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Abstract. Critical software should be verified. But how to handle the
situation when a proof for the functional correctness could not be estab-
lished? In this case, an assessment of the software is required to estimate
the risk of using the software.
In this paper, we contribute to the assessment of critical software with
a formal approach to measure the reliability of the software against
its functional specification. We support bounded C-programs precisely
where the functional specification is given as assumptions and assertions
within the source code. We count and categorize the various program
runs to compute the reliability as the ratio of failing program runs (vi-
olating an assertion) to all terminating runs. Our approach consists of
a preparing program translation, the reduction of C-program into SAT
instances via software-bounded model-checker (cbmc), and precise or ap-
proximate model-counting providing a reliable assessment. We evaluate
our prototype implementation on over 24 examples with different model-
counters. We show the feasibility of our pipeline and benefits against
competitors.
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1 Introduction

Formal verified safety, defined as the absence of catastrophic consequences [1],
yields a high guarantee on the well-functioning of critical software. But proving
safety is a hard and tedious process due to the necessary formalization, verifica-
tion and (possibly) bug fixing for a given software system. In cases where proof
cannot be established, other techniques for the reliability assessment of the soft-
ware are required. To this end, we want to quantitatively estimate the risk of
usage of an assessed software. Traditionally, safety is a qualitative property that
a software might or might not fulfill, whereas reliability is often a quantitative,
measurable property, e.g., the likelihood of failure or the failure rate. Quantita-
tive analysis is, however, also a valuable addition to formal safety verification.
For example, quantitative analyses are useful to assess the strictness of (input)
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assumptions imposed for proving software properties. Those are just some rea-
sons why quantitative and probabilistic software analysis has been identified
as an interesting research topic (e.g., [16,23]). In particular, [13,8,7] presented
approaches to combine quantitative analysis with symbolic execution.

Contribution. In this work we present a formal approach for the quantification
of the violation or adherence to a functional specification through exact and
approximate model counting. The approach processes C-programs, where the
program specification is given via assertions and assumptions in the procedure
bodies. The first step in the approach is a behavior-preserving program trans-
lation, which makes the violation or adherence of specification in program runs
countable. Afterwards, we use cbmc [5] to convert the transformed C-program
into multiple CNF formulae. By using cbmc, our approach is limited to C-
programs with a bounded execution and bounded data domain. However, by
leveraging cbmc’s bit precise semantic, we have wider and more precise support
of C-programming language in comparison to previous work. Each model of the
CNF formulae represents a possible program run, which we count precisely or
approximately with tools like ganak [17] or ApproxMC [3,18,15]. We present
a sophisticated evaluation of our prototype in comparison to its competitor [6]
which shows advantages of the bit-precise support and non-determinism. The
prototype is publicly available.1

#define TOP2BITS(x) ((x & (3 << 30)) >>
30)

int sqrt(int x) {
assume(x>=0);
int input = x;
int a = 0, r = 0, e = 0;
for (int i = 0; i < 32; i++) {
r = (r << 2) + TOP2BITS(x);
x <<= 2; a <<= 1;
e = (a << 1) + 1;
if (r >= e) { r -= e; a++; }

}
int lower = (a>>16);
unsigned int upper = lower+1;
assert(lower*lower<=input
&& upper*upper>input);

return lower;
}

Fig. 1: Variation of Square Root Algo-
rithm in [20]

Example. Consider the example in
Fig. 1 which computes the square root
of a non-negative integer in the upper
half of variable a. The algorithm was
later modified to return the actual in-
teger square root lower. Note, this
modification is flawed which will be
discussed in more detail below. There
are multiple aspects of this program
which can be quantified. Firstly, we
can compute the number of inputs x
for which above mentioned flaw leads
to an assertion miss (violation of the
assertion condition) before the return-
statement. Secondly, we can compute
the number of inputs x for which
the assume-statement fails. While the
number of assertion misses is a measure stating to what degree the program
at hand is flawed, the number of assumption misses describes how tight the
assumptions are under which we try to guarantee correct behavior. In Fig. 1,
for example, our assumptions exclude half of the possible input space (namely
any negative value). Depending on the use case, this might be considered a very
strong assumption which might not match reality.
1 https://github.com/samysweb/counterSharp
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Overview The formal foundations of our approach, including the definition of
reliability, is in Sec. 2. In Fig. 4, we begin building the pipeline, which contains
the program transformation, model-counting, and the correctness (Sec. 3). The
comparison with [6] and runtime statistics is given in the evaluation (Sec. 4).

2 Foundations of the Pipeline

int test1(int x) {
assert(x!=0);
return v/x; }

int test2(int x) {
x = (x<0)? 0 : x;
int *y = malloc(sizeof(int));
int div = (*y)*x
assert(div!=0);
return v/div;

}

Fig. 2: In test1 the failure
only depends on the input.
Differently, in test2 the fail-
ure depends on input and non-
determinism.

Traditionally, reliability of a program is
quantified via the number of inputs for which
there exists a program path leading to failure in
comparison to the number of inputs for which
no such program path exists (as seen for ex-
ample in [7]). However, this definition draws an
incomplete image of the software’s reliability for
nondeterministic programs.

For example, consider the code in Fig. 2:
Both functions are prone to a divison by zero
failure which is caught by an assertion. The
functions differ, because only in test1 this fail-
ure is solely dependent on the input where the
division by zero failure must happen for exactly
one input value (specifically for x set to 0).

Meanwhile, the division by zero failure may happen for any input of the function
test2 in Fig. 2 while it must happen for a negative input value for x. We use
this semantic of must and may failures in the following analysis. A failure must
occur for an input if an assertion miss occurs for every program path. A failure
may occur for an input if there is both, a program path leading to an assertion
miss and a program path leading to an assertion hit.

Assumption miss
(M?)

Assertion miss for all paths (E∀)

Assertion hit/miss for some
(but not all) paths (E∃)

Assertion hit for all paths (S∀)

M!

H!

Input space I
Assumption hit (H?)

Fig. 3: PartitionsM?, H?, E∀, E∃, and S∀
of a programs input space I

Partitions of the input space. For-
mally, we consider a program as a re-
lation P ⊆ S2 between start state
s ∈ S and the final state s′ ∈ S. We
denote this relationship with s P−→ s′.
We distinguish between the input val-
ues i ∈ I and output o ∈ O of a pro-
gram: The input values i = s �I are
part of the start state, whereas the
output values o = s′ �O are part of final state. s�Σ denotes the projection to
the variables given from the set Σ. This formalization allows choosing arbitrary
values of the non-input variables (e.g., global or local variables) in the start state
of a program. Thus, for a given input i, there might be multiple possible start
states. And given a single start state s, there might be a set of reachable final
states s′.

In combination, given an input value i ∈ I, the reachable output values are
denoted by O(i) = {o | s�I= i ∧ s

P−→ s′ ∧ o = s′ �O} ⊆ O . Moreover,
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we introduce the function check : S → {X,,þ}, which can determine whether
the program executed normally (X, adhering all reached assumptions and asser-
tions), or abnormally terminated denoting the first violation of an assertion ()
or an assumption (þ) given the final state s′. We lift check to a set of states, i.e.,
check(O(i)) ⊆ {X,,þ} denotes with the possible outcomes for a given input.
Later, in Sec. 3.1 we weave the functionality of check into the given C-program.

With the definition of check we can partition the input space I of a pro-
gram into following parts (Fig. 3) under an additional assumption: the given
assume-statements within program are only referring to the input variables of
the program. The partitions are defined as follows:

M? = {i | check(O(i)) = {þ}} (1)
H? = {i | þ /∈ check(O(i))} (2)
E∀ = {i | check(O(i)) = {}} (3)
E∃ = {i | check(O(i)) = {X,}} (4)
S∀ = {i | check(O(i)) = {X}} (5)

In terms of notation, we denote assumption related variables with ? and assertion
related variables with !. M represents misses and H represents hits, whereas E
represents error and S represents success. Finally, r is used for ratios. Thus,
M? describes the partition of invalid input values according to our assumptions.
There can not occur any other observations for these inputs. H? on the other
hand represents all input values which correspond to our assumptions. This
can further be split into E∀, E∃ and S∀. E∀ represents the input values that
always lead to an error, where E∃ are the input values, where sometimes an
error occurred. S∀ are the input values that always adhere to the assumptions
and assertions in the program, regardless of the value of the non-input variables
in the start state.

Besides M? and H? the model counting approach enables us to measure the
following to metrics: H! = S∀ + E∃ and M! = E∀ + E∃

Through suitable subtraction using H? we can then compute E∀, E∃ and S∀.
It remains a design choice which input partitions of Fig. 3 are treated as error
or success. Note, for determinstic programs the partition E∃ is empty, leading
to simpler calculation and less model-counting calls. Depending on the use case
we might then be interested in ratios describing how many of the inputs show a
particular behavior. To this end, we define the following, exemplary, ratios:

rm? =
M?

I rf∀ =
S∀
H?

re∀ =
E∀
H?

(6)

3 Pipeline

Fig. 4 shows the three pipeline steps of our approach. Firstly, we weave the obser-
vation of the check function into the given original C-program,
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Transformation to
Countable Program

Original Program
with Specification

Converstion to CNF
(cbmc)

Model Counting
(ApproxMC or ganak)

M!

H!

M?

H?

Fig. 4: Overview on the quantification
pipeline for the computation of hit
and misses of assumption and assertion
within the original program.

by transforming the program flow in
such a way that a violation of an
assumption or an assertion are ex-
plicitly stored in the program state
(Sec. 3.1). Also, a violation of either
an assumption or an assertion leads to
an early termination. The C-program
input consists of an entry routine and
the (transitively) required routines.
Secondly, we use cbmc, a bounded
model-checker for C-programs, for the
transformation of the program into
multiple CNF formulae (Sec. 3.2)
where we have one CNF formula for each measured quantity. Thirdly, we run
model-counting tools, like ApproxMC or ganak, on the CNF formulae and
thus obtain required metrics (Sec. 3.3) to calculate the reliability.

3.1 Transformation: Make Violation Countable

The goal of the program transformation is to make the assumption or asser-
tion violations explicit in the program state by using dedicated fresh variables.
Therefore, the violations become countable by Model Counters. An example of
the transformation is presented in Fig. 5. Note, we use the constants true and
false for convenience reason, although they are not defined in standardized C.

Restrictions on C-programs. The allowed C-subset is restricted by cbmc, which
allows both basic datatypes (int, float, char etc.) and complex datatypes (e.g.,
arrays and structures). Subroutine calls are limited to stand-alone calls and calls
assigned to a variable (i.e., no nested subroutine calls and no calls directly within
a return-statement). Such calls can easily be transformed into non-nested, non-
return calls by introducing appropriate local variables – even automatically if
desired. While complex datatypes are supported, they cannot be used as in-
put variables for model counting directly, but must be constructed within the
function under evaluation explicitly (e.g., by passing an array’s elements into
the function explicitly and then constructing the array within the function). We
assume that assume-statements solely express conditions imposed on the pro-
gram’s input (and not program internal behavior) and are thus positioned at
the beginning of the program before any assertion statements.

Transformation. In the example in Fig. 5, the transformation is applied to the
entry function test. Required sub-routines are considered for transformation
accordingly.

The first step introduces two global variables initialized by false (am and
as) which store whether an assertion or assumption was missed in global pro-
gram state (Line 1). This implies that assume- and assert-statements actually
have to modify this variable after checking their specific criterion. Therefore,



6 Teuber, Weigl

1
2 int subroutine(int y) {
3
4 assert(y<0);
5 return -y;
6
7
8 }
9

10 int test(int x, int y)
11 {
12
13 assume(x>0);
14 int z = 0;
15 if (y < 0) {
16 z += subroutine(y);
17
18 return z;
19
20
21
22
23
24
25 }
26 assert(z>=0);
27 return z+x;
28
29 }

1 char am = false; char as = false;
2 int subroutine(int y) {
3 int rv;
4 if (!(y < 0)) { as = true; goto end; }
5 rv = -y;
6 end:
7 return rv;
8 }
9

10 int test(int x, int y)
11 {
12 int rv;
13 if (!(x > 0)) { am = true; goto end; }
14 int z = 0;
15 if (y < 0) {
16 z += subroutine(y);
17 if (as || am) goto end;
18 rv = z;
19 end:
20 assert(am || as); //assertion hit
21 assert(!as);//assertion miss
22 assert(am); //assumption hit
23 assert(!am);//assumption miss
24 return rv;
25 }
26 if (!(z >= 0)) { as = true; goto end; }
27 rv = z + x;
28 goto end;
29 }

Fig. 5: Left is the original program, and right the program transformation as
described in Sec. 3.1

such statements are transformed into an if-statement with their negated origi-
nal condition. Missing a condition sets the corresponding variable (am/as) and
initiates a jump to the end of the current function. This transformation can be
observed in Lines 13 and 26. Note that the same transformation also takes place
in subroutines as can be seen in Line 4. In order to support sub-routine calls,
every such call triggers a check for assertion- or assumption misses afterwards.
If a sub-routine call has violated an assertion, the callee routine directly jumps
to its end. This behavior occurs recursively leading to an early termination of
the program – similar to exception handling in modern programming languages.

We then unify all return-statements of a routine into a single, labeled return
(e.g., Line 18) targeted by multiple goto-statements which replace the return
statements in the old program and direct the program flow to the one remaining
return statement (e.g., Line 27). Line 18 shows the first return-statement of a
routine is kept and labeled with end, while all other return-statements (e.g.,
Line 27) are replaced by goto-statements. A new value variable rv is introduced
which stores the return value across this jump (Lines 12 and 3). If no return-
statement exists within a subroutine, we introduce a labeled dummy return-
statement at the end of the routine.

Finally, the four assert-statements in Lines 20 to 23 (with conditions as ex-
plained later in Sec. 3.2) are added just before the return-statement of the entry
routine. Only one of these assert-statements is inserted for the conversion to the
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CNF formulae in order to generate specific formulae for counting the assump-
tion/assertion hits and misses.

In the remainder of this paper, if we talk about assertion, we mean the
assertion given as the specification in the original program, whereas the notion
of an assert-statement refers to (one of) the four assertions in the transformed
program (Lines 20 to 23).

3.2 Conversion into CNF

For the conversions of C-programs into CNF formulae we use cbmc. cbmc con-
verts the transformed program p and a specification ψ into a CNF formula
φ = π ∧ ¬ψ where π is a CNF representation of the unrolled program (w.r.t. a
certain loop iteration or recursion depth). Formula φ is then satisfiable iff there
exists a program path in p leading to a violation of the given specification ψ.
Using cbmc with its builtin bit precise semantic, we generate four formulae with
varying specification (assert-statements) before the final return-statement: am,
!am, am || as and !as. Additionally we generate a fifth formula which allows
to compute the number of inputs for which the bounds of cbmc were insufficient.
The last assert-statement, for instance, is transformed into a formula asserting
that as is true and can thus be used to count the number of models which
produce an assertion miss (and thus to compute M!). Note, that enabling only
the required assert-statement allows cbmc to reduce the size the generated CNF
formula by slicing which improves performance of the model-counters.

3.3 Model Counting in the Pipeline

Preliminaries. For our approach we make use of model counting under pro-
jection. Given a CNF formula φ over the signature Σ, |models(φ�∆)| denotes
the number of satisfying assignments (models) of φ projected on the variables
∆ ⊆ Σ, where the formula φ �∆ denotes the projection of φ on ∆. There-
fore, φ �∆ is the strongest formula over ∆ which is entailed by φ [12, Logi-
cal Foundations] and states the same constraints on the atoms in ∆ as φ. We
define models∆(φ) = models(φ �∆). For our use case, we distinguish between
exact and approximative model-counters. Exact (e.g., sharpSAT [22]) or prob-
abilistic exact (e.g., ganak [17]) model counters compute the exact number
of models t with a certain probability δ ≤ 1. Additionally, approximative or
(δ, ε) model counters (e.g., ApproxMC [3,12,18,15]), return an estimated count
c̃ with the guarantee of a relative error ε and a maximum uncertainty of δ:
Pr(c̃ ∈ [t/(1 + ε), (1− ε)t]) ≥ 1− δ

The parameters ε and δ are given by the user. We further elaborate on model
counting in Appendix A.

Measuring the Reliability. In Sec. 3.2 we obtain formulae which are satisfi-
able iff there is a start state leading the encoded program to violate the encoded
specification. As noted earlier, we encode the inverse of the specification we are
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interested in and can thus quantify the number of inputs adhering to the spec-
ification at hand by using projected model counting with ∆ containing exactly
the propositional variables corresponding to the program input (a more detailed
argument for the correctness of this approach is available in Sec. 3.4). Given
the measured counts ψm? , ψ

h
? , ψ

m
! , ψ

h
! (respectively assumption miss and hit, as-

sertion miss and hit), the computation for the case of exact results is relatively
straight forward:

M? = ψm? E∀ = ψh? − ψh!
H? = ψh? E∃ = ψh? − E∀ − S∀ =
S∀ = ψh? − ψm! = ψh! + ψm! − ψh?

For the case of approximate model counting using ApproxMC, each of the
given counts are burdened with an uncertainty (δ, ε). Note, that these uncertain-
ties are further propagated when we compute our ratios in (6). As the ratio rm?
only depends of the count M?, its error (δ, ε) is just propagated towards rm? . For
the ratios re∀, and r

f
∀ the (δ, ε) error of each approximated count are multiplied,

i.e., the error bound is (1 + ε)2 with certainty of (1 − δ)2. We clearly see that
the ratios’ become less precise.

We consider two numerical examples (for details see Sec. 4) to explore the
error bounds2. Let us assume ApproxMC’s standard parameters δ = 0.2 and
ε = 0.8. First, consider the case of rangesum03. For this benchmark the following
values represent the correct model counts: H? = 296, M! = 264, H! = 296 − 264.
By computing the bounds (see Appendix A) we obtain the following error bounds
with a probability of 0.64 each:

For re∀: − 2.23 ≤ ψh? − ψh!
ψh?

≤ 0.69 For rf∀ : 0.99 . . . ≤ ψh? − ψm!
ψh?

≤ 0.99 . . .

We see a strong asymmetry between the error bounds for re∀ and those for rf∀
caused by the strong asymmetry of ψh! and ψm! . Note that for deterministic
benchmarks the ratios can be computed through one minus the other ratio re-
spectively. As a second case, consider the benchmark usqrt-broken for which the
correct values are given by: H? = 232, M! = 231 and H! = 231. Here, the split
between assertion misses and assertion hits is essentially even. We obtain the
following (equal) error bounds both for re∀ and rf∀ : −0.62 ≤

ψh
?−φ
ψh

?

≤ 0.89 for

φ ∈
{
ψh! , ψ

m
!

}
.

Note that, firstly, for cases where ψm! and ψh! are expected or found to be of
similar magnitude, a stricter value for ε should be considered. Secondly, in all
cases it is worthwhile to examine, both, the ratios and all the absolute numbers:
While a success ratio rf∀ ≥ 0.99 seems good, it might still be the case that a
large number of inputs yield an assertion miss if the input space I and H? are
sufficiently large (as seen for case rangesum03 in Sec. 4).

2 For conciseness, we mostly round the given bounds to two decimal places.
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3.4 Correctness of the pipeline

The pipeline we described in Sec. 3 is correct. By correctness, we mean that
we get correct counts ψm? , ψ

h
? , ψ

m
! and ψh! for M?, H?,M! and H! when running

the pipeline with an exact model counter. The correctness depends on three
elementary properties: First, the program transformation preserves the behavior
of the original program. Of course, a new program flow is established, but in
cases without a violation of an assumption or assertion the transformed program
behaves equally. Secondly, every hit or miss of an assumption or assertion is
captured faithfully by a violated assert-statement (Lines 20 to 23). Thirdly, every
(projected) model of the generated CNF formulae is indeed a representative for a
violating or valid program path. In the Appendix B we elaborate the correctness
deeply.

4 Evaluation

In order to evaluate our approach, we ran our prototypically-implemented pipe-
line on a number of C-programs from various benchmark families with the ob-
jective of showing its strengths, weaknesses and limits. Our experiments aimed
to answer the following questions:

(Q1) Does our pipeline admit the quantification of more complex programs in
comparison to [6]?

(Q2) How large can programs and input spaces become for given resource limits?
(Q3) Where does our bit-precise semantic help in obtaining more precise results

and where is it too costly in comparison to [6]?
(Q4) Can our pipeline accurately quantify non-deterministic program behavior?

Implementation. For our experiments we implemented counterSharp3 as a
tool which transforms input C-programs into countable CNF formulae using
cbmc. We apply the transformation (Sec. 3.1) on the input C-program’s abstract
syntax tree. Afterwards, the modified abstract syntax tree is converted back into
C-code which is automatically passed to cbmc producing a total of five CNF
formulae: Four checking for assertion/assumption hits and misses and another
formulae to check for how many inputs (if any) the given bound is insufficient
(i.e., for which inputs there are paths which need a deeper unroll of loops). The
formulae provided by cbmc are adjusted to contain model counting projection
instructions. We extract the propositional variables which represent the inputs
variables in the C-program. Finally, our tool returns the five formulae containing
projection instructions, which can then be processed by a suitable model counter
of the user’s choice. This approach both leaves the freedom to make use of other
model counters and allows the trivial parallelization of this last quantification
step. Our tool is publicly available4.
3 counterSharp counts (thus sharp) counterexamples (thus counter) for a given
specification.

4 https://github.com/samysweb/counterSharp

https://github.com/samysweb/counterSharp
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Experiment Setup. All experiments were run on a 4 core Intel Core i5-6500
processor and 16GB of RAM. counterSharp was run with a timeout of 15
min. while the model counters had 5 minutes per instance. In order to achieve a
fair comparison, the tool by [6] was given a timeout of 40 minutes to account for
the multiple model counter runs in the case of counterSharp. All runs had
a restricted memory of 2GB. The execution of the tools was monitored using
the runlim utility [2]. All scripts and raw results are available online [21]. The
stated performance data is given as the median of 5 runs. ApproxMC was used
in default configuration (though we used activated sparse hashing) and varying
seeds across the runs, analogue for ganak.

In the remaining, we compare varying setups: The setup dim denotes the
analyzer of [6]. The setup cS-gan consists of counterSharp with ganak
for model counting for determinstic programs. The runtime is given as the
time of counterSharp c added by the minimum runtime of (parallel) count-
ing assertion hits gH!

and misses gM!
: c + min (gH!

, gM!
). Analogue, coun-

terSharp with ApproxMC (cS-app), where the runtime is given as c +
max (aH!

, aM!
). Both setups cS-gan and cS-app simulate a run of coun-

terSharp followed by a parallel run of ganak or ApproxMC to compute
assertion hit/miss counts. Additionally, we defined two setups used for non-
deterministic cases named cSn-gan and cSn-app, where the runtime is given
as c + max(min(gH?

, gM?
), gH!

, gM!
) and c + max(aH?

, aM?
, aH!

, aM!
). Here, in-

cluding extra counts to obtain reliable results for assumption hits, assertion hits
and assertion misses—a necessity because of the possible overlap between as-
sertion misses and hits in the case of non-determinism. ganak can stop this
computation once one of the two counters for assumption hits and misses re-
turns, as the complement can be computed through subtraction. On the other
hand, ApproxMC has to count both due to approximation errors (hence the
max).

int testfun(int n) {
assume(n>=0&&n<=999);
int x=n, y=0;
while(x>0) { x--; y++;

}
assert(y==n);

}

Fig. 6: Benchmark
count_up_down for
input size 1000

Benchmarks by [6]. In a first step we compared
cS-gan and cs-app directly with dim using the
benchmark set presented in their original work where
each benchmark provided a version with I of size 10
and 1000. The comparison in the first part of Table 1
clearly shows that neither cS-gan nor cS-app can
win against dim on the paper’s original benchmark
set. Indeed, it seems dim is very well suited to answer
quantification questions on their benchmark set. To
illustrate the reasons for its success, it is worth having a look at the considered
benchmarks. One of the benchmarks where cS-app is particularly bad in com-
parison to dim is the count_up_down benchmark in Fig. 6. It is clear that a
bounded model checker approach is worse at solving instances like this one due to
the large number of loop unrolls necessary. An abstract interpretation approach
like dim, seems to handle this kind of task a lot better—and independent of the
loop size. This difference becomes even clearer for the case of the benchmark
Mono3_1 which contains a loop repeated one million times. As a matter of
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Table 1: Evaluation of dim [6], cS-gan, cS-app, cSn-gan, cSn-app on the
applicable benchmarks: Runtimes in seconds (median of 5 runs). (MO = out-of-
memory, TO = timeout)

Deterministic Benchmarks
Comparison to dim[6]

Benchmark Source dim cS-gan cS-app
Input Size 10 1000 10 1000 10 1000

time exact time exact time exact time exact time exact time exact
bwd_loop1a [6] 0.51 X 0.55 X 1.68 X 2.82 X 4.98 X 8.68 ≈
bwd_loop2 [6] 0.67 X 0.41 ≈ 1.76 X 1.35 X 2.67 X 4.24 ≈
count_up_down [6] 0.54 X 0.27 X 1.16 X 8.75 X 1.19 X 142.45 ≈
example1a [6] 0.64 X 0.46 X 1.59 X 1.83 X 5.18 X 10.02 ≈
example7a [6] 0.54 X 0.82 X 1.07 X TO — 1.76 X TO —
gsv2008 [6] 0.43 X 0.62 X 1.6 X 8.89 X 3.03 X 79.41 ≈
hhk2008 [6] 0.44 X 0.68 X 0.96 X TO — 1.56 X TO —
Log [6] 0.57 ≈ 0.69 ≈ 1.45 X TO — 1.90 X TO —
Mono3_1 [6] 0.48 ≈ 0.74 ≈ TO — TO — TO — TO —
Waldkirch [6] 0.4 X 0.37 X 1.35 X 8.17 X 1.56 X 146.56 ≈

Complex benchmarks
Benchmark Source dim cS-gan cS-app

reason for failure time exact time exact
floor-broken [20] float TO — 11.13 ≈
floor [20] float 1.07 X 8.47 X
overflow crafted incorrect (overflow) 1.41 X 1.69 ≈
Problem10_16 [19]/[10] timeout TO — 723.73 ≈
Problem13_4 [19]/[10] timeout TO — TO —
rangesum03 [19]/[4] arrays 0.51 X 2.0 ≈
rangesum05 [19]/[4] arrays TO — TO —
usqrt-broken [20] bit arithmetic TO — 17.06 X
usqrt [20] bit arithmetic TO — 105.83 X

Nondeterministic Benchmarks5
Comparison to dim[6]

Benchmark Source dim cSn-gan cSn-app
time time time

bwd_loop10-2 [6] 0.39 MO MO
bwd_loop10 [6] 0.65 MO MO
bwd_loop7-2 [6] 0.55 230.11 6.41
bwd_loop7 [6] 0.88 6.36 6.41
example7b-2 [6] 0.45 TO TO
example7b [6] 0.17 4.18 3.63
for_bounded-2 [6] 0.25 MO 135.51
for_bounded-1 [6] 0.67 2.91 2.17
nondet crafted 0.87 TO 1.83

fact, every time cS-gan or cS-app take more than 15 seconds or time out on
the benchmark set in the first part of Table 1, it is due to a benchmark which
requires an unrolling of a loop with depth larger or equal to 500.

The only exception to this rule is the benchmark gsv2008 which takes longer
than 15 seconds for a run with unroll depth 101. Conversely, nearly all bench-
marks executed within 15 seconds require a less deep loop-unrolling. It thus
seems that loop depth is the main bottleneck for our approach on this bench-
mark set. At the same time, the program logic of all benchmarks in the set
is comparatively simple: subtraction and addition paired with while, for or if-
statements. Towards answering (Q3) we observe that the approach proposed by
Dimovski and Legay [6] works very well on this type of benchmark. However,
the question remains whether more complex benchmarks might require a more
precise semantic than the one available in dim.
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Complex programs. To this end, we looked at a number of other benchmarks
from the SV-Competition [19] as well as the C-Snippets [20] code repository. We
collected a number of benchmarks which allowed some form of quantification
through input variables and either had a wider range of interesting, representa-
tive program constructs (such as arrays, floats, or bit arithmetic) or represented
suitable candidates to test the scalability of our approach. These benchmarks
were manually modified to allow quantification on them (addition of suitable
assertion- and assumption-statements) and to compare different sizes (e.g., com-
parison of 3 element and 5 element array input). Additionally, we crafted one
benchmark showing behavior we were particularly interested in. All of the in-
stances mentioned in the second part of Table 1 show behavior which cannot be
analyzed by dim: The tool was either unable to analyze the programs due to
the use of arrays and bit arithmetic, ran into a timeout due to instance size or
even produced wrong results due to the neglection of overflows. We discuss these
benchmarks as well as why we believe they are difficult and what our results
show.

The first two benchmarks in the table represent a broken and correct algo-
rithm to compute the floor function of a floating point number. For the experi-
ment we assumed a positive, non-infinite, non-NaN 128 bit long double input
which the program is supposed to round down into another long double num-
ber using bit arithmetic. The final assertion checks whether the computed num-
ber is smaller than the original number. We added a broken version of the pro-
gram which, according to cS-app, breaks the specification for approx. 1.5∗295 of
the 2127 positive inputs. The cS-app tool also returns that 2127 inputs comply
to the specification. Here we see the reason why it is necessary to compute both
counts (assertion miss and assertion hit): The ratio between assertion hits and
misses is approx. 1.75 ∗ 10−10 and thus the entirety of assertion misses well lies
within the error bounds of the assertion hit measurement. Therefore, it seems
good advice to always inspect the numbers and their relations manually in order
to spot such approximation errors during data interpretation.

The float instances are followed by the only instance which dim was able
to compute faster than our tools and which is a crafted benchmark. However,
dim returns faulty results due to an integer overflow which remains undetected in
polyhedra: The benchmarks assumes an input x strictly larger than INT_MIN/2.
If x is negative, |INT_MIN/2| is subtracted while |INT_MIN/2| is added if
x is positive. The final assertion requires that x be negative. dim returns that
the assertion is met by one third of the inputs (i.e., by all inputs which are neg-
ative) and this is of course what a polyhedra tool would have to return due to
its abstract domain. However, closer examination shows that the addition in the
positive case leads to an overflow for any number larger than |INT_MIN/2|.
Thus, the assertion is actually hit for two thirds of all inputs (i.e., all negative
inputs and all sufficiently large positive inputs). This benchmark was of course
crafted to show the drawbacks in the use of polyhedra for quantification. While
one might argue that this is an unfair comparison, we merely want to draw atten-
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tion to the fact that such mistakes are not uncommon in programming and can
be better quantified with a tool with bit-precise semantic, like counterSharp.

The following two benchmarks stem from the RERS Challenge 2018 [10] and
concern the reachability problem for linear time logic (LTL) formulae. For each
instance a number of error states are defined which should not be reached. The
states reached by the program depend on the input variables. Prob10 is then run
for 16 time steps converting the program in a way that it takes 16 char variables
as inputs, while Prob13 was only supposed to be run for 4 time steps. As only
values from 1 to 5 (instance 10) or 1 to 10 (instance 13) are allowed, suitable
input restrictions were introduced for both dim and cS-*. The original RERS
challenge had 3 problem levels of which Prob10 was level small and Prob13
was level medium. Prob10 consists of approx. 1.3k LoC while Prob13 contains
around 114k LoC. While cS-app works relatively well on the small instance,
counterSharp runs into a timeout for the medium size instance when trying
to construct the CNF formulae. On the other hand, cS-gan cannot compute
either of the two benchmarks. This is probably due to the fact that the number
of clauses (and variables) in the instance are at least one order of magnitude
larger than the numbers in other benchmarks solvable by cS-gan. It turned
out that dim seems to be unable to solve both instances due to a memout. We
believe the reason for this is the scale of the benchmark instances which is much
larger than instances previously considered in the evaluation of dim.6

The following two rangesum examples implement the computation of a range-
sum for an array of size 3 and 5. This benchmark can, again, only be evaluated
for the cS-* tools as it requires the ability to handle arrays. We modified the
benchmark in such a way that the elements inside the array are given as input
parameters to the main function thus allowing an easy quantification across all
possible array values. Both, cS-app and cS-gan are able to quickly solve the
3 element instance. We also see that cS-gan is particularly efficient in cases
where one of the two counts (here the assertion hits) can be computed partic-
ularly fast, as the complementary count (which in this case would have timed
out) can be computed exactly. At the same time, both tools still fail to solve the
5 element instance. This can be explained by the vastly larger input space for
an array of 5 integer elements which considers an input space 264 times larger
than the input space for 3 elements.

The final two benchmarks stem from Fig. 1 which represents the computation
of an integer square root. As we already mentioned in the introduction, the code
in the listing is flawed (this corresponds to usqrt-broken). Namely, the shift in
Line 12 is a signed right shift which introduced flawed results for any input x
larger than 230. Indeed, cS-app correctly returns in all 5 runs that the assertion
succeeds (resp. fails) for 230 (resp. also 230) inputs while 231 inputs already miss
the assumption. For the case of the fixed version (usqrt) the main challenge for
cS-app (or its underlying SAT solver to be precise) is showing the unsatisfiabil-

6 Given the choice of a relatively low memout initially, we reran dim on Problem_10
with 8GB of memory available. However, the program ran into a timeout after 2400s
using 4.5GB of memory.
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ity for of the assertion miss formula which takes 104.93s in comparison to 3.01s
for counting all 231 assertion hits.

Concerning questions (Q1) and (Q2) we see that there is a category of bench-
marks which the tool by Dimovski and Legay [6] fails to analyze and in all fairness
was probably never meant to analyze given the polyhedral domain approach. On
the other hand our tools cS-gan and cS-app are able to solve a number of
these (in our opinion) interesting benchmarks. In particular our tools admit the
quantification of larger programs (e.g., Problem_10) and more complex pro-
grams (i.e., arrays or advanced arithmetic). Concerning (Q3) we showed how a
bit precise semantic helps in correctly quantifying overflow errors.

Non-deterministic programs. Turning to the question of non-deterministic pro-
grams (Q4), we can observe in the last part of Table 1 that all benchmarks
considered are solved the fastest by dim. We observe, once again, that the cases
where cSn-gan or cSn-app yield a timeout or memout are cases with very deep
loops with the notable exception of the benchmark nondet which does not involve
loops. While dim is the fastest tool, it turns out that cSn-gan and cSn-app
can sometimes produce more precise results than the approximate result yielded
by dim. In particular, the benchmark nondet which corresponds to the code in
test2 in Fig. 2 demonstrates this behavior. As previously discussed, the asser-
tion can fail for any input due to the non-deterministic value of y, but it must
fail for any negative input x. Accordingly, cSn-app reports a possible assertion
miss for 232 cases and a possible assertion hit for 231 cases. This corresponds to
a probability of success between 0 and 50 percent and a probability of violation
between 50 and 100 percent for a uniform input distribution. While dim is faster
in reporting its result, it reports that both success and violation probability lie
within the range 0 to 100 percent which is a lot less precise than cSn-app. The
reason for this behavior is quite likely the multiplication in the program which
is difficult to handle for the polyhedra abstract domain. Equally, the complexity
of the formula due to multiplication might be a reason why the exact counter
cSn-gan fails to quantify the benchmark. Concerning (Q4) we find that our
tools admit the accurate quantification of non-deterministic benchmarks. Just
as for deterministic benchmarks our approach is limited by loop depth. Once
again certain cases can profit from the bit precise semantic allowing for a more
precise quantification (as in the case of nondet).

Analysis of bottlenecks. cbmc and the program transformation take most of
the required time for instances with a small input space. As the input space
size grows, the counting step either becomes infeasible (especially for ganak)
or requires a lot more computation time in comparison to cbmc (especially for
ApproxMC). Since counting can take significant amounts of time and ganak
and ApproxMC showed drastic variations in performance on some benchmarks
(e.g. Waldkirch where ganak solves the instance a magnitude faster than Ap-
proxMC or float where the opposite behavior can be observed), an approach
using a portfolio of model counters could reduce computation time.
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5 Related Work

Klebanov et al. [11] present the idea of using CBMC to generate CNF formulae
for model counting to compute the information leakage of a program.

Geldenhuys et al. [8] proposed an approach using symbolic execution for
the extraction of path probabilities. To this end, a classic symbolic execution
methodology is modified such that it computes probabilities instead of path
conditions: At every branching point the algorithm computes the likelihood of
descending into the subprocedures at hand under the assumption of a uniform
distribution of input variables using the polytope utility LattE [14]. Path prob-
abilities are then computed through multiplication of branch probabilities. Lui
and Zhang [13] propose a similar approach which does not use formula slicing
or memoization. Filieri et al. [7] applies symbolic execution on Java-programs to
extract path conditions for every possible execution path. The paths are then
labeled as success, failure or “gray” paths with unknown success status. The num-
ber of models for these path conditions are, again, counted with LattE, though
they may be constrained by usage profiles describing an input distribution. This
allows to compute the probability of failure (failure paths) and the confidence in
the result (gray paths) under the given usage profile. The approach furthermore
supports multi-threading. In contrast, our approach differs in both: the program-
ming language under evaluation and the counting technique approach allowing
more complex behavior than the linear constraints described by polytopes.

The approach of Dimovski and Legay [6] allows the computation of assertion
hit and miss probabilities under a uniform input distribution for programs writ-
ten in a subset of C. The approach uses abstract interpretation to describe the
program behavior using the polyhedra domain, which encodes linear constraints
between program variables. In a first step, a forward analysis of the program
is performed computing an invariant which must hold after the program exe-
cution. The forward analysis is based on intervals which have to be defined for
the input variables of interest. The forward analysis works by applying sound
(but over-approximating) transfer functions on the specified input domain. Af-
terwards, in a backward pass, conditions specifying an assertion hit/miss are
propagated backward using appropriate transfer functions. This approach pro-
duces two over-approximating linear constraint preconditions: One for assertion
hits and one for assertion misses. The number of inputs corresponding to the
precondition at hand are then again computed using LattE [14]. Both results
(assertion hit and miss) represent an upper-bound for the number of inputs
leading to the specified behavior. By calculating the complement of each count,
the tool can further provide a lower bound for each of the two cases. Addi-
tionally, the analyzer provides a semantic that also allows a quantification of
non-deterministic programs. While the tool of [6] is similar, it only supports a
more restrictive subset of the C programming language in comparison to our
approach: The subset supports no complex data types and only integers as basic
data types while our work supports both arrays and floats. Additionally, the use
of non-linear operators as well as bit operators is greatly restricted. As our tool
relies on bounded model checking and SAT model counting, we can avoid this
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limitation by making use of a bit-precise semantic which also takes overflows
into account. On the other hand, our tool has stricter limitations on the loops
that can be evaluated as the bounded model checker must unroll such loops up
to a sufficient depth for exact results, while Dimovski and Legay [6] can ana-
lyze such loops in considerably less time using abstract interpretation if the loop
conditions are sufficiently simple.

6 Conclusion

In this work we presented a formal approach allowing the precise quantification
of software properties given as assumptions and assertions. The resulting pipeline
contains three steps: (1) program transformation, (2) conversion into CNF for-
mulae and (3) model counting. We implemented the pipeline prototypically and
undertook an extensive, qualitative evaluation of the prototype. We show that
our quantification approach is both, feasible, even a program with 1300 LoC was
still analyzable with the given resources, and useful, sometimes yielding results
beyond the precision of previous approaches. We further introduced a seman-
tic allowing the quantitative analysis of non-deterministic programs and showed
that the pipeline is capable of analyzing such instances, too. In our compari-
son to the tool in [6], we showed strengths and weaknesses of both approaches:
While their approach works very well on programs with high loop depth, our
approach allows the quantification of programs using more complex arithmetical
operations such as bit operators or multiplication. Equally, we presented a case
in which the bit precise semantic helps in returning more precise results for the
quantification of non-deterministic programs.

To summarize, we believe that a SAT counting based approach is an inter-
esting addition to the tool set available for software quantification. While some
benchmarks also remain out of reach for our approach (either due to the input
space explosion with growth in input variables or due to the sheer problem size)
and approximation errors need to be considered when analyzing, the capabilities
of our approach will scale with advances in model counting in the same way the
capabilities of bounded model checkers grow with the advances in SAT solving.

Future Work. The current pipeline can only serve as an estimator of proba-
bility of failure for the case of a uniform input distribution. An extension to
non-uniform input distributions could further increase the utility of the tool.
To this end, we identify a need for projected weighted model counters (approx-
imate or exact). Additionally, cbmc allows the use of complex data types such
as structs. However, the current setup only allows basic data types as input
variables. A methodology allowing a quantification over a set of complex data
structure instances as input might be an interesting addition to the tool in its
current form.
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A Model Counting

Model counting is the counting of satisfying assignments (models) of a given
(propositional) formula. We use model counting to quantify the number of inputs
for which a given variable corresponds to our specification. This section gives a
brief overview over the notions of model counting and recent advances in the
field before it explains how we harness propositional model counting techniques
in our pipeline.

Preliminaries Assuming a CNF formula φ over the signature Σ, an assignment
is the interpretation of the propositional atoms I : Σ → {t, f}. There are 2|Σ|

possible assignments for the variables in φ. We can then define models (φ) :=
{I | I |= φ} as the set of all assignments satisfying φ. A model counter thus
computes the cardinality |models (φ)|. In our case, we are only interested in
the assignments of the program’s input variables. For this we need the projec-
tion on propositional formulae. Let ∆ ⊆ Σ be a signature, then φ�∆ denotes
the strongest formula over ∆ which is entailed by φ [12, Logical Foundations].
Note, φ�∆ states the same constraints on the atoms in ∆ as φ. We denote with
models∆(φ) := {I�∆| I |= φ�∆} the set of ∆-models of the ∆-projection of φ.
There exist exact and approximative model-counters.

Exact Model Counting. In our work we use the probabilistic exact model counter
ganak [17] which is freely available and represents an improved version of sharp-
SAT [22]. For a given parameter δ the model counter returns the exact model
count with probability 1 − δ. In practice the tool returned exact results for all
benchmarks considered by [17] when setting δ = 0.05. The model counter also
recently won a first place in the Model Counting Competition 2020 [9] as part
of a portfolio.

Approximate Model Counting. Alternatively, we can use the approximate model
counter ApproxMC [3,12,18,15] which uses a probably approximate correct (or
PAC) algorithm. This means the algorithm provides a theoretical guarantee on
the relation between the correct model count ψ and the result of ApproxMC
ψA which can be configured by some (ε, δ):

Pr

[
ψ

1 + ε
≤ ψA ≤ (1 + ε)ψ

]
≥ 1− δ (PAC)

It is worth noting that two runs of ApproxMC can be considered independent
random variables as the correctness of the result depends on the random variables
within the algorithm and not its input value.

Bounds for ratios. For the ratios re∀, and r
f
∀ we obtain error bounds through the

following corollary:
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Corollary 1. Let φ1, φ2 be two model counts measured according to (PAC) and
let further φ∗1, φ∗2 be the correct model counts, then:

Pr

[
1− (1 + ε)

2 φ
∗
2

φ∗1
≤ φ1 − φ2

φ1
≤ 1− φ∗2

(1 + ε)
2
φ∗1

]
≥ (1− δ)2

For both ratios φ1 in Corollary 1 corresponds to ψh? (consequently φ∗1 represents
H?). φ2 then either corresponds to ψh! or ψm! respectively yielding the measure-
ment for re∀ or r

f
∀ (hence φ∗2 represents H! or M!). We clearly see that the ratios’

error bounds become less precise in comparison to the single measure case.

B Correctness of the pipeline

In this section we will argue why the pipeline we described in Sec. 3 is cor-
rect. By correctness, we mean that we get correct counts ψm? , ψ

h
? , ψ

m
! and ψh! for

M?, H?,M! and H! when running the pipeline with an exact model counter. The
correctness depends on three elementary properties: First, the program transfor-
mation preserves the behavior of the original program. Of course, a new program
flow is established, but in cases without a violation of an assumption or asser-
tion the transformed program behaves equally. Secondly, every hit or miss of
an assumption or assertion is captured faithfully by a violated assert-statement
(Lines 20 to 23). Thirdly, every (projected) model of the generated CNF formulae
is indeed a representative for a violating or valid program path.

Program transformation preserves behavior. We need to consider that unifying
return statements, and early execution abortion do not alter the program flow
unfaithfully, especially, no program behavior is introduced which violates an
assumption or assertion.

Considering the unifying of return statements: When in the old program
a return statement is reached, the sub-routine is immediately returned to the
callee. In the transformed program, we store the return value if necessary, and
jump to the last remaining return statement under the end-label. This takes an
extra step, but this step does not modify the value of any program variable.

The early abortion is triggered only when an assumption or assertion viola-
tion occurs, as the variables am and as are not in the original program. Therefore,
for any input without a specification violation, the transformed program behaves
exactly the same, terminating with am and as equal to false.

Capturing hits and misses. We need to consider four cases (assumption/assert
hit/miss), but due to symmetry reason, we only argue in the two critical cases:
the violation of an assumption or assertion. Please reconsider, that we encode
the required property with a negation into the program, because a negation on
the property is added by cbmc. As a summary, we count the inputs which violate
an assert-statement.
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Let us consider the case of assumption misses (M?). As previously explained,
the resulting program should contain exactly one assert-statement which is vi-
olated iff the given input violates one of the specified assumptions. This assert-
statement (see Line 23 in Fig. 5) checks the program variable am. The program
execution, just as in the original program, begins with the subroutine under
consideration and the checks of the assumptions. If at least one assumption is
violated for a specific input, the variable am becomes true, and the program is
aborted early. For the entry routine, we directly jump to the assert-statement
which will be violated. Therefore, any violation of user-defined assertion is ig-
nored in the further program flow.

Next, we consider the case of assumption hit (H?) with an occurring assertion
miss (M!). The original (and transformed) program starts again in the entry
function, but as the assumptions are met, the remaining body is executed (am
stays false for the complete remaining execution). Afterwards, if an assertion
in is violated somewhere during the program execution, the variable as becomes
and stays true, and also the program flow of the current routine and its callees is
aborted recursively until one of the assert-statements (Lines 20 to 23) is reached.
In detail, only the assert-statements in Line 21 (assertion miss) and in Line 22
(assumption hit) are violated. If no assertion had been violated, the assert-
statement in Line 20 would be violated.

Model-counting. Our projected model counter computes the number of distin-
guishable assignments projected to a variable set ∆ which satisfy the given for-
mula. If we want to obtain correct results for our metrics, we thus need to choose
our formulae and projection set in such a way that the model counter returns
correct counts. Our bounded model checker cbmc returns formulae which are
satisfiable iff a specified assert-statement can be missed for some program path
(within the defined bound). The formula returned by cbmc contains proposi-
tional variables for all bits of our program’s input. We thus choose exactly those
input representatives as set ∆. If we are able to construct a program containing
exactly one assert-statement which is missed iff the given input has a program
path that implies an assertion hit, we can then compute H! by constructing this
program and subsequently passing the transformed program to cbmc and later
on to the model counter projecting on the input variables. Correspondingly, we
can compute M!, H? and M? if we can construct a program containing exactly
one assert-statement which is missed iff the conditions for the corresponding
variable are met.
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