝜆max = 𝛼+ and 𝜆min = 𝛼+∕1022(sec.3.4.1). The resulting strategy is called residual
balancing. Computing the primal and dual residuals may be integrated into Algorithm 1 without memory overhead.

The original residual-balancing strategy of He et al.45 was developed for 𝛾 = 1∕2. We discuss a simple modification for
𝛾k ≡ 𝛾 > 0. Then, defining the primal and dual residuals by

pk+1 = 𝜀k+ 1
2 − ek+1 and dk+1 = 𝛼k

(
ek+1 − ek + 𝜀k+ 1

2 − 𝜀k+1
)
, (14)

the identity

pk+1 + dk+1∕𝛼k = 2𝛾
(
𝜀k+ 1

2 − ek
)
, (15)

as well as the estimates (12) and (13) follow, see Appendix A. The residuals for 𝛾 > 0 may also be computed without
additional memory overhead.

Please note the explicit expression for the dual residual

dk+1∕𝛼k = ek+1 − (1 − 2𝛾) 𝜀k+ 1
2 − 2𝛾 ek.

In particular, for 𝛾 ≡ 0, the identity dk+1 = 𝛼k pk+1 holds, and the residual balancing strategy does not work.

2.4 Lorenz–Tran-Dinh updating

Lorenz and Tran-Dinh46 studied adaptive step-size strategies for the Douglas–Rachford splitting and the ADMM. They
provided a novel convergence analysis for operator-splitting methods of Douglas–Rachford type with adaptive parameter
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SCHNEIDER 6807

with absolutely summable increments. Based on a careful analysis of the linear case, they proposed a strategy which is
valid for possibly multi-valued maximally monotone operators. For the iterative scheme (5) at hand, their suggestion takes
the form

𝛼k = ||𝜆k||L2||ek||L2
(16)

of a secant stiffness. For linear elasticity, the proposed reference material 𝛼k is guaranteed to lie within the minimum and
the maximum eigenvalues of the local stiffnesses.

2.5 Barzilai–Borwein step size

Barzilai and Borwein43 introduced an adaptive strategy for selecting the step size sk in gradient descent methods

xk+1 = xk − sk ∇f (xk)

via the secant-type rule

sk+1 =
‖‖xk+1 − xk‖‖2⟨

∇f (xk+1) − ∇f (xk), xk+1 − xk
⟩ , (17)

where angular brackets denote the inner product. The Barzilai–Borwein method turned out to be a powerful solution
method for unconstrained smooth optimization,55-57 despite its apparent simplicity. The Barzilai–Borwein (BB) step-size
rule (17) was shown to be successful in FFT-based computational micromechanics,39 as well.

For the ADMM, Xu et al.47,48 studied step-size selection strategies of Barzilai–Borwein type. In this work, we consider
a variation of the approach of Xu et al. More precisely, Xu et al. propose a BB strategy for the primal and the dual step size,
and select the geometric mean of these two step sizes. For homogenization problems, it turns out to be more effective to
rely upon a purely primal strategy. More precisely, the starting point of our discussion is the BB rule

𝛼k+1 =

⟨
(𝜆k+1 − 𝜆k) ∶ (ek+1 − ek)

⟩
Q⟨||ek+1 − ek||2⟩Q

. (18)

As the fields 𝜆 and e are related by the stress operator 𝜎, we observe

𝛼k+1 =

⟨
(𝜎(ek+1) − 𝜎(ek)) ∶ (ek+1 − ek)

⟩
Q⟨||ek+1 − ek||2⟩Q

.

Thus, if the stress operator 𝜎 is 𝛼−-monotone (6) and 𝛼+-Lipschitz (7), the inequalities

𝛼− ≤ 𝛼k+1 ≤ 𝛼+ (19)

follow. Please note that Barzilai–Borwein43 also introduced a second step-size rule, which, in our case, becomes

𝛼̃k+1 =

⟨||𝜆k+1 − 𝜆k||2⟩Q⟨
(𝜆k+1 − 𝜆k) ∶ (ek+1 − ek)

⟩
Q

.

The Cauchy–Schwarz inequality implies the ordering

𝛼k+1 ≤ 𝛼̃k+1.

Thus, the second strategy 𝛼̃k+1 is more conservative than the first strategy (18). Quite often, the second strategy is slower
in practice, and we will work with the first choice (18).
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6808 SCHNEIDER

Please note that the bounds (19) are only effective for strongly convex stress operators. Indeed, if 𝛼− = 0, for instance
in the case of porous microstructures, the reference material may decay to zero, leading to an unstable, and eventually
diverging scheme. For this purpose, we augment the rule (18) by a safeguard proposed by Xu et al.47(sec.3.3) For 𝛿 ∈ (0, 1),
we define

𝛼k+1 =
⎧⎪⎨⎪⎩
⟨(𝜆k+1−𝜆k)∶(ek+1−ek)⟩Q⟨||ek+1−ek||2⟩Q

,
⟨
(𝜆k+1 − 𝜆k) ∶ (ek+1 − ek)

⟩
Q ≥ 𝛿 ||ek+1 − ek||L2 ||𝜆k+1 − 𝜆k||L2 ,

𝛼k, otherwise.
(20)

This safeguard ensures that the iteration-dependent lower bound

𝛼k+1 ≥ 𝛿
||𝜆k+1 − 𝜆k||L2||ek+1 − ek||L2

holds, which may be connected to the interface constant cI .49(sec.2.2) Please note that the strategy (20) may be integrated
into the ADMM Algorithm 1 without memory overhead. Last but not least let us comment on the selection of 𝛿. We follow
the suggestion of Xu et al.47 and fix 𝛿 = 0.2.

3 RESIDUALS AND IMPLEMENTATION

3.1 The convergence criterion

In this section, we assume, for simplicity, that the reference materials Ck commute with the projector P. Otherwise, the
formulae become lengthy.44 To assess convergence, we utilize the Ck- and Dk-weighted L2-norms

||𝜀||Ck =
√⟨

𝜀 ∶ Ck ∶ 𝜀
⟩

Q and ||𝜆||Dk =
√⟨

𝜆 ∶ Dk ∶ 𝜆
⟩

Q.

Please notice that, in view of the identification of the ADMM (5) with a damped Eyre–Milton scheme, see Moulinec and
Silva24, via the identification Pk = 𝜆k + Ck ∶ ek, and as the identity 𝜆k = 𝜎(ek) holds, it appears natural to consider the
field ek as the primary quantity on which the ADMM scheme (5) iterates. In particular, we should quantify the deviation
from the following equations

Γk ∶ 𝜆k !
= 0 (equilibrium)

(Id − Γk ∶ Ck − ⟨⋅⟩Q) ∶ ek !
= 0 (kinematic compatibility)

P ∶
⟨

ek⟩
Q

!
= 𝜀 (strain boundary condition)

Q ∶
⟨
𝜆k⟩

Q
!
= 𝜎 (stress boundary condition)

(21)

Appendix B details the derivation of the identity

‖‖‖ek − 𝜀k+ 1
2
‖‖‖2

Ck
= ‖‖‖Γk ∶ 𝜆k‖‖‖2

Ck
+ ‖‖‖(Id − Γk ∶ Ck − ⟨⋅⟩Q) ∶ ek‖‖‖2

Ck

+ ‖‖‖P ∶
⟨

ek⟩
Q − 𝜀

‖‖‖2

Ck
+ ‖‖‖𝜎− ∶ Q ∶

⟨
𝜆k⟩

Q
‖‖‖2

Dk
. (22)

Thus, we are led to the surprisingly simple result that the four different conditions (21) to be satisfied may be quantified
by monitoring the quantity ek − 𝜀k+ 1

2 only. Several remarks are in order.
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SCHNEIDER 6809

1. For the basic scheme with mixed boundary conditions

𝜀k+1 = 𝜀 + Dk ∶ 𝜎 −
(
Γk + Dk ∶ Q ∶ ⟨⋅⟩Q

)
∶ (𝜎(𝜀k) − Ck ∶ 𝜀k), (23)

the identity ‖‖‖𝜀k+1 − 𝜀k‖‖‖2

Ck
= ||Γk ∶ 𝜎(𝜀k)||2

Ck +
‖‖‖𝜎− ∶ Q ∶

⟨
𝜎(𝜀k)

⟩
Q
‖‖‖2

Dk
(24)

holds.28(eq.5.7) As each iterate 𝜀k (k > 0) of the basic scheme (23) is kinematically compatible and satisfies the P-part of
the strain boundary condition, the ADMM residual (22) appears as a natural extension of the residual (24) for the basic
scheme. In fact, a convergence criterion implemented for the basic scheme may be reused for the ADMM, surprisingly.

2. For the pure ADMM case (𝛾 = 1∕2), Michel et al.19(sec.4.1.2) suggested to monitor ||ek − 𝜀k|| and ||𝜆k − 𝜎(𝜀k)||. If the stress
operator 𝜎 is Lipschitz continuous with constant L, we observe

||𝜆k − 𝜎(𝜀k)|| = ||𝜎(ek) − 𝜎(𝜀k)|| ≤ L ||ek − 𝜀k||.
Thus, monitoring the quantity 𝜆k − 𝜎(𝜀k) is not necessary and may be avoided for performance reasons.

3. For non-changing reference material Ck ≡ C0, the "natural" convergence criterion for the damped Eyre–Milton
iteration28

Pk+1 = 𝛾 Pk + (1 − 𝛾)
[
2C0 ∶ 𝜀 + 2𝜎 + Y 0 ∶ Z0(Pk)

]
with mixed boundary conditions, involving the operators

Y 0 = Id − 2
(
C0 ∶ Γ0 + Q ∶ ⟨⋅⟩Q

)
and Z0 = Id − 2 C0 ∶ (𝜎 + 𝜎0)−1,

where 𝜎0(𝜀) ≡ C0 ∶ 𝜀, is motivated by the identity28(eq.5.8)

1
4(1 − 𝛾)2

‖‖‖Pk+1 − Pk‖‖‖2

C0
= ‖‖‖Γ0 ∶ 𝜆k‖‖‖2

C0
+ ‖‖‖(Id − Γ0 ∶ C0 − ⟨⋅⟩Q) ∶ ek‖‖‖2

C0

+ ‖‖‖P ∶
⟨

ek⟩
Q − 𝜀

‖‖‖2

C0
+ ‖‖‖𝜎− ∶ Q ∶

⟨
𝜆k⟩

Q
‖‖‖2

D0
(25)

for the identification Pk = 𝜆k + C0 ∶ ek with 𝜆k = 𝜎(ek). Comparing to the expression for the ADMM (22), we notice
the identity

1
4(1 − 𝛾)2

‖‖‖Pk+1 − Pk‖‖‖2

C0
= ‖‖‖ek − 𝜀k+ 1

2
‖‖‖2

C0
.

Thus, the residual for the ADMM is in fact identical to the residual for the damped Eyre–Milton method for
non-changing reference material. Also, the established identity (22) may be considered as an extension of the identity
(25), valid for polarization schemes, to non-stationary reference material.

3.2 Efficient implementation

The algorithm (5) for mixed boundary conditions is straightforward to implement on three strain-like fields, see
Algorithm 1. Thus, the damping parameter 𝛾 , whose clever choice may significantly decrease the time to solution, does
not lead to additional memory requirements compared to the original version of Michel et al.19 The Algorithm 1 also indi-
cates suitable instances when to update the reference material and when to compute the residual. Notice that no extra
memory is required for evaluating the residual.

For suitable initialization and stationary reference material, the Algorithm 1 produces identical iterates (and identical
residuals) as Alg. 1 in Schneider et al.28 However, the implementation of Algorithm 1 requires an additional field to be
stored. Still, the original implementation19 appears to be the most popular among practitioners of FFT-based methods,
and is extended to Algorithm 1 with minimal effort.
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6810 SCHNEIDER

Algorithm 1. ADMM with damping parameter 𝛾 ∈ [0, 1)

1: initialize 𝜀, e, 𝜆 and C0

2: repeat
3: 𝜀 ← 𝜆 −C0 ∶ e
4: 𝜀 ← DFT(𝜀)
5: 𝜀(𝜉) ← −Γ̂0(𝜉) ∶ 𝜀(𝜉), 𝜉 ≠ 0 ⊳ Use your favorite Γ-operator
6: 𝜀(0) ← 𝜀̄ +D0 ∶

(
𝜎̄ −Q ∶ 𝜀(0)

)
⊳ Fix average strain

7: 𝜀 ← DFT−1(𝜀)
8: 𝜆̄ ← ⟨𝜆⟩Q
9: res ← ‖𝜀 − e‖C0∕‖𝜆̄‖D0

10: 𝜀 ← 2(1 − 𝛾) 𝜀 − (1 − 2𝛾) e
11: e ←

(
𝜎 + 𝜎0)−1 (𝜆 +C0 ∶ 𝜀) ⊳ See Schneider et al.28(sec.6)

12: 𝜆 ← 𝜆 +C0 ∶ (𝜀 − e) ⊳ Or as a byproduct in line 11
13: Update reference material C0

14: until res < tol ⊳ Compare section∼3.1
15: return (𝜀, 𝜆)

To complete the section on the implementation, let us specify that we use a discretization on a staggered grid,36 see
Schneider2(sec.2.5) for the efficient evaluation of the Γ-operator. Please note, however, that the implementation is suitable
for alternative discretizations, as well, see the overview article.2(sec.2)

4 COMPUTATIONAL EXAMPLES

4.1 Setup

The methods described in this article were integrated into an in-house FFT-based computational micromechanics code
(written in Python with Cython extensions) which is parallelized using OpenMP. All examples in this section are solved
up to a tolerance of tol = 10−5, measured in terms of the corresponding consistent convergence criteria. The run times
refer to a desktop computer with six 3.70 GHz cores and 32 GB RAM. The different material parameters used in this article
are summarized in Table 1, and we refer to Figure 1 for an impression on the considered microstructures.

4.2 A short-fiber reinforced composite

Our first example concerns a short-fiber reinforced polymer. Such a test is a standard benchmark in FFT-based
computational micromechanics because it permits studying finite material contrast, but complex microstructure features.

More precisely, we consider short glass fibers with a length of 200 μm and a diameter of 10 μm at 15% volume fraction
inside a cubic volume element with edge length of 288 μm and an isotropic fiber orientation. The microstructure, see
Figure 1A, was generated with the SAM algorithm60 and comprises 229 fibers. We use a rasterized image with 1923 voxels,
that is, a mesh size h = 1.5 μm.

T A B L E 1 Material parameters used in this article, supplemented by their source

Material Source E in GPa 𝝂 Further parameters

E-glass fibers 58 72 0.22

Polymer matrix 58 3.0 0.35 𝜎Y = 20 MPa k1 = 1 MPa

k2 = 15 MPa m = 150

Ceramic particles 59 400 0.2

Aluminum matrix 59 75 0.3 𝜎Y = 75 MPa k = 416 MPa

m = 0.3895
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SCHNEIDER 6811

We furnish the phases with the material parameters of the polymer matrix and the E-glass fibers listed in Table 1. As a
warm-up, we performed simulations in the linear elastic setting, see Table 2, for 5% uni-axial extension in x-direction. We
study the performance of ADMM with different relaxation factors 𝛾 , corresponding to the accelerated scheme of Michel
et al.19 for 𝛾 = 1∕2, the Monchiet–Bonnet recommendation27 𝛾 = 1∕4 and the Eyre–Milton scheme25 for 𝛾 = 0. We observe
that, for all adaptive choices of the reference material, the iteration count increases with 𝛾 , that is, in order to minimize
the iteration count, setting 𝛾 = 0 is advised. In general, the optimum choice, see Section 2.2, which is available due to
the finite material contrast, performs best. All other adaptive strategies are initialized with this theoretically optimum
choice. Residual balancing, for instance, retains this optimum choice. Thus, its iteration counts are identical to those of
the optimum choice (except for 𝛾 = 1∕2 where the reference material is changed once, and directly changed back after
the next iteration). Please also keep in mind that residual balancing only works for 𝛾 ≠ 0.

In addition, we also considered the choice 𝛼0 = 𝛼+∕5 which performs well in Monchiet–Bonnet.27(fig.4). Indeed, the
performance of the basic scheme and the ADMM will be quite similar if identical reference materials are chosen. Rather,
the basic scheme is restricted by the condition 𝛼0 > 𝛼+∕2 to retain stability,19 whereas no such limitation applies to the
polarization schemes. Therefore, 𝛼0 = 𝛼+∕5 represents a rather aggressive choice for the reference material in the polar-
ization scheme. For the linear elastic example at hand, this choice leads to slightly slower iteration counts than the
Lorenz–Tran-Dinh scaling.

Both, the Lorenz–Tran-Dinh and the Barzilai–Borwein strategies perform worse than the optimum choice, but not
dramatically so. Compared to the primal solvers, where we include the "golden standard", the linear CG, and the pri-
mal Barzilai–Borwein method, ADMM performs admirably. For optimum parameter choice, the required iteration count
lies below CG. These findings are illustrated in Figure 2A which shows the residual versus current iteration for the
different strategies and the damping factor 𝛾 = 0. We observe that the convergence rate of ADMM with optimum param-
eters matches the rate of linear CG. Both the primal Barzilai–Borwein method and the Barzilai–Borwein strategy for
the ADMM, lead to a non-monotone behavior of the residual. However, these oscillations are less pronounced for the
primal-dual version. The Lorenz–Tran-Dinh strategy is the fastest for low accuracy, up to 10−3, but experiences a decrease
in convergence rate for higher accuracy.

(A) (B) (C)

F I G U R E 1 Microstructures considered in this article. (A) Short-fiber composite.60 (B) Closed-cell foam.61 (C) Metal-matrix composite59

T A B L E 2 Iteration counts for the ADMM with different settings and the fiber composite with linear elastic constituents

ADMM Optimum 𝜶+∕5 Residual balancing Lorenz–Tran-Dinh Barzilai–Borwein

𝛾 = 0 32 47 – 40 41

𝛾 = 1∕4 43 61 43 55 55

𝛾 = 1∕2 66 94 69 85 73

Primal solvers

BB 47

CG 36

Note: The primal solvers are shown for comparison. The bold values correspond to the lowest iteration count for the primal-dual and the primal solvers
(hence on each).
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6812 SCHNEIDER

Next, we study the inelastic behavior. Using the material parameters of Table 1 for the von-Mises elastoplastic matrix
with exponential-linear hardening, we subject the composite to 5% uni-axial strain loading, distributed over 50 load steps.
The mean iteration counts and the run times are listed in Table 3. Except for residual balancing, increasing the damping
factor 𝛾 also leads to an increase of the iteration count for the ADMM. The Lorenz–Tran-Dinh strategy is significantly
faster than the theoretically optimum choice. Also, the Barzilai–Borwein strategy almost matches the speed of the opti-
mum choice. Residual balancing, on the other hand, does not appear competitive. The constant strategy 𝛼0 = 𝛼+∕5 takes
about twice as long as the optimum strategy.

Compared to the primal solvers, where we include the Barzilai–Borwein method,39 nonlinear CG,7 and
Newton-CG11,12 with the solver parameters identified in Wicht et al.,15 the ADMM compares favorably. Both Newton-CG
(where we count, both, linear and nonlinear iterations) and nonlinear CG operate on a similar level as ADMM with the
optimum choice. The (primal) Barzilai–Borwein method is significantly faster than the other primal methods, but can-
not match the performance of ADMM with the Lorenz–Tran-Dinh scaling of the reference material. Indeed, the latter is
twice as fast.

Let us take a look at the individual iteration counts per load step, see Figure 2B. Except for the very first steps, the
Lorenz–Tran-Dinh scaling leads to the lowest iteration counts for every load step. This is consistent with the previous

0 10 20 30 40 50

10−1

10−2

10−3

10−4

10−5

iteration

re
si
d
u
al

Primal BB Linear CG

Lorenz-Tran-Dinh Barzilai-Borwein

Optimum α+ / 5

(A) Residual vs. iteration in the linear case

10 20 30 40 50
0

50

100

150

200

250

load step

it
er
at
io
n
s

Primal BB Nonlinear CG

Newton-CG Residual balancing

Lorenz-Tran-Dinh Barzilai-Borwein

Optimum α+ / 5

(B) Iterations vs. load step in the inelastic case

F I G U R E 2 Studies for the fiber composite of Figure 1A. For the ADMM variants, we always use the damping 𝛾 leading to best
performance

T A B L E 3 Mean iterations and run time (in s) for the inelastic fiber composite

ADMM Optimum 𝜶+∕5 Residual balancing Lorenz–Tran-Dinh Barzilai–Borwein

𝛾 = 0 87.18 (4358.6) 162.70 (7990.5) – 34.26 (1770.6) 98.08 (5078.3)

𝛾 = 1∕4 105.08 (5235.9) 216.9 (10618.9) 139.02 (7064.3) 41.18 (2102.4) 116.42 (6092.1)

𝛾 = 1∕2 157.36 (7794.4) 325.5 (15940.4) 129.28 (6556.0) 59.84 (3039.8) 173.30 (8968.7)

Primal solvers

BB 75.48 (3320.7)

CG 93.42 (4995.0)

Newton 92.18 (4402.6)

Note: The bold values correspond to the lowest iteration count for the primal-dual and the primal solvers (hence on each).
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SCHNEIDER 6813

observations, where this method was able to reduce the residual quickly. Combined with the affine extrapolation, this
initially fast decrease of the residual leads to low iteration counts for this method.

It is interesting to note that the “optimum choice” for the reference material in ADMM does not lead to the minimum
iteration count, for instance exemplified by the peak at load step seven. The reasons are that, for a start, the optimum
choice only realizes the optimum convergence rate. It is insensitive to the prefactor in front of the rate. In particular,
combined to affine extrapolation, the optimum convergence rate is unable to come into play. Also, the optimum rate is
only best if the bounds 𝛼± are actually sharp. In any case, studying adaptive choices for the reference material in ADMM
can be extremely productive, also in the case where the supposedly optimum parameter choice is known.

The constant strategy 𝛼0 = 𝛼+∕5 performs well for the first ten load steps, but lags behind later on. Indeed, this strategy
is fixed beforehand, and once and for all. In particular, the reference material cannot account for the increasing plas-
tification for higher loading. All in all, this strategy (with 𝛾 = 0) is about 4.5 times slower than the Lorenz–Tran-Dinh
scaling.

4.3 A closed-cell foam

In this section, we consider a closed-cell foam, see Figure 1B. Following Abdullahi et al.,61 the microstructure was gen-
erated by shrinking the cells of a Laguerre tessellation, where we use the Newton algorithm discussed in Kuhn et al.62 to
generate 27 Laguerre cells of equal volume. The resulting foam has a volume fraction of 11.6%, and was discretized by
1283 voxels. Please note that we used a higher resolution for the visualization in Figure 1B.

This foam example is rather challenging for FFT-based solvers. In fact, FFT-based methods are certainly not the
optimum for treating microstructures with such a high degree of porosity (88.4%). Rather, the foam structure should
be regarded as a benchmark showing the limitations of FFT-based methods, in general, and the ADMM, in particular.
We furnish the solid foam with the isotropic and linear elastic material parameters of aluminum listed in Table 1. The
iteration counts for 5%uni-axial extension in x-direction are listed in Table 4. We prescribed a maximum of 5000 iterations,
and ADMM with residual balancing and 𝛾 = 1∕4 failed to converge within these limits. No damping (𝛾 = 0), leads to
divergence of the solver.

The conjugate gradient method converges in about 400 iterations. The primal BB method requires more than 1000
iterations, and is closely matched by the primal-dual BB. For this example, the Lorenz–Tran-Dinh scaling requires signif-
icantly more iterations, roughly by a factor of 3, than the BB scaling. The 𝛼0 = 𝛼+∕5 strategy does not reach the prescribed
tolerance within 5000 iterations.

Investigating the residuals more closely, see Figure 3C, we notice that the CG method does not converge monotonically,
but rather shows a marked zig-zag pattern. This reflects the high condition number of the problem under consideration.
Up to about 300 iterations, the CG residual is similar to BB’s. After this point, CG significantly speeds up. All other
considered ADMM schemes appear to have the same convergence rate, but with different prefactors. Please also note the
severe oscillations in the residual of the primal BB scheme which cover three orders of magnitude.

We shall use the foam example to also investigate the influence of the discretization method and the appropriateness
of the residual (22). Indeed, for finite material contrast, the various discretizations available for FFT-based computational
micromechanics perform similarly well. Differences emerge for (highly) porous materials, like the open-cell foam. For this
purpose, we re-ran the computational experiments with identical settings but different discretization schemes. We study
the original discretization of Moulinec and Suquet,3,4 which might be interpreted as an underintegrated Fourier–,Galerkin

T A B L E 4 Iteration counts for the ADMM with different settings and the closed-cell foam

ADMM 𝜶+∕5 Residual balancing Lorenz–Tran-Dinh Barzilai–Borwein

𝛾 = 1∕4 >5000 >5000 2905 1168

𝛾 = 1∕2 >5000 4083 4357 1753

Primal solvers

BB 1042

CG 397

Note: The primal solvers are shown for comparison. The bold values correspond to the lowest iteration count for the primal-dual and
the primal solvers (hence on each).
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6814 SCHNEIDER

method,63 and the discretization on a rotated staggered grid,64,65 introduced to FFT-based micromechanics by Willot.35

The residuals versus iteration are shown in Figure 3. We observe that none of the considered solution schemes, be it pri-
mal or primal-dual, converges within 5 000 iterations. For the Moulinec–Suquet discretization, all solvers fail to advance
significantly below a residual of 10−2. More strikingly, the linear conjugate gradient method5,6 stagnates at a residual
above 10%. For Willot’s discretization, the solvers fare slightly better, reaching residuals which are about an order of
magnitude lower than the Moulinec–Suquet discretization. Also, a stagnating convergence behavior is observed for lin-
ear CG. This convergence behavior of the solution methods is in stark contrast to their staggered grid counterparts, see
Figure 3C, which perform significantly better. Recall that such a discrepancy between the performance of primal solvers
and different discretization schemes was already observed in Schneider et al.36

To study the interplay of the discretization scheme and the residual (22), we monitor the effective axial stress per
iteration in Figure 4. Strikingly, for the Moulinec–Suquet discretization, see Figures 4A, the effective stress decreases
monotonically, and is expected to converge to zero as the iteration count goes to infinity. After 1 000 iterations, all
the considered solvers give rise to different predicted effective stresses. Such an anomalous behavior is characteristic
for the Moulinec–Suquet discretization applied to porous microstructures.49 For Willot’s discretization, see Figure 4B,
the effective stresses appear to converge to a unique value, as is the case for the staggered grid, see Figure 4C.

Primal BB Linear CG Residual balancing Lorenz-Tran-Dinh Barzilai-Borwein α+ / 5
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F I G U R E 3 Residual versus iterations for the foam microstructure and different discretizations. For the ADMM variants, we always use
the damping 𝛾 leading to best performance. (A) Moulinec-Suquet.3,4 (B) Willot.35 (C) Staggered grid36
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F I G U R E 4 Evolution of the effective axial stress 𝜎xx for the foam microstructure, different discretizations and solvers. Notice the
different scalings of the y-axes. (A) Moulinec-Suquet.3,4 (B) Willot.35 (C) Staggered grid36
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SCHNEIDER 6815

T A B L E 5 Mean iterations and run time (in s) for the porous Metal-Matrix Composite (MMC)

ADMM 𝜶+∕5 residual balancing Lorenz-Tran-Dinh Barzilai-Borwein

𝛾 = 1∕4 28.46 (735.3) 24.78 (645.4) 17.52 (469.7) 44.68 (1175.3)

𝛾 = 1∕2 42.52 (1068.2) 26.68 (698.8) 25.1 (660.0) 59.60 (1548.9)

Primal solvers

BB 24.24 (483.2)

CG 29.60 (684.9)

Newton 33.86 (692.9)

Note: The primal solvers are shown for comparison. The bold values correspond to the lowest iteration count for the primal-dual and the
primal solvers (hence on each).

Actually, for the ADMM solvers and Willot’s discretization, the change in the effective properties is about an order of
magnitude higher than for the staggered grid, reflecting the different magnitudes of the residuals, which we observed
in Figure 3.

To sum up, for this highly porous example, the influence of the discretization scheme becomes clear. Only for a
well-conditioned discretization,49 a robust convergence behavior of FFT-based solvers can be expected. This holds for pri-
mal solvers as well as for primal-dual solvers. In this regard, the staggered grid discretization shines, as it appears to be
the most robust for highly porous materials among the studied discretization schemes.

The computational results confirm that the “natural” residual (22) serves as an appropriate indicator for convergence
(or lack thereof), independent of the considered discretization scheme. Yet, when used in conjunction with the staggered
grid discretization, ADMM appears to reach its limitations. It converges, but cannot be considered competitive to the
fastest primal solver.

4.4 A porous MMC

The last example concerns a Metal-Matrix Composite (MMC) with spherical pores (in blue), see Figure 1C. Apart from
29.5% spherical ceramic fillers, 0.5% spherical voids were included in the aluminum matrix. More precisely, 33 ceramic
fillers of identical size were dispersed in the structure, together with 31 spherical pores with only 1∕4th of the radius
of the ceramic fillers. The spheres were placed inside the structure by the mechanical contraction method.66 The struc-
ture was discretized by 1283 voxels, and we consider uni-axial extension up to 1% strain, distributed over 50 equidistant
load steps. We consider the ceramic fillers to be linear elastic, and furnish the aluminum matrix with a von Mises elasto-
plastic constitutive model and a power-law hardening, see Segurado et al.59 The specific model parameters are listed
in Table 1. Due to the exponent in the power-law hardening, the smallest eigenvalue of the material tangent in the
aluminum matrix goes to zero as the strain loading goes to infinity. Thus, this setup challenges the optimum choice
𝛼0 =

√
𝛼−𝛼+ even in the non-porous case, see Schneider et al.28(sec.7.3) Of course, including spherical pores creates addi-

tional difficulties for the FFT-based solvers. The performance of the considered solvers is summarized in Table 5. We
first take a look at the primal solvers. Newton-CG requires the highest iteration count. This is not unexpected, because
the principal advantage of Newton-CG rests upon the fact that the iterations of the linear CG can be much faster than
the nonlinear iterations. For the problem at hand, the constitutive models are not much more expensive than the linear
elastic model. Therefore, Newton-CG and nonlinear CG lead to pretty much the same run time. In contrast, the pri-
mal Barzilai–Borwein scheme is much faster in terms of run time. This roots in the relative simplicity of the BB update.
Indeed, it is little more than the basic scheme, and does not feature the more involved linear algebra operations neces-
sary for nonlinear CG and Newton-CG. As the constitutive updates are so cheap, the linear algebra operations need to be
accounted for.

For the ADMM, the Barzilai–Borwein scaling does not perform well, at all. Residual balancing with 𝛾 = 1∕4 leads
to roughly the same iteration count as primal BB. However, the run time is much higher. Indeed, the linear algebra
operations necessary for the ADMM significantly exceed those for primal BB. The Lorenz–Tran-Dinh scaling, on the
other hand, slightly outperforms primal BB in terms of run time, and does so by requiring significantly less iterations.
The iteration-independent choice 𝛼0 = 𝛼+∕5 is about 56% slower than the fastest solver.
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6816 SCHNEIDER

5 CONCLUSIONS AND PERSPECTIVES

In this work, we studied strategies for choosing the reference material adaptively for the alternating direction method of
multipliers introduced in the context of FFT-based computational micromechanics by Michel et al.18,19 The conclusions
are the following.

1. In the literature, it was not fully clear whether the accelerated scheme converges for porous materials or not.23,24,39

The confusion may be attributed to different convergence criteria, a different choice of reference material, and usage
of ill-conditioned discretization schemes.

In this work, we reported examples for a stable convergence process, and underlined these findings by theoretical
arguments, see Section 2.1. More precisely, for a stable discretization scheme, for instance the staggered grid,36 the
damped ADMM Algorithm (5) converges for non-vanishing damping parameter 𝛾 . Under a geometric assumption on
the solid-pore interface,49 the convergence is linear.

Still, optimized primal solvers outperformed the considered primal-dual solvers. It remains to investigate whether
an improved selection strategy for the reference material permits outperforming primal solvers for porous microstruc-
tures, as can be done for finite material contrast.28,42

2. We devoted attention to adaptive choices of the reference material in the damped ADMM. Such adaptive choices were
shown to represent memory-efficient alternatives to the Anderson-accelerated polarization methods,42 sometimes
even improving upon their performance.

3. For the ADMM, the residual-balancing strategy45 is a classic, and widely used. We discussed the strategy for the
problem at hand, see Section 2.3. In the process, we extended the strategy to variable damping, and identified the indi-
vidual primal and dual residuals. It is interesting to note that, for the cell problem of micromechanics, the primal and
dual residual vectors may be linearly combined to the consistent residual vector. This appears not to be the case in
general.22(sec.3.3)

4. The strategy proposed by Lorenz and Tran-Dinh,46 see Section 2.4, turned out to be both simple to implement and
effective. For the computational examples considered, the Lorenz–Tran-Dinh strategy performed unreasonably well.
Based on these results, we recommend this strategy.

5. We investigated a Barzilai–Borwein step size for the ADMM,47 see Section 2.5. In contrast to the Barzilai–Borwein
primal solver,39 the BB strategy leads to significantly less oscillations in the associated residuals. Still, the strategy
inherits the convergence speed from the primal setting, and is also recommended.

6. For primal FFT-based solvers, it was shown7 that choosing the proper step size may be of secondary importance, as
long as the momentum term is chosen in an adaptive manner. For the work at hand, we fixed the damping parameter
𝛾 . It might be of interest to investigate whether choosing the damping parameter adaptively can be beneficial, see Xu
et al.48

7. In this work, we considered convex and differentiable objective functions. The ADMM may be applied to
non-differentiable objective functions, as well.32,33 Furthermore, for computational homogenization at finite strains 10,
ADMM was applied successfully,13,31 as well. Adaptive strategies for the reference material should be of interest for
these scenarios. Similarly, treating non-convex problems like phase-field fracture on microstructures9,67 by ADMM
could be pursued.
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APPENDIX A. IDENTITIES FOR PRIMAL AND DUAL RESIDUALS

In this section, we wish to show the estimates (12)

‖‖‖𝜀 − P ∶
⟨

ek+1⟩
Q
‖‖‖L2

+ ‖‖‖(Id − Γ − ⟨⋅⟩Q
)
∶ ek+1‖‖‖L2

≤ ||pk+1||L2 (A1)

and (13)

‖‖‖𝜎 − Q ∶
⟨
𝜆k+1⟩

Q
‖‖‖L2

+ ‖‖‖Γ ∶ 𝜆k+1‖‖‖L2
≤ ||dk+1||L2 , (A2)

for the primal and dual residuals (14),

pk+1 = 𝜀k+ 1
2 − ek+1 and dk+1 = 𝛼k

(
ek+1 − ek + 𝜀k+ 1

2 − 𝜀k+1
)
, (A3)

respectively, and the general algorithm (5)

𝜀k+ 1
2 = 𝜀 + Dk ∶ 𝜎 −

(
Γk + Dk ∶ Q ∶ ⟨⋅⟩Q

)
∶ (𝜆k − Ck ∶ ek),

𝜀k+1 = 2(1 − 𝛾k)𝜀k+ 1
2 − (1 − 2𝛾k)ek,

𝜎(ek+1) + Ck ∶ ek+1 = 𝜆k + Ck ∶ 𝜀k+1,

𝜆k+1 = 𝜆k + Ck ∶ (𝜀k+1 − ek+1). (A4)

To derive the estimate for the primal residual (A1), we utilize the compatibility of 𝜀k+ 1
2

𝜀k+ 1
2 = P ∶ 𝜀 + Q ∶

⟨
𝜀k+ 1

2

⟩
Q
+ Γk ∶ Ck ∶ 𝜀k+ 1

2 ,

compare Equation (B4), and write

(Id − Γk ∶ Ck − ⟨⋅⟩Q) ∶ ek+1 + P ∶
⟨

ek+1⟩
Q − 𝜀

=ek+1 − 𝜀 − Q ∶
⟨

ek+1⟩
Q − Γk ∶ Ck ∶ ek+1

=
(
Id − Γk ∶ Ck − Q ∶ ⟨⋅⟩Q

)
∶
(

ek+1 − 𝜀k+ 1
2

)
.

 10970207, 2021, 22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6812 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6820 SCHNEIDER

Taking norms on both sides and using the Helmholtz decomposition (B2) shows the estimate (A1). For the dual residual,
the last line of the iteration (A4) implies

𝜆k − Ck ∶ ek = 𝜆k+1 − Ck ∶ (𝜀k+1 − ek+1) − Ck ∶ ek.

In view of Equation (B4) in the form

𝜀k+ 1
2 = 𝜀 +

(
Γk + Dk ∶ Q ∶ ⟨⋅⟩Q

)
∶ Ck ∶ 𝜀k+ 1

2 ,

we may insert the latter identity into the first line (A4) to obtain

𝜀k+ 1
2 = 𝜀 + Dk ∶ 𝜎 −

(
Γk + Dk ∶ Q ∶ ⟨⋅⟩Q

)
∶ (𝜆k − Ck ∶ ek)

0 = Dk ∶ 𝜎 −
(
Γk + Dk ∶ Q ∶ ⟨⋅⟩Q

)
∶ (𝜆k − Ck ∶ ek + Ck ∶ 𝜀k+ 1

2

)
,

that is, the identity

Γk ∶ 𝜆k+1 + Dk ∶
(
Q ∶

⟨
𝜆k⟩

Q − 𝜎
)
= Γk ∶ Ck ∶

(
𝜀k+1 − ek+1 + ek − 𝜀k+ 1

2

)
= −Γk ∶ Ck ∶ dk+1∕𝛼k

holds. Taking norms on both sides and using the non-expansivity of Γk ∶ Ck yields the dual estimate (A2).

APPENDIX B. DETAILS ON THE CONVERGENCE CRITERION

We wish to show the identity

‖‖‖ek − 𝜀k+ 1
2
‖‖‖2

Ck
= ‖‖‖Γk ∶ 𝜆k‖‖‖2

Ck
+ ‖‖‖(Id − Γk ∶ Ck − ⟨⋅⟩Q) ∶ ek‖‖‖2

Ck

+ ‖‖‖P ∶
⟨

ek⟩
Q − 𝜀

‖‖‖2

Ck
+ ‖‖‖𝜎− ∶ Q ∶

⟨
𝜆k⟩

Q
‖‖‖2

Dk
. (B1)

Before coming to the details, let us record the following consequence of the Helmholtz decomposition in (linearized)
elasticity for mixed boundary conditions28(Apx.)

||𝜀||2
Ck =

‖‖‖Γk ∶ Ck ∶ 𝜀
‖‖‖2

Ck
+ ‖‖‖(Id − Γk ∶ Ck − ⟨⋅⟩Q) ∶ 𝜀

‖‖‖2

Ck
+ ‖‖‖P ∶ ⟨𝜀⟩Q

‖‖‖2

Ck
+ ‖‖‖Q ∶ ⟨𝜀⟩Q

‖‖‖2

Ck
, (B2)

valid for any square-integrable strain field, measuring (in order) equilibrium, compatibility and the magnitude of the
mean, decomposed into the P- and Q-parts.

Let us investigate the first line in the Algorithm (5)

𝜀k+ 1
2 = 𝜀 + Dk ∶ 𝜎 −

(
Γk + Dk ∶ Q ∶ ⟨⋅⟩Q

)
∶ (𝜆k − Ck ∶ ek)

in more detail. Separating the homogeneous and non-homogeneous parts, we observe

𝜀k+ 1
2 = 𝜀 + Q ∶

⟨
ek⟩

Q + Dk ∶
(
𝜎 − Q ∶

⟨
𝜆k⟩

Q

)
− Γk ∶ (𝜆k − Ck ∶ ek). (B3)

As Γk ∶ Ck is the Ck-orthogonal projector onto kinematically compatible fields, it follows

𝜀k+ 1
2 = 𝜀 + Q ∶

⟨
ek⟩

Q + Dk ∶
(
𝜎 − Q

⟨
𝜆k⟩

Q

)
+ Γk ∶ Ck ∶ 𝜀k+ 1

2 . (B4)

In order to assess the validity of the last three Equations 21, we need to monitor the quantity

(Id − Γk ∶ Ck − ⟨⋅⟩Q) ∶ ek + P ∶
⟨

ek⟩
Q − 𝜀 − Dk ∶

(
𝜎 − Q ∶

⟨
𝜆k⟩

Q

)
.

 10970207, 2021, 22, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6812 by K
arlsruher Inst F. T

echnologie, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



SCHNEIDER 6821

In view of the identity (B4), the latter quantity may be rewritten in the form

(Id − Γk ∶ Ck − ⟨⋅⟩Q) ∶ ek + P ∶
⟨

ek⟩
Q − 𝜀 − Dk ∶

(
𝜎 − Q ∶

⟨
𝜆k⟩

Q

)
= ek − Γk ∶ Ck ∶ ek − P ∶

⟨
ek⟩

Q − Q ∶
⟨

ek⟩
Q + P ∶

⟨
ek⟩

Q − 𝜀 − Dk ∶
(
𝜎 − Q ∶

⟨
𝜆k⟩

Q

)
= ek − Γk ∶ Ck ∶ ek − Q ∶

⟨
ek⟩

Q − 𝜀 − Dk ∶
(
𝜎 − Q ∶

⟨
𝜆k⟩

Q

)
= ek − Γk ∶ Ck ∶ ek − 𝜀k+ 1

2 + Γk ∶ Ck ∶ 𝜀k+ 1
2

= (Id − Γk ∶ Ck) ∶ (ek − 𝜀k+ 1
2 ). (B5)

To assess the equilibrium of the stress field 𝜆k, comparing the Equations (B3) and (B4) yields the identity

−Γk ∶ (𝜆k − Ck ∶ ek) = Γk ∶ Ck ∶ 𝜀k+ 1
2 ,

which might be rearranged into the form

Γk ∶ 𝜆k = Γk ∶ Ck ∶
(

ek − 𝜀k+ 1
2

)
.

Inserting the latter identity into the formula (B5) yields

ek − 𝜀k+ 1
2 = Γk ∶ 𝜆k + (Id − Γk ∶ Ck − ⟨⋅⟩Q) ∶ ek + P ∶

⟨
ek⟩

Q − 𝜀 − Dk ∶
(
𝜎 − Q ∶

⟨
𝜆k⟩

Q

)
.

Upon taking the (squared) Ck-norm, the Helmholtz decomposition in the form (B2) implies the formula (B1).
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