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ABSTRACT
It has been shown that the provision of a conversational user in-
terface proves beneficial in many domains. However, there are still
many challenges when applied in production areas, e.g. as part of a
virtual assistant to support workers in knowledge-intensive main-
tenance work. Regarding input modalities, touchscreens are failure-
prone in wet environments and the quality of voice recognition is
negatively affected by ambient noise. Augmenting a symmetric text-
and voice-based user interface with gestural input poses a good
solution to provide both efficiency and a robust communication.
This paper contributes to this research area by providing results on
the application of appropriate head and one-hand gestures during
maintenance work. We conducted an elicitation study with 20 par-
ticipants and present a gesture set as its outcome. To facilitate the
gesture development and integration for application designers, a
classification model for head gestures and one for one-hand ges-
tures were developed. Additionally, a proof-of-concept regarding a
multimodal conversational user interface with support of gestural
input during maintenance work was demonstrated. It encompasses
two usability testings with 18 participants in different realistic, but
controlled settings: notebook repair (SUS: 82.1) and cutter head
maintenance (SUS: 82.7).

CCS CONCEPTS
•Human-centered computing→Gestural input;Usability test-
ing; Mobile devices; Natural language interfaces; • Applied com-
puting → Computer-assisted instruction.

KEYWORDS
Assistance systems, conversational agent, elicitation study, industry
4.0, multimodal interface, task guidance, user-defined gestures

1 INTRODUCTION
Conversational User Interfaces (CUI) were successfully applied
in many domains, e.g. customer support [16] or cultural heritage
[4, 33]. While virtual assistants (aka conversational agents), which
come with a CUI, significantly grew in popularity for personal use1,
industrial virtual assistants have failed to establish until today.With
respect to virtual assistants which are categorized as a kind of arti-
ficial intelligence (AI), Hoffmann et al. noted that “not everything
that is possible with mainstream AI is applicable in industry” [19].
This is due to the additional constraints and challenges, industrial
environments are subject to. Regarding maintenance tasks, the im-
plementation of a CUI is challenging, because maintenance work
is often performed in noisy and dirty environments [40, 46]. This
has an impact on the available interface options. Text-based input
via mobile devices like smartphones or tablets is hindered, because
capacitive-sensing touchscreens are failure-prone to water smears
and dirt [7, 32]. Furthermore, voice commands and utterances as
an input become unreliable when ambient noise interferes with the
voice recognition [22, 29].

However, this does not mean that there is no support available.
In spite of all the challenges, instructive assistance systems (IAS)
are already applied in production areas to support operators in
knowledge-intensive maintenance processes. While most of them
use visual cues, current research begins to focus on systems with
a CUI, too. For instance, a case study with a conversational agent
(CA) was conducted for maintenance work using the digital twin
of a machine to show the operator how to fix the issue [12]. The
operator was limited to written text for communicating with the
CA, while the CA replied via text or voice. Recently, Serras et al.
presented results on their multimodal system with a CUI applied
for maintenance work of a robotic gripper [30]. Here, visual and

1https://www.forbes.com/sites/ilkerkoksal/2020/03/10/the-sales-of-smart-speakers-
skyrocketed/, last accessed on February 2nd, 2021

https://www.forbes.com/sites/ilkerkoksal/2020/03/10/the-sales-of-smart-speakers-skyrocketed/
https://www.forbes.com/sites/ilkerkoksal/2020/03/10/the-sales-of-smart-speakers-skyrocketed/
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aural interaction capabilities were provided. For mitigating the
already mentioned effects of ambient noise, devices with noise-
canceling capabilities were used. Although both systems had a
positive impact on their users, it can be argued that the presented
multimodal interaction is not reliable enough for maintenance work
environments.

As a consequence, we suggest that a multimodal CUI must sup-
port gestural input in the context of maintenance work. Gestures
provide an alternative modality that is robust to noise and also
provides support for situated interaction. In spite of several devices
on the market that support gesture recognition, e.g. head-mounted
displays [14, 31], not all types of gestures may be appropriate for
maintenance work. Especially, ergonomic factors are neglected
concerning maintenance tasks. The work is often performed at
inaccessible locations that coerce workers into constraint postures
[5] like kneeling which limits the variety of suitable gestures.

There is a research gap about appropriate gestures aligned to
maintenance work. This paper aims to close this research gap by
providing two classification models and one explicit gesture set for
this context. Also in response to the provocation paper of Schaffer
and Reithinger [28], this paper argues that a CUI which is applied
for industrial maintenance must at least provide a symmetric mul-
timodality [39] in form of text- and voice-based interaction, but
greatly benefits from complementary gestural input.

Regarding the paper’s structure, we first outline the key require-
ments of an IAS and related work. Afterward, we report results
from a gesture elicitation study aimed at identifying appropriate
gestures during maintenance work. Finally, the results of a pre-
liminary study which is comprised of two usability testings are
presented to demonstrate the proof-of-concept for a multimodal
CUI with gestural support in the context of maintenance work.

2 RELATEDWORK
2.1 Overview of IAS Research
The purpose of an IAS is to facilitate the decision-making process by
the provision of information, instruction and guidance to the user.
IAS are predominantly applied on production sites to aid workers
in assembling products, which is a response to the trend of mass
customization [18, 20, 43]. In contrast to augmented reality solu-
tions [2, 25] , only few research was done for IAS related to a CUI
regarding maintenance work. For instance, Haslwanter et al. [18]
compared aural guidance (using text-to-speech) to the original text-
based guidance. Another interesting prototype was introduced by
Zheng et al. who implemented a head-mounted display with aural
and gestural input for workflow guidance and instant messaging
capabilities via smartwatch to connect with remote experts [45].

At first, it is vital to determine the aptitude of an IAS based on the
overall characteristics of maintenance work to make them compara-
ble. Beigl [6] identified four key requirements that must be met for
the provision of digital instructions. We apply these requirements
to the context of maintenance work. The first requirement is (1)
ubiquity (everywhere accessible). This requires the instructions to
be accessible on a mobile device because maintenance work must
be mainly performed at the affected machine and cannot be moved
to a dedicated working station. Secondly, the application must be
(2) easy to use (short training phase, low mental effort). This relates

to the need of a familiar interface and the appropriate chunking of
instructions. Furthermore, the IAS must be (3) unobtrusive to use
(does not distract operator from primary task). In consideration
of physical maintenance work, it is expected that both hands are
required to perform the maintenance task. Consequently, none or
at most one hand should be temporally used for IAS interaction.
Lastly, (4) extra capabilities should benefit the overall purpose of the
system. In the case of Beigl’s ElectronicManual [6], the provision of
rich media like video clips and updatable resources were named as
extra capabilities that paper-based solutions could not provide. We
define the multimodal interaction for robust communication as first
essential extra capability. Besides text- and voice-based interaction,
we propose mid-air gestures as a complementary input modality. In
order to satisfy the key requirement unobtrusive to use, temporary
one-hand and head gestures qualify to be used during maintenance
work. The provision of a CUI as a social component [15] to enhance
the users’ engagement, serves as second extra capability.

2.2 Elicitation Studies
An elicitation study is like Wizard of Oz a low-fidelity prototyp-
ing technique that is especially “useful for open-ended, early-stage
exploration” [9]. The objective of it is to design a symbol set that
reduces training time for a specific interface due to its high guess-
ability [41]. Hereby, a symbol denotes the means of input needed to
execute a specific command (called referent). For instance, saying
“turn on TV” may be a symbol for turning on the TV (referent).
Within an elicitation study, multiple participants propose appro-
priate symbols for a set of actions (referents) related to a specific
system [42]. In this case, symbols are conveyed via gestures. As a
result, an appropriate gesture consensus set can be derived for the
application or system in the proposed use case.

We identified three prior elicitation studies that concentrated
on head or one-hand gestures. Dierk et al. conducted an elicita-
tion study “to identify appropriate inputs to hat-worn technology”
where various head and mid-air gestures were proposed by partici-
pants [13]. Zaiti et al. presented a collection of mid-air gestures to
control a TV [44]. Another approach was taken by Ruiz et al. who
focused on eliciting mid-air gestures with a smartphone [26]. Al-
though these studies already identified several gestures that could
be paired with referents that are also applicable for maintenance
work, there were two reasons that made it imperative to conduct
an elicitation study that would explicitly address a CUI regarding
maintenance work support. The first reason was that the provision
of instructions and the required navigation control concerning a
CUI would require additional referents that were not considered in
prior studies. Secondly, it was shown that the given conditions of
a use case had a great impact on the participant’s choice of input
modality [13].

3 ELICITING USER-DEFINED GESTURES
We conducted a gesture elicitation study with 20 participants (16
male; 4 female) with a mean age of 40.0 years (SD: 19.4) to elicit
user-defined gestures which are powerful enough to substitute ut-
terances during maintenance work. Each participant received e 10
for their participation. Fifteen participants were right-handed, four
left-handed and one ambidextrous. The sample was comprised of



Ensuring a Robust Multimodal Conversational User Interface During Maintenance Work

two user groups. Ten participants were tech-savvy people aged 30
years or younger with limited working experience who were re-
cruited on the university compound. The second sample addressed
people aged over 30 with at least one year of working experience
and were recruited by a cooperating manufacturer of eroding and
milling machines.

3.1 Selection of Referents
From the three respective elicitation studies, we excerpted and
edited the list of referents to fit the expected CUI of a multimodal
IAS. For instance, the referent copy [13] was omitted because the
application of editing functions is limited for task guidance. Next,
we added referents that would be also beneficial when using an
instant messaging platform:

• Select 1-4. Option. Contemporary messaging interfaces allow
quickreplies which are a set of interface buttons that “suggest
messages the user can send to the bot”[34].

• Request Details. The command provides additional options
to retrieve complementary information that supports the
overall understanding of an action.

• Record Media initializes any kind of media recording to doc-
ument maintenance processes.

• Request Summary provides an outline of the current mainte-
nance task’s progress. The command is helpful for the oper-
ator to get the current status after a break or shift change.

• Request Assistance. If the documentation is incomplete, the
option to escalate to an expert is essential. The IAS of Zheng
et al. offered instant messaging capabilities to do so [45].

• Switch View. Regarding the structure of instant messaging
conversations, media files are difficult to reselect. Therefore,
we propose a command that alternates between the media
library and the chat-view.

For the common hierarchy structure of manuals, we adapted Char-
wat’s task hierarchy for the instruction navigation: [11]:

• Task defines the global objective and the purpose of the
process.

• Activity is the container for a group of actions. Each activity
ends with an achieved intermediary goal.

• Action is defined as an appropriate, memorable work unit.

In total, a list of 35 relevant referents was created to be used in this
elicitation study (see table 1).

3.2 Experimental Setup and Procedure
Each participant was given headphones and a wristband for the
right hand as artifacts to perform gestures. All referents were intro-
duced via an instant messaging dialogue mock-up with an IAS to
repair a kitchen product. Antagonistic referents like mute/unmute
were presented together. For each referent, first a head gesture and
then a hand gesture were proposed. We explained that only the mo-
tion was relevant for the head gesture detection. Furthermore, arm
movement, finger movement and static postures were accepted as
hand gestures. All proposals were subsequently rated on a 7-point
Likert scale regarding ease of execution and referent fitness.

Table 1: List of referents presented to participants. Each ref-
erent can be seen as an user intent for conversational agents.

Category Context Referent

Action

Agent

Select 1st Option
Select 2nd Option
Select 3rd Option
Select 4th Option
Request Details
Record Media

Request Summary
Request Assistance

Application

Accept
Decline

Start Voice Command
Cancel Voice Command

Volume Up
Volume Down

Mute
Unmute

Media Control

Play
Pause
Stop

Forward
Rewind

Call (Voice/Video)
Answer Call
Ignore Call
Hang Up

Navigation

Application Switch View

Chat-View

Next Action
Previous Action
Repeat Action
Next Activity

Previous Activity
Cancel Task

Tile-View

Panel Right
Panel Left
Panel Up

Panel Down

Figure 1: Exemplary state machine for the head shake ges-
ture. Note that state Normal Position is not held when mov-
ing from right to left. Thus, there is no break of movement
and both performed movements of turn left can be inter-
preted as one longmovement of turn left. All sequences start
and end in state Normal Position. In appendix A, a state ma-
chine is displayed to clarify the classification model.
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Table 2: Dimensions with attributes for describing one-hand mid-air gestures. The attribute None of dimension Movement
Direction is used to describe static gestures where anymovement does not have impact on the gesture’s meaning. Hand Shapes
are illustrated in appendix B.

Type Dimension Attribute Detail

Dynamic

Arm
Participation

yes main movement is done by (lower) arm
no main movement is done by hand wrist

Type of Movement
linear gesture with linear movement
radial radial movement (typical with ellbow joint)
circle radial gesture that returns to its initial position

Movement Direction

none no movement (for static gestures)
backwards backwards movement
forwards forwards movement
right rightward movement
left leftward movement
up upward movement

down downward movement

Static

Palm
Orientation

palm-to-body palm is facing body
palm-inverse-to-body back of the hand is facing body

palm-right palm is facing right side
palm-left palm is facing left side
palm-up palm is facing ceiling

palm-down palm is facing floor

Hand Shape

ASL-1 ASL finger alphabet for number “1”
ASL-2 ASL finger alphabet for number “2”
ASL-3 ASL finger alphabet for number “3”
ASL-4 ASL finger alphabet for number “4”
ASL-A ASL finger alphabet for letter “a”
ASL-B ASL finger alphabet for letter “b”
ASL-C ASL finger alphabet for letter “c”
ASL-H ASL finger alphabet for letter “h”
ASL-O ASL finger alphabet for letter “o”

ASL-Q_close ASL finger alphabet for letter “q”→ index finger is touching thumb
ASL-Q_open index finger is touching thumb→ ASL finger alphabet for letter “q”

ASL-S ASL finger alphabet for letter “s”
ASL-Y ASL finger alphabet for letter “y”
ASL-Z Hand shape for ASL finger alphabet for letter “z” without motion
DGS-1 DGS finger alphabet for number “1”

DGS-SCH DGS finger alphabet for trigraph “sch”

Additionally, participants remarked if they would feel comfort-
able to use the gesture proposal in public as social acceptance influ-
ences the users’ behavior [24, 38]. We encouraged all participants
to share their thoughts about their gesture proposals (Think-aloud).
We recorded audio and video during all sessions where each lasted
approximately one hour.

3.3 Analysis and Classification Models
The collected data included pre-test questionnaires, videos, gesture
proposal evaluations and post-test interview transcripts. Two par-
ticipants could not perform gestures for all referents due to time
constraints (only 22 referents and 18 referents respectively). In total,
1,340 gestures were collected. Hand gestures that scored below their
head gesture counterparts were replaced by them. This was done
to emphasize the head gestures’ potential because head gestures

were identified as less popular than mid-air gestures [13]. Proposals
that scored less than four points (< 𝑛𝑒𝑢𝑡𝑟𝑎𝑙 ) in each ease or fitness
were classified as “refusals”. By including “refusal” as a symbol into
our analysis, we were able to identify referents unfitted for gesture
pairing. The final set of proposals consisted of 1,076 performed
gestures and 264 “refusals”.

We developed two classification models for gesture characteriza-
tion using grounded theory. The classification models for head and
hand gestures are based on chunking [8] to split gestures into their
primitives. Regarding head gestures, we defined eleven movement
vectors as primitives in alphabetical order: hold, push backwards,
push forwards, quarter-circle clockwise, quarter-circle counter-
clockwise, tilt down, tilt left, tilt right, tilt up, turn left and turn
right. The vectors can be unified into a state machine (an example
is given in figure 1).
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Figure 2: Overview of the agreement rates of all gestures. Referents with no asterisk had 20 proposals for each gesture type;
referents with one asterisk had 19 and referents with two asterisks received only 18 proposals.

Gestures that could not be correctly captured via this state ma-
chine, were described via the action draw (e.g. drawing an “x” for
the referent cancel task). The model is based on the design space
class head gesture [13]. For one-hand gestures not only the move-
ment, but also the hand’s posture can be relevant for the gesture’s
meaning [35]. The resulting degrees of freedom were too large to
build an appropriate state machine. We alternatively derived five
dimensions based on two types [17, 35] to describe most gestures
efficiently and provide the means for an easy replication: arm partic-
ipation, type of movement, movement direction (dynamic) and palm
orientation, hand shape (static). Hand postures of proposed gestures
were matched with hand shapes of the finger alphabet of the Amer-
ican Sign Language (ASL) and the German Sign Language (DGS).
The final classification model of one-hand gestures is displayed in
table 2. The only gestures that we could not adequately describe by
this model were drawing actions and snapping. We used keywords
to identify these gestures.

3.4 Results
As the measurement for a consensus among the group, we applied
Vatavu and Wobbrock’s agreement rate AR [36]:

AR(𝑟 ) = |𝑃 |
|𝑃 | − 1

∑
𝑃𝑖 ⊆𝑃

(
|𝑃𝑖 |
|𝑃 |

)2
− 1

|𝑃 | − 1

𝑃 is the set of all proposals for referent 𝑟 with |𝑃 | being 𝑟 ’s amount
of elicited proposals. 𝑃𝑖 is a subset comprised of identical gesture
proposals. If AR equals 0.0, every participant proposed a unique
gesture. If AR equals 1.0, everybody proposed the same gesture.
Vatavu and Wobbrock [36] proposed the following qualitative in-
terpretations for AR: low agreement (≤ .100), medium agreement
(.100 − .300), high agreement (.300 − .500) and very high agreement
(> .500). We calculated the ARs and double-checked the results
by using the AGreement Analysis Toolkit (AGATe v2.0)2. In total,
124 unique head gestures and 239 unique one-hand gestures were
identified. The ARs among head gestures ranged from 0.100 to
0.900 (∅ 0.339). Among the preferred gestures, ARs ranged from
0.011 to 0.484 (∅ 0.150). The ARs are illustrated in figure 2.

2https://depts.washington.edu/acelab/proj/dollar/agate.html, last accessed on January
6th, 2021

https://depts.washington.edu/acelab/proj/dollar/agate.html
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Table 3: Overview of the user-defined gesture set which is eligible to substitute text- or voice-based interaction : (A) consensus
(B) choice-based (C) authors’ recommendation (D) omitted. The referents’ names can be directly interpreted as the user intents.
Note that only the best gesture for each referent is displayed and the choice of the gesture type for a referent is not exclusive.

Category-Context Referent Gesture Type Characteristic Origin

Action-Agent

Select 1st Option hand (no, linear, none, palm-inverse-to-body, ASL-1) A
Select 2nd Option hand (no, linear, none, palm-inverse-to-body, ASL-2 A
Select 3rd Option hand (no, linear, none, palm-inverse-to-body, ASL-3) A
Select 4th Option hand (no, linear, none, palm-inverse-to-body, ASL-4) A
Request Details hand (yes, circle, (up, forwards), palm-to-body, DGS-SCH) C
Record Media hand (no, linear, none, palm-inverse-to-body, ASL-O) C

Request Summary head (4x quarter-circle clockwise) C
Request Assistance hand (yes, radial, (up, backwards), palm-to-body, ASL-Y) C

Action-Application

Accept head (tilt down, tilt up) A
Decline head (turn right, turn left, turn left, turn right) A

Start Voice Command hand Snap C
Cancel Voice Command head (turn right, turn left, turn left, turn right) A

Volume Up head (tilt up, hold, tilt down) A
Volume Down head (tilt down, hold, tilt up) A

Mute hand (no, radial, (left, down), palm-right, DGS-1) C
Unmute hand (no, radial, (right, up), palm-left, DGS-1) C

Action-Media Control

Play hand (yes, linear, forwards, palm-down, ASL-Z) B
Pause hand (yes, linear, forwards, palm-inverse-to-body, ASL-B) B
Stop hand (yes, linear, right, palm-down, ASL-B) C

Forward hand (yes, circle, (up, right), palm-down, ASL-S) B
Rewind hand (yes, circle, (up, left), palm-down, ASL-S) B

Action-Call
Answer Call head (tilt down, tilt up) A
Ignore Call head (turn right, turn left, turn left, turn right) A
Hang Up head (turn right, turn left, turn left, turn right) C

Navigation-Application Switch View hand (yes, radial, (up, right), palm-down, ASL-Z) C

Navigation-Chat-View

Next Action head (tilt down, tilt up) A
Previous Action hand (yes, linear, left, palm-left, ASL-B) C
Repeat Action head (4x quarter-circle counter-clockwise) C
Next Activity - - D

Previous Activity - - D
Cancel Task head (turn right, turn left, turn left, turn right) A

Navigation-Tile-View

Panel Right hand (no, linear, right, palm-left, ASL-B) A
Panel Left hand (no, linear, left, palm-left, ASL-B) A
Panel Up hand (no, linear, up, palm-down, ASL-B) A

Panel Down hand (no, linear, down, palm-down, ASL-B) A

The results of the elicitation study indicated that only nods and
head shakes were relevant head gestures. In contrast to the work
of Dierk et al. [13], participants stated that they would always
prefer utterances before using any kind of gesture. While there
was no objection to perform any proposed hand gesture in public,
participants felt uncomfortable to perform head gestures with a
transition sequence of five movements or longer in public.

In spite of the higher ARs for head gestures compared to hand
gestures, participants preferred hand gestures over head gestures.
When participants had the option to choose between hand or head
gestures, 82% (550) of the proposals were hand gestures and 18%
(120) were head gestures. This issue was already addressed by Dierk
et al. [13]. There, participants named the lack of expression power
of head gestures as one reason for that. The lack of expression

power compared to hand gestures could be caused by the smaller
degree of freedom.

Due to the lack of expression power, participants could not al-
ways propose head gestures that they perceived as positive or neu-
tral. This effect could only be mildly observed for hand gesture
proposals. If there is a high consensus regarding a referent with
“refusal” as most proposed symbol, it is likely that there is no eligible
symbol within the respective design space that would be accepted
by the user group. In this study, we set an AR of .300 as threshold
to classify this kind of referent. Accordingly, it should be avoided
to pair the referents mute, unmute, record media, request assistance,
request summary, and select 4th option with head gestures.
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3.5 Developing a User-Defined Gesture Set
We classified all gestures with a medium or higher agreement rate
as an appropriate substitute to text- or voice-based interaction,
because it is likely that users would expect this gesture to initialize
the respective referent. Vice versa, it could be irritating for users if
the referent is pairedwith another gesture. Therefore, a gesture with
an acceptable agreement rate should be reserved for this referent.

The results of the elicitation study have displayed that there
is only a small consensus regarding media and volume control.
However, both are essential for a smooth interaction with an au-
ral output interface. Thus, we decided to conduct an additional
choice-based elicitation study covering the best three proposals
for each referent from the first elicitation study. For this study, 14
industrial freshman workers (11 male; 3 female) were recruited.
The mean age was 17.1 years (SD: 0.83). Here, only gestures with a
very high agreement rate were reserved for the respective referent.
This applied for referents Play (AR = 0.527), Pause (AR = 0.615),
Forward (AR = 0.615), and Rewind (AR = 0.527).

Referents with only a low agreement rate gestures indicate that
participants do not have any expectations yet. Those referents
could be paired with unbiased, novel gestures to enrich the overall
usability of the system. To provide a complete gesture set for the
list of referents, we paired the remaining referents with promising
gestures that were proposed in the elicitation study as the authors’
recommendation. The referents concerning activities and actions
had similar proposals. As the activity referents are not essential for
the guidance navigation, we omitted to pair them with a gesture to
prevent any confusions. The complete user-defined gesture set is
shown in table 3.

4 PRELIMINARY STUDY
As a second contribution, we conducted two usability testings
within realistic scenarios (notebook repair, laser cutter head main-
tenance). It is important to distress that this study’s purpose was
solely to demonstrate the proof-of-concept of a multimodal CUI
with gestural input support in the area of maintenance work, but
not to evaluate the proposed user-defined gesture set. Therefore,
we implemented a CA running on an instant messaging platform
as a basic prototype. Similar to Aromaa et al. [2], the prototype was
a multi-device system. The core device was a smartphone running
the instant messaging client and provided the user with visual in-
structions. Headphones conveyed aural information and the user
could use the integrated microphone for utterances. Head gestures
were detected via camera using the Viola-Jones object detection
framework for face detection [37] and the Lucas-Kanade method
[21]. A gesture wristband [1] was used to detect hand gestures
where a simplified recognition model was applied covering only
the dynamic dimensions Type of Movement and Movement Direc-
tion. The prototype supported the referents Request Details, Mute,
Unmute, Next Action, Previous Action, Repeat Action and Cancel
Task. Request Details was split into four commands to reduce the
navigation overhead for this simple prototype: request short/long
description, request video and request result description (see figure 3).

For the evaluation of the prototype, the System Usability Scale
(SUS) was applied. We concentrated on measuring the perceived

usability to display the users’ interest and the acceptance of such a
CUI.

Figure 3: Instant messaging client of prototype showing
exemplary instructions from the industrial use case (left)
and its conversationflow (middle). Besides navigation-based
commands, the participants had four options to request ad-
ditional information of the current action which are related
to referent request details (right). An exemplary conversa-
tion flow instance of an activity is shown in appendix C.

4.1 Domestic Use Case: Notebook Repair
We recruited seven male engineering students (M: 27.4; SD: 2.1)
who already had basic experience in computer repair and thus,
could provide qualitative feedback. Each student had to perform
six repair tasks which were comprised of the disassembly and the
replacement of a component, e.g. the cooling fan. The participation
was rewarded with e 10. The tasks were performed in sequence to
uphold the realistic scenario.

The prototype achieved a mean of 82.1 (markA [27]; SEM: 4.6) on
the SUS. None of the participants performed any head gestures after
the training phase. In the post-test interview, one participant added
that “head gestures were not necessary for this scenario because
the hands could be freed easily by putting tools or components
back on the table”. Five of seven students preferred aural input
instead of gestures because utterances were easier to perform. One
of them emphasized that he “could work on the notebook while
listening to aural guidance” which helped him to locate compo-
nents more easily. In contrast, one participant felt pressured by
the prototype to complete the tasks in comparison to the available
paper-based manual. When asked where the participants could
imagine the application of such a system, participants named car
repair, maintenance of electronic devices and the assembly of fur-
niture as potential scenarios.

4.2 Industrial Use Case: Laser Cutter Head
We conducted a second usability testing within an industrial en-
vironment. Eleven freshman workers (M: 16.9; SD: 0.8) from the
choice-based elicitation study performed maintenance tasks related
to the cutter head of a 2d laser cutting machine. All participants
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had none or limited hands-on experience with this type of machine.
Four maintenance tasks and one training task were selected which
were part of the maintenance routine in case of cutting problems.
All tasks were hardware-related and did not require any interaction
with the control panel of the machine. Therefore, participants did
not need any prior machine-related training. The machine was
located on a shop floor with representative ambient noise.

Figure 4: Setup for the industrial use case: cutter head main-
tenance. First, participants became familiar with the smart
wristband by interacting with a gesture-controlled media
player (bottom-left). Three maintenance tasks were per-
formed within the machine (top-right) and one task was
completed on the respective working station (bottom-right).

In this testing, we omitted the option for head gestures via cam-
era due to the company’s privacy regulations. The setup is illus-
trated in figure 4. The prototype scored a similar mean of 82.7 (mark
A; SEM: 2.8) compared to the domestic use case. In the post-test
questionnaire, eight participants marked the voice recognition as
reliable, whereas only three participants were satisfied with the
reliability of the gesture recognition. The stated benefit of utter-
ances was hands-free operation and gestures could be used as “an
alternative in noisy environments”. Similar to the domestic use
case, participants named car repair and maintenance of electronic
devices as potential scenarios for the application of such a system.

5 DISCUSSION
Classification Models. Prior elicitation studies described gestures

with keywords, short sentences or exemplary visualizations [3, 13,
26, 42]. This could lead to ambiguity and misunderstandings on
how to perform a described gesture. We understand the provision
of the classification models as an improvement for the quality of
gesture replication, although few gestures like snapping could not
be classified. In several elicitation studies, taxonomies were pro-
vided to classify the design space that application designers work
with. Dierk et al. [13] already proposed a taxonomy of head-based

gestures. However, application designers must find their own ap-
proach to identify gestures within this design space. The presented
classification models facilitate this process for application designers
by providing building blocks on how to design gestures. Besides
the design of gestures, the classification models could be easily im-
plemented into an image processing classifier for gesture detection.
We also expect users to better understand the gesture detection pro-
cess through these classification models. Lastly, we want to remark
that the application of these models could be insufficient for other
application areas. Therefore, we encourage follow researchers to
test and to improve the proposed classification models.

User-Defined Gesture Set. We developed a gesture set for 33 ref-
erents that is eligible to substitute text- or voice-based interaction
of a CUI in the context of maintenance work. The gesture set can
be used as a reference by application developers to add gestural
input to their CUI. The gesture set’s application is not limited to the
context of maintenance work because many referents are generic
for any system, e.g. accept, and were also applicable for surface [42]
or ubiquitous computing [10].

It is important to note that the agreement rate only points out
gestures that are shared among many for a referent. Novel ges-
tures that could enrich the gesture set remain unnoticed. Therefore,
the presented gesture set is comprised of gesture proposals with a
medium agreement or higher and novel gestures that are promis-
ing, but only received a low agreement rate. Hand gestures were
more popular than head gestures because the design space of head
gestures is smaller. The argumentation of the small design space
is aggravated by the concerns for public use when head gestures
were longer than four movements. Also, participants were quickly
exhausted by the continuous use of head gestures. Therefore, we
recommend that developers should focus first on the provision of
hand gestures and implement head gestures only as an auxiliary
option. However, even hand gesture proposals scored low for some
referents. We want to refer to Mignot et al. [23] whose work indi-
cated that speech and gesture had a complementary relationship
because participants preferred gestures for simple actions, while
speech was used for more abstract actions within their research.
This behavior could also be observed in the elicitation study, e.g.
for referent request summary.

Preliminary Study. The objective of the two usability testings
was to get first results concerning a multimodal CUI that supported
head and one-hand gestures. The prototype was well received by
the participants which was reflected by the SUS. Head gestures
were not performed after the training phase in the first testing
and were omitted for the second one. One reason for that was
that actions, where both hands were required, rarely occurred.
Participants acknowledged gestures as an appropriate alternative to
utterances. However, the prototype acted only as a proof-of-concept
and the sample sizewas too small to represent the population. Lastly,
the participants stated that the application of such a system could
be beneficial for car repair and maintenance work of electronic
devices. We interpret this as a reason to conduct further research
in this area.



Ensuring a Robust Multimodal Conversational User Interface During Maintenance Work

6 CONCLUSION
This paper contributes to the definition process of an appropriate
standard for a conversational user interface (CUI) in the context of
maintenance work by exploring user-defined gestural input for the
communication with a conversational agent (CA) as an instructive
assistance system (IAS). We focused on head and one-hand gestures
to align to the special constraints that arise from maintenance work
environments. Two classification models were derived from the
1,340 gesture proposals that were collected from the conducted
elicitation study with 20 participants. A user-defined gesture set
was presented to complement text- and voice-based interaction
with a CA concerning 33 different user intents. In 82% of the cases,
participants preferred to perform a hand gesture instead of a head
gesture. In capturing gestures for this study, we have gained insights
into the mental models of non-technical users that are valuable for
application designers who want to enrich their CUI with gestural
input. We want to stress that the application of the classification
models and the gesture set is not limited to maintenance work, but
is applicable for other contexts regarding multimodal CUI. As a
second contribution, we provided results on two usability testings
with 18 participants in total using an IAS prototype with a gesture-
enabled, multimodal CUI for digital guidance during maintenance
work. These studies demonstrated the proof-of-concept of such a
CUI and shall encourage further research in this area.
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A EXEMPLARY STATE MACHINE FOR CHUNKING HEAD GESTURES

The presented state machine is optimized for clarity and does not include all possible states. Each edge is representing a movement vector
and is only described once in the figure to preserve clarity. Inverse vectors can be identified by the figure’s symmetric characteristic. For
instance, the inverse vector of movement tilt up is tilt down. Movement hold is applicable for all states and describes an intentional stagnancy
of movement. The head model was created using MakeHuman3.

3http://www.makehumancommunity.org/, last accessed on January 30th, 2021

http://www.makehumancommunity.org/
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B HAND SHAPE ILLUSTRATIONS

Illustrations of the proposed hand shapes which originated from the American Sign Language (ASL) and the German Sign Language (DGS).

ASL-1 ASL-2 ASL-3 ASL-4

ASL-A ASL-B ASL-C ASL-H

ASL-O ASL-Q_open ASL-Q_close ASL-S

ASL-Y ASL-Z DGS-1 DGS-SCH



Ensuring a Robust Multimodal Conversational User Interface During Maintenance Work

C EXEMPLARY CONVERSATION FLOW INSTANCE

The instance shows the task guidance for replacing the notebook’s heat sink assembly that was part of the first usability testing. It illustrates
the multimodal dialogue. Note that this example does only show a subset of the referents that were available at both usability testings. The
instructions were originally in German, but were translated into English for a better accessibility.
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