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Abstract
Isotonic distributional regression (IDR) is a powerful 
non-parametric technique for the estimation of con-
ditional distributions under order restrictions. In a 
nutshell, IDR learns conditional distributions that are 
calibrated, and simultaneously optimal relative to com-
prehensive classes of relevant loss functions, subject to 
isotonicity constraints in terms of a partial order on the 
covariate space. Non-parametric isotonic quantile re-
gression and non-parametric isotonic binary regression 
emerge as special cases. For prediction, we propose an 
interpolation method that generalizes extant specifica-
tions under the pool adjacent violators algorithm. We 
recommend the use of IDR as a generic benchmark 
technique in probabilistic forecast problems, as it does 
not involve any parameter tuning nor implementation 
choices, except for the selection of a partial order on 
the covariate space. The method can be combined with 
subsample aggregation, with the benefits of smoother 
regression functions and gains in computational ef-
ficiency. In a simulation study, we compare methods 
for distributional regression in terms of the continu-
ous ranked probability score (CRPS) and L2 estimation 
error, which are closely linked. In a case study on raw 
and post-processed quantitative precipitation forecasts 
from a leading numerical weather prediction system, 
IDR is competitive with state of the art techniques.
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1  |   INTRODUCTION

There is an emerging consensus in the transdisciplinary literature that regression analysis should 
be distributional, with Hothorn et al. (2014) arguing forcefully that 

[t]he ultimate goal of regression analysis is to obtain information about the condi-
tional distribution of a response given a set of explanatory variables.

Distributional regression marks a clear break from the classical view of regression, which has 
focused on estimating the conditional mean of the response variable in terms of one or more explan-
atory variable(s) or covariate(s). Later extensions have considered other functionals of the condi-
tional distributions, such as quantiles or expectiles (Koenker, 2005; Newey & Powell, 1987; Schulze 
Waltrup et al., 2015). However, the reduction of a conditional distribution to a single-valued func-
tional results in tremendous loss of information. Therefore, from the perspectives of both estimation 
and prediction, regression analysis ought to be distributional.

In the extant literature, both parametric and non-parametric approaches to distributional re-
gression are available. Parametric approaches assume that the conditional distribution of the 
response is of a specific type (e.g. Gaussian) with an analytic relationship between the covariates 
and the distributional parameters. Key examples include statistically post-processed meteoro-
logical and hydrologic forecasts, as exemplified by Gneiting et al. (2005), Schefzik et al. (2013) 
and Vannitsem et al. (2018). In powerful semi-parametric variants, the conditional distributions 
remain parametric, but the influence of the covariates on the parameter values is modelled non-
parametrically, for example by using generalized additive models (Klein et al., 2015; Rigby & 
Stasinopoulos, 2005; Umlauf & Kneib, 2018) or modern neural networks (Gasthaus et al., 2019; 
Rasp & Lerch, 2018). In related developments, semiparametric versions of quantile regression 
(Koenker, 2005) and transformation methods (Hothorn et al., 2014) can be leveraged for distri-
butional regression.

Non-parametric approaches to distributional regression include kernel or nearest neighbour 
methods that depend on a suitable notion of distance on the covariate space. Then, the empirical 
distribution of the response for neighbouring covariates in the training set is used for distribu-
tional regression, with possible weighting in dependence on the distance to the covariate value 
of interest. Kernel smoothing methods and mixture approaches allow for absolutely continuous 
conditional distributions (Dunson et al., 2007; Hall et al., 1999; Li & Racine, 2008). Classification 
and regression trees partition the covariate space into leaves, and assign constant regression 
functions on each leaf (Breiman et al., 1984). Linear aggregation via bootstrap aggregation (bag-
ging) or subsample aggregation (subagging) yields random forests (Breiman, 2001), which are 
increasingly being used to generate conditional predictive distributions, as proposed by Hothorn 
et al. (2004) and Meinshausen (2006).

Isotonicity is a natural constraint in estimation and prediction problems. Consider, for 
example, post-processing techniques in weather forecasting, where the covariates stem from the 
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output of numerical weather prediction (NWP) models, and the response variable is the respec-
tive future weather quantity. Intuitively, if the NWP model output indicates a larger precipitation 
accumulation, the associated regression functions ought to be larger as well. Isotonic relation-
ships of this type hold in a plethora of applied settings. In fact, standard linear regression analysis 
rests on the assumption of isotonicity, in the form of monotonicity in the values of the covari-
ate(s), save for changes in sign.

Concerning non-parametric regression for a conditional functional, such as the mean or a 
quantile, there is a sizable literature on estimation under the constraint of isotonicity. The clas-
sical work of Ayer et al. (1955), Bartholomew (1959a, b), Brunk (1955), van Eeden (1958), Miles 
(1959) is summarized in Barlow et al. (1972), de Leeuw et al. (2009), Robertson et al. (1988). 
Subsequent approaches include Bayesian and non-Bayesian smoothing techniques (e.g. Dette 
et al., 2006; Mammen, 1991; Neelon & Dunson, 2004; Shively et al., 2009), and reviews are avail-
able in Groeneboom & Jongbloed (2014) and Guntuboyina & Sen (2018).

In distributional regression, it may not be immediately clear what is meant by isotonicity, and 
the literature typically considers one ordinal covariate only (e.g. Davidov & Iliopoulos, 2012; El 
Barmi & Mukerjee, 2005; Hogg, 1965; Rojo & El Barmi, 2003), with a notable exception being the 
work of Mösching & Dümbgen (2020b), whose considerations allow for a real-valued covariate. 
In the general case of a partially ordered covariate space, which we consider here, it is unclear 
whether semi- or non-parametric techniques might be capable of handling monotonicity con-
traints, and suitable notions of isotonicity remain to be developed.

To this end, we assume that the response Y is real-valued, and equip the covariate space  
with a partial order ⪯. Our aim is to estimate the conditional distribution of Y given the co-
variate X, for short (Y |X ), on training data, in a way that respects the partial order, and we 
desire to use this estimate for prediction. Formally, a distributional regression technique gen-
erates a mapping from x ∈  to a probability measure Fx, which serves to model the condi-
tional distribution (Y |X = x). This mapping is isotonic if x ⪯ x� implies Fx ≤st Fx′, where ≤st 
denotes the usual stochastic order, that is, G≤stH if G(y) ≥ H(y) for y ∈ ℝ, where we use the 
same symbols for the probability measures G, H and their associated conditional cumulative dis-
tribution functions (CDFs). Equivalently, G≤stH holds if G−1(�) ≤ H−1(�) for α ∈ (0, 1), where 
G−1(�) = inf{y ∈ ℝ: G(y) ≥ �} is the standard quantile function (Shaked & Shanthikumar, 2007).

Useful comparisons of predictive distributions are in terms of proper scoring rules, of which 
the most prominent and most relevant instance is the continuous ranked probability score (CRPS; 
Gneiting & Raftery, 2007; Matheson & Winkler, 1976). We show that there is a unique isotonic 
distributional regression that is optimal with respect to the CPRS (Theorem 1), and refer to it as 
the isotonic distributional regression (IDR). As it turns out, IDR is a universal solution, in that the 
estimate is optimal with respect to a broad class of proper scoring rules (Theorem 2). Classical 
special cases such as non-parametric isotonic quantile regression and probabilistic classifiers 
for threshold-defined binary events are nested by IDR. Simultaneously, IDR avoids pitfalls com-
monly associated with non-parametric distributional regression, such as suboptimal partitions of 
the covariate space and level crossing (Athey et al., 2019, p. 1167).

For illustration, consider the joint distribution of (X, Y), where X is uniform on (0, 10) and 

so that (Y |X = x)≤st (Y |X = x�) if x ≤ x′. Figure 1 shows IDR conditional CDFs and quantiles 
as estimated on a training set of size n = 600. IDR is capable of estimating both the strongly right-
skewed conditional distributions for lower values of X and the more symmetric distributions as X 

(1)Y �X ∼ Gamma(shape =
√
X , scale =min{max{X , 1}, 6}),
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increases. The CDFs are piecewise constant, and they never cross each other. The computational 
cost of IDR is of order at least (nlogn) and may become prohibitive as n grows. However, IDR can 
usefully be combined with subsample aggregation (subagging), much in the spirit of random for-
ests (Breiman, 2001), with the benefits of reduced computational cost under large training samples, 
smoother regression functions, and (frequently) improved predictive performance.

The remainder of the paper is organized as follows. The methodological core of the paper is 
in Section 2, where we prove existence, uniqueness and universality of the IDR solution, dis-
cuss computational issues and asymptotic consistency, and propose strategies for prediction. In 
Section 3, we turn to the critical issue of the choice of a partial order on the covariate space. 
Section 4 reports on a comparative simulation study that addresses both prediction and esti-
mation, and Section 5 is devoted to a case study on probabilistic quantitative precipitation fore-
casts, with covariates provided by the European Centre for Medium-Range Weather Forecasts 
(ECMWF) ensemble system. Precipitation accumulations feature unfavourable properties that 
challenge parametric approaches to distributional regression: The conditional distributions have 
a point mass at zero, and they are continuous and right skewed on the positive half-axis. In a 

F I G U R E  1   Simulation example for a sample of size n = 600 from the distribution in (1): (a) True 
conditional CDFs (smooth) and IDR estimates (step functions) for selected values of the covariate. (b) IDR 
estimated conditional distributions. The shaded bands correspond to probability mass 0.10 each, with the 
darkest shade marking the central interval. Vertical strips indicate the cross-sections corresponding to the values 
of the covariate in panel (a)
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comparison to state-of-the-art methods that have been developed specifically for the purpose, 
namely Bayesian model averaging (BMA; Sloughter et al., 2007), ensemble model output statis-
tics (EMOS; Scheuerer, 2014) and heteroscedastic censored logistic regression (HCLR; Messner 
et  al., 2014), the (out-of-sample) predictive performance of IDR is competitive, despite the 
method being generic, and being fully automatic once a partial order on the covariate space has 
been chosen.

We close the paper with a discussion in Section 6, where we argue that IDR provides a very 
widely applicable, competitive benchmark in probabilistic forecasting problems. The use of 
benchmark techniques has been called for across application domains (e.g. Basel Committee 
on Banking Supervision, 2016; Pappenberger et al., 2015; Rossi, 2013; Vogel et al., 2018), and 
suitable methods should be competitive in terms of predictive performance, while avoiding im-
plementation decisions that may vary from user to user. IDR is well suited to this purpose, as it 
is entirely generic, does not involve any implementation decisions, other than the choice of the 
partial order, applies to all types of real-valued outcomes with discrete, continuous or mixed 
discrete-continuous distributions, and accommodates general types of covariate spaces.

2  |   ISOTONIC DISTRIBUTIONAL REGRESSION

We proceed to introduce the IDR technique. To this end, we first review basic facts on proper scor-
ing rules and notions of calibration. Then we define the IDR solution, prove existence, unique-
ness and universality, and discuss its computation and asymptotic consistency. Thereafter, we 
turn from estimation to prediction and describe how IDR can be used in out-of-sample forecast-
ing. Throughout, we identify a Borel probability measure on the real line ℝ with its cumulative 
distribution function (CDF), and we denote the extended real line by ℝ = [ −∞, ∞].

2.1  |  Preliminaries

Following Gneiting & Raftery (2007), we argue that distributional regression techniques should 
be compared and evaluated using proper scoring rules. A proper scoring rule is a function 
S:  ×ℝ → ℝ, where  is a suitable class of probability measures on ℝ, such that S(F, ·) is meas-
urable for any F ∈ , the integral ∫S(G, y) dF(y) exists, and 

for all F , G ∈ . A key example is the continuous ranked probability score (CRPS), which is defined 
for all Borel probability measures, and given as 

Introduced by Matheson & Winkler (1976), the CRPS has become popular across application areas 
and methodological communities, both for the purposes of evaluating predictive performance and 
as a loss function in estimation; see, for example, Gasthaus et  al. (2019), Gneiting et  al. (2005), 
Hersbach (2000), Hothorn et al. (2014), Pappenberger et al. (2015) and Rasp & Lerch (2018). The 

� S(F , y) dF(y) ≤ � S(G, y) dF(y)

CRPS(F , y) = �
ℝ

(
F(z)−𝟙{y≤ z})2 dz.
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CRPS is reported in the same unit as the response variable, and it reduces to the absolute error, |x−y|, 
if F is the point or Dirac measure in x ∈ ℝ.

Results in Ben Bouallègue et al. (2018), Ehm et al. (2016) and Laio & Tamea (2007) imply that 
the CRPS can be represented equivalently as 

where the mixture representation (2) is in terms of the asymmetric piecewise linear or pinball loss, 

which is customarily thought of as a quantile loss function, but can be identified with a proper scor-
ing rule (Gneiting, 2011, Theorem 3). The representations (3) and (4) express the CRPS in terms of 
the elementary or extremal scoring functions for the α-quantile functional, namely, 

where � ∈ ℝ; and for probability assessments of the binary outcome �{y ≤ z} at the threshold value 
z ∈ ℝ, namely 

where c  ∈  (0, 1). For background information on elementary or extremal scoring functions and 
related concepts see Ehm et al. (2016).

Predictive distributions ought to be calibrated (Dawid, 1984; Diebold et al., 1998; Gneiting 
et al., 2007), in the broad sense that they should be statistically compatible with the responses, 
and various notions of calibration have been proposed and studied. In the spirit of Gneiting and 
Ranjan (2013), we consider the joint distribution ℙ of the response Y and the distributional re-
gression FX. The most widely used criterion is probabilistic calibration, which requires that the 
probability integral transform (PIT), namely, the random variable 

(2)CRPS(F , y) = 2∫(0,1)QS�(F , y) d�

(3)= 2∫(0,1)∫ℝS
Q
�,�
(F , y) d� d�

(4)= ∫
ℝ
∫(0,1)S

P
z,c(F , y) dc dz,

(5)QS�(F , y) =

{
(1−�)(F−1(�)−y), y≤F−1(�),

�(y−F−1(�)), y≥F−1(�),

(6)SQ
𝛼,𝜃
(F , y) =

⎧⎪⎨⎪⎩

1−𝛼, y≤𝜃 <F−1(𝛼),

𝛼, F−1(𝛼)≤𝜃 < y,

0, otherwise,

(7)SPz,c(F , y) =

⎧⎪⎨⎪⎩

1−c, F(z)< c, y≤ z,
c, F(z)≥ c, y> z,
0, otherwise,

(8)Z = FX (Y−) + V
(
FX (Y ) − FX (Y−)

)
,
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be standard uniform, where FX (Y−) = limy↑YFX (y) and V is a standard uniform variable that is 
independent of FX and Y. If FX is continuous the PIT is simply Z = FX (Y ). Here we introduce the 
novel notion of threshold calibration, requiring that 

almost surely for y ∈ ℝ, which implies marginal calibration, defined as ℙ(Y ≤ y) = 𝔼(FX (y)) for 
y ∈ ℝ. If FX = (Y |X ) then it is calibrated in any of the above senses (Gneiting & Ranjan, 2013, 
Theorem 2.8).

2.2  |  Existence, uniqueness and universality

A partial order relation ⪯ on a set  has the same properties as a total order, namely reflexivity, 
antisymmetry and transitivity, except that the elements need not be comparable, that is, there 
might be elements x ∈  and x� ∈  such that neither x ⪯ x� nor x� ⪯ x holds. A key example is 
the componentwise order on ℝd.

For a positive integer n and a partially ordered set , we define the classes 

of the increasingly and decreasingly (totally) ordered tuples in , respectively. Similarly, given a fur-
ther partially ordered set  and a vector x = (x1, ⋯, xn) ∈ n, the classes 

comprise the increasingly and decreasingly (partially) ordered tuples in , with the order induced by 
the tuple x and the partial order ⪯ on .

Let I ⊆ ℝ be an interval, and let S be a proper scoring rule with respect to a class  of proba-
bility distributions on I that contains all distributions with finite support. Given training data in 
the form of a covariate vector x = (x1, …, xn) ∈ n and response vector y = (y1, …, yn) ∈ In , 
we may interpret any mapping from x ∈ n to n as a distributional regression function. 
Throughout, we equip  with the usual stochastic order.

Definition 1  (S-based regression). An element F̂ = (F̂1, …, F̂n) ∈ n is an S-based isotonic 
regression of y ∈ In on x ∈ n, if it is a minimizer of the empirical loss 

over all F = (F1, ⋯, Fn) in n
↑,x

.
In plain words, an S-based isotonic regression achieves the best fit in terms of the scoring rule 

S, subject to the conditional CDFs F̂1, …, F̂n satisfying partial order constraints induced by the 
covariate values x1, …, xn. The definition and the subsequent results can be extended to losses of 

(9)ℙ(Y ≤ y |FX (y)) = FX (y)

n
↑
={x= (x1, ⋯, xn)∈n: x1⪯⋯⪯ xn},

n
↓
={x= (x1, ⋯, xn)∈n: x1⪰⋯⪰ xn}

n
↑,x ={q= (q1, ⋯, qn)∈n: qi⪯qj if xi⪯ xj},

n
↓,x ={q= (q1, ⋯, qn)∈n: qi⪰qj if xi⪯ xj}

�S(F) =
1

n

n∑
i=1

S(Fi, yi)
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the form �S(F) =
∑n

i=1 wiS(Fi, yi) with rational, strictly positive weights w1, …, wn. The adapta-
tions are straightforward and left to the reader.

Furthermore, the definition of an S-based isotonic regression as a minimizer of �S continues 
to apply when  is equipped with a pre- or quasiorder ⪯ instead of a partial order. Preorders 
are not necessarily antisymmetric, and so there might be elements x, x′ such that x ⪯ x� and 
x� ⪯ x but x′ ≠ x. In this setting, we define x and x′ to be equivalent if x ⪯ x� and x� ⪯ x, and set 
[x]⪯p[x

�] if representatives u,u′ of the equivalence classes [x], [x′] satisfy u ⪯ u�. Then the binary 
relation ⪯p defines a partial order on the set of equivalence classes, and the S-based isotonic 
regression with the new covariates and the partial order ⪯p coincides with the original S-based 
isotonic regression.

In Supplementary Section S1 we prove the following result.

Theorem 1  (existence and uniqueness). There exists a unique CRPS-based isotonic regression 
F̂ ∈ n of y on x.

We refer to this unique F̂ as the IDR of y on x. In the particular case of a total order on the covari-
ate space, and assuming that x1 < ⋯ < xn, for each z  ∈  I the solution F̂(z) = (F̂1(z), …, F̂n(z)) 
is given by 

for i = 1, …, n; see Equations (1.9)–(1.13) of Barlow et al. (1972). A similar max–min formula applies 
under partial orders (Jordan et al., 2021; Robertson & Wright, 1980), and it follows that F̂ i is piece-
wise constant with any points of discontinuity at y1, …, yn.

At first sight, the specific choice of the CRPS as a loss function may seem arbitrary. However, 
the subsequent result, which we prove in Supplementary Section S1, reveals that IDR is simul-
taneously optimal with respect to broad classes of proper scoring rules that include all relevant 
choices in the extant literature. The popular logarithmic score allows for the comparison of abso-
lutely continuous distributions with respect to a fixed dominating measure only and thus is not 
applicable here. Statements concerning calibration are with respect to the empirical distribution 
of the training data (x1, y1), …, (xn, yn).

Theorem 2  (universality). The IDR solution F̂ of y on x is threshold calibrated and has the fol-
lowing properties. 

(a)	� The IDR solution F̂  is an S-based isotonic regression of y on x under any scoring rule of 
the form 

or 

(10)F̂ i(z) = min
k=1,…,i

max
j=k,…,n

1

j − k + 1

j∑
l=k

�{yl ≤ z}

(11)S(F , y) = ∫(0, 1)×ℝS
Q
�,�
(F , y) dH(�, �)

(12)S(F , y) = ∫
ℝ×(0, 1)

SPz,c(F , y) dM(z, c),



      |  9ISOTONIC DISTRIBUTIONAL REGRESSION

where SQ
�,�

 is the elementary quantile scoring function (6), SPz,c is the elementary probability scoring 
rule (7), and H and M are locally finite Borel measures on (0, 1) ×ℝ and ℝ × (0, 1), respectively.

(b)	 For every α  ∈  (0, 1) it holds that F̂
−1
(�) = (F̂

−1

1 (�), …, F̂
−1

n (�)) is a minimizer of 

over all � = (�1, …, �n) ∈ In
↑,x

, under any function s� : I × I → ℝ which is left-continuous in 
both arguments and such that S(F , y) = s�(F

−1(�), y) is a proper scoring rule on .

(c)	� For every threshold value z  ∈  I, it is true that F̂(z) = (F̂1(z), …, F̂n(z)) is a minimizer 
of 

over all ordered tuples � = (�1, …, �n) ∈ [0, 1]n
↓,x

, under any function s: [0, 1] × {0, 1} → ℝ that 
is a proper scoring rule for binary events, which is left-continuous in its first argument, satisfies 
s(0, y) = limp→0s(p, y), and is real-valued, except possibly s(0, 1) = −∞ or s(1, 0) = −∞.The quantile 
weighted and threshold weighted versions of the CRPS studied by Gneiting & Ranjan (2011) arise 
from (11) and (12) with H = G0 ⊗ 𝜆 and M = 𝜆 ⊗ G1, where λ denotes the Lebesgue measure, and 
G0 and G1 are σ-finite Borel measures on (0, 1) and ℝ, respectively. If G0 and G1 are Lebesgue mea-
sures, we recover the mixture representations (3) and (4) of the CRPS. By results of Ehm et al. (2016), 
if H is concentrated on {�} ×ℝ and M is concentrated on {z } × (0,1), these representations cover 
essentially all proper scoring rules that depend on the predictive distribution F via F−1(�) or F(z) 
only, yielding universal optimality in statements in parts (b) and (c) of Theorem 2.

In particular, as a special case of (13), the IDR solution is a minimizer of the quantile loss under 
the asymmetric piecewise linear or pinball function (5) that lies at the heart of quantile regression 
(Koenker, 2005). Consequently, as the mixture representation (2) of the CRPS may suggest, IDR nests 
classical non-parametric isotonic quantile regression as introduced and studied by Casady & Cryer 
(1976) and Robertson & Wright (1975). In other words, part (b) of Theorem 2 demonstrates that, if 
we (hypothetically) perform non-parametric isotonic quantile regression at every level α  ∈  (0, 1) and 
piece the conditional quantile functions together, we recover the IDR solution. However, the IDR 
solution is readily computable (Section 2.3), without invoking approximations or truncations, unlike 
brute force approaches to simultaneous quantile regressions. Loss functions of the form (13) also 
include the interval score (Gneiting & Raftery, 2007; Winkler, 1972, equation (43)), which constitutes 
the most used proper performance measure for interval forecasts.

In the special case of a binary response variable, we see from (c) and (14) that the IDR solution is 
an S-based isotonic regression under just any applicable proper scoring rule S. Furthermore, thresh-
old calibration is the strongest possible notion of calibration in this setting (Gneiting & Ranjan, 2013, 
Theorem 2.11), so the IDR solution is universal in every regard. In the further special case of a total 
order on the covariate space, the IDR and pool adjacent violators (PAV) algorithm solutions coincide, 
and the statement in (c) is essentially equivalent to Theorem 1.12 of Barlow et al. (1972). In partic-
ular, the IDR or PAV solution yields both the non-parametric maximum likelihood estimate and 
the non-parametric least squares estimate under the constraint of isotonicity. The latter suggests a 
computational implementation via quadratic programming, to which we tend now.

(13)1

n

n∑
i=1

s�(�i, yi)

(14)1

n

n∑
i=1

s(�i, �{yi ≤ z})
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2.3  |  Computational aspects

The key observation towards a computational implementation is the aforementioned special 
case of (14), according to which the IDR solution F̂ ∈ n of y ∈ ℝ

n on x ∈ n satisfies 

at every threshold value z ∈ ℝ. In this light, the computation of the IDR CDF at any fixed threshold 
reduces to a quadratic programming problem. The above target function is constant in between the 
unique values of y1, …, yn, say ỹ1 < ⋯ < ỹm, and so it suffices to estimate the CDFs at these points 
only. In contrast, exact implementations based on quantiles would need to consider all levels of the 
form i/j with integers 1 ≤ i < j ≤ n, which is computationally prohibitive. In the threshold-based 
approach, the overall cost depends on the quadratic programming solver applied, and the compu-
tation becomes much faster if recursive relations between consecutive conditional CDFs F̂(ỹk) and 
F̂(ỹk−1) are taken advantage of. In the case of a total order, Henzi et al. (2020) describe a recursive 
adaptation of the PAV algorithm to IDR that considerably reduces the computation time as com-
pared to a naive implementation which does not take into account recursive relations. Under gen-
eral partial orders, active set methods for solutions to the quadratic programming problem (15) have 
been discussed by de Leeuw et al. (2009). In our implementation, we use the powerful quadratic 
programming solver OSQP (Stellato et al., 2020) as supplied by the package osqp in the statistical 
programming environment R (R Core Team, 2020; Stellato et al., 2019), which can be warm-started 
efficiently by taking F̂(ỹk−1) as a starting point for the computation of F̂(ỹk).

Clearly, a challenge in the computational implementation of IDR with general partial orders is 
that the number of variables in the quadratic programming problem (15) grows at a rate of (n)
. As a remedy, we propose subsample aggregation, much in the spirit of random forests that rely 
on bootstrap aggregated (bagged) classification and regression trees (Breiman, 1996, 2001). It was 
observed early on that random forests generate conditional predictive distributions (Hothorn 
et al., 2004; Meinshausen, 2006), and recent applications include the statistical post-processing of 
ensemble weather forecasts (Schlosser et al., 2019; Taillardat et al., 2016; Taillardat et al., 2019). 
Bühlmann & Yu (2002) and Buja & Stützle (2006) argue forcefully that subsample aggregation 
(subagging) tends to be equally effective as bagging, but at considerably lower computational cost.

In view of the superlinear computational costs of IDR, smart uses of subsample aggregation yield 
major efficiency gains, taking into account that the estimation on different subsamples can be per-
formed in parallel. Isotonicity is preserved under linear aggregation, and the aggregated conditional 
CDFs can be inverted to generate isotonic conditional quantile functions, with the further benefit of 
smoother estimates in continuous settings. A detailed investigation of optimal subsample aggrega-
tion for IDR is a topic for future research. For illustration, Figure 2 returns to the simulation example 
in Figure 1, but now with a much larger training sample of size n = 10,000 from the distribution in 
(1). Linear aggregation based on 100 subsamples (drawn without replacement) of size n = 1000 each 
is superior to the brute force approach on the full training set in terms of estimation accuracy. The 
computation on the full dataset for this simulation example takes 11.7 s for the naive implementa-
tion, but only 1.1 s for the sequential algorithm of Henzi et al. (2020). Subagging gives computation 
times of 9.9 and 2.5 s, respectively, or 1.8 and 0.5 s when parallelized over eight cores.1

(15)F̂(z) = arg min
�∈ [0,1]n

↓,x

n∑
i=1

(
�i−�{yi≤ z})2

 1With Intel(R) Xeon(R) E5-2630 v4 2.20GHz CPUs, in R (R Core Team, 2020), using the doParallel package for 
parallelization. Times reported are averages over 100 replicates.
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2.4  |  Consistency

We proceed to prove uniform consistency of the IDR estimator. While strong consistency of non-
parametric isotonic quantile regression for single quantiles was proved decades ago (Casady & 
Cryer, 1976; Robertson & Wright, 1975), uniform consistency and rates of convergence for the 
IDR estimator have been established only recently, and exclusively in the case of a total order, 
see El Barmi & Mukerjee (2005, Theorem 1) and Mösching & Dümbgen (2020b, Theorem 3.3).

For x ∈  and y ∈ ℝ, let F̂x(y) denote the IDR estimate based on fixed or random pairs 
(X1, Y1), …, (Xn, Yn). As introduced thus far, the IDR solution F̂ = (F̂1, …, F̂n) is defined at the 
covariate values X1, …, Xn ∈  only. For general x ∈ , we merely assume that F̂x(y) is some 
value in between the bounds given by 

Here, we define the sets of the indices of direct predecessors and direct successors of x ∈  among 
the covariate values as 

(16)max
i∈ s(x)

F̂ i(y) ≤ F̂x(y) ≤ min
i∈p(x)

F̂ i(y).

F I G U R E  2   Simulation example for a sample of size n = 10,000 from the distribution in (1). The true 
conditional CDFs (smooth dashed graphs) are compared to IDR estimates (step functions) based on (a) the full 
training sample of size n = 10,000 and (b) linear aggregation of IDR estimates on 100 subsamples of size 1000 
each
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and 

respectively.
In Supplementary Section S2, we establish the following consistency theorem, which 

covers key examples of partial orders and is based on strictly weaker assumptions than the 
results of Mösching & Dümbgen (2020b). However, in contrast to their work, we do not 
provide rates of convergence. The choice  = [0, 1]d for the covariate space merely serves to 
simplify the presentation: As IDR is invariant under strictly isotonic transformations, any 
covariate vector X = (X1, …, Xd) ∈ ℝ

d can be transformed to have support in [0, 1]d, and 
the componentwise partial order can be replaced by any weaker preorder. A key assumption 
uses the concept of an antichain in a partially ordered set ( , ⪯ ), which is a subset A ⊆  
that does not admit comparisons, in the sense that u ⪯ v for u, v  ∈  A implies u = v. As we 
discuss subsequently, results of Brightwell (1992) imply that the respective distributional 
condition is mild.

Theorem 3  (uniform consistency). Let  = [0, 1]d be endowed with the componentwise par-
tial order and the norm ‖u‖ = maxi=1,…,d �ui � . Let further (Xni, Yni) ∈ [0, 1]d ×ℝ, n ∈ ℕ,  
i = 1, …, n, be a triangular array such that (Xn1,Yn1), …, (Xnn,Ynn) are independent and 
identically distributed random vectors for each n ∈ ℕ, and let Sn = {Xn1, …, Xnn}. Assume 
that 

(a)	 for all non-degenerate rectangles J ⊆ , there exists a constant cJ > 0 such that 

with asymptotic probability one, that is, if An denotes the event that #(Sn ∩ J) ≥ ncJ, then ℙ(An) → 1 
as n → ∞;

(b)	 for some γ  ∈  (0,1), 

with asymptotic probability one.

Assume further that the true conditional CDFs Fx(y) = ℙ(Yni ≤ y |Xni = x) satisfy

(c).	 Fx(y) is decreasing in x for all y ∈ ℝ;
(d).	for every 𝜂 > 0, there exists r > 0 such that 

(17)p(x) = {i ∈ {1, …, n}: Xi ⪯ Xj ⪯ x ⇒ Xj = Xi, j = 1, …, n}

(18)s(x) = {i ∈ {1, …, n}: x ⪯ Xj ⪯ Xi ⇒ Xj = Xi, j = 1, …, n},

#(Sn ∩ J) ≥ ncJ

max{#A:A ⊂ Sn is antichain} ≤ n𝛾

sup{ �Fx(y) − Fx�(y) � : x, x� ∈ [0, 1]d, ‖x − x�‖ ≤ r, y ∈ ℝ} < 𝜂.
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Then for every ε > 0 and δ > 0, 

Assumption (a) requires that the covariates are sufficiently dense in , as is satisfied under 
strictly positive Lebesgue densities on . In order to derive rates of convergence, the size of 
the rectangles J in (a) would need to decrease with n, as in condition (A.2) of Mösching & 
Dümbgen (2020b); we leave this type of extension as a direction for future work. Assumption 
(c) is the basic model assumption of IDR, while assumption (d) requires uniform continuity 
of the conditional distributions, which is weaker than Hölder continuity in condition (A.1) of 
Mösching & Dümbgen (2020b).

Assumption (b), which is always satisfied in the case of a total order, calls for a more detailed 
discussion. In words, the maximal number of mutually incomparable elements needs to grow 
at a rate slower than n�. Evidently, the easier elements can be ordered, the smaller the maximal 
antichain. Consequently, Theorem 3 continues to hold under the empirical stochastic order and 
the empirical increasing convex order on the covariates introduced in Section 3.3, and indeed 
under any preorder that is weaker than the componentwise order. The key to understanding 
the distributional implications of (b) is Corollary 2 in Brightwell (1992), which states that for a 
sequence of independent random vectors from a uniform population on [0, 1]d the size of a max-
imal antichain grows at a rate of n1−1∕d; see also the remark following the proof of Theorem 3 in 
Supplementary Section S2.

As comparability under the componentwise order is preserved under monotonic transfor-
mations, any covariate vector X ∈ ℝ

d that can be obtained as a monotone transformation of 
a uniform random vector of arbitrary dimension guarantees (b). This includes, for example all 
Gaussian random vectors with non-negative correlation coefficients. In this light, assumption (b) 
is rather weak, and well in line with the intuition that for multivariate isotonic (distributional) re-
gression to work well, there ought be at least minor positive dependence between the covariates. 
In the context of our case study in Section 5, high positive correlations between the covariates are 
the rule, as exemplified by Table 3 in Raftery et al. (2005).

2.5  |  Prediction

As noted, the IDR solution F̂ = (F̂1, …, F̂n) ∈ n
↑,x

 is defined at the covariate values x1, …, xn ∈  
only. Generally, if a (not necessarily optimal) distributional regression F = (F1, …, Fn) ∈ n

↑,x is 
available, a key task in practice is to make a prediction at a new covariate value x ∈  where 
x ∉ {x1, …, xn}. We denote the respective predictive CDF by F.

In the specific case  = ℝ of a single real-valued covariate there is a simple way of doing this, 
as frequently implemented in concert with the PAV algorithm. For simplicity, we suppose that 
x1 < ⋯ < xn. If x < x1 we may let F = F1; if x ∈ (xi, xi+1) for some i  ∈  {1, …, n−1} we may 
interpolate linearly, so that 

(19)lim
n→∞

ℙ

(
sup

x∈ [�,1−�]d,y∈ℝ

|F̂x(y) − Fx(y)| ≥ �

)
= 0.

F(z) =
x − xi
xi+1 − xi

Fi(z) +
xi+1 − x

xi+1 − xi
Fi+1(z)
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for z ∈ ℝ, and if x > xn we may set F = Fn. However, approaches that are based on interpolation 
do not extend to a generic covariate space, which may or may not be equipped with a metric.

In contrast, the method we describe now, which generalizes a proposal by Wilbur et al. (2005), 
solely uses information supplied by the partial order ⪯ on the covariate space . For a general 
covariate value x ∈ , the sets of the indices of direct predecessors and direct successors among 
the covariate values x1, …, xn in the training data are defined as at (17) and (18), respectively, 
with X1, …, Xn replaced by x1, …, xn. If the covariate space  is totally ordered, these sets con-
tain at most one element. If the order is partial but not total, p(x) and s(x) may, and frequently do, 
contain more than one element. Assuming that p(x) and s(x) are non-empty, any predictive CDF 
F that is consistent with F must satisfy 

at all threshold values z ∈ ℝ. We now let F be the pointwise arithmetic average of these bounds, 
that is, 

for z ∈ ℝ. If s(x) is empty while p(x) is non-empty, or vice versa, a natural choice, which we employ 
hereinafter, is to let F equal the available bound given by the non-empty set. If x is not comparable 
to any of x1, …, xn the training data lack information about the conditional distribution at x, and a 
natural approach, which we adopt and implement, is to set F equal to the empirical distribution of 
the response values y1, …, yn.

The difference between the bounds (if any) in (20) might be a useful measure of estimation 
uncertainty and could be explored as a promising avenue towards the quantification of ambi-
guity and generation of second-order probabilities (Ellsberg, 1961; Seo, 2009). In the context of 
ensemble weather forecasts, the assessment of ambiguity has been pioneered by Allen & Eckel 
(2012). Interesting links arise when the envelope in (20) is interpreted in the spirit of randomized 
predictive systems and conformal estimates as studied by Vovk et al. (2019); compare, for exam-
ple their Figure 5 with our Figure 4b below.

3  |   PARTIAL ORDERS

The choice of a sufficiently informative partial order on the covariate space is critical to any 
successful application of IDR. In the extreme case of distinct, totally ordered covariate values 
x1, …, xn ∈  and a perfect monotonic relationship to the response values y1, …, yn, the IDR 
distribution associated with xi is simply the point measure in yi, for i = 1, …, n. The same happens 
in the other extreme, when there are no order relations at all. Hence, the partial order serves to 
regularize the IDR solution.

Thus far, we have simply assumed that the covariate space  is equipped with a partial 
order ⪯, without specifying how the order might be defined. If  ⊆ ℝ

d, the usual compo-
nentwise order will be suitable in many applications, and we investigate it in Section 3.1. For 
covariates that are ordinal and admit a ranking in terms of importance, a lexicographic order 
may be suitable.

(20)max
i∈ s(x)

Fi(z) ≤ F(z) ≤ min
i∈p(x)

Fi(z)

(21)F(z) =
1

2

(
max
i∈ s(x)

Fi(z) + min
i∈p(x)

Fi(z)

)
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If groups of covariates are exchangeable, as in our case study on quantitative precipitation 
forecasts, other types of order relations need to be considered. In Sections 3.2 and 3.3, we study 
relations that are tailored to this setting, namely, the empirical stochastic order and empirical 
increasing convex order. Proofs are deferred to Supplementary Section S3.

3.1  |  Componentwise order

Let x = (x1, …, xd) and x� = (x�
1
, …, x�

d
) denote elements of the covariate space ℝd. The most 

commonly used partial order in multivariate isotonic regression is the componentwise order de-
fined by 

This order becomes weaker as the dimension d of the covariate space increases: If x̃ = (x1, …, xd, xd+1) 
and x̃� = (x�

1
, …, x�

d
, x�
d+1

) then x ⪯ x� is a necessary condition for x̃ ⪯ x̃�. The following result is 
an immediate consequence of this observation and the structure of the optimization problem in 
Definition 1.

Proposition 1  Let x = (x1, …, xn) and x∗ = (x∗1 , …, x∗n) have components xi = (xi1, …, xid) ∈ ℝ
d 

and x∗
i
= (xi1, …, xid, xi,d+1) ∈ ℝ

d+1 for i = 1, … ,n, and let S be a proper scoring rule.

Then if ℝd and ℝd+1 are equipped with the componentwise partial order, and F̂ and F̂
∗
 denote S-

based isotonic regressions of y on x and x∗, respectively, it is true that 

In simple words, under the componentwise partial order, the inclusion of further covariates 
can only improve the in-sample fit. This behaviour resembles linear regression, where the addi-

tion of covariates can only improve the (unadjusted) R-square.

3.2  |  Empirical stochastic order

We now define a relation that is based on stochastic dominance and invariant under permutation.

Definition 2  Let x = (x1, …, xd) and x� = (x�
1
, …, x�

d
) denote elements of ℝd. Then x is smaller 

than or equal to x′ in empirical stochastic order, for short x⪯st x�, if the empirical distribution 
of x1, …, xd is smaller than the empirical distribution of x�

1
, …, x�

d
 in the usual stochastic 

order.

This relation is tailored to groups of exchangeable, real-valued covariates. The following 
result summarizes its properties and compares to the componentwise order, which we denote 
by ⪯.

x ⪯ x� ⟺ xi ≤ x�i for i = 1, …, d.

�S(F̂
∗
) ≤ �S(F̂).
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Proposition 2  Let x = (x1, …, xd) and x� = (x�
1
, …, x�

d
) denote elements of ℝd with order statis-

tics x(1) ≤⋯ ≤ x(d) and x′
(1)

≤ ⋯ ≤ x′
(d)

. 

(a)	The relation x⪯st x� is equivalent to x(i) ≤ x′
(i)

 for i=1,  …,  d.
(b)	 If x ⪯ x� then x⪯st x�.
(c)	 If x⪯st x� and x and x′ are comparable in the componentwise partial order, then x ⪯ x�.
(d)	If x⪯st x� and x� ⪯st x then x and x′ are permutations of each other. Consequently, the 

relation ⪯st defines a partial order on ℝd
↑
.

In a nutshell, the empirical stochastic order is equivalent to the componentwise order on the 
sorted elements, and this relation is weaker than the componentwise order. However, unlike the 
componentwise order, the empirical stochastic order does not degenerate as further covariates 
are added. To the contrary, empirical distributions of larger numbers of exchangeable variables 
become more informative and more easily comparable.

3.3  |  Empirical increasing convex order

In applications, the empirical stochastic order might be too strong, in the sense that it does not 
generate sufficiently informative constraints. In this light, we now define a weaker partial order 
on ℝd

↑
, which also is based on a partial order for probability measures. Specifically, let X and X ′ 

be random variables with CDFs F and F ′. Then F is smaller than F ′ in increasing convex order if 
�(�(X )) ≤ �(�(X ′)) for all increasing convex functions ϕ such that the expectations exist (Shaked 
& Shanthikumar, 2007, Section 4.A.1).

Definition 3  Let x = (x1, …, xd) and x� = (x�
1
, …, x�

d
) denote elements of ℝd. Then x is smaller 

than or equal to x′ in empirical increasing convex order, for short x⪯icx x�, if the empirical 
distribution of x1, …, xd is smaller than the empirical distribution of x�

1
, …, x�

d
 in increasing 

convex order.This notion provides another meaningful relation for groups of exchangeable 
covariates. The following result summarizes its properties and relates it to the empirical sto-
chastic order.

Proposition 3  Let x = (x1, …, xd) and x� = (x�
1
, …, x�

d
) denote elements of ℝd with order statis-

tics x(1) ≤ ⋯ ≤ x(d) and x′
(1)

≤ ⋯ ≤ x′
(d)

. 

(a)	The relation x⪯icx x� is equivalent to 

(b)	 If x⪯st x� then x⪯icx x�.
(c)	 If x⪯icx x� then 

where g is the Gini mean difference, 

d∑
i=j

x(i) ≤
d∑
i=j

x�
(i)

for j = 1, …, d.

1

d

d∑
i=1

xi +
d − 1

2(d + 1)
g(x) ≤ 1

d

d∑
i=1

x�i +
d − 1

2(d + 1)
g(x�),
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(d)	 If x⪯icx x� and x� ⪯icx x then x and x′ are permutations of each other. Consequently, the 
relation ⪯icx defines a partial order on ℝd

↑
.Figure 3 illustrates the various types of relations for 

points in the positive quadrant of ℝ2. As reflected by the nested character of the regions, the com-
ponentwise order is stronger than the empirical stochastic order, which in turn is stronger than 
the empirical increasing convex order. The latter is equivalent to weak majorization as studied by 
Marshall et al. (2011). In the special case of vectors with non-negative entries, their Corollary C.5 
implies that x ∈ ℝ

d is dominated by x� ∈ ℝ
d in empirical increasing convex order if, and only if, 

it lies in the convex hull of the points of the form (�1x��(1), …, �dx
�
�(d)

), where π is a permutation 
and �i ∈ {0, 1} for i = 1, …, d.

4  |   SIMULATION STUDY

Since we view IDR primarily as a tool for prediction, we compare it to other distributional re-
gression methods in terms of predictive performance on continuous and discrete, univariate 
simulation examples, as measured by the CRPS. However, as noted below and formalized in 
Supplementary Section S4, the CRPS links asymptotically to L2 estimation error, so under large 
validation samples, prediction and estimation are assessed simultaneously. A detailed compara-
tive study on mixed discrete-continuous data with a multivariate covariate vector is given in the 
case study in the next section.

Here, our simulation scenarios build on the illustrating example in the introduction. 
Specifically, we draw a covariate X∼Unif(0,10) and then 

(22)g(x) =
1

d(d − 1)

d∑
i,j=1

|xi − xj | .

(23)Y1 �X ∼ Gamma(shape =
√
X , scale =min{max{X , 1}, 6}),

(24)Y2 |X = Y1 |X + 10 ⋅ �{X ≥ 5},

F I G U R E  3   Regions of smaller, greater and incomparable elements in the positive quadrant of ℝ2, as 
compared to the point (1, 3), for the (left) componentwise, (middle) empirical stochastic and (right) empirical 
increasing convex order. Coloured areas below (above) of (1, 3) correspond to smaller (greater) elements, while 
blank areas contain elements incomparable to (1, 3) in the given partial order
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Under each scenario, we generate 500 training sets of size n = 500, 1000, 2000 and 4000 each, 
fit distributional regression models, and validate on a test set of size m = 5000. For comparison 
with IDR, we use a non-parametric kernel (or nearest neighbour) smoothing technique (NP; 
Li & Racine, 2008), semiparametric quantile regression with monotone rearrangement (SQR; 
Chernozhukov et al., 2010; Koenker, 2005), conditional transformation models (TRAM; Hothorn 
et al., 2014) and distributional or quantile random forests (QRF; Athey et al., 2019; Meinshausen, 
2006). These methods have been chosen as they are not subject to restrictive assumptions on the 
distribution of the response variable and have well-established and well-documented imple-
mentations in the statistical programming environment R (R Core Team, 2020). We also include 
the ideal forecast, that is, the true conditional distribution of the response given the covariate, 
in the comparison.

Implementation details for the various methods are given in Table S1 in Supplementary 
Section S5. Here we only note that QRF uses the grf package (Tibshirani et al., 2020) with 
a splitting rule that is tailored to quantiles (Athey et al., 2019). We see that, unlike IDR, its 
competitors rely on manual intervention and tuning. For example, QRFs perform poorly 
under the default value of 5 for the tuning parameter min.node.size, which we have 
raised to 40. Further improvement may arise when tuning parameters, such as honesty frac-
tion and node size, are judiciously adjusted to the specific scenario and training sample size 
at hand. In contrast, IDR is entirely free of implementation decisions, except for the subag-
ging variant, IDRsbg, where we average predictions based on estimates on 100 subsamples of 
size n/2 each.

Table 1 shows the mean CRPS for the different methods and simulation scenarios. Scenario 
(23) is the same as in the introduction and illustrated in Figure 1. It has a smooth covariate–
response relationship, and NP, SQR, and even the misspecified TRAM technique, which are tai-
lored to this type of setting, outperform QRF and IDR. However, the assumption of continuity in 
the response is crucial, as the results under the discontinuous scenario (24) demonstrate, where 
IDR and IDRsbg perform best. In the non-isotonic scenario (25), IDR and IDRsbg retain acceptable 
performance, even though the key assumption is violated. Not surprisingly, SQR faces challenges 
in the Poisson scenario (26), where the conditional quantile functions are piecewise constant, 
and IDR is outperformed only by TRAM. Throughout, the simplistic subagging variant of IDR 
has slightly lower mean CRPS than the default variant that is estimated on the full training set, 
and it would be interesting to explore the relation to the super-efficiency phenomenon described 
by Banerjee et al. (2019).

These results lend support to our belief that IDR can serve as a universal benchmark in prob-
abilistic forecasting and distributional regression problems. For sufficiently large training sam-
ples, IDR offers competitive performance under any type of type of linearly ordered outcome, 
without reliance on tuning parameters or other implementation choices, except when subsam-
pling is employed.

(25)Y3 |X = Y1 |X − 2 ⋅ �{X ≥ 7},

(26)Y4 |X ∼ Poisson(� =min{max{X , 1}, 6}).
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5  |   CASE STUDY: PROBABILISTIC QUANTITATIVE 
PRECIPITATION FORECASTS

The past decades have witnessed tremendous progress in the science and practice of weather 
prediction (Bauer et al., 2015). Arguably, the most radical innovation consists in the operational 
implementation of ensemble systems and an accompanying culture change from point forecasts 
to distributional forecasts (Leutbecher & Palmer, 2008). An ensemble system comprises multiple 
runs of numerical weather prediction (NWP) models, where the runs or members differ from 
each other in initial conditions and numerical-physical representations of atmospheric processes.

Ideally, one would like to interpret an ensemble forecast as a random sample from the condi-
tional distribution of future states of the atmosphere. However, this is rarely advisable in prac-
tice, as ensemble forecasts are subject to biases and dispersion errors, thereby calling for some 
form of statistical post-processing (Gneiting & Raftery, 2005; Vannitsem et al., 2018). This is typi-
cally done by fitting a distributional regression model, with the weather variable of interest being 
the response variable, and the members of the forecast ensemble constituting the covariates, 
and applying this model to future NWP output, to obtain conditional predictive distributions for 
future weather quantities. State of the art techniques include Bayesian Model Averaging (BMA; 
Raftery et al., 2005; Sloughter et al., 2007), Ensemble Model Output Statistics (EMOS; Gneiting 
et al., 2005; Scheuerer, 2014), and Heteroscedastic Censored Logistic Regression (HCLR; Messner 
et al., 2014).

In this case study, we apply IDR to the statistical post-processing of ensemble forecasts of 
accumulated precipitation, a variable that is notoriously difficult to handle, due to its mixed 
discrete-continuous character, which requires both a point mass at zero and a right skewed 
continuous component on the positive half-axis. As competitors to IDR, we implement the 
BMA technique of Sloughter et al. (2007), the EMOS method of Scheuerer (2014), and HCLR 
(Messner et al., 2014), which are widely used parametric approaches that have been developed 
specifically for the purposes of probabilistic quantitative precipitation forecasting. In contrast, 
IDR is a generic technique and fully automatic, once the partial order on the covariate space 
has been specified.

5.1  |  Data

The data in our case study comprise forecasts and observations of 24 h accumulated precipitation 
from 6 January 2007 to 1 January 2017 at meteorological stations on airports in London, Brussels, 
Zurich and Frankfurt. As detailed in Table 2, data availability differs, and we remove days with 
missing entries station by station, so that all types of forecasts for a given station are trained 

T A B L E  2   Meteorological stations at airports, with International Air Transport Association (IATA) airport 
code, World Meteorological Organization (WMO) station ID, and data availability in days (years)

IATA code WMO ID Data availability

Brussels, Belgium BRU 06449 3406 (9.3)

Frankfurt, Germany FRA 10637 3617 (9.9)

London, UK LHR 03772 2256 (6.2)

Zurich, Switzerland ZRH 06670 3241 (8.9)
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and evaluated on the same data. Both forecasts and observations refer to the 24 h period from 
6:00 UTC to 6:00 UTC on the following day. The observations are in the unit of millimetre and 
constitute the response variable in distributional regression. They are typically, but not always, 
reported in integer multiples of a millimetre.

As covariates, we use the 52 members of the leading NWP ensemble operated by the European 
Centre for Medium-Range Weather Forecasts (ECMWF; Buizza et al., 2005; Molteni et al., 1996). 
The ECMWF ensemble system comprises a high-resolution member (xHRES), a control member 
at lower resolution (xCTR) and 50 perturbed members (x1, …, x50) at the same lower resolution 
but with perturbed initial conditions, and the perturbed members can be considered exchange-
able (Leutbecher, 2019). To summarize, the covariate vector in distributional regression is 

where xPTB = (x1, …, x50) ∈ ℝ
50. At each station, we use the forecasts for the corresponding 

latitude-longitude gridbox of size 0.25×0.25 degrees, and we consider prediction horizons of 1 to 5 
days. For example, the two day forecast is initialized at 00:00 Universal Coordinated Time (UTC) and 
issued for 24 h accumulated precipitation from 06:00 UTC on the next calendar day to 06:00 UTC 
on the day after. ECMWF forecast data are available through the ECMWF Meteorological Archival 
and Retrieval System (MARS; https://www.ecmwf.int/en/forec​asts) and via the TIGGE system 
(Bougeault et al., 2010; Swinbank et al., 2016). Observation data are provided by NOAA’s Integrated 
Surface Database (ISD; https://www.ncdc.noaa.gov/isd).

Statistical post-processing is both a calibration and a downscaling problem: Forecasts and 
observations are at different spatial scales, whence the unprocessed forecasts are subject to rep-
resentativeness error (Wilks, 2019, Chapter 8.9). Indeed, if we interpret the predictive distribu-
tion from the raw ensemble (27) as the empirical distribution of all 52 members—a customary 
approach, which we adopt hereinafter—there is a strong bias in probability of precipitation fore-
casts: Days with exactly zero precipitation are predicted much less often at the NWP model grid 
box scale than they occur at the point scale of the observations.

5.2  |  BMA, EMOS and HCLR

Before describing our IDR implementation, we review its leading competitors, namely, state of 
the art parametric distributional regression approaches that have been developed specifically for 
accumulated precipitation.

Techniques of ensemble model output statistics (EMOS; Gneiting et al., 2005) type can be 
interpreted as parametric instances of generalized additive models for location, scale and shape 
(GAMLSS; Rigby & Stasinopoulos, 2005). The specific variant of Scheuerer (2014) which we use 
here is based on the three-parameter family of left-censored generalized extreme value (GEV) 
distributions. The left-censoring generates a point mass at zero, corresponding to no precipita-
tion, and the shape parameter allows for flexible skewness on the positive half-axis, associated 
with rain, hail or snow accumulations. The GEV location parameter is modelled as a linear func-
tion of xHRES, xCTR, mPTB =

1

50

∑50
i=1 xi 

(27)x =
(
x1, …, x50, xCTR, xHRES

)
=
(
xPTB, xCTR, xHRES

)
∈ ℝ

52,

pZERO =
1

52

(
�{xHRES = 0} + �{xCTR = 0} +

50∑
i=1

�{xi = 0}

)
,

https://www.ecmwf.int/en/forecasts
https://www.ncdc.noaa.gov/isd
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and the GEV scale parameter is linear in the Gini mean difference (22) of the 52 individual forecasts 
in the covariate vector (27). While all parameters are estimated by minimizing the in-sample CRPS, 
the GEV shape parameter does not link to the covariates.

The general idea of the Bayesian model averaging (BMA; Raftery et al., 2005) approach is to 
employ a mixture distribution, where each mixture component is parametric and associated with 
an individual ensemble member forecast, with mixture weights that reflect the member’s skill. 
Here we use the BMA implementation of Sloughter et al. (2007) for accumated precipitation in 
a variant that is based on xHRES, xCTR, mPTB =

1

50

∑50
i=1 xi which we found to achieve more stable 

estimates and superior predictive scores than variants based on all members, as proposed by 
Fraley et al. (2010) in settings with smaller groups of exchangeable members. Hence, our BMA 
predictive CDF is of the form 

for y ∈ ℝ, where the component CDFs G(y|·) are parametric, and the weights wHRES, wCTR and wPTB 
are non-negative and sum to one. Specifically, G(y |xHRES) models the logit of the point mass at zero 
as a linear function of 3

√
xHRES and pHRES = �{xHRES = 0}, and the distribution for positive accumu-

lations as a gamma density with mean and variance being linear in 3
√
xHRES and xHRES, respectively, 

and analogously for G(y |xCTR) and G(y |xPTB). Estimation relies on a two-step procedure, where 
the (component specific) logit and mean models are fitted first, followed by maximum likelihood 
estimation of the weight parameters and the (joint) variance model via the EM algorithm (Sloughter 
et al., 2007).

Heteroscedastic censored logistic regression (Messner et al., 2014) originates from the obser-
vation that conditional CDFs can be estimated by dichotomizing the random variable of interest 
at given thresholds and estimating the probability of threshold exceedance via logistic regression. 
The HCLR model used here assumes that square-root transformed precipitation follows a logistic 
distribution censored at zero, with location parameter linear in 

√
xHRES, 

√
xCTR and the mean of 

the square-root transformed perturbed forecasts, and a scale parameter linear in the standard de-
viation of the square-root transformed perturbed forecasts. Like EMOS, HCLR can be interpreted 
within the GAMLSS framework of Rigby & Stasinopoulos (2005).

Code for BMA, EMOS and HCLR is available within the ensembleBMA, ensembleMOS and 
crch packages in R (Messner, 2018). Unless noted differently, we use default options in imple-
mentation decisions.

5.3  |  Choice of partial order for IDR

IDR applies readily in this setting, without any need for adaptations due to the mixed-discrete 
continuous character of precipitation accumulation, nor requiring data transformations or other 
types of implementation decisions. However, the partial order on the elements (27) of the covari-
ate space  = ℝ

52, or on a suitable derived space, needs to be selected thoughtfully, considering 
that the perturbed members x1, …, x50 are exchangeable.

In the sequel, we apply IDR in three variants. Our first implementation is based on xHRES, 
xCTR and mPTB =

1

50

∑50
i=1 xi along with the componentwise order on ℝ3, in that 

Fx(y) = wHRESG(y |xHRES) + wCTRG(y |xCTR) + wPTBG(y |xPTB)

(28)x ⪯ x� ⟺mPTB ≤m�
PTB, xCTR ≤ x�CTR, xHRES ≤ x�HRES.
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The second implementation uses the same variables and partial order, but combined with a simple 
subagging approach: Before applying IDR, the training data is split into the two disjoint subsamples 
of training observations with odd and even indices, and we average the predictions based on these 
two subsamples.

Our third implementation combines the empirical increasing convex order for xPTB with the 
usual total order on ℝ for xHRES, whence 

Henceforth, we refer to the three implementations based on the partial orders in (28) and (29) as 
IDRcw, IDRsbg, and IDRicx. With reference to the discussion preceding Theorem 1, the relations (28) 
and (29) define preorders on ℝ52 and partial orders on ℝ3 and ℝ50

↑
×ℝ, respectively.

We have experimented with other options as well, for example, by incorporating the maxi-
mum maxi=1,…,50xi of the perturbed members in the componentwise order in (28), with the mo-
tivation that the maximum might serve as a proxy for the spread of the ensemble, or by using the 
empirical stochastic order ⪯st in lieu of the empirical increasing convex order ⪯icx in (29). IDR is 
robust to changes of this type, and the predictive performance remains stable, provided that the 
partial order honors the key substantive insights, in that the perturbed members x1, …, x50 are 
exchangeable, while xHRES, due to its higher native resolution, is able to capture local informa-
tion that is not contained in xPTB nor xCTR. Hence, xHRES ought to play a pivotal role in the partial 
order.

5.4  |  Selection of training periods

The selection of the training period is a crucial step in the statistical post-processing of NWP out-
put. Most post-processing methods, including the ones used in this analysis, assume that there 
is a stationary relationship between the forecasts and the observations. As Hamill (2018) points 
out, this assumption is hardly ever satisfied in practice: NWP models are updated, instruments 
at observation stations get replaced, and forecast biases may vary seasonally. These problems are 
exacerbated by the fact that quantitative precipitation forecasts require large training datasets in 
order to include sufficient numbers of days with non-zero precipitation and extreme precipita-
tion events.

For BMA and EMOS, a training period over a rolling window of the latest available 720 
days at the time of forecasting is (close to) optimal at all stations. This resembles choices 
made by Scheuerer & Hamill (2015) who used a training sample of about 900 past instances. 
Scheuerer (2014) took shorter temporal windows, but merged instances from nearby sta-
tions into the training sets, which is not possible here. In general, it would be preferable to 
select training data seasonally (e.g. data from the same month), but in our case the positive 
effect of using seasonal training data does not outweigh the negative effect of a smaller 
sample size.

As a non-parametric technique, IDR requires larger sets of training data than BMA or EMOS. 
As training data for IDR, we used all data available at the time of forecasting, which is about 2500 
to 3000 days for the stations Frankfurt, Brussels and Zurich, and 1500 days for London Heathrow. 
The same training periods are also used for HCLR, where no positive effect of shorter, rolling 
training periods has been observed (Messner et al., 2014).

(29)x ⪯ x� ⟺ xPTB⪯icxx
�
PTB, xHRES ≤ x�HRES.
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For evaluation, we use the years 2015 and 2016 (and 01 January 2017) for all post-processing 
methods and the raw ensemble. This test dataset consists of roughly 700 instances for each sta-
tion and lead time.

5.5  |  Results

Before comparing the BMA, EMOS, IDRcw, IDRsbg and IDRicx techniques in terms of out-of-
sample predictive performance over the test period, we exemplify them in Figure 4, where we 
show predictive CDFs for accumulated precipitation at Brussels on 16 December 2015, at a pre-
diction horizon of 2 days. In panel (a), the marks at the bottom correspond to xHRES, xCTR, the 
perturbed members x1, …, x50 and their mean mPTB. The observation at 4 mm is indicated by the 
vertical line. Under all four techniques, the point mass at zero, which represents the probability 
of no precipitation, is vanishingly small. While the BMA, EMOS and HCLR CDFs are smooth 
and supported on the positive half-axis, the IDRcw, IDRsbg  and IDRicx CDFs are piecewise con-
stant with jump points at observed values in the training period. Panel (b) illustrates the hard 

F I G U R E  4   Distributional forecasts for accumulated precipitation at Brussels, valid 16 December 2015 at 
a prediction horizon of 2 days. (a) BMA, EMOS, IDRcw, IDRsbg and IDRicx predictive CDFs. The vertical line 
represents the observation. (b) IDRcw CDF along with the hard and soft constraints in (20) as induced by the 
order relation (28). The thin lines show the IDRcw CDFs at direct predecessors and successors
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and soft constraints on the IDRcw CDF that arise from (20) under the order relation (28), with the 
thinner lines representing the IDRcw CDFs of direct successors and predecessors. In this exam-
ple, the constraints are mostly hard, except for threshold values between 4 and 11 mm.

We now use the mean CRPS over the test period as an overall measure of out-of-sample pre-
dictive performance. Figure 5 shows the CRPS of the raw and post-processed forecasts for all sta-
tions and lead times, with the raw forecast denoted as ENS. While HCLR performs best in terms 
of the CRPS, the IDR variants show scores of a similar magnitude and outperform BMA in many 
instances. Figure S1 in Supplementary Section S5 shows the difference of the empirical cumula-
tive distribution function (ECDF) of the PIT defined at (8) to the bisector for the distributional 
forecasts. All three IDR variants show a PIT-distribution close to uniform, and so do BMA, EMOS 
and HCLR, as opposed to the raw ensemble, which is underdispersed.

In Figure 6, we evaluate probability of precipitation forecasts by means of the Brier score 
(Gneiting & Raftery, 2007), and Figure S2 in Supplementary Section S5 shows reliability dia-
grams (Dimitriadis et al., 2021; Wilks, 2019). As opposed to the raw ensemble forecast, all distri-
butional regression methods yield reliable probability forecasts. BMA, IDRcw, IDRsbg and IDRicx 
separate the estimation of the point mass at zero, and of the distribution for positive accumula-
tions, and the four methods perform ahead of EMOS. HCLR is outperformed by BMA and the 
IDR variants at lead times of one or two days, but achieves a lower Brier score at the longest lead 
time of 5 days.

Interestingly, IDR tends to outperform EMOS and HCLR for probability of precipitation fore-
casts, but not for precipitation accumulations. We attribute this to the fact that parametric tech-
niques are capable of extrapolating beyond the range of the training responses, whereas IDR is 
not: The highest precipitation amount judged feasible by IDR equals the largest observation in 
the training set. Furthermore, unlike EMOS and HCLR, IDR does not use information about the 

F I G U R E  5   Mean CRPS over the test period for raw and post-processed ensemble forecasts of 24 h 
accumulated precipitation at prediction horizons of 1, 2, 3, 4 and 5 days. The lowest mean score for a given lead 
time and station is indicated in green
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spread of the raw ensemble, which is inconsequential for probability of precipitation forecasts, 
but may impede distributional forecasts of precipitation accumulations.

In all comparisons, the forecast performance of IDRcw and IDRsbg is similar. However, in our 
implementation, the simple subagging method used in IDRsbg reduced the computation time by 
up to one half.

To summarize, our results underscore the suitability of IDR as a benchmark technique in 
probabilistic forecasting problems. Despite being generic as well as fully automated, IDR is re-
markably competitive relative to state of the art techniques that have been developed specifically 
for the purpose. In fact, in a wide range of applied problems that lack sophisticated, custom-
made distributional regresssion solutions, IDR might well serve as a ready-to-use, top-performing 
method of choice.

6  |   DISCUSSION

Stigler (1975) gives a lucid historical account of the 19th century transition from point estimation 
to distribution estimation. In regression analysis, we may be witnessing what future generations 
might refer to as the transition from conditional mean estimation to conditional distribution 
estimation, accompanied by a simultaneous transition from point forecasts to distributional fore-
casts (Gneiting & Katzfuss, 2014).

IDR is a non-parametric technique for estimating conditional distributions that takes ad-
vantage of partial order relations within the covariate space. It can be viewed as a far-reaching 
generalization of pool adjacent violators (PAV) algorithm based classical approaches to isotonic 
(non-distributional) regression, is entirely generic and fully automated, and provides for a unified 

F I G U R E  6   Mean Brier score over the test period for probability of precipitation forecasts at prediction 
horizons of 1, 2, 3, 4 and 5 days. The lowest mean score for a given lead time and station is indicated in green
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treatment of continuous, discrete and mixed discrete-continuous real-valued response variables. 
Code for the implementation of IDR within R (R Core Team, 2020) and Python (https://www.
python.org/) is available via the isodistrreg package at CRAN (https://CRAN.R-proje​ct.org/
packa​ge=isodi​strreg) and on github (https://github.com/Alexa​nderH​enzi/isodi​strreg; https://
github.com/evwal​z/isodi​sreg), with user-friendly functions for partial orders, estimation, predic-
tion and evaluation.

IDR relies on information supplied by order constraints, and the choice of the partial order on 
the covariate space is a critical decision prior to the analysis. Only variables that contribute to the 
partial order need to be retained, and the order constraints serve to regularize the IDR solution. 
Weak orders lead to increased numbers of comparable pairs of training instances and predictive 
distributions that are more regular. The choice of the partial order is typically guided and in-
formed by substantive expertise, as illustrated in our case study, and it is a challenge for future 
research to investigate whether the selection of the partial order could be automated. Given that 
IDR gains information through order constraints, it is a valid concern whether it is robust under 
misspecifications of the partial order. There is evidence that this is indeed the case: IDR has guar-
anteed in-sample threshold calibration (Theorem 2) and therefore satisfies a minimal require-
ment for reliable probabilistic forecasts under any (even misspecified) partial order. Moreover, El 
Barmi & Mukerjee (2005, Theorem 7) show that in the special case of a discrete, totally ordered 
covariate, isotonic regression asymptotically has smaller estimation error than non-isotonic al-
ternatives even under mild violations of the monotonicity assumptions, akin to the performance 
of IDR in the non-isotonic setting (25) in our simulation study.

Unlike other methods for distributional regression, which require implementation decisions, 
such as the specification of parametric distributions, link functions, estimation procedures and 
convergence criteria, to be undertaken by users, IDR is fully automatic once the partial order 
and the training set have been identified. In this light, we recommend that IDR be used as a 
benchmark technique in distributional regression and probabilistic forecasting problems. With 
both computational efficiency and the avoidance of overfitting in mind, IDR can be combined 
with subsample aggregation (subagging) in the spirit of random forests. In our case study on 
quantitative precipitation forecasts, we used simplistic ad hoc choices for the size and number of 
subsamples. Future research on computationally efficient algorithmic implementations of IDR 
as well as optimal and automated choices of subsampling settings is highly desirable.

A limitation of IDR in its present form is that we only consider the usual stochastic order on 
the space  of the conditional distributions. Hence, IDR is unable to distinguish situations where 
the conditional distributions agree in location but differ in spread, shape or other regards. This 
restriction is of limited concern for response variables such as precipitation accumulation or 
income, which are bounded below and right skewed, but may impact the application of IDR to 
variables with symmetric distributions. In this light, we encourage future work on ramifications 
of IDR, in which  is equipped with partial orders other than the stochastic order, including but 
not limited to the likelihood ratio order (Mösching & Dümbgen, 2020a). Similarly, the ‘spiking’ 
problem of traditional isotonic regression, which refers to unwarranted jumps of estimates at 
boundaries, arguably did not have adverse effects in our simulation and case studies. However, 
it might be of concern in other applications, where remedies of the type proposed by Wu et al. 
(2015) might yield improvement and warrant study.

Another promising direction for further research is generalizations of IDR to multivariate 
response variables. In weather prediction, this would allow simultaneous post-processing of fore-
casts for several variables, and an open question is for suitable notions of multivariate stochastic 
dominance that allow efficient estimation in such settings.

https://www.python.org/
https://www.python.org/
https://CRAN.R-project.org/package=isodistrreg
https://CRAN.R-project.org/package=isodistrreg
https://github.com/AlexanderHenzi/isodistrreg
https://github.com/evwalz/isodisreg
https://github.com/evwalz/isodisreg
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