Synchronized Planarity with Applications to
Constrained Planarity Problems

Thomas Blasius &
Faculty of Informatics, Karlsruhe Institute of Technology (KIT), Germany

Simon D. Fink &

Faculty of Informatics and Mathematics, Universitdt Passau, Germany
Ignaz Rutter =

Faculty of Informatics and Mathematics, Universitat Passau, Germany

—— Abstract

We introduce the problem SYNCHRONIZED PLANARITY. Roughly speaking, its input is a loop-free

multi-graph together with synchronization constraints that, e.g., match pairs of vertices of equal
degree by providing a bijection between their edges. SYNCHRONIZED PLANARITY then asks whether
the graph admits a crossing-free embedding into the plane such that the orders of edges around
synchronized vertices are consistent. We show, on the one hand, that SYNCHRONIZED PLANARITY can
be solved in quadratic time, and, on the other hand, that it serves as a powerful modeling language
that lets us easily formulate several constrained planarity problems as instances of SYNCHRONIZED
PLANARITY. In particular, this lets us solve CLUSTERED PLANARITY in quadratic time, where the
most efficient previously known algorithm has an upper bound of O (ng).

2012 ACM Subject Classification Mathematics of computing — Graph algorithms; Mathematics of
computing — Graphs and surfaces

Keywords and phrases Planarity Testing, Constrained Planarity, Cluster Planarity, Atomic Embed-
dability

Digital Object Identifier 10.4230/LIPIcs.ESA.2021.19
Related Version Full Version: https://arxiv.org/abs/2007.15362

Funding Work partially supported by DFG-grant Ru-1903/3-1.
Simon D. Fink: DFG-grant Ru-1903/3-1.
Ignaz Rutter: DFG-grant Ru-1903/3-1.

1 Introduction

A graph is planar if it admits an embedding into the plane that has no edge crossings.
Planarity is a well-studied concept that facilitates beautiful mathematical structures [20, 9],
allows for more efficient algorithms [19], and serves as a cornerstone in the context of
network visualization [26]. It is not surprising that various generalizations, extensions, and
constrained variants of the PLANARITY problem have been studied [24]. Examples are CLUS-
TERED PLANARITY, where the embedding has to respect a laminar family of clusters [22, 8];
CONSTRAINED PLANARITY, where the orders of edges incident to vertices are restricted,
e.g., by PQ-trees [6]; and SIMULTANEOUS PLANARITY, where two graphs sharing a common
subgraph must be embedded such that their embeddings coincide on the shared part [5].

For planar embeddings, there is the important notion of rotation. The rotation of a vertex
is the counter-clockwise cyclic order of incident edges around it. Many of the above planarity
variants come down to the question whether there are embeddings of one or multiple graphs
such that the rotations of certain vertices are in sync in a certain way. Inspired by this
observation, by the ATOMIC EMBEDDABILITY problem [15], and by the cluster decomposition
tree (CD-tree) [8], we introduce a new planarity variant. SYNCHRONIZED PLANARITY has a
? Thomas Blasius, S.imon D. Fink, a.nd Ignaz Rutter;

37 icensed under Creative Commons License CC-BY 4.0

29th Annual European Symposium on Algorithms (ESA 2021).
Editors: Petra Mutzel, Rasmus Pagh, and Grzegorz Herman; Article No. 19; pp. 19:1-19:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:thomas.blaesius@kit.edu
mailto:finksim@fim.uni-passau.de
https://orcid.org/0000-0002-2754-1195
mailto:rutter@fim.uni-passau.de
https://orcid.org/0000-0002-3794-4406
https://doi.org/10.4230/LIPIcs.ESA.2021.19
https://arxiv.org/abs/2007.15362
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2

Synchronized Planarity with Applications to Constrained Planarity Problems

loop-free multi-graph together with two types of synchronization constraints as input. Each
Q-constraint is given as a subset of vertices together with a fixed reference rotation for each
of these vertices. The Q-constraint is satisfied if and only if either all these vertices have
their reference rotation or all these vertices have the reversed reference rotation. Vertices
appearing in Q-constraints are called Q-vertices and all remaining vertices are P-vertices.! A
P-constraint between two P-vertices u and v defines a bijection between the edges incident to
u and v. It is satisfied if and only if u and v have the opposite rotation under this bijection.
We require that the P-constraints form a matching, that is, no vertex appears in more than
one P-constraint. The decision problem SYNCHRONIZED PLANARITY now asks whether the
given graph can be embedded such that all Q- and all P-constraints are satisfied.
SYNCHRONIZED PLANARITY serves as a powerful modeling language that lets us express
various other planarity variants using simple linear-time reductions. Specifically, we provide
such reductions for CLUSTERED PLANARITY, ATOMIC EMBEDDABILITY, PARTIALLY PQ-
CONSTRAINED PLANARITY, and SIMULTANEOUS EMBEDDING WITH FIXED EDGES with a
connected shared graph (CONNECTED SEFE). Our main contribution is an algorithm that
solves SYNCHRONIZED PLANARITY, and thereby all the above problems, in quadratic time.

1.1 Technical Contribution

Our result impacts different planarity variants that have been studied previously. Before
discussing them individually in the context of previous publications, we point out a common
difficulty that has been a major barrier for all of them, and briefly sketch how we resolve it.

Consider the following constraint on the rotation of a single vertex. Assume its incident
edges are grouped and we only allow orders where no two groups alternate, that is, if e1, es are
in one group and eg3, e4 are in a different group, then the circular subsequence e, e3, €3, e4 and
its inverse are forbidden. Such restrictions have been called partition constraints before [8],
and they naturally emerge at cut-vertices where each incident 2-connected component forms
a group. A single partition constraint is not an issue by itself, but it becomes difficult to
deal with in combination with further restrictions. This is why cut-vertices and disconnected
clusters are a major obstacle for SEFE [5] and CLUSTERED PLANARITY [8], respectively.

The same issues appear for SYNCHRONIZED PLANARITY, when we have a cut-vertex
v that is involved in P-constraints, that is, its rotation has to be synchronized with the
rotation of a different vertex u. We deal with these situations as follows, depending on
whether u is also a cut-vertex or not. If not, it is rather well understood which embedding
choices impact the rotation of u and we can propagate this from u to v.2 This breaks the
synchronization of v and v down into the synchronization of smaller embedding choices. This
is a well-known technique that has been used before [6, 17]. If u is also a cut-vertex, we are
forced to actually deal with the embedding choices emerging at cut-vertices. This is done
by “encapsulating” the restrictions on the rotations of u and v that are caused by the fact
that they are cut-vertices. All additional restrictions coming from embedding choices in the
2-connected components are pushed away by introducing additional P-constraints. After
this, the cut-vertices u and v have very simple structure, which can be resolved by essentially
joining them together. This procedure is formally described in Section 3.2 and illustrated in
Figures 2 and 3.

L The names are based on PQ-trees, where Q- and P-nodes have fixed and arbitrary rotation, respectively.
2 We can also do this if v is not a cut-vertex.

T. Blasius, S. D. Fink, and |. Rutter

This solution can be seen as combinatorial perspective on the recent breakthrough result
by Fulek and Téth [15], who resolved the cut-vertex issue by applying an idea coming from
Carmesin’s work [10]. While Carmesin works with 2-dimensional simplicial complexes, Fulek
and To6th achieve their result by transferring Carmesin’s idea to the setting of topological
graphs on surfaces and combining it with tools from their work on thickenability. Our
work transfers the problem and its solution back to an entirely combinatorial treatment of
topological graphs in the plane. This further simplification allows us to more clearly highlight
the key insight that makes the algorithm tick and at the same time provides access to a
wide range of algorithmic tools for speeding up the computations. Due to space constraints,
proofs of statements marked with a star are only given in the full version.

1.2 Related Work

CLUSTERED PLANARITY was first considered by Lengauer [22] and later rediscovered by
Feng et al. [13]. In both cases, the authors give polynomial-time algorithms for the case that
each cluster induces a connected graph. The complexity of the general problem that allows
disconnected clusters has been open for 30 years. In that time, many special cases have
been shown to be polynomial-time solvable [3, 11, 14, 16] before Fulek and Téth [15] recently
settled CLUSTERED PLANARITY in P. The core ingredient for this is their O(n®) algorithm
for the ATOMIC EMBEDDABILITY problem. It has two graphs G and H as input. Roughly
speaking, H describes a 3-dimensional molecule structure with atoms represented by spheres
and connections (a.k.a. pipes) represented by cylinders. The other graph G comes with a
map to the molecule structure that maps each vertex to an atom such that two neighboring
vertices lie on the same atom or on two atoms connected by a pipe. ATOMIC EMBEDDABILITY
then asks whether G can be embedded onto the molecule structure such that no edges cross.

ATtoMIC EMBEDDABILITY has been introduced as a generalization of the THICKENABILITY
problem that appears in computational topology [1]. It can be shown that ATomic Ewm-
BEDDABILITY and THICKENABILITY are linear-time equivalent [15]. Thus, the above O(n®)
algorithm for ATOMIC EMBEDDABILITY also solves THICKENABILITY and SYNCHRONIZED
PLANARITY. In a preprint, Carmesin [10] proves a Kuratowski-style characterization of
THICKENABILITY, which he claims yields a quadratic algorithm as a byproduct. While it is
believable that the running time of his algorithm is polynomial, a detailed runtime analysis
is missing. In light of this, we only compare our algorithm to the O(n®)-algorithm by Fulek
and T6th. For a detailed comparison of their solution to ATOMIC EMBEDDABILITY and our
solution to SYNCHRONIZED PLANARITY, we refer to the full version.

To finally solve CLUSTERED PLANARITY, Fulek and T6th [15] use the reduction of Cortese
and Patrignani [12] to INDEPENDENT FLAT CLUSTERED PLANARITY, which they then
reduce further to THICKENABILITY. The last reduction to THICKENABILITY is based on a
combinatorial characterization of THICKENABILITY by Neuwirth [23], which basically states
that multiple graphs have to be embedded consistently, that is, such that the rotation is
synchronized between certain vertex pairs of different graphs. Via the reduction from CON-
NECTED SEFE to CLUSTERED PLANARITY given by Angelini and Da Lozzo [2], the above
result extends to CONNECTED SEFE, which was a major open problem in the context of
simultaneous graph representations [7]. We flatten this chain of reductions by giving a simple
linear reduction from each of the problems CONNECTED SEFE, CLUSTERED PLANARITY, and
AToMIC EMBEDDABILITY to SYNCHRONIZED PLANARITY, yielding quadratic-time algorithms
for all of them. Due to space constraints, the reductions are only given in the full version.
Moreover, the problem PARTIALLY PQ-CONSTRAINED PLANARITY, for which we also give a
linear reduction to SYNCHRONIZED PLANARITY, has been solved in polynomial time before,
but only for biconnected graphs [6] and in the non-partial setting where either all or none of
the edges of a vertex are constrained [17].

19:3

ESA 2021

19:4

Synchronized Planarity with Applications to Constrained Planarity Problems

2 Preliminaries

A partition of a base set X is a grouping of its elements into non-empty subsets, the cells,
so that every element is contained in exactly one cell. We assume a set implementation
allowing constant-time insertion and removal of elements, such as doubly-linked lists with
pointers stored with the elements. When referring to graphs, we generally mean loop-free
multi-graphs. A (multi-)star consists of a center verter connected by multiple, possibly
parallel, edges to its ray vertices. A k-wheel is a k-cycle, where each node is also connected
to an additional central node. Furthermore, we assume a graph representation that allows
efficient manipulation, such as an adjacency list with doubly-linked lists.

Drawings, Embeddings and Cyclic Orders. A (topological) drawing T of a graph is a
mapping of every vertex v to a point p, € R? in the plane and a mapping of every edge {u,v}
to a Jordan arc having p, and p, as endpoints. A drawing uniquely defines cyclic orders
of edges incident to the same vertex. Drawings with the same cyclic orders are considered
equivalent, their equivalence class is called (combinatorial) embedding. For an embedding &,
we use £(u) to denote the cyclic order of the edges incident to u as given by &, which is
also called the rotation of u. For a (cyclic) order o = (x1,...,zk) of k elements, we use
o = (T, ...,r1) to denote its reversal.

The Synchronized Planarity Problem. An instance is a tuple I = (G, P, Q,), where

1. G=(PUQ,E) is a (loop-free) multi-graph with P-vertices P and Q-vertices @,

2. Q is a partition of @,

3. ¢ is a mapping that assigns a rotation to each Q-vertex, and

4. P is a set of triples (u, v, pyy), where u and v are P-vertices of the same degree, @, is a
bijection between their incident edges, and each P-vertex occurs at most once in P.

We call the triples p = (u, v, @u,) in P pipes. Pipes are not directed and we identify (u,v, ©uy)

and (v, u, o) With @, = L. We also define deg(p) = deg(u) = deg(v). If two P-vertices

are connected by a pipe, we call them matched; all other P- and Q-vertices are unmatched.
The planar embedding &£ of G satisfies the cell X € Q if it is either £(v) = 1(v) for all

v € X or E(v) = (v) for all v € X. We say that the embedding satisfies the Q-constraints

if it satisfies all cells, that is, vertices in the same cell of the partition Q are consistently

oriented. The embedding & satisfies the pipe p = (u, v, Puy) if Yur(E(w)) = E(v), that is,

they have opposite rotations under the bijection ,,. We say that the embedding satisfies

the P-constraints if it satisfies all pipes. The embedding & is called wvalid if it satisfies the

P-constraints and the Q-constraints. The problem SYNCHRONIZED PLANARITY asks whether

a given instance I = (G, P, Q,) admits a valid embedding.

PQ-Trees and Embedding Trees. A P(Q-iree represents a set of circular orders of its leaves
by partitioning its inner nodes into two classes: For @-nodes the rotation of incident edges
is fixed up to reversal, for P-nodes, this order can be chosen arbitrarily. Rooted PQ-trees
have initially been studied by Booth and Lueker [9]. There is an equivalence between rooted
and unrooted PQ-trees [21], where the latter are also called PC-trees [25]. We thus do not
distinguish them and simply use the term PQ-trees. Note that a P-node with three or less
neighbors allows the same permutations as a Q-node of the same degree. We thus assume
P-nodes to have degree at least 4. We consider a PQ-tree trivial if it consists of a single
inner P-node (with at least four leaves). Otherwise, it consists of a single Q-node with at
least two leaves, or it contains at least two inner nodes, all of which have degree at least 3.

T. Blasius, S. D. Fink, and |. Rutter

For a vertex of a planar biconnected graph, all rotations induced by planar embeddings
can efficiently be represented by a PQ-tree [9]. This PQ-tree is also called the embedding
tree of the respective node. In the context of SYNCHRONIZED PLANARITY, we assume that
the embedding tree of a vertex does not allow rotations that would result in a Q-vertex v

having any other rotation than its default ordering ¢ (v) or its reverse ¢ (v). To ensure this,
we can subdivide each edge incident to v and connect each pair of two of the new nodes if the
edges they subdivide are consecutive in the cyclic order 1(v) [17]. Note that this generates
a k-wheel with center v and that there are exactly two planar rotations of the center of a
wheel, which are the reverse of each other. We always generate the embedding trees based
on the graph where each Q-vertex in G is temporarily replaced with its respective wheel.

Connected Components. A separating k-set is a set of k vertices whose removal increases the
number of connected components. Separating 1-sets are called cut-vertices, while separating
2-sets are called separation pairs. A connected graph is biconnected if it does not have a
cut-vertex. A biconnected graph is triconnected if it does not have a separation pair. Maximal
biconnected subgraphs are called blocks. A vertex that is not a cut-vertex and thus resides
within an unique block is called block-vertez.

Hopcroft and Tarjan [20] define a graph decomposition into triconnected components,
also called SPQR-tree [4], where the components come in three shapes: bonds consist of two
pole vertices connected by multiple parallel edges, polygons consist of a simple cycle, and
rigids, whose embeddings are unique up to reflection. Each edge of these components is either
real, representing a single edge of the original graph, or virtual, representing a subgraph.

Every planar embedding of a biconnected planar graph can be obtained from an arbitrary

planar embedding by flipping its rigids and reordering the parallel edges in its bonds [20].

The decomposition can be computed in linear time [18] and can be used to compute the
embedding trees in linear time [6, Section 2.5].

Splits and Joins of Graphs and Embeddings. Let G = (V,E) be a graph. We call a
partition C' = (X,Y) of V into two disjoint cells a cut of G. The edges E(C) that have
their endpoints in different cells are called cut edges. The split of G at C = (X,Y) is the
disjoint union of the two graphs obtained by contracting X and Y to a single vertex x and y,
respectively (keeping possible multi-edges); see Figure 1. Note that the edges incident to x
and y are exactly the cut edges, yielding a natural bijection ¢,y between them. Conversely,
given two graphs Gy = (V1, E1),Go = (Va, Es) and vertices € Vi, y € V, together with
a bijection ¢, between their incident edges, their join along ¢, is the graph G = (V, E),
where V =V, UV, \ {z,y} and E contains all edges of E; U Ey that are not incident to a or
y, and for each edge e = ux incident to z, F contains an edge uv, where v is the endpoint
of gy (e) distinct from y; see Figure 1. Observe that split and join are inverse operations.
We say that a planar embedding £ of a graph G respects a cut C = (X,Y) if and only if
for a topological planar drawing I" of G with embedding £ there exists a closed curve v such
that (i) v separates X from Y, (ii) vy crosses each edge in E(C) in exactly one point, and
(iii) v does not cross any edge in E \ E(C); see Figure 1. We say that « represents C' in T
If € respects C', a split at C' preserves £ as follows. Let G; and G2 be the graphs resulting

from splitting G at C and let x € V; and y € V5 such that ¢, identifies their incident edges.

Let T be a topological planar drawing with embedding £ and let v be a curve in I' that
represents C' in I'. We obtain planar drawings I'y and I'; of G; and G2 by contracting to
a single point the side of « that contains V5 and V;, respectively. We denote by £ and &,
the corresponding combinatorial embeddings of G; and G5. Note that by construction for

19:5

ESA 2021

19:6

Synchronized Planarity with Applications to Constrained Planarity Problems

join

O s
<

split

Figure 1 Joining and splitting two graphs at € V1 and y € V2. The bijection ¢4, between their
incident edges is shown as follows: the two bold edges at the bottom are mapped to each other. The
other edges are mapped according to their order following the arrow upwards (i.e. clockwise for x
and counter-clockwise for y).

each vertex of Vi \ {z} the rotations in £ and & coincide, and the same holds for vertices
of Vo \ {y} in € and &. Moreover, the rotations &£;(z) and & (y) are determined by the
order in which the edges of E(C) cross v, and therefore they are oppositely oriented, that is,
Yay(&r1(2)) = m We call embeddings &£ and &£ with this property compatible with ¢g,.

Conversely, we can join arbitrary embeddings £ of G; and & of G5 that are compatible
with ¢z, by assuming that x and y lie on the outer face, removing x and y from the
embeddings, and connecting the resulting half-edges according to ¢4,. The result is a planar

embedding £ where for each vertex v € V; \ {z,y} it is E(v) = &;(v) for i = 1,2.

» Lemma 1 (x). Let G = (V, E) be a planar graph and let (X,Y) be a cut of G such that X
and Y induce connected subgraphs of G. Then every planar embedding of G respects (X,Y).

» Lemma 2 (). Every planar embedding of a bipartite graph G = (AU B, E) respects (A, B).

3 The Synchronized Planarity Problem

We give an algorithm for solving SYNCHRONIZED PLANARITY for graphs with n vertices
and m edges in O(m?) time. Without loss of generality, we assume that G has no isolated
vertices and thus m € Q(n). Furthermore, we assume the input graph G to be planar.

3.1 High-Level Algorithm

Our approach hinges on three main ingredients. The first are the three operations Encap-
sulateAndJoin, PropagatePQ, and SimplifyMatching, each of which can be applied to
pipes that satisfy certain conditions. If an operation is applicable, it produces an equivalent
instance I’ of SYNCHRONIZED PLANARITY in linear time. Secondly we show that if none of
the operations is applicable, then I has no pipes, and we give a simple linear-time algorithm
for computing a valid embedding in this case. The third ingredient is a non-negative potential
function ¢ for instances of SYNCHRONIZED PLANARITY. We show that it is upper-bounded
by 2m, and that each of the three operations decreases it by at least 1.

Our algorithm is therefore extremely simple; namely, while the instance still has a pipe,
apply one of the operations to decrease the potential. Since the potential function is initially
bounded by 2m, at most 2m operations are applied, each taking O(m) time. We will show
that the resulting instance without pipes has size O(m?) and can be solved in linear time,
thus the total running time is O(m?).

Conversion of small-degree P-vertices. The main difficulty in SYNCHRONIZED PLANARITY
stems from matched P-vertices. However, P-vertices of degree up to 3 behave like Q-vertices
in the sense that their rotations are unique up to reversal. Throughout this paper, we

T. Blasius, S. D. Fink, and |. Rutter

(a) (b)

Figure 2 A matched cut-vertex (a) and the result of encapsulating it (b).

(a) (b) (c)

Figure 3 Two (encapsulated) matched cut-vertices (a). Depending on the mapping ¢, any
bipartite graph can result from joining them. For example, the graph (b) can result, which is
isomorphic to the square grid graph shown in (c).

implicitly assume that P-vertices of degree less than 4 are converted into Q-vertices, also
converting a pipe of degree less than 4 into a Q-constraint; see the full version for additional
details. We therefore assume without loss of generality that P-vertices, and in particular
pipes, have degree at least 4.

3.2 The EncapsulateAndJoin Operation

The purpose of the EncapsulateAndJoin operation is to communicate embedding restrictions
between two matched cut-vertices in two steps: First we encapsulate the cut-vertices into
their own independent star components, also disconnecting their incident blocks from each
other. In the second step, we join the stars. Figures 2 and 3 show an example.

For an instance I = (G, P, Q,%) of SYNCHRONIZED PLANARITY, let p = (u, v, py,) be a
pipe matching two cut-vertices u, v of two (not necessarily distinct) connected components
Cy,C, of G. Operation EncapsulateAndJoin (p,) can be applied resulting in an instance
I'=(G", P, Q") using the following two steps. We first preprocess both cut-vertices to
encapsulate them into their own separate star components. Let Cy, ..., Ck be the connected

components of C, — u. We split C,, along the cuts (V(C;),V \ V(C;)) for i = 1,...,k.

We denote the vertices resulting from the split along (V(C;),V \ V(C;)) as u; and uj},
where w; results from contracting V' \ V(C;) and] results from contracting V(C;). Note
that, after all splits, u is the center of a star C!, whose ray vertices are the u;. We add
the pipes (u;, uj, @uiug) for i =1,...,k; see Figure 2. The same procedure is also applied
to v, resulting in an intermediate instance I*. In the second step, we join the connected
components C!, and C! at u and v along the mapping ¢, of p into a component C,,. We
also remove the pipe p from I*; all other parts of the instance remain unchanged. Figure 3
shows a possible result of joining two stars.

19:7

ESA 2021

19:8

Synchronized Planarity with Applications to Constrained Planarity Problems

(b)

Figure 4 A block-vertex u matched with vertex v (a); the bijection ¢, maps the bold edge of u
to the bold edge of v, the remaining edges are mapped according to their order, clockwise around
u and counter-clockwise around v. The result of applying PropagatePQ (u,I) (b). Note that the
second inserted tree T, is mirrored with respect to T,,. Q-vertices and -nodes are drawn as squares
while P-vertices and -nodes are drawn as disks.

» Lemma 3. Applying EncapsulatedndJoin to a pipe p yields an equivalent instance in
O(deg(p)) time.

Proof. By Lemma 1, a valid embedding £ of an instance I respects each of the cuts
(V(Cy),V\V(Cy)) for i = 1,..., k, yielding a planar embedding £* of I*. By construction, it
is £*(u;) = E*(u}) for i = 1,...,k, that is, each new pipe (u;, u}, Pu;ur) 18 satisfied and £ is

a valid embedding of I*. Conversely, if £* is a valid embedding of I*, we can join u; with w;
for i=1,...,k to obtain a valid planar embedding & of I, as the pipe (u;, u}, ¢y,./) ensures
that £* is compatible with Puu;- The same applies to C,.

If £* is a valid embedding for I*, it satisfies the pipe (u,v, puy) and we can join the
embedding at u and v via ¢, to obtain a planar embedding £ of G’. Since the rotations
of vertices different from u,v are unaffected, £’ is valid for I’. Conversely, assume that &’
is a valid embedding for I’. Note that joining two stars at their centers yields a bipartite
graph consisting of the rays of the former stars. Thus Cy, is bipartite, and by Lemma 2
every embedding respects the cut of the bipartition. Thus, we can split £ and obtain a valid
embedding of I*.

As the operation affects exactly the edges incident to v and v and potentially creates a
new structure with size proportional to their number, its running time is linear in the degree
of the affected pipe. |

Observe that this operation replaces a pipe and two cut-vertices by smaller pipes and
smaller cut-vertices, respectively. Through multiple applications of EncapsulateAndJoin we
can thus step by step decrease the degree of cut-vertex-to-cut-vertex pipes, until there are
none left in the instance. Note that EncapsulateAndJoin can yield an arbitrary bipartite
component. If the component is non-planar, we abort and report a no-instance.

3.3 The PropagatePQ Operation

The operation PropagatePQ communicates embedding restrictions of a biconnected compo-
nent across a pipe. These restrictions are represented by the embedding tree of the matched
P-vertex of interest. Both endpoints of the pipe are replaced by copies of this tree. To ensure
that both copies are embedded in a compatible way, we synchronize their inner nodes using
pipes and Q-constraints; see Figure 4.

T. Blasius, S. D. Fink, and |. Rutter

For an instance I = (G, P, Q, 1) of SYNCHRONIZED PLANARITY, let u be a block-vertex
matched by a pipe p = (u, v, puy). If the embedding tree T, of u is non-trivial (i.e., it not
only consists of a single P-node), then the operation PropagatePQ (u,I) can be applied,
resulting in an instance I’ = (G', P, Q',4’) as follows. We turn the PQ-tree T, into a tree Ty,
by interpreting Q-nodes as Q-vertices and P-nodes as P-vertices. To construct G’ from G, we
replace u with T, by reconnecting the incident edges of u to the respective leaves of T,,. We
also replace v by a second copy T, of T,, by reconnecting an edge e incident to v to the leaf
of T that corresponds to ¢, (e). For a vertex a of T;, we denote the corresponding vertex of
T, by o'. For an edge af of T, we define 7,7/ () = o/B’. For each Q-vertex a of Ty, we
define ¢’ (a) according to the rotation of the corresponding Q-node in 7,. For the Q-vertex
o of T}, we define ¢’ (o) = @1, 7/ (¢'(v)). For all other Q-vertices of I, ¢’ coincides with
1. We define the partition @' = QU {{a, &'} | @ is a Q-vertex of T, }. For each P-vertex o
of Ty, we define a pipe po = (@, @/, Yaar) With @aar(e) = 1,17 (€) for each edge e incident
to a. Finally, we define the matching P’ = (P \ {p}) U {pa | « is a P-vertex of T, }.

» Lemma 4 (x). Applying PropagatePq to a block-verter u with a non-trivial embedding
tree yields an equivalent instance. If the embedding tree T, is known, operation PropagateP
runs in O(deg(u)) time.

Note that the tree T}, inserted instead of v may not be compatible with the rotations of v.
In this case, the component becomes non-planar, potentially causing the later generation of
an embedding tree to fail. We can then immediately report a no-instance.

Observe that since we assume 7, to be non-trivial, the degrees of all P-vertices in T, and
T are strictly smaller than the degree of . Thus, by repeatedly applying PropagatePQ, we
eventually arrive at an equivalent instance where all matched block-vertices have a trivial
embedding tree. Also note that if 7, consists of a single Q-node, PropagatePQ effectively
replaces the affected pipe by two Q-vertices in the same partition. The case where 7T, is
trivial and thus consists of a single P-node is handled by the next operation.

3.4 The SimplifyMatching Operation

The remaining operation is SimplifyMatching, which is used to resolve pipes where one
side has no restrictions to be communicated to the other side. This is the case when one of
the two matched vertices is a pole of a bond that allows arbitrary rotation. We distinguish
three cases: i) bonds where one pole can always mimic the rotation of the other, ii) bonds
where the pipe synchronizes one pole with the other (similar to the toroidal instances of
Fulek and Téth [15]), and iii) bonds that link two distinct pipes.

For an instance I = (G, P, Q,) of SYNCHRONIZED PLANARITY, let u be a block-vertex
of G whose embedding tree is trivial and that is matched by a pipe p. Then, its embedding is
determined by exactly one triconnected component i, which is a bond.® Thus u is the pole
of bond i, and we call the vertex v that is the other pole of u the partner of u. If v is either
unmatched or a block-vertex with a trivial embedding tree, the operation SimplifyMatching
(u, I) can be applied, resulting in an instance I’ = (G', P’, @', 1) as follows. Note that, due
to the temporary replacement of Q-vertices by wheels when computing the embedding trees,
v cannot be a Q-vertex, as that would make the PQ-tree of u contain a Q-node.

(i) If v is an unmatched P-vertex (Figure 5a), I’ is obtained from I by removing p.

3 as a second bond would cause another P-node in the embedding tree, a rigid would cause a Q-node and

polygons do not affect the embedding trees [6, Section 2.5]

19:9

ESA 2021

19:10

Synchronized Planarity with Applications to Constrained Planarity Problems

-

p P .
(a) (b) (c)

Figure 5 The three cases of the SimplifyMatching operation. In Case i (a) and Case ii (b), the
pipe p is removed. In Case iii (c) the pipes p, p’ are replaced by pipe p*.

(ii) If p matches u with v, it connects the two poles of the bond u (Figure 5b). Note that
the embedding trees of v and v both contain a P-node of the same degree representing
w1 and the pipe now requires both v and v to have the same degree. Thus, as u has a
trivial embedding tree, v also has a trivial embedding tree. The rotation of the vertices
is thus exclusively determined by the embedding of the bond and there are bijections d,
and ¢, between the edges incident to u and v, respectively, and the virtual edges within
the bond. We now check that these bijections are compatible with the bijection ¢,
given by the pipe. Let §,, = d, ! 04, be a bijection between the edges incident to v and
the edges incident to u, and let ™ = @y, 0 dy, be a permutation of the edges incident
to v. If all cycles of 7 have the same length, I’ is obtained from I by removing p.*
Otherwise, I is an invalid instance and we set I’ to a trivial no-instance.

(iii) If v is matched with a P-vertex v’ # wu via pipe p’ = (v,v’,pu), let v/ be the
other endpoint of p = (u,u, puw). We remove p and p’ and add the new pipe
p* = (W, V' pury) With @y = @uur © Sy © Pura; see Figure 5e.

» Lemma 5 (x). Applying SimplifyMatching to a block-vertex u with a trivial embedding
tree yields an equivalent instance in O(deg(u)) time.

3.5 Reduced and Pipe-Free Instances

With our exposition of the fundamental operations complete, we now study how to solve
instances where none of those operations can be applied. We call such instances reduced.

» Lemma 6. An instance is reduced if and only if it contains no pipes.

Proof. Obviously, a pipe-free instance is reduced. Conversely, consider a reduced instance I.
Assume, for the sake of contradiction, that I contains a pipe. We now show that this implies
that one of the operations is applicable, that is, I is not reduced.

Assume that I contains no matched cut-vertices and thus all matched vertices are block-
vertices. If there is a matched P-vertex with a non-trivial embedding tree, PropagatePQ can
be applied. Otherwise, all matched P-vertices are block-vertices with trivial embedding trees
and SimplifyMatching can be applied.

Now let u be a matched cut-vertex of maximum degree that is matched to a vertex v
by a pipe p. If v is also a cut-vertex, we can apply EncapsulateAndJoin. If v is a
block-vertex with a non-trivial embedding tree, we can apply PropagatePQ. Therefore, v
must be a block-vertex with a trivial embedding tree. Now we can apply SimplifyMatch-
ing, unless the partner pole v/ of v is a matched cut-vertex. This is however excluded,

4 If all cycles of 7 have the same length, 7 is order preserving and it is 7(O) = O for any sequence O. See
[6, Lemma 2.2] or the proof to the following Lemma 5 in the full version for more details.

T. Blasius, S. D. Fink, and |. Rutter

since deg(u) = deg(v) < deg(v’), contradicting the maximality of deg(w). The last inequality
follows from the fact that deg(v) < deg(v’) already holds in the block of G that contains v
and v/, but as v’ is a cut-vertex, it has at least one neighbor outside that block. <

To solve instances without pipes in linear time, note that a planar embedding of such
an instance is valid if and only if it satisfies the Q-constraints. As Q-vertices only have a
binary choice for their rotation, it is relatively easy to synchronize them via a 2-SAT formula.
Linear-time algorithms follow from, e.g., [6], and can also be obtained from techniques similar
to those used by Fulek and T6th [15] for cubic graphs. For the sake of completeness, we
present a self-contained solution in the full version.

» Lemma 7 (). An instance of SYNCHRONIZED PLANARITY without pipes can be solved in
O(m) time. A valid embedding can be computed in the same time, if it exists.

3.6 Finding a Reduced Instance

As mentioned above, we exhaustively apply the operations EncapsulateAndJoin, Propa-
gatePQ, and SimplifyMatching. We claim that this algorithm terminates and yields a
reduced instance after a polynomial number of steps. The key idea is that the operations
always make progress by either reducing the number of pipes, or by splitting pipes into pipes
of smaller degree. This suggests that, eventually, we arrive at an instance without pipes.
However, there are two caveats. First, the encapsulation in the first step of Encapsulate-
AndJoin creates new pipes and thus has the potential to undo progress. Second, the smaller
pipes resulting from splitting a pipe with PropagatePQ might cause further growth of the
instance, potentially causing a super-polynomial number of steps.

We resolve both issues by using a more fine-grained measure of progress in the form
of a potential function. To overcome the first issue, we show that for each application of
EncapsulateAndJoin, the progress that is undone in the first step is outweighed by the
progress made through the following join in the second step. Similarly, for the second issue,
we show that the sum of the parts is no bigger than the whole when splitting pipes.

As P-vertices of degree 3 or less are converted to Q-vertices (see Section 3.1), we use
deg*(u) = deg*(v) = deg*(p) = max{deg(z) — 3,0} to denote the number of incident edges
that keep a P-vertex u (and also the other endpoint v of its pipe p = (u,v, @u,)) from
becoming converted to a Q-vertex. We also partition the set of all pipes P into the two cells
Poc and Pg = P\ Pece, where Poe contains all pipes where both endpoints are cut-vertices.
We define the potential of an instance I as ®(1) = > cp, deg*(p) + > cp.. (2deg®(p) — 1).
We show that the operations always decrease this potential.

» Lemma 8 (x). For an instance I = (G, P, Q,) of SYNCHRONIZED PLANARITY and an
instance I' = (G',P’, Q',4’) that results from application of either EncapsulateAndJoin,
PropagateP or SimplifyMatching to I, the following three properties hold:
(i) The potential reduction AP = &(I) — ®(I') is at least 1.
(ii) The number of nodes added to the graph satisfies AV = |V (G")| - |[V(G)] < 2-AD+12.
(iii) If the operation replaces a connected component C by one or multiple connected compo-
nents, then each such component C' satisfies AE(C) = |E(C")| — |E(C)| < 2- Ad.

Proof Sketch. We now analyze the effects of EncapsulateAndJoin on these three measures.
The operations PropagatePQ and SimplifyMatching are discussed in the full version.
Operation EncapsulateAndJoin (p, I) in the first step encapsulates both cut-vertices u, v
to their own star components. For each block incident to u, this introduces two new vertices
that are connected by a new pipe. Let d, ..., dx be the degrees of the k > 2 ray vertices of

19:11

ESA 2021

19:12

Synchronized Planarity with Applications to Constrained Planarity Problems

u after the encapsulation. As one end of the added pipes is a block-vertex, the potential is
increased by Zle max{d; — 3,0}. Likewise, the pipes of the k" rays with degrees d}, ..., d},
around v increase the potential by Zf;l max{d;—3,0}. Using deg(p) = Zle d; = Zf;l d, =
D > 3 it is deg*(p) = max{D — 3,0} = D — 3. In the second step, removing p connecting two
cut-vertices together with its endpoints reduces the potential by 2deg*(p) — 1 and we thus
get A = 2-(D—-3)—1 — Zle max{d; — 3,0} — Ziil max{d} —3,0}. In the full version,
we show that this yields A® > 1 as claimed by (i). As the encapsulation generates two
vertices for each ray and the join removes two vertices, we have AV = 2k + 2k’ — 2. We also
show that claim (ii) holds as AV < 2. (A® + 6). In the first step of EncapsulateAndJoin,
two new components with deg(u) = deg(v) edges each are added, which are then combined
in the second step, yielding a new component with Zle d; edges. This is no larger than the

components of u or v as required for (iii). <

With this lemma, we know that each step decreases the potential by at least 1 with-
out growing the graph too much. As each vertex contributes at most twice its degree,
initially ®(I) < 2m. This can then be used to bound the size of instances resulting from
applying multiple operations consecutively and finally to bound the time required to find a
solution for an instance.

» Theorem 9 (x). SYNCHRONIZED PLANARITY can be solved in O(m?) time.

Proof Sketch. By Lemma 8 the potential function decreases with each applied operation.
As initially ®(I) < 2m, a reduced instance I’ is reached after k& < 2m operations. It can be
shown that each connected component of I’ has O(m) edges, allowing an embedding tree to
be computed in O(m) time. Each of the k operations runs in linear time once the PQ-tree it
requires is available. In total, it thus takes O(m?) time to reach a reduced instance. As its
size is also in O(m?), Lemma 7 can be applied to find a solution in O(m?) time. <

4 Conclusion

We have given a quadratic-time algorithm for SYNCHRONIZED PLANARITY, which improves
the previous O(n®)-time algorithm for the linear-time equivalent problem ATOMIC EMBED-
DABILITY [15]. Similar to Goldberg and Tarjan’s push-relabel algorithm, it relies on few and
simple operations that can be applied pretty much in an arbitrary order. This highlights
where and how progress is made and thereby clearly exposes key ideas that also underlie the
algorithm for AToMiC EMBEDDABILITY. For a direct comparison of the approaches, we refer
to the full version.

The applications of SYNCHRONIZED PLANARITY include solving CLUSTERED PLANARITY,
Aromic EMBEDDABILITY, CONNECTED SEFE and PARTIALLY PQ-CONSTRAINED PLA-
NARITY in quadratic time, thanks to linear-time reductions to SYNCHRONIZED PLANARITY
for all of them described in the full version. This improves over the previously fastest
algorithms via the O(n®)-time algorithm for ATOMIC EMBEDDABILITY. In the case of CON-
NECTED SEFE the reduction used in [15] includes a quadratic blowup and therefore yields
an O(n'%)-algorithm. Our direct linear-time reduction leads to a quadratic algorithm.

—— References

1 Hugo A. Akitaya, Radoslav Fulek, and Csaba D. T6th. Recognizing weak embeddings of
graphs. ACM Transactions on Algorithms, 15(4):1-27, 2019. doi:10.1145/3344549.

2 Patrizio Angelini and Giordano Da Lozzo. SEFE = c-planarity? The Computer Journal,
59(12):1831-1838, 2016. doi:10.1093/comjnl/bxw035.

https://doi.org/10.1145/3344549
https://doi.org/10.1093/comjnl/bxw035

T. Blasius, S. D. Fink, and |. Rutter

10

11

12

13

14

15

16

17

18

19

20

Patrizio Angelini and Giordano Da Lozzo. Clustered planarity with pipes. Algorithmica,
81(6):2484-2526, 2019. doi:10.1007/s00453-018-00541-w.

Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected components
with SPQR-trees. Algorithmica, 15(4):302-318, 1996. doi:10.1007/b£01961541.

Thomas Blédsius, Annette Karrer, and Ignaz Rutter. Simultaneous embedding: Edge or-
derings, relative positions, cutvertices. Algorithmica, 80(4):1214-1277, 2017. doi:10.1007/
s00453-017-0301-9.

Thomas Blésius and Ignaz Rutter. Simultaneous PQ-ordering with applications to constrained
embedding problems. ACM Trans. Algorithms, 12(2):16:1-16:46, 2016. doi:10.1145/2738054.

Thomas Bléasius, Stephen G. Kobourov, and Ignaz Rutter. Simultaneous embedding of planar
graphs. In Roberto Tamassia, editor, Handbook of Graph Drawing and Visualization, chapter 11,
pages 349-381. CRC Press, Taylor & Francis Group, 2013. arXiv:1204.5853.

Thomas Blasius and Ignaz Rutter. A new perspective on clustered planarity as a combinatorial
embedding problem. Theoretical Computer Science, 609:306-315, 2016. doi:10.1016/j.tcs.
2015.10.011.

Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System
Sciences, 13(3):335-379, 1976. doi:10.1016/s0022-0000(76)80045-1.

Johannes Carmesin. Embedding simply connected 2-complexes in 3-space — V. A refined
Kuratowski-type characterisation. CoRR, 2017. arXiv:1709.04659v3.

Pier Francesco Cortese, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani, and
Maurizio Pizzonia. C-planarity of c-connected clustered graphs. Journal of Graph Algorithms
and Applications, 12(2):225-262, 2008. doi:10.7155/jgaa.00165.

Pier Francesco Cortese and Maurizio Patrignani. Clustered planarity = flat clustered planarity.
In Therese C. Biedl and Andreas Kerren, editors, Proceedings of the 26th International
Symposium on Graph Drawing and Network Visualization (GD’18), volume 11282 of LNCS,
pages 23-38. Springer, 2018. doi:10.1007/978-3-030-04414-5_2.

Qing-Wen Feng, Robert F. Cohen, and Peter Eades. Planarity for clustered graphs. In Paul G.
Spirakis, editor, Proceedings of the 3rd Annual European Symposium on Algorithms (ESA’95),
volume 979 of LNCS, pages 213—-226. Springer, 1995. doi:10.1007/3-540-60313-1_145.
Radoslav Fulek, Jan Kyn¢l, Igor Malinovi¢, and Démo6tor Palvolgyi. Clustered planarity
testing revisited. The Electronic Journal of Combinatorics, 22(4), 2015. doi:10.37236/5002.
Radoslav Fulek and Csaba D. Téth. Atomic embeddability, clustered planarity, and thicken-
ability. In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’20), pages 2876-2895. SIAM, 2020. doi:10.1137/1.9781611975994.175.

Carsten Gutwenger, Michael Jinger, Sebastian Leipert, Petra Mutzel, Merijam Percan,
and René Weiskircher. Advances in c-planarity testing of clustered graphs. In Stephen G.
Kobourov and Michael T. Goodrich, editors, Proceedings of the 10th International Symposium
on Graph Drawing (GD’02), volume 2528 of LNCS, pages 220-235. Springer, 2002. doi:
10.1007/3-540-36151-0_21.

Carsten Gutwenger, Karsten Klein, and Petra Mutzel. Planarity testing and optimal edge
insertion with embedding constraints. Journal of Graph Algorithms and Applications, 12(1):73—
95, 2008. doi:10.7155/jgaa.00160.

Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-trees. In Joe
Marks, editor, Proceedings of the 8th International Symposium on Graph Drawing (GD’00),
volume 1984 of LNCS, pages 77-90. Springer, 2000. doi:10.1007/3-540-44541-2_8.

F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput.,
4(3):221-225, 1975. doi:10.1137/0204019.

John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135-158, 1973. doi:10.1137/0202012.

19:13

ESA 2021

https://doi.org/10.1007/s00453-018-00541-w
https://doi.org/10.1007/bf01961541
https://doi.org/10.1007/s00453-017-0301-9
https://doi.org/10.1007/s00453-017-0301-9
https://doi.org/10.1145/2738054
http://arxiv.org/abs/1204.5853
https://doi.org/10.1016/j.tcs.2015.10.011
https://doi.org/10.1016/j.tcs.2015.10.011
https://doi.org/10.1016/s0022-0000(76)80045-1
http://arxiv.org/abs/1709.04659v3
https://doi.org/10.7155/jgaa.00165
https://doi.org/10.1007/978-3-030-04414-5_2
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.37236/5002
https://doi.org/10.1137/1.9781611975994.175
https://doi.org/10.1007/3-540-36151-0_21
https://doi.org/10.1007/3-540-36151-0_21
https://doi.org/10.7155/jgaa.00160
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1137/0204019
https://doi.org/10.1137/0202012

19:14

Synchronized Planarity with Applications to Constrained Planarity Problems

21

22

23

24

25

26

Wen-Lian Hsu. PC-trees vs. PQ-trees. In Jie Wang, editor, Proceedings of the 7th Annual
International Conference on Computing and Combinatorics (COCOON’01), volume 2108 of
LNCS, pages 207-217. Springer, 2001. doi:10.1007/3-540-44679-6_23.

Thomas Lengauer. Hierarchical planarity testing algorithms. Journal of the ACM, 36(3):474—
509, 1989. doi:10.1145/65950.65952.

L. Neuwirth. An algorithm for the construction of 3-manifolds from 2-complexes. Mathematical
Proceedings of the Cambridge Philosophical Society, 64(3):603-614, 1968. doi:10.1017/
S0305004100043279.

Marcus Schaefer. Toward a theory of planarity: Hanani-tutte and planarity variants. Journal
of Graph Algorithms and Applications, 17(4):367-440, 2013. doi:10.7155/jgaa.00298.
Wei-Kuan Shih and Wen-Lian Hsu. A new planarity test. Theoretical Computer Science,
223(1-2):179-191, 1999. doi:10.1016/s0304-3975(98)00120-0.

Roberto Tamassia, editor. Handbook of Graph Drawing and Visualization. CRC Press, Taylor
& Francis Group, 2014. doi:10.1201/b15385.

https://doi.org/10.1007/3-540-44679-6_23
https://doi.org/10.1145/65950.65952
https://doi.org/10.1017/S0305004100043279
https://doi.org/10.1017/S0305004100043279
https://doi.org/10.7155/jgaa.00298
https://doi.org/10.1016/s0304-3975(98)00120-0
https://doi.org/10.1201/b15385

	1 Introduction
	1.1 Technical Contribution
	1.2 Related Work

	2 Preliminaries
	3 The Synchronized Planarity Problem
	3.1 High-Level Algorithm
	3.2 The EncapsulateAndJoin Operation
	3.3 The PropagatePQ Operation
	3.4 The SimplifyMatching Operation
	3.5 Reduced and Pipe-Free Instances
	3.6 Finding a Reduced Instance

	4 Conclusion

