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Abstract. In this work, we present highly efficient mixed precision
GPU-implementations of an Incomplete Sparse Approximate Inverse
(ISAI) preconditioner for general non-symmetric matrices and a Factor-
ized Sparse Approximate Inverse (FPSAI) preconditioner for symmetric
positive definite matrices. While working with full double precision in
all arithmetic operations, we demonstrate the benefit of decoupling the
memory precision and storing the preconditioner in a more compact low
precision floating point format to reduce the memory access volume and
therefore preconditioner application time.
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1 Introduction

The solution of large sparse linear systems Ax = b is a ubiquitous problem
in scientific computing applications, with iterative solvers like Krylov subspace
methods being often the tool of choice. In practice, these iterative solvers are
usually combined with preconditioners to improve their convergence behavior. In
particular for ill-conditioned matrices A, transforming the linear system with an
appropriate preconditioner M into an equivalent, (left-)preconditioned system
MAx = Mb can lead to great convergence and runtime improvements.

An efficient preconditioner is an approximation M ≈ A−1 such that MA has
a lower condition number than A and the Krylov method needs fewer iterations
to converge. For this approach to be efficient in the execution-time metric, the
overhead of generating and applying the preconditioner has to be smaller than
the runtime improvement from accelerated convergence. Most Krylov methods
allow for a high degree of parallelization, so considering the increasingly large
amount of parallel resources available on modern manycore CPUs and GPUs,
efficient preconditioners do not only need to provide good approximation prop-
erties, but also take advantage of massively parallel hardware.



The (left) Incomplete Sparse Approximate Inverse (ISAI) preconditioner [7]
computes a sparse approximation M on the inverse of A by ensuring the ISAI-
property (MA−I)S = 0 holds on a given sparsity pattern S, which is commonly
chosen based on the sparsity pattern of A. The ISAI preconditioner offers a lot
of parallelism in the generation phase, as every row of the preconditioner can
be computed independently, and its application is a simple sparse matrix-vector
product (SpMV).

In scientific simulations, very often one wants to solve symmetric positive
definite (spd) linear systems. Among the most efficient solvers for spd problems
is the Conjugate Gradient (CG) method. Unfortunately, the ISAI preconditioner,
as well as other sparse approximate inverse preconditioners generally do not
preserve the symmetry of the input matrix [7,11]. However, a slight modification
turns the ISAI preconditioner into the Factorized Sparse Approximate Inverse
preconditioner (commonly referred to as FSPAI) as presented in [12]. Being an
approximation to the exact Cholesky factorization, the FSPAI preconditioner
preserves the spd-ness of the system matrix in the preconditioner, and therewith
can be used in conjunction with the CG method to solve the preconditioned
system. The downside is that applying the FSPAI preconditioner requires two
SpMV operations per iteration instead of one when using ISAI preconditioning.

On modern hardware architectures, the performance of sparse linear algebra
kernels is typically limited by memory bandwidth, less so by compute power.
That is, the memory access volume in combination with the main memory band-
width determines the execution time of an algorithm. To address this bottleneck,
Anzt et al. [6] proposed to decouple the memory precision format from the arith-
metic precision format via a memory accessor, practically compressing all data
in memory before and after performing arithmetic operations in the processor
registers. They propose to perform all arithmetic operations in the natively-
supported IEEE 754 double precision format, but to use more compact and
imprecise formats to store and read the numerical values. As long as the object
can tolerate some compression-induced rounding errors, using this strategy can
significantly reduce the runtime of memory-bound algorithms. In this work, we
adopt the strategy of decoupling the memory precision from the arithmetic pre-
cision and a memory accessor implementation [3] available in Ginkgo [2] for ISAI
and FSPAI preconditioning. We always compute and apply the preconditioners
in double precision, but utilize the memory accessor to use a lower precision
format for the memory operations.

For introducing the idea of mixed precision ISAI and FSPAI preconditioning,
presenting the respective software realizations, and demonstrating the practical
benefits in a performance analysis on high-end GPUs, the rest of this paper is
structured as follows. In Sect. 2 we revisit the ISAI algorithm as presented in [7].
Section 3 describes the extension of this approach to FSPAI preconditioners for
spd problems as introduced in [12]. We present an efficient GPU-implementation
of the preconditioner generation in Sect. 4.1 before explaining how we make use
of mixed precision in the preconditioner application with a memory accessor
in Sect. 4.2. In Sect. 5, we demonstrate the practical usability and performance



advantages in an experimental evaluation using various test problems from the
SuiteSparse Matrix Collection [1]. We summarize our results and give an outlook
on future research in Sect. 6.

2 Incomplete Sparse Approximate Inverses for General
Matrices

A popular technique for preconditioning sparse linear systems is based on incom-
plete factorizations: We can approximate the factorization A ≈ L ·U with sparse
triangular factors L and U with only a subset of the fill-in that is usually intro-
duced by a full LU factorization. This incomplete factorization is required to be
exact only on a certain sparsity pattern S (e.g. the sparsity pattern of Ak for
ILU(k)), meaning

(LU)ij = Aij ∀(i, j) ∈ S. (1)

A bottleneck in using incomplete factorization preconditioners on parallel
architectures is that the generation of the triangular factors is an inherently
sequential process, with a long critical path and parallelism only existing in the
form of smaller sets of unknowns that can be computed independently (level
scheduling [14]). Applying an incomplete factorization preconditioner involves
solving two triangular systems via forward and backward substitution, which
again exposes very limited parallelism. The Incomplete Sparse Approximate
Inverse (ISAI [7]) algorithm was initially suggested to accelerate the application
of incomplete factorization preconditioners. It replaces the forward and backward
triangular solves by a matrix-vector multiplication with the approximate inverses
of L and U . The approximation is called incomplete since we again require the
inverse to be exact only on a limited sparsity pattern S. While replacing for-
ward and backward substitution with the ISAI application greatly accelerate the
application phase of incomplete sparse approximate inverse preconditioners, the
bottleneck of computing the incomplete factorizations in the first place remains.
However, the ISAI can also be computed for general matrices. This allows gen-
erating the ISAI preconditioner for the system matrix itself, therewith skipping
the factorization generation and further reducing the preconditioner application
cost to one SpMV per iteration.

Building on the incompleteness property (1), for a given sparsity pattern S,
we define the ISAI property as

(MA − I)S = 0 :⇔ (MA − I)i,j = 0 ∀(i, j) ∈ S. (2)

In the following, we will assume that the preconditioner sparsity pattern is
given by a power of A, i.e. that S(M) = S(Ak) for some k ∈ N. With I :=
{j | (i, j) ∈ S(M)} being the sparsity pattern of the i-th row of M , the ISAI
property (2) can be rewritten as

∑

k∈I
mikakj = δij for all j ∈ I. (3)



This equation is equivalent to the linear system M(i, I)A(I, I) = I(i, I)
where I is the n × n identity matrix. To compute the preconditioner M , we
transpose the requirement and solve n (typically small) independent linear sys-
tems Ãxi = b with Ãi = AT (I, I) and b = I(I, i), i = 1, ..., n. For convenience,
we provide the algorithmic description for computing the ISAI preconditioner
for a general matrix A by solving n independent linear systems via the Gauss-
Jordan-Elimination in Listing 1.1.

Listing 1.1. Algorithm computing the (left) ISAI preconditioner for an n × n square
matrix A on a given sparsity pattern S.

1 % Pa r a l l e l For−Loop
2 f o r i =1:n
3 % Extract nonzero i n d i c e s o f i−th row o f A.
4 I = nonz e r o i nd i c e s (A( i , : ) ) ;
5 sma l l dense = transpose (A) ( I , I ) ;
6 % The r i gh t hand s i d e i s composed o f the r e l e van t
7 % en t r i e s o f the i−th un i t vec tor .
8 b = id en t i t y (n) ;
9 b = b( I , i ) ;

10 % Solve smal l systems with Gauss−Jordan−El iminat ion .
11 x = smal l dense \ b ;
12 M( i , I ) = transpose (x ) ;
13 end

Note that for the preconditioner to be well-defined, all Ãi need to be non-
singular. This is a strong requirement that is not fulfilled in general for non-
symmetric matrices A. At the same time, our experimental evaluation in Sect. 5
reveals that in practice, this strategy succeeds for many systems, providing sig-
nificant convergence improvement.

3 Factorized Sparse Approximate Inverses for SPD
Matrices

We have seen that computing the ISAI preconditioner for general matrices
requires all Ãi systems to be non-singular. While this requirement is fulfilled
for an spd matrix A, the preconditioner matrix M resulting from applying the
ISAI Algorithm (Listing 1.1) to an spd matrix is generally not again spd. In con-
sequence, it is not possible to use the general ISAI preconditioner in combination
with a CG solver that heavily relies on the spd property. A workaround is to
compute an approximation to the (unknown) exact Cholesky factor A = CCT .
As we will review next, this Factorized Sparse Approximate Inverse (FSPAI [12])
preserves the spd-ness of the system matrix in the preconditioner.

For that, let A = CCT be the exact Cholesky factorization of A. Computing
an ISAI of C on the sparsity pattern of the lower triangular part of A, S(tril(A))
requires computing a matrix L with

LC = I on S(tril(A)). (4)



Obviously, with C being unknown, this is not possible. However, multiplying
CT to (4) from the right yields

LCCT = LA = CT on S(tril(A)). (5)

With S(C) only containing nonzero entries on the lower triangular part, this
only puts restrictions on the main diagonal of L. While the diagonal entries of C
are generally not available information, (5) is equivalent to computing an ISAI
of A on S(C) up to diagonal scaling. Imposing the diagonal part of the ISAI
condition (2) on the complete spd preconditioned system LCCTLT = LALT

yields the requirements

(LA)i,j = 0, (i, j) ∈ S(tril(A)), i �= j and (6)
(LALT )i,i = 1, i = 1, ..., n (7)

for computing the FSPAI of A. Given the similarity between the ISAI and the
FSPAI conditions, the FSPAI preconditioner can be computed efficiently with
a modified ISAI implementation that appends diagonal scaling, see Listing 1.2.
The computed triangular matrix L can then be used to transform the original
system into a preconditioned system while preserving the spd property:

LTLAx = LTLb. (8)

In practice, the FSPAI preconditioner can thus be implemented in the CG iter-
ative solver as two matrix-vector multiplications with the FSPAI preconditioner
L and LT , respectively.

Listing 1.2. Algorithm computing an FSPAI preconditioner for a n×n spd matrix A
on the sparsity pattern of tril(A).

1 L = i s a i (A) ; % on S( t r i l (A) )
2 D = diag (L) ;
3 D = 1 ./ sq r t (D) ;
4 L = D ∗ L ;

4 Mixed Precision Incomplete and Factorized
Approximate Inverse Preconditioners on GPUs

4.1 Generating the ISAI and FSPAI Operators

As discussed in Sect. 2, all rows of the preconditioner matrix M can be com-
puted in parallel. For rows containing only a few nonzeros, the correspond-
ing linear systems are of small size and can be solved efficiently via Gauss-
Jordan elimination [5]. For rows containing many nonzeros, this approach quickly
becomes unattractive due to the exploding computational cost and dense storage
requirements of the Gauss-Jordan elimination. Therefore, we distinguish between
“short” and “long” rows, treating them differently in the preconditioner gener-
ation.



Fig. 1. Preconditioner generation of an ISAI preconditioner matrix M for a square,
non-symmetric matrix A. The considered sparsity pattern for M is chosen to equal the
sparsity pattern of A. For visualization purposes, the warp size is presumed to be 4.

To compute the ISAI of a matrix A stored in CSR format, the GPU imple-
mentation visualized in Fig. 1 launches one warp of size WarpSize (32 threads for
NVIDIA GPUs) per row of A. The number of nonzeros in each row can simply
be derived as the difference of the consecutive row pointer entries. Depending
on the nonzero count, the computation of the values in this row is handled via
a direct or an iterative method:

(a) ≤ WarpSize nonzeros: Batched Gauss-Jordan Elimination with row
pivoting. The warp extracts the small local linear system into shared mem-
ory, each thread handling one row. After solving the local system via batched
Gauss-Jordan elimination [5], the solution is written out to the precondi-
tioner matrix.

(b) > WarpSize nonzeros: Block-Jacobi preconditioned GMRES. The
warp records the row id and the nonzero count for later processing.

To extract the rows and columns belonging to the small local system, we use
an in-register implementation of the MergePath parallel merging algorithm [10]
to find matching entries (i, j) between the current preconditioner row i and all
corresponding rows j defining the extracted block. This strategy storing the block
in row-major order for efficient processing via the Gauss-Jordan elimination
avoids the otherwise necessary transposition of the local system matrix in shared
memory.

After this step, all short rows of the preconditioner have been computed,
and the algorithm has to process the long rows. Using the row IDs and the
nonzero counts, we generate a block-diagonal “excess system” matrix placing



all local systems as a block on the main diagonal. This excess system is then
approximately solved via a GMRES solver preconditioned with a block-Jacobi
preconditioner, therewith making use of the excess system’s inherent block struc-
ture. Finally, the solution is again split up and scattered into the corresponding
preconditioner rows. Even though this strategy allows for also handling rows
with nonzero counts larger than the warp size, this approach becomes unattrac-
tive for systems containing many nonzeros in a row, as then, the different blocks
contain many redundancies as they were extracted from matching parts of A.
We note that when working on triangular sparsity pattern, e.g. when computing
an FSPAI preconditioner for an spd matrix, reordering can help to reduce the
number of nonzeros accumulated in a single row, see Fig. 2.

Fig. 2. For the FSPAI operating on the lower triangular part of the system matrix,
reordering can help balancing of nonzero entries across the rows.

In general, any sparse matrix format can be used to store the ISAI or FSPAI
preconditioners. However, the preconditioners are most efficient if all rows con-
tain a similar number of nonzero elements and no row requires the generation
of an excess system. On GPUs, matrices with such a “balanced” nonzero dis-
tribution can be handled efficiently via the ELL format. This format enforces
all rows to have the same number of nonzeros by explicitly storing zero values
for padding. Once a uniform row length is enforced, the ELL format allows for
efficient SIMD processing, enabling the ELL SpMV to achieve much higher per-
formance than the CSR-based SpMV [8]. Therefore, after generating the ISAI
and FSPAI preconditioners, we convert them to the ELL format to allow for
efficient SpMV processing in the preconditioner application.

4.2 Mixed Precision Preconditioner Application

The preconditioner application is among the most expensive operations within
most Krylov solvers, aside from the multiplication with the system matrix
itself. So to improve the runtime of the preconditioner application, we employ a
mixed precision technique that has previously been used successfully for block-
Jacobi preconditioning [9]: Since preconditioners are just an approximation to
the inverse system matrix, it is often possible to add small rounding errors by



storing their entries in a lower precision format. Due to the typically memory-
bound performance characteristics of sparse numerical linear algebra kernels,
a reduction in the memory footprint of the preconditioner storage translates
almost directly into a performance improvement of the preconditioner applica-
tion. When using such low precision storage, we have to consider two aspects: 1)
The rounding errors introduced by lower storage precision can cause the precon-
ditioner itself to lose regularity, which may prevent convergence of the overall
Krylov method; 2) The computations themselves must still be performed in high
precision, otherwise we would lose precision in the iteration vectors and, due to
the preconditioner application becoming a non-constant linear operator, would
require the use of a flexible Krylov solver [4].

Fig. 3. The memory accessor converts StPrec values to ArPrec on the fly, reducing
memory movement.

The implementation of mixed precision operations in the Ginkgo library
makes use of the so-called memory accessor [3] to provide a uniform inter-
face decoupling the storage precision from the arithmetic precision used to
perform computations. We consider three different configurations for the pre-
conditioner storage and application: While always performing computations
in IEEE 754 double precision, we store the preconditioner values in double
(FP64), single (FP32) or half precision (FP16). The corresponding precon-
ditioners are denoted by ISAI<ArPrec, StPrec> and FSPAI<ArPrec,
StPrec>, where ArPrec indicates the precision format used in the arith-
metic operations and StPrec indicates the precision format used for storing
the preconditioner. The memory accessor reads StPrec values from memory
and converts them to ArPrec values on the fly before applying the precondi-
tioner matrix, see Fig. 3.

For the full implementation of the discussed preconditioners, we refer to the
Ginkgo github repository1.

5 Numerical Experiments

In this section, we evaluate the performance of the mixed precision ISAI and
mixed precision FSPAI preconditioners storing the numeric values in lower pre-
cision while performing all arithmetic in double precision. This means that the

1 https://github.com/ginkgo-project/ginkgo/pull/719.

https://github.com/ginkgo-project/ginkgo/pull/719


preconditioner generation is the same for all precision combinations. The objec-
tive of our experiments is to study the effect using a lower precision memory
format in the preconditioner application has on the numerical stability and run-
time of Krylov methods. Thus, we compare and validate our mixed-precision
preconditioners against the full (double) precision versions of the same precon-
ditioners and refrain from repeating experiments showing their general validity
(see [7,12]). For the experimental evaluation, we use test matrices of moderate
size (more than 20,000 rows; less than 50,000,000 nonzeros) that generally have
a low nonzero-per-row ratio. We list the selected non-symmetric and spd test
matrices along with some key properties in Tables 1 and 2 in the Appendix. In
the experimental evaluation, we first investigate the general ISAI preconditioner
in the context of a BiCGSTAB method solving non-symmetric problems. After-
ward, we assess an FSPAI-preconditioned CG solver for the spd problems. If
not specifically stated otherwise, we use a relative residual stopping criterion of
‖b−Ax‖

‖b‖ < 10−7 and a hard iteration limit of 20,000 iterations for BiCGSTAB
and 10,000 iterations for CG, respectively. We always use an all-zero initial guess
and a right-hand side of all ones.

5.1 Hardware Setup

The GPU we use in our experiments is a NVIDIA V100 PCIe with 16 GB of main
memory, a memory bandwidth of 900 GB/s, and a theoretical peak performance
of 7 TFLOPS in double precision [13]. All code and functionality necessary
to reproduce the results are publicly available via the benchmark suite of the
Ginkgo open source library [2]. The CUDA toolkit version 10.2 was used to
compile Ginkgo and the kernels generating and applying the preconditioners.

5.2 General ISAI

To evaluate the preconditioner quality of the general ISAI algorithm, we use a
preconditioned BiCGSTAB solver for the 39 non-symmetric test-matrices listed
in Table 1. In all these cases, an ISAI preconditioner stored in double precision is
able to reduce the number of BiCGSTAB iterations. To assess the preconditioner
quality degradation introduced by rounding the numeric values to lower preci-
sion, we visualize in the top plot in Fig. 4 the ratio between BiCGSTAB precon-
ditioned with mixed precision ISAI and BiCGSTAB preconditioned with double
precision ISAI. We recall that the mixed precision ISAI preconditioners preserve
double precision in all arithmetic operations, but employ either single precision or
half precision for the memory operations (denoted with ISAI<fp64,fp32> and
ISAI<fp64,fp16>, respectively). The mixed precision ISAI employing single
precision for the memory operations preserves the convergence of the BiCGSTAB
solver for all problems, introducing a convergence delay of more than 3% only
for the epb3 problem. Conversely, ISAI<fp64,fp16> fails to preserve the pre-
conditioner quality for about half the problems.

Ignoring the potential convergence delay, we visualize in the center of Fig. 4
the mixed precision ISAI speedup over the double precision ISAI. We note that



Fig. 4. Top: Relative iteration counts for BiCGSTAB using lower precision precon-
ditioner storage compared to double precision. Cases where half precision use results
in lower iteration counts are related to rounding effects. Center : Speedup of a sin-
gle mixed precision ISAI application vs. double precision. The speedup ratios ignore
the quality degradation of the preconditioner when using low precision storage. Bot-
tom: BiCGSTAB speedup when using an ISAI preconditioner stored in lower precision
instead of a double precision ISAI. Missing dots indicate the loss of convergence when
using the mixed precision ISAI variant. The horizontal lines display the median among
all values without loss of convergence. BiCGSTAB runtimes do not include the pre-
conditioner generation. Note: The matrices are sorted according to their nonzero count
along the x-axis.

the format conversion between memory precision and arithmetic precision is
completely hidden behind the memory access, and all speedups are a direct result
of the reduced memory footprint. While generally growing with the number of
nonzero entries, the speedup reflects the intertwined relation between nonzeros,
precision format, cache size, and the interplay of sparsity pattern and vector data
reuse. As expected, the speedups are generally larger when using half precision
storage, making this an attractive choice if the numerical properties allow for it.

The center of Fig. 4 not only ignores the potential numerical breakdown of an
ISAI preconditioner when rounding to lower precision, but also the fact that the
preconditioner application accounts only for a fraction of a BiCGSTAB solver



iteration. On the bottom of Fig. 4, we quantify the actual savings rendered to
the total execution time of a BiCGSTAB iterative solver when replacing a dou-
ble precision ISAI with its mixed precision variant. We note that additional
BiCGSTAB iterations are hardly compensated by faster ISAI application, but
for mild convergence variations, the speedups of the mixed precision ISAI pre-
conditioner translate to moderate runtime reduction of the overall BiCGSTAB
solver.

5.3 FSPAI

To evaluate the mixed precision FSPAI preconditioner, we use the spd test matri-
ces listed in Table 2. Most of these problems are arising from 2D or 3D finite
element discretizations.

The top plot in Fig. 5 indicates that the FSPAI preconditioner quality
is barely affected from storing the preconditioner values in lower precision.
Using the FSPAI<fp64,fp16> variant, the CG solver fails for the crystm03

Fig. 5. Top: Relative iteration counts for CG using lower precision preconditioner stor-
age compared to double precision. Center : Speedup of a single mixed precision FSPAI
application vs. double precision. The speedup ratios ignore the quality degradation of
the preconditioner when using low precision storage. Bottom: CG speedup when using
an FSPAI preconditioner stored in lower precision instead of a double precision FSPAI.



problem and the convergence degrades for four additional problems. At the
same time, the convergence is only mildly delayed for all other problems. The
FSPAI<fp64,fp32> provides the same preconditioner quality as the double
precision FSPAI preconditioner.

The center plot of Fig. 5 visualizes the mixed precision FSPAI performance,
indicating a clear relation between the nonzero count and the speedup over
the double precision FSPAI. For single precision storage, we can accelerate
the preconditioner application by up to 1.3×, for half precision storage, this
number grows to up to over 1.5×. Across the 46 test problems, we see a
median performance improvement of 14% for FSPAI<fp64,fp32> and 27%
for FSPAI<fp64,fp16>, respectively.

The bottom plot in Fig. 5 reflects how the mixed precision FSPAI speedups
translate into mild but consistent performance benefits for the CG solver. We
observe that the overall CG execution time is reduced by up to 20% (median:
8%) when using FSPAI<fp64,fp16> and up to 13% (median: 4%) when using
FSPAI<fp64,fp32>, respectively.

6 Summary and Outlook

In this paper, we proposed mixed precision incomplete sparse approximate
inverse preconditioners and mixed precision factorized sparse approximate
inverse preconditioners that decouple the memory precision from the arithmetic
precision and store the preconditioner information in a more compact low pre-
cision format. Investigating the numerical effects, we observed that the mixed
precision preconditioners are often able to preserve the convergence improvement
of their full precision counterparts. We also developed a high performance GPU
implementation of the mixed precision preconditioners that achieve speedup
ratios corresponding to the memory volume savings. Employing the mixed pre-
cision preconditioners into Krylov solvers, we demonstrated that these speedups
translate into a mild acceleration of the iterative solution process. Though the
runtime savings are incremental, we are convinced that the approach we take can
serve as a blueprint for other algorithms, and that the production-ready mixed
precision sparse approximate inverse preconditioners we provide can become an
attractive building block in the configuration of high performance Krylov solvers.
In future work, we will investigate the use of non-standard precision formats that
can render higher speedups and focus on designing a cheap mechanism that pro-
tects the mixed precision preconditioners from numerical breakdown.
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Appendix

Table 1. Nonsymmetric test problems along with key properties and BiCGstab iter-
ations. The preconditioners are double precision (<fp64,fp64>) or mixed precision
(<fp64,fp32> or <fp64,fp16>). Iteration counts marked with “x” indicate conver-
gence failure.

Non-symmetric test matrices

Name #rows #nonzeros BiCGSTAB

+ISAI<fp64,fp64> +ISAI<fp64,fp32> +ISAI<fp64,fp16>

poli4 33,833 73,249 36 19 19 19

descriptor xingo6u 20,738 73,916 16,441 17 17 x

xingo3012 20,944 74,386 18,901 17 17 x

bips07 3078 21,128 75,729 5,455 17 17 x

juba40k 40,337 144,945 x 17 17 x

bauru5727 40,366 145,019 x 17 17 x

Zhao1 33,861 166,453 62 25 25 25

epb2 25,228 175,027 672 165 165 164

wang3 26,064 177,168 392 226 226 205

wang4 26,068 177,196 866 206 204 198

chem master1 40,401 201,201 801 402 375 433

chipcool0 20,082 281,150 x 161 161 x

chipcool1 20,082 281,150 x 151 151 x

ecl32 51,993 380,415 x 486 467 x

viscoplatic2 32,769 381,326 x 1,897 1,919 1,871

epb3 84,617 463,625 x 3,431 4,225 4,009

lung2 109,460 492,564 x 78 78 x

cage11 39,082 559,722 32 14 14 14

ASIC 100ks 99,190 578,890 x 28 31 30

ss1 205,282 845,089 12 7 7 7

torso2 115,967 1,033,473 55 11 11 11

ASIC 320ks 321,671 1,316,085 x 51 48 x

venkat 01 62,424 1,717,792 x 57 57 57

crashbasis 160,000 1,750,416 293 42 42 42

majorbasis 160,000 1,750,416 144 22 22 22

cage12 130 228 2 032 536 25 14 14 14

poisson3Db 85,623 2,374,949 387 275 264 277

stomach 213,360 3,021,648 x 36 36 36

sme3Dc 42,930 3,148,656 x 17,603 x x

FEM 3D thermal2 147,900 3,489,300 551 26 26 26

torso3 259,156 4,429,042 309 69 71 69

cage13 445,315 7,479,343 30 15 15 15

atmosmodd 1,270,432 8,814,880 513 268 241 268

atmosmodj 1,270,432 8,814,880 498 276 243 246

atmosmodl 1,489,752 10,319,760 329 155 155 143

memchip 2,707,524 13,343,948 x 407 383 373

circuit5M dc 3,523,317 14,865,409 x 16 16 x

Transport 1,602,111 23,487,281 4,355 1,215 1,467 1,263

cage14 1,505,785 27,130,349 23 15 15 15



Table 2. Symmetric positive definite test problems along with key properties and CG
iterations. The preconditioners are double precision (<fp64,fp64>) or mixed precision
(<fp64,fp32> or <fp64,fp16>). Iteration counts marked with “x” indicate conver-
gence failure.

Symmetric positive definite test matrices

Name #rows #nonzeros CG

+FSPAI<fp64,fp64> +FSPAI<fp64,fp32> +FSPAI<fp64,fp16>

jnlbrng1 40,000 199,200 100 54 54 54

minsurfo 40,806 203,622 59 39 39 39

shallow water1 81,920 327,680 12 7 7 7

shallow water2 81,920 327,680 23 13 13 13

wathen100 30,401 471,601 228 22 22 22

apache1 80,800 542,184 1,550 1,025 1,025 1,029

Trefethen 20000 20,000 554,466 770 3 3 4

wathen120 36,441 565,761 229 27 27 27

thermal1 82,654 574,458 1,384 666 666 666

crytm03 24,696 583,770 91 9 9 x

finan512 74,752 596,992 37 8 8 8

thermomech TC 102,158 711,558 60 7 7 7

G2 circuit 150,102 726,674 5,198 682 682 682

Dubcova2 65,025 1,030,225 167 121 121 121

thermomech dM 204,316 1,423,116 60 7 7 7

2cubes sphere 101,492 1,647,264 x 6 6 6

qa8fm 66,127 1,660,579 59 10 10 10

cfd1 90,656 1,825,580 1,727 874 874 873

cfd2 123,440 3,085,406 7,083 1,991 1,992 1,991

Dubcova3 146,689 3,636,643 170 118 118 118

parabolic fem 525,825 3,674,625 1,366 1,177 1,177 1,177

cant 62,451 4,007,383 9,452 5,423 5,525 5,440

offshore 259,789 4,242,673 x 311 302 559

apache2 715,176 4,817,870 4,458 1,868 1,868 1,868

ecology2 999,999 4,995,991 5,896 3,167 3,167 3,166

tmt sym 726,713 5,080,961 3,389 2,067 2,067 2,067

boneS01 127,224 5,516,602 2,331 1,012 1,013 1,013

consph 83,334 6,010,480 x 1,618 1,609 1,618

G3 circuit 1,585,478 7,660,826 8,442 824 824 824

thermal2 1,228,045 8,580,313 5,079 2,560 2,559 2,561

bmwcra 1 148,770 10,641,602 x 6,709 6,725 6,700

af 0 k101 503,625 17,550,675 x 8,739 8,739 8,742

af 1 k101 503,625 17,550,675 x 7,495 7,413 7,427

af 2 k101 503,625 17,550,675 x 9,051 9,052 9,052

af 3 k101 503,625 17,550,675 x 7,099 7,101 7,094

af 4 k101 503,625 17,550,675 x 9,335 9,360 9,334

af 5 k101 503,625 17,550,675 x 9,184 9,148 9,145

af shell3 504,855 17,562,051 1,967 882 882 879

af shell4 504,855 17,562,051 1,967 882 882 879

af shell7 504,855 17,579,155 1,963 882 881 881

af shell8 504,855 17,579,155 1,963 882 881 881

StocF-1465 1,465,137 21,005,389 x 5,062 5,109 5,089

Emilia 923 923,136 40,373,538 x 5,004 5,014 5,547

bone010 986,703 47,851,783 x 8,437 8,421 8,508
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