
Quantum effects in Molecular Magnets

Zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

von der KIT-Fakultät für Physik des
Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

M. Sc. Gheorghe Taran

Tag der mündlichen Prüfung: 23. October 2020
Referent: Prof. Dr. Wolfgang Wernsdorfer
Korreferent: Prof. Dr. Mario Ruben



for Eliza



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Spin Hamiltonian Formalism . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Quantum Tunneling of Magnetization . . . . . . . . . . . . . . . . . . 15
1.3 Spin Parity and Quantum Phase Interference . . . . . . . . . . . . . . 18
1.4 Quantum Coherence in Molecular Magnets . . . . . . . . . . . . . . . 20
1.5 Molecular Quantum Spintronics . . . . . . . . . . . . . . . . . . . . . 22

2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Tb3+ molecular magnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1 The role of quadrupolar interaction in tunneling dynamics of TbPc2

SIMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Decoherence Measurements in TbPc2 SIMM . . . . . . . . . . . . . . 44
3.3 Nuclear spin lattice relaxation . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Electronic and nuclear spin dynamics in Tb2Pc3 dinuclear SMM . . . 65

4 Hyperfine enhanced phonon assisted tunneling . . . . . . . . . . . . . . 73
4.1 Dy2dpm isotopologue SMMs . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Phonon assisted tunneling in HoIIIF2[15-MCNi-5] . . . . . . . . . . . 84
4.3 Phonon assisted tunneling in Mn12-ac . . . . . . . . . . . . . . . . . . 90

5 µSQUID-EPR on Gd3+ SIMMs . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1 Et4N[160GdPc2] SIMM . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Measurements on 157Gd(tmhd)3Phen . . . . . . . . . . . . . . . . . . . 119

6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

i





1 Introduction

Traditionally, the word magnet evokes a material in which a long-range magnetic
order arises from local exchange interactions. The observed magnetic properties, like
remanence and hysteresis, result from a collective behavior. However, developments
in the last two decades showed that isolated molecules can bear large magnetic
moments that exhibit bistability like traditional magnets. They have therefore been
called single-molecule magnets (SMMs).

The field of SMMs started with the discovery of the large magnetic moment of the
Mn12O12(CH3COO)16(H2O)4 (here denoted as Mn12-ac, Fig. 1.1) molecular cluster [1]
and the observation of its magnetic bistability [2]. Later, quantum tunneling of
magnetization (QTM) [3, 4] was evidenced in Mn12-ac, as well as ground state
quantum tunneling [5] and topological quantum phase interference effects [6] in
[Fe8O2(OH)12(tacn)6]8+ (or simply Fe8, Fig. 1.1). These first discovered SMMs lead
to breakthrough observations and to this day remain amongst the most investigated
systems [7, 8].

SMMs are constituted by an inner core of magnetic ions which is surrounded by
a shell of organic ligands. They come in a variety of shapes and sizes and permit
selective substitution of the ligands in order to alter the coupling to the environment.
It is also possible to replace the magnetic ions, thus changing the magnetic properties
without greatly modifying the structure and the interaction with its surroundings.

The main technological interest in the field of SMMs is fueled by the desire to integrate
molecular structures in quantum information processing devices as memory units
and quantum bits (qubits). There are currently two different approaches that try
to satisfy the miniaturization tendencies in the current state of the art technology.
The first one is a top-down approach in which the nanometer-sized objects are
obtained by reducing the dimensions of a bulk material (a common way for obtaining
magnetic nanoparticles). The second method is a bottom-up approach [9] which
for the field of SMMs means enhancing the magnetic moment of the molecule by
ion substitution or through adding new magnetic centres to the molecule. One big
advantage of SMMs over magnetic nanoparticles is their monodisperse properties, as
chemical synthesis yields a large number of molecules with identical characteristics.
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1 Introduction

Figure 1.1: Left: Structure of the Mn12 SMM with the formula [Mn12O12(CH3COO)16(H2O)4]. Right:
Structure of the Fe8 SMM with the formula [Fe8O2(OH)12(tacn)6]8+ where tacn is a macrocyclic ligand.

In many cases, the SMMs can be made to form insulating monocrystals, thus the
environment of each molecule is very similar. This gives access to the properties
of a single molecule from the measurements performed on the ensemble. The
found alignment between the magnetic principal axis of the molecule and the
crystallographic axes [10] is especially important when determining the intrinsic
characteristics of the magnetic centres.

Most of the earlier experimental and theoretical investigations of the physics of
molecular magnets were done using 3d transition metal ion complexes as model
systems. However, the last decade saw the rise of molecular complexes that employ
lanthanide ions as magnetic centers and at the moment one can make an argument
that this class of SMMs are amongst the most promising ones. Recent achievements
include the observation of magnetic bistability of a Dy complex at temperatures well
above liquid nitrogen [11] and the implementation of the quantum Grover algorithm
at the single molecule level [12]. Unquenched orbital angular momentum, large
single ion anisotropy and a strong hyperfine interaction are just some characteristics
that distinguish lanthanide complexes in the field of molecular magnetism [13].

In this thesis I discuss measurements on lanthanide single-molecule magnets model
systems that we used to explore quantum phenomenologies at mesoscopic scale
(referring to the vector space associated with the spin degree of freedom) where
properties from both the quantum and the classical worlds transpire. The interest of
working in this dimensional range comes from the desire to use quantum properties
that characterize microscopic systems while being able to address and manipulate
them with simple means.

I start with a short account of the dominant intramolecular interactions at sub-Kelvin
temperatures in the framework of spin Hamiltonian models. The application of the
general formalism to mononuclear and polynuclear complexes is used to illustrate
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1 Introduction

the power of the spin models in explaining both static properties (e.g., magnetic
bistability) and dynamic ones (e.g., quantum tunneling of magnetization). I show how
SMMs were used as a vehicle to explore quantum phenomenologies like nonadiabatic
spin transitions, spin parity effect, Berry phase interference and quantum coherence
while covering milestone results that brought the field closer to providing basic
components of quantum devices. In the last section of this introductory chapter I give
a short overview of the recent achievements in the field of molecular spintronics that
allowed the implementation of Grover’s quantum algorithms at the single molecule
level.

In chapter 2 an overview of the µSQUID technique is given as most of the studies
presented in the subsequent sections are based on sub-kelvinµSQUID measurements.
Details are given on our efforts towards the automation of the measurement protocol.
I also discuss the inclusion of an EPR module used to induce resonant excitations in
single-molecule crystals.

I continue by presenting our theoretical and experimental investigation of the
archetypical TbPc2 SMM taken as a prototype for other lanthanide molecular
magnets that are considered as potential candidates for quantum information
processing devices. After a short review of the low temperature magnetic properties
of the TbPc2 complex we take an in depth look at the factors that can promote
quantum tunneling dynamics. We first show that the commonly considered transverse
interactions originating in the ligand field and in the spin bath fail to explain the
observed dynamics. Further analysis highlights the importance of the nuclear
spin in quenching the transitions that do not conserve its magnitude. Finally, we
propose through nuclear quadrupolar interaction a viable mechanism that mixes
the hyperfine states.

In the next section is shown that low temperature magnetometry (in our caseµSQUID
measurements) can be used to obtain the decoherence rates in crystals of molecular
magnets, thus providing an alternative to resonant techniques. For this, we model the
magnetic hysteresis loops of the TbPc2 diluted in an isostructural, diamagnetic matrix
and obtain the tunneling transition rates. The tunneling probabilities are analyzed
in the framework of the recently proposed model for incoherent Landau-Zener
dynamics leading to experimental estimates of both the intrinsic tunneling time and
the dephasing time. The presented approach to measuring decoherence should be
applied to molecular systems that show promise as quantum bits and thus, provide
important feedback to further improve them by chemical methods.

We then investigate the thermalization of the 159Tb nuclear spins. The acquired
understanding on the TbPc2’s Landau-Zener dynamics is used to develop a read
out technique for the population of the hyperfine states. It was found that a direct
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1 Introduction

process that involves phonon modulation of the hyperfine interaction is sufficient
to explain the magnitude of the determined relaxation rates. To our knowledge,
this is the first time the direct link between the phonon bath and the nuclear spins
was shown to dominate the relaxation of a nuclear spin embedded in a molecular
magnet. The highlighted relaxation mechanism is important to explain the observed
isotopic enhanced dynamics in lanthanide compounds and will be further discussed
in Chap. 4.

In the last section of Chap. 3, measurements on a closely related dinuclear Ln SMM,
Tb2PcHx8Pc2, are used to illustrate that the phenomenologies uncovered in the
previous sections are important to rationalize its dynamics. It is shown that the
spin-spin interactions together with transverse ligand field interactions induce the
reversal of the electronic spins at the hyperfine crossings that conserve the nuclear
spin. While the quadrupolar interaction between the electronic and nuclear spins
induces co-flipping events that do not conserve the nuclear spin moment. Also, the
159Tb nuclear spins in the molecular environment of the Tb2PcHx8Pc2 thermalize on
the same time scale as when it is embedded in the TbPc2 molecule. The observed
quantum phenomenologies have to be accounted in potential applications of the
Tb2PcHx8Pc2 complex in spintronics devices.

In chapter 4 we pursue the relationship between the isotopic composition of the
Ln ions and the relaxation of the molecular spins in crystalline environments. Two
model systems are discussed: Dy(tmhd)3)2bpm and HoIIIF2[15-MCNi-5].

In the first section I will present our analysis on (163Dy(tmhd)3)2bpm and
(164Dy(tmhd)3)2bpm isotopologues and highlight the strong effect of the nu-
clear spins on the relaxation dynamics in intermediate temperature range, that is,
when molecular spin tunneling and phonon assisted transition rates are comparable.

To further explore, through experimental means, the effect of the nuclear spin on the
phonon-assisted tunneling in Ln compounds, we also discuss our measurements
on HoIIIF2[15-MCNi-5] SIMM. The advantage of HoIIIF2[15-MCNi-5] compared to
Dy(tmhd)3)2bpm lies in the well resolved structure of the hyperfine steps and in the
unusual ground state splitting due to the interaction between the Ho ion and Ni5
metallocrown. While the disadvantage is the simplex natural abundance of 165Ho
nucleus that does not allow isotopic purification.

In the last section I explain the observed temperature and field dependence of the
relaxation rate of the molecular spin through phonon assisted quantum tunneling
dynamics enhanced by hyperfine fluctuations. I show that the relaxation channel
between the nuclear spins and the phonon-bath through the modulation of the
hyperfine interaction is key in understanding the dynamics of both Dy(tmhd)3)2bpm
and HoIIIF2[15-MCNi-5].
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1 Introduction

The last chapter is devoted to resonant photon absorption in two Gd3+ SIMMs,
namely, Et4N[160GdPc2] and 157Gd(tmhd)3Phen.

In particular, measurements on Et4N[160GdPc2] are used to display the power of
the combined µSQUID and EPR techniques to rationalize the observed magnetic
phenomenology while the investigation of 157Gd(tmhd)3Phen showcases the potential
of these measurements to establish magnetostructural correlations. The "high
resolution" of the measured energy spectrum allows for a detailed analysis of the
magnetism of the compounds through the spin Hamiltonian formalism.
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1 Introduction

1.1 Spin Hamiltonian Formalism

In this thesis, I will discuss quantum phenomenologies observed in mononuclear
and dinuclear lanthanide single molecule magnets. Thus, it is useful to start with a
short overview of the general properties of lanthanide complexes and summarize
the basic theoretical framework in which their magnetic properties are investigated.

Ln3+ compounds

The general problem to consider is a magnetic center placed in a molecular
environment and manipulated by DC and RF magnetic fields. The characteristic
Hamiltonian can be written formally as:

H = H0 +Hee +HSO +HLF (1.1)

Where

H0 = ∑
k

[
1

2m
(pk + eA)2 + geµB(∇×A) · sk −

Z∗e2

rk

]
(1.2)

is the sum of hydrogen like terms that takes into account the effect of the hyperfine
and Zeeman interaction through the magnetic potential, A,

Hee = ∑
k<l

e2

rkl
(1.3)

is the interelectronic repulsion,

HSO = ∑
k

ξ(rk)sk · lk (1.4)

is the spin orbit coupling and

HLF = −e ∑
k

∫
ρ(R)

|R− ri|
dτ (1.5)

is the ligand field interaction.

The Schrodinger equation, HΨ = EΨ, does not know an analytical solution and
thus, a perturbative approach [14] was developed to take advantage of the fact that
the interactions highlighted in Eq. 1.1 operate on different energy scales (see also
Fig. 1.3).
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1.1 Spin Hamiltonian Formalism

Figure 1.2: a) Schematic representation of the radial charge density ρr for the 5s, 5p, 4f and 5d electronic
shells of the Gd3+ ion. The angular distribution of the 4f orbitals is depicted in panel b) fz3 (similar
to fx3 , and fy3 which extend along the x- and y-axes, instead). c) fxyz (similar to fxz2−y2, fy(z2−y2) and
fz(x2−y2) which are produced by a 45◦ rotation about the x, y and z-axes respectively) and d) fx(x2−3y2)
(similar to fy(3x2−y2) formed by a 90◦ clockwise rotation round the z-axis).

Thus, one solves H0Ψ = EΨ with A = 0 Vs/m. The eigenfunctions are written as a
product of hydrogen like wavefunctions:

φ(r) ∼ r−1Rnl(r)Ym
l (θ, φ) (1.6)

where Rnl and Ym
l (θ, φ) are the radial and angular dependence, respectively. The

energy is a function of n and l only (n = 4 and l = 3 for the magnetic orbitals of the
Ln ions). Thus, the lanthanide ions are characterized by the progressive filling of
the 4f subshell, with the electronic configuration [Xe]4fn6s2 (or [Xe]4fn−15d16s2).
Their distinct properties (e.g., prevalence of the +3 oxidation state, 4f contraction
of the atomic radius, unquenched orbital angular momentum, relative easy ligand
substitution, etc.) originate mainly in the well shielded nature of the magnetic
electrons (Fig. 1.2a). Also, the angular distribution of the 4f orbitals (see Fig. 1.2b-d)
plays an important role in determining the magnetic anisotropy of Ln3+ complexes.
For example, it was used to explain why different ligation geometries lead to an
either easy plane or easy axis anisotropy in a Ln3+Pc2 isostructural series [15].

For lanthanide ions the inter-electronic interaction is dominant over the spin-orbit
interaction and thus Russel-Saunders coupling scheme is applied. That is, we first
couple the electronic spin moments to a total spin angular momentum, S, and the
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1 Introduction

electronic orbital moments to a total orbital momentum, L. Thus, Hee interaction
lifts the degeneracy of the [Xe]4fn ground states leading to terms of the form, 2S+1L.

The total angular momentum, J, takes 2L + 1 (if L > S) or 2S + 1 (if S > L) degenerate
values: J = |L− S|, .., (L + S). The degeneracy is broken by taking into account the
spin-orbit interaction:

HSO = λS · L (1.7)

The states characterized by the same L, S and different J, are split according to the
relation:

E(S, L; J) = λ/2[J(J + 1)− L(L + 1)− S(S + 1)] (1.8)

with consecutive states separated by:

∆E = E(S, L; J + 1)− E(S, L; J) = λJ (1.9)

where λ = ±ξ/2S, is positive for n < 7 and negative for n > 7. Thus, the ground
state is |L− S| for the Ln ions with less than half-filled shell and (L + S) for the Ln
ions with more than half-filled shell.

The procedure used to obtain the total angular momentum corresponding to the
ground electronic state of a free Ln3+ ion are summarized by the Hund’s rules, that
should be applied in the following order:

• Between all possible electronic configurations, the ground state corresponds
to states that maximizes S.

• L corresponds to the maximum allowed angular momentum.

• Finally, the total angular momentum is |L− S| for n < 7 and (L + S) for n > 7
with the term represented by 2S+1LJ .

Note that, the research field of molecular magnets is biased towards the elements in
the second half of the lanthanide series due to their large total angular momentum
and thus large magnetic moment. Also, for most Ln ions, the spin orbit coupling
leads to a large separations between the ground, 2S+1LJ , and first excited term,
2S+1LJ+1, and thus at room temperature only the ground state is occupied.

Ligand field interaction

A lanthanide SMM contains a Ln3+ ion embedded in a molecular environment
with the effect of the coordinated ions usually described in the framework of the
ligand field formalism. The ligand field Hamiltonian, HLF (Eq. 1.5), describes an
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1.1 Spin Hamiltonian Formalism

Figure 1.3: Schematic representation of the dominant intramolecular interactions in the TbPc2 single
molecule magnet. An excitation with energy larger than 49× 103 K is needed to induce the 4f8 - 4f75d1

transition. In the LS-coupling scheme, the electrostatic repulsion results in the ground term, 7F, being
separated by 29.9× 103 K from the excited one, 5D. The degenerate states characterized by, S = 3, L = 6
and a total angular momentum, J = 0, 1, .., 6, are in turn split by the spin orbit coupling leading to the
ground state term, 7F6, separated by ∼2900 K from 7F5 excited term. The degeneracy is further removed
by the interaction with the ligand ions leading to a ground doublet mJ = ±6 separated by more than
600 K from the first exited one mJ = ±5. Finally, the ground doublet is split by the interaction with an
externally applied field (e.g., 14 K energy splitting in Bz = 10 T) and by the interaction with the nuclear
spin.

electrostatic potential created by the ligated ions. For molecular complexes this
approximation is often not sufficient and covalent effects have to be included.

To evaluate the ligand field in a perturbative approach one has to compute the
following matrix elements:

〈ψl | HLF |ψk〉 (1.10)

Due to the spherical nature of the |ψ〉 eigenstates it is useful to expand the potential
as spherical Harmonics. Thus,

1
|r− R| =

∞

∑
k=0

4π

2k + 1
rk

Rk+1

k

∑
q=−k

Yq
k (Θ, Φ)Yq

k (θ, φ) (1.11)

where R, Θ and Φ are spherical coordinates that correspond to the ligated ions while
r, θ and φ describe the 4f electrons. Thus, the ligand field operator can be written as:

HLF =
∞

∑
k=0

k

∑
q=−k

rk
(

4π

2k + 1

∫
ρ(R)

4πε0Rk+1 Yq
k (Θ, Φ)dτ

)
Yq

k (θ, φ) (1.12)
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1 Introduction

We can separate the ligand degrees of freedom from the ones describing the 4f
electrons with

Aq
k =

4π

2k + 1

∫
ρ(R)

4πε0Rk+1 Yq
k (Θ, Φ)dτ (1.13)

being the ligand field parameters.

Finally, by using the irreducible tensor formalism Yq
k can be expressed as a function

of equivalent spin operators [16, 14]:

HLF = ∑
k

k

∑
q=−k

αk(1− σk)Aq
k〈r

k〉Oq
k = ∑

k

k

∑
q=−k

Bq
kOq

k (1.14)

where Ok
q are equivalent Steven’s operators, Bq

k are Steven’s coefficients, αk are the
proportionality constants between Yq

k and Oq
k , and σk is a screening constant.

The Steven’s operators are functions of Jz, J−, J+ and are listed in [16, 14]. The
index k represents the order of the operators. The sum includes only even terms as
only even terms generate non-zero matrix elements. The subscript q denotes the
operator’s rotational symmetry.

The coupling between J and the external magnetic field (H) is modelled through the
Zeeman term:

HZ = gJµBµ0H · J (1.15)

where µB is the Bohr magneton and:

gJ =
gL[J(J + 1) + L(L + 1)− S(S + 1)] + gS[J(J + 1) + S(S + 1)− L(L + 1)]

2J(J + 1)
(1.16)

Hyperfine interaction

If the Ln ion has a non-zero nuclear spin, I, it couples to the surrounding electronic
shell and further splits the electronic levels in a manifold of hyperfine levels. The
interaction is modelled by adding a hyperfine and a nuclear quadrupolar contribution
to the spin Hamiltonian:

Hn = Ahyp(J · I) + IP̂quadI (1.17)

The isotropic hyperfine interaction, Ahyp(J · I), has three components:
(1) the Fermi contact interaction

HF
n =

2gngJµ0µ2
B

3
(I · J)δ(r) (1.18)
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1.1 Spin Hamiltonian Formalism

(2) the paramagnetic spin-orbit contribution

HP
n =

gnµ0µ2
B

2π

L · I
r3 (1.19)

(3) and the dipole-dipole component

HD
n =

gngJµ0µ2
B

4πr3

[
I · J− (I · r)(J · r)

r2

]
(1.20)

The quadrupolar term, IP̂quadI, results from the interaction between nucleus
quadrupolar moment and the electrostatic ligand field gradient and thus is present
only for ions with I > 1/2 that are placed in non-spheric environments:

Pαβ =
Q

2I(2I − 1)
〈Vαβ〉 (1.21)

where Q is the nuclear quadrupole moment and Vαβ is the electrostatic tensor
gradient.

TbPc2 molecule

As a first example let’s consider shortly the terbium(III) bis(phtalocyanine) (TbPc2)
complex. It will be discussed in greater detail in Chap. 3.

The Tb3+ ion, found at the core of the molecule, exhibits the [Xe]4 f 8 electronic
structure which leads to a spin S = 3 and an orbital angular momentum L = 3. The
ground state of the Tb3+ ion is thus J = L + S = 6. The strong spin orbit coupling
leads to a separation of about 2900 K between the ground state and the excited state
(J = 5) (see Fig. 1.3). Therefore, at low temperatures, the spin is confined to the
ground state multiplet, J = 6, comprised of 2J + 1 (degenerate) substates, |J, mJ〉.

The interaction with the phtalocyanine (Pc) planes further splits the energy levels
in the ground multiplet. The crystal field interaction generates a quantization
axis oriented perpendicular to the Pc planes and was modelled by the following
Hamiltonian [17]:

Hlf = B0
2O0

2 + B0
4O0

4 + B4
4O4

4 + B0
6O0

6 + B4
6O4

6 (1.22)

The ligand field parameters, Ak
q, were determined experimentally by the simultaneous

fit of the NMR and magnetic susceptibility measurements performed on a LnPc2
isostructural series[17]:

Aq
k〈r

k〉 = aq
k + bq

k(n− n0) (1.23)
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Figure 1.4: Left: Energy levels of a spin S = 10 subject to the ZFS term. Right: A zoom of the energy
level diagram near an avoided level crossing where m and m′ are the quantum numbers of the energy
levels. PLZ is the Landau-Zener tunnel probability when sweeping the applied field from the left to the
right over the anticrossing. The greater the gap ∆m,m′ and the slower the sweeping rate, the higher is
the tunnel probability PLZ (Eq. 1.30).

when n is the order of the lanthanide in the series and aq
k and bq

k are the fit parameters.

The Tb3+ ion also has a nucleus with a non-zero spin, I = 3/2. The strong interaction
between the electronic shell and 159Tb nucleus is described by the hyperfine term,
(Ahyp Iz Jz), and the quadrupolar term, (Pquad I2

z ), added to the total Hamiltonian. The
resulting hyperfine structure is shown in Fig. 1.3.

Transition Metal Ion compounds

To illustrate the power of the ligand field formalism let’s consider a transition metal
ion compound that is characterized by a quenched orbital angular momentum. As a
consequence, the Hamiltonian, in a first approximation, can be written using only
spin degrees of freedom. The spin-orbit interaction, treated as a perturbation of
second order, is nonetheless very important because it couples the magnetic ions to
the surrounding organic ligands, leading to critical contributions to the anisotropy of
the molecule. By considering only the quadratic terms from Eq. 1.14 in zero external
magnetic field, the Hamiltonian of the system is given by:

H = DS2
z + E(S2

x − S2
y) (1.24)

where D and E are commonly used notations that stand for the Steven’s coefficients
3B0

2 and B2
2 , respectively. D is negative when z-axis is chosen to coincide with the

easy axis of the molecule, which will be assumed in the following, and |E| � |D| in
most cases.
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1.1 Spin Hamiltonian Formalism

Considering only the first term in the above Hamiltonian, we see that the states
pertaining to the S multiplet and labeled by the quantum number m = −S, .., S, are
only doubly degenerate: E(±m) = −|D|m2. For this reason, the magnetic anisotropy
constant D is often denoted as zero field splitting (ZFS).

The discrete energy levels follow a parabola, illustrated in the Fig. 1.4. U = |D|S2 is
called the anisotropy barrier. The two sides of the barrier correspond to opposite
orientations of the magnetic moment, thus the ZFS term gives the approximate
energy barrier the spin has to overcome to flip its orientation.

The height of the barrier and the characteristic time of the experiment lead to
the definition of the blocking temperature (TB), as the temperature under which
the phonons do not have sufficient energy to promote reversal processes (e.g., for
Mn12-ac, TB ∼ 4 K for a characteristic time of the experiment of 1 s). Increasing the
blocking temperature remains a central research goal in the field of SMMs [18, 19, 20]
with the current record anisotropy barrier being 1, 760 K and TB ∼ 60 K [11, 21]. The
last term in (1.24) breaks the axial symmetry of the system and strongly affects the
low temperature relaxation of the magnetization (Sect. 1.2).

Multi-spin Hamiltonian

Although, a number of molecules having a single magnetic ion have been synthe-
sized [22], most SMMs contain multiple magnetic centers within their organic shell,
and their description thus requires a multi-spin Hamiltonian.

For a pair of spins coupled through exchange interaction, the Hamiltonian can be
written as [23]:

Hexc = S1 ˆJ12S2 (1.25)

In general, the interaction tensor ˆJ12 is not symmetric, so it is customary to put the
above equation in a form that highlights an isotropic term (J12S1 · S2) that favours a
parallel alignment of the spins, an anisotropic, symmetric component (S1D̂12S2) that
tends to align the spins along a certain direction in space, and Dzyaloshinsky-Moriya
term (d12 · (S1 × S2)) that works toward orienting the spins perpendicular to each
other. Usually, the isotropic term is significantly larger than the others and it’s sign
will dictate the ferromagnetic or antiferromagnetic character of the ground state.

The generalization to a system containing an arbitrary number of spins is done by
putting together the single ion anisotropies with the pairwise exchange interactions,
leading to the following multi-spin Hamiltonian:

H = ∑
i

SiD̂iSi + ∑
ij

Si ˆJi,jSj (1.26)
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1 Introduction

where we considered only the quadratic term in the ligand field Hamiltonian. Even
with this simplification, the number of parameters involved can be quite large,
especially for clusters with high nuclearity. This difficulty cannot be completely
eliminated, even when one considers a very symmetric molecule. As an example lets
consider the archetypal Mn12-ac molecule (Fig. 1.1). It contains a inner ring of four
Mn(IV) ions (S4 = 3/2) and an outer ring of eight Mn(III) (S3 = 2) coupled together
through superexchange interactions involving oxygen bridges. The number of states
that characterizes the system is: (2S4 + 1)4(2S3 + 1)8, which yields an overwhelming
108 eigenstates. Because the Mn12-ac molecules crystallize in a body-centred
tetragonal crystal, the unit cell contains two equivalent Mn ions so one independent
zero-field splitting tensor is needed. When choosing a coupling scheme with only
isotropic interactions[2], another four exchange parameters are required. Adjusting
this model to experimental results, such as electron paramagnetic resonance (EPR)
measurements, is far from trivial. Nevertheless, this model is valuable for low
nuclearity systems[24]. A common way to shrink the dimension of the Hilbert
space in which we have to study the system is done by replacing pairs of strongly
interacting spins with a single equivalent spin.

Giant Spin Hamiltonian

Applying the above procedure recursively to all spin pairs leads to the giant spin
approximation, which describes in an effective way the ground state multiplet. This
simplification works especially well when the temperature is low enough so that the
dominant energy in the system is the exchange interaction. In this case, the system
is always found in it’s spin ground state (e.g., S = 10 for Fe8 and Mn12-ac), allowing
the use of the single ion model presented at the beginning of this section. Therefore,
we write the giant spin model:

HGS = DS2
z + gµBµ0HzSz +HT (1.27)

where D and g are now effective parameters, andHT describes non-axial interactions
and can be written as a function of rising and lowering spin operators (S+, S−). In
order to relate the effective parameters of the giant spin model and the parameters
characterizing each individual magnetic center one can use projection techniques[25],
where single ion anisotropies are projected onto the vector space corresponding to
the molecular ground state. This method is less accurate when the Hilbert space is
very large, like in the case of Mn12-ac, but the model retains its use because of its
simplicity and intuitive form.

The energy range in which the giant spin model is valid can be found in the multi-spin
Hamiltonian. Indeed, the weakest exchange link gives with a good approximation
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1.2 Quantum Tunneling of Magnetization

the upper temperature limit to which the predictions are expected to be accurate.
Experimentally one can observe the crossover to higher spin subspace by determining
the magnetic moment associated with the molecular cluster[26, 27].

1.2 Quantum Tunneling of Magnetization

For a ligand field Hamiltonian described only by the ZFS term, the magnetic field
lifts the two-fold degeneracy of the ±m energy levels. However, two different levels
(denoted by m and m′), align for specific field values Hm,m′

r , applied along the
magnetic principal axis:

Hm,m′
r =

|D|(m + m′)
gµBµ0

(1.28)

Due to transverse terms of the spin Hamiltonian, the degeneracy can be transformed
into an avoided level crossing, see Fig. 1.4. The energy separation is called the tunnel
splitting, ∆m,m′ , and is a central parameter that characterizes the quantum tunneling
dynamics of spins.

There are several theoretical tools that can be used to determine the tunnel splitting,
including path integral formalism[28, 29], perturbation theory[30, 31], and numerical
methods. The latter allows the possibility to consider arbitrarily complex spin
Hamiltonians but leaves little intuition on the system’s behaviour. Thus,a combination
of the above techniques is to be preferred when performing both a quantitative an
qualitative analysis of the magnetic properties of SMMs.

At an avoided level crossing, the eigenvectors of the Hamiltonian are a linear
combination of the base vectors that correspond to negative and positive spin
projections. This means that in these states, the magnetization of the spin has a
non-zero probability to be found on either side of the barrier. This behaviour is
called spin tunneling, that is, the spin is in quantum resonance between the opposite
orientation states.

At a constant field tuned at an avoided level crossing, a spin initially situated
on one side of the well will oscillate coherently between the mixed states with a
characteristic angular frequency, ωm,m′

T , related to the tunnel splitting through the
relation: ∆m,m′ = 2h̄ωm,m′

T . The field interval where this behaviour is predicted to
happen is given by[23]:

δH0 =
∆m,m′

gµBµ0|m−m′| (1.29)
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. This quantity is called the bare tunnel width and can be as small as 10−9 T. However,
environmental interactions broaden the observed width of the resonance and hinder
coherent oscillations[32, 33, 34, 35].

Landau-Zener-Stückelberg(LZS) Model

The nonadiabatic transition between the states of a two-level system was first
discussed by Landau, Zener, and Stückelberg[36, 37, 38]. The original work by Zener
concentrates on the electronic states of a bi-atomic molecule while Landau and
Stückelberg considered two atoms that undergo a scattering process. Their solution
to the time-dependent Schrödinger equation of a two-level system driven through
resonance has been applied to many physical systems and it became an important
tool for studying tunneling transitions. The LZS model was used to analyze spin
tunneling in nanoparticles and clusters[39, 40, 41, 42]. The tunneling probability,
PLZ, between the states m and m′, after sweeping the applied field at a constant rate,
α, through the resonance (Fig. 1.4), is given by:

PLZ = 1− exp
(
−πωT

δH0

α

)
(1.30)

With the LZS model in mind, we can now start to understand qualitatively the
hysteresis loops of SMMs (Fig. 1.5), which exhibit steps of fast relaxation separated
by regions where the magnetization is almost constant. The steps happen at specific
fields where the levels from both sides of the well are mixed by transverse terms in
the spin Hamiltonian, as discussed in the previous section.

Let us start at a large negative magnetic field Hz. At very low temperature, all
molecules are in the m = 10 ground state (Fig. 1.5). As the applied field Hz is
ramped down to zero, all molecules will stay in the m = 10 ground state. When
ramping the field over the ∆10,−10 region, at Hz ≈ 0, there is a Landau–Zener
probability, P10,−10, for the spins to tunnel from the m = 10 to the m′ = −10 state.
P10,−10 depends on the sweeping rate (1.30), the slower the sweeping rate the larger
is the tunneling probability. This is clearly demonstrated in the hysteresis loop
measurements showing larger steps for slower sweeping rates [43, 6]. When the
field Hz is now further increased, there is a remaining fraction of molecules in now
metastable m = 10 state. The next chance to escape from this state is when the
field reaches the ∆10,−9 region. There is a Landau–Zener tunnel probability P10,−9 to
tunnel from the m = 10 to the m′ = −9 state. As m′ = −9 is an excited state, the
molecules in this state relax quickly to the m′ = −10 state by emitting a phonon.
An analogous procedure happens when the applied field reaches the ∆10,−10+n
regions (n = 2, 3, . . . ) until all molecules are in the m′ = −10 ground state, that is,
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1.2 Quantum Tunneling of Magnetization

Figure 1.5: a) Hysteresis loops of a single
crystal of Fe8 molecular clusters at 0.04
K and different field sweep rates. The
loops display a series of steps, separated
by plateaus. The arrows indicate the reso-
nance transitions highlighted in the figure
below. b) Zeeman diagram of the S = 10
manifold of Fe8 as a function of the field
applied along the easy axis. From bottom
to top, the levels are labeled with quan-
tum numbers m = ±10,±9,. The levels
cross at equidistant field values given by
µ0 Hz ≈ n× 0.22 T with n = 1, 2, 3...

the magnetic moment of all molecules is reversed. As phonon emission can only
change the molecule state by ∆m = ±1 or ± 2, there is a phonon cascade for higher
applied fields.

When using the above formalism for a quantitative analysis, one should keep in
mind that the LZS model is exact only for an isolated spin. Deviations from the ideal
coherent dynamics are due to environmental interactions of both elastic (dephasing)
and inelastic (relaxation and excitation) nature [5]. Thus, in order to try to search an
agreement with LZS theory one should use large sweeping rates, so that in the time
the resonance is swept, the local environmental field does not change significantly.
The model also doesn’t include relaxation through phonons so one should work at
very low temperatures and focus on ground state tunneling.

LZS theory was successfully used to determine the tunnel splitting in molecular
systems such as Fe8[6] and Mn4[43]. As mentioned, the agreement with the experiment
must be searched in the fast sweeping rate regime, which has the drawback of a small
sensitivity. To overcome this difficulty, the resonance can be swept repeatedly. This
way, the probability for the spin to remain in the original state, for small variations
of the magnetization, after n back and forth sweeps, is proportional to (1− 2nPLZ),
with PLZ given by (1.30).
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Figure 1.6: The unit sphere that shows the degen-
erate minima A and B joined by two tunnel paths
(red lines). The easy, medium and hard anisotropy
axes are taken along the z-, y-, and x-direction,
respectively. The constant transverse magnetic field
HT, used to tune the tunnel splitting, is applied in
the xy-plane at an angle, ϕ. A quench of the tunnel
splitting occurs when the area enclosed by the two
paths is an odd integer of π/S.

A

B

1.3 Spin Parity and Quantum Phase Interference

When discussing quantum tunneling of magnetization it was emphasized that
transverse terms remove the degeneracy of the eigenstates at a level crossing
(Hz = Hr) and thus promote relaxation. Actually, the general problem of eigenvalue
degeneracy is discussed by the von Newmann-Wigner theorem [45, 46] which states
the need of at least two parameters (e.g., the components of the magnetic field), to
control the degeneracy property of a Hermitian matrix. In this section we discuss
the cases when the degeneracy is predicted theoretically and in some cases observed
experimentally through the absence of tunneling at level intersections.

Spin Parity

The general form of a transverse term of order n is BnSn
±, thus a transition between

the levels m and m′ is made possible by applying Sn
± operator an integer number of

times. Consequently, the degeneracy is removed only when the change in the spin
projection is a multiple of the perturbation’s order: n|(m−m′).

The above quantum tunneling selection rule is called spin parity effect and has it’s
origin in the symmetry of the non-axial Hamiltonian term. For example, in the case
of the Mn3 cluster[47], with a C3 rotational symmetry, level splitting should occur
only if the selection rule: m−m′ = 3k is satisfied.

Another interesting example is the observation of Kramer’s degeneracy in half-
integer spin molecular clusters[48], which tells us that in zero transverse field,
the ground state is at least doubly degenerate. This degeneracy can be lifted by a
transverse field (a first order perturbation) of external or internal origin (e.g., dipolar
and hyperfine field).
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1.3 Spin Parity and Quantum Phase Interference

In general, the selection rules are rarely observed. Possible explanations involve
asymmetries introduced by crystal defects, solvent disorder[49], above mentioned
dipolar and hyperfine interactions, or Dzyaloshinsky-Moriya interaction[50] fuelled
by low molecular symmetry and strong exchange coupling. In the case when one
gets to control the above factors the spin parity effect can be clearly evidenced, as
seen for Mn3[47].

Quantum Phase Interference

Suppression of tunneling can also occur for certain values of the transverse field,
without involving the above presented selection rule.

The interference effect in spin systems was predicted theoretically[28] and then
observed experimentally[6] using LZS approach and is generally called Berry phase
interference. The mechanics behind the explanation of this phenomena makes it
similar to the observation of critical current oscillations in Josephson junctions[51, 52]
and Bohm-Aharonov oscillations[53].

A semi-classical description, which has a rather intuitive picture associated with
it, describes the tunneling motion of the spin with the help of the path integral
formalism [28]. The initial and final states are represented by two points on the Bloch
sphere (Fig. 1.6). The interference is due to a non-zero phase difference acquired by
moving in the parametric space along a closed path containing these two points.

The magnetic field has the ability to modulate the phase by modifying the paths, so
an interference pattern is observed as the transverse field is increased.

Figure 1.7 shows the tunnel splitting as a function of the applied transverse field for
several azimuth angles and for different level anticrossings computed by numerical
diagonalization of the Fe8 spin Hamiltonian . The anisotropy of the Fe8 molecule,
similar to many low symmetry molecules, is modelled by adding a biaxial crystal
field (HLF

T = E(S2
x − S2

y)) to the uniaxial term (Eq. 1.27). When the tunnel splitting
between the levels S and S− n is determined, the spin parity effect is observed (the
second order transverse anisotropy term forbids odd resonances at zero field). Also,
a monotonic increase of ∆ with n is observed: the lower is the energy barrier the
higher are the tunneling rates. The field separation between two consecutive minima
of the tunnel splitting when we consider only the biaxial term is given by:

∆H =
2

gµB

√
2E(E + D) (1.31)

Other systems in which it was possible to observe Berry phase interference include
Mn12 complexes[54, 55, 56], Mn4[57], and dimer molecular magnets[58].
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Figure 1.7: The tunnel splitting, ∆, as a function of a transverse field applied at a) several azimuth
angles, ϕ, at m = ±10 anticrossing and b) quantum transition between m = −10 and (10 − n)
for ϕ = 0◦ computed by numerical diagonalization of the Fe8 spin Hamiltonian (Eq. 1.27) with
HT = E(S2

x − S2
y) + gµB(Sx Bx + SyBy). The spin parity effect for n = 1 is analogous to the suppression

of tunneling dynamics predicted for Kramer’s ions.

1.4 Quantum Coherence in Molecular Magnets

The study of coherence in molecular magnets is very important for the potential
applications in the field of quantum information processing. Here we briefly account
on the quest for the observation of coherent time evolution of molecular spins under
electromagnetic (EM) radiation.

Resonant Photon Absorption

In EPR experiments involving molecular magnets[59, 60, 61], transitions between
the m and m′ states of the S multiplet happen when the energy of the incoming
photons is equal to the energy difference between the states: hν = |E(m)− E(m′)|,
obeying the selection rule ∆m = ±1. An important question that had to be answered
concerns the effect of the photon-induced excitations on tunneling.

The first important results[62] were obtained when a Fe8 complex was investigated
using micro-Hall bars in a dilution refrigerator. The study proved that the lifetime
of the excited states is large enough (relative to the tunneling time) for an enhanced
relaxation to be observed. In order to clearly show the photon assisted quantum
tunneling regime, circular polarized microwave radiation was used because it allows
to select the ∆m = +1 or ∆m = −1 transitions. Thus, an asymmetric hysteresis loop is
observed. From the dependence of the transition rates on the power of the microwave
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1.4 Quantum Coherence in Molecular Magnets

Figure 1.8: Comparison of state-of-the-art T2

values of notable molecular and solid state
electronic spin qubits.

source used, it was shown that the effective spin temperature (the parameter that
describes the occupation number of the excited states) depends linearly on the
power of the EM field. Subsequent experimental work further proved the photon
assisted tunneling regime[63, 64, 65] leading towards eventual observation of Rabi
oscillations[61].

Rabi Oscillations

The coherent evolution of the system between two eigenstates coupled by the EM
field is described by the Rabi model[66, 67]. If the system’s initial state is |m〉, then
the probability to find it in the state |m′〉, at time t, is proportional to sin2(ΩRt).
The Rabi frequency, ΩR, is proportional to the amplitude of the perturbative field.
This property is used in the spin-echo measurements protocols[68] to determine the
characteristic relaxation times of the system.

The longitudinal relaxation time (T1) is obtained from the recovery of the equilibrium
magnetization after an inversion pulse, π − T − π

2 − τ − π − τ − echo, is applied,
where the variable is T and τ is being kept constant. T1 is directly connected to the
coupling of the spins to the phonon bath and thus can be significantly long at mK
temperatures.

The second important characteristic time is the phase coherence time (T2) and is
determined by spin-spin interactions. As the name suggests, it tell us the time
over which the memory of the quantum phase is preserved, so the quantum
properties of the spin can be exploited. Employing a similar Hahn-echo sequence,
π
2 − τ − π − τ − echo, with τ variable, T2 is obtained from the echo signals that are
fitted to a stretched exponential,

I(τ) = I(0) exp(−(2τ/T2)
x) (1.32)
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The interaction with environmental spins of nuclear and electronic origin, phonons,
and photons, represents the main sources of decoherence[69] in SMMs[70, 71], and
thus limit T2. In order to reduce the dipolar interactions, one usually chooses a system
with a small collective spin[64, 72, 61] because the magnitude of the interactions
scales as the square of the spin magnitude. Then, SMMs can be diluted without
greatly effecting their individual properties[72, 61, 73]. Also, the initial choice of
a molecular complex with S = 1/2[72], avoided the problems associated with the
distribution of the anisotropy axis.

The above measurements led to the first observations of a long phase coherence time
in Cr7Ni (S = 1/2) and Cr7Mn (S = 1) clusters[72]. Afterwards, Rabi oscillations
were observed in V15[61, 74] and T2 on µs scale was measured in Fe8[75] through
the application of a high transverse magnetic field.

Recent developments showed that a strict control over lattice rigidity and hyperfine
interactions can lead to significantly large phase coherence times, even when
compared to other qubit candidates ([73] and Fig. 1.8). The coherence also has been
shown to be preserved at room temperature[76, 77]. These are valuable observations
that encourage possible spintronics applications.

1.5 Molecular Quantum Spintronics

Molecular quantum spintronics is a relatively new research field that combines
spintronics, molecular electronics and quantum computing with the aim of creating
new spintronics molecular devices that exploit the quantum properties seen at the
microscopic level[78, 79, 80]. These devices facilitate the read-out and manipulation
of the spin states pertaining to a molecular magnet, leading to structures that can
perform basic quantum operations.

The idea of using SMMs as magnetic centers in spintronics devices is supported by
their unique characteristics, namely, weak spin-orbit coupling in transition metal ion
compounds, tunable environmental interactions that can lead to a long coherence
time (Sect. 1.4), chemically controlled functionalities like switchability with light or
electric field[81]. The coupling to external structures can be facilitated by choosing
an appropriate ligand. Delocalized bonds, that mediate the interaction between the
magnetic ions, often imply great conduction properties.

The above outlined properties allowed the realization of some essential circuit
elements, like[79]: molecular spin transistors[82, 83], molecular spin valves[84] and
spin filters, and molecular double dot devices.
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1.5 Molecular Quantum Spintronics

Figure 1.9: Artist view of (left) a nuclear spin qubit transistor based on a single TbPc2 molecular magnet,
coupled to source, drain, and gate (not shown) electrodes, and (right) a three spin-dot device (reprinted
from[83]).

Quantum Algorithms

The research aimed at using molecular magnets for qubit encoding started mainly
after the theoretical proposal of Leuenberger & Loss[85, 86] followed by others[87, 88,
89, 90, 91, 92]. We shall follow DiVincenzo[93] to summarize the steps taken towards
successful implementation of a quantum computer using molecular magnets.

To use molecular magnets as qubits, external constrains (e.g., temperature, electric
or magnetic field) should be applied in order to confine the system to a subset of two
levels (|0〉 and |1〉). The scalability of the system is facilitated by the synthetic bottom-
up fabrication process that guarantees cheap production of identical molecular
units.

The implementation of proposed quantum algorithms[94, 95, 96, 97] involves the
use of one-qubit and two-qubit gates. The former represents a rotation on the Bloch
sphere. The output of the gate, after realizing an electric or magnetic coupling to the
spin and applying an EM pulse sequence (Sec. 1.4), is the state: α|0〉+ β|1〉. A strong-
coupling regime, at high temperatures, between a molecular spin ensemble and
microwave resonators, has been achieved. The possibility of coupling strongly with
single molecules has been put forward and experiments are in progress. This opens
a way to develop scalable architectures using molecular spins coupled to quantum
circuits[98, 99, 100, 101, 102]. Moreover, by molecular engineering of the crystal field,
molecular spins can also be manipulated by electric fields[103, 104, 105, 82, 106].

A two-qubit gate can be implemented by controlling the exchange interaction between
the spins. Schemes and compounds for switchable effective qubit-qubit interactions
in the presence of permanent exchange couplings are now available[107, 108]. Spin
entanglement between and within molecules was shown by different techniques.
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Molecular spin clusters/arrays offer an incredible variety of spin topologies to test
entanglement at the molecular scale[104].

It is necessary that the system remains in a coherent state (preserve α and β), for a
time considerably larger than the computational clock time. This is an important
requirement for the system to be amenable to quantum error corrections. As
noted in Sect. 1.4, long coherence time (T2) at low temperature have been reported
for many ensembles of molecular spin systems with T2 approaching 1 ms in
nuclear spin-free environments[72, 109, 70]. Recent reports have shown microsecond
coherence times and Rabi oscillations at room temperature[76, 110, 73, 111, 112, 77].
Strategies to protect spin states from decoherence (e.g., via atomic clock transitions)
have been experimentally tested by fine engineering of molecular states and
levels[113]. The development of theoretical schemes to implement quantum error
correction codes in molecules with multiple spin degrees of freedom has also been
started[114, 115, 116, 117, 118].

Another important requirement is the possibility to initialize and read-out the
qubit state. As seen in previous sections, the read-out of a single molecular
spin located at a tunnel junction or on a CNT/graphene quantum dot has been
demonstrated[119, 84, 120].

All this achievements are important milestones in molecular magnetism. They bring
this research field closer to being able to provide the future basic components of
quantum devices[121].
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During my PhD I worked on the automation of the µSQUID technique. I’ve built on
the work of Raoul Piquerel, a former PhD student [122], who together with Edgar
Bonet and Christophe Thirion developed the general software framework.

Overview setup

Figure 2.1 shows the main components of the experimental setup used to perform
sub-kelvin magnetometry on crystals of single molecule magnets. At the heart of the
technique is a superconducting quantum interference device (SQUID) that is used
to detect the variation of the magnetic field generated by the sample. A number of
factors determine the coupling between the sample and the µSQUID (e.g. the size of
the crystal, the dilution state, position of the crystal with respect to the µSQUIDs,
etc.), thus, to optimize the magnetic signal and reduce the number of bad samples,
the crystals are placed on an array of µSQUIDs. The µSQUIDs and the sample are
mounted on the epoxy sample holder, thermalized at the coldest stage of the cryostat
in a magnetically shielded environment.

The control over the SMM’s magnetic moment is achieved through a DC magnetic
field created by a 3d axis coil system and/or a RF field applied to the sample through
a wire antenna. The 3d axis coil system gives us the ability to access all three field
dimensions, especially important when aligning the external field in the plane of
the µSQUIDs and in finding the easy axis of the molecules. The small size of the
coils (i.e., small inductance) allows for fast field sweeping rates. We generally go up
to 1 T/s but dBz/dt up to 10 T/s are accessible. The coils are thermalized to the 4 K
stage of the dilution fridge.

The drive of the current through theµSQUID and the detection of the superconductive-
resistive transition is done by specialized low noise electronics, called "µSQUID
electronics". The automation of the measurement process is done with the use of
Adwin - a real-time data acquisition device. It is responsible for both the fast, time
critical processes like keeping time in the measurement of the switching current,
triggering of the RF source but also for some slower processes like the control over
the current sources that drive the superconducting coils.
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NanoQt

Figure 2.1: Overview of the µSQUID setup: (1) NanoQt – asynchronous acquisition program running on
a Linux machine, (2) Adwin automaton, (3) PID temperature controller, (4) RF generators, (5) µSQUID
electronics, (6) the current sources that drive the 3d coil system, (7) He3/He4 dilution refrigerator, (8)
25 mK cold stage of the cryostat with the sample holder, (9) 3d-axis coil system mounted on top of the
4 K stage, and (10) schematic representation of a SMM crystal on top of an array of µSQUIDs. The line
connectors show the communication between different modules: (blue) the communication between the
PC user (Nanoqt client) and the Adwin automaton. (purple) temperature control, (red) RF module that
terminates with a grounded wire antenna, (black) critical current measurement and (green) applied DC
magnetic field.
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The high level control over the experimental protocol is provided by NanoQt – an
asynchronous acquisition program that was developed inside our group. It interfaces
with the Adwin automaton, RF generator, temperature controller, etc., through
TCP/IP connections.

Most of the experiments are performed at subkelvin temperatures that are reached
through the use of a home built He3/He4 dilution refrigerator. TheµSQUID technique
is enhanced by adding a microwave module. With the microwave radiation generated
by the AnritsuMG369x frequency synthesizer transported to the sample through a
coaxial cable thermalized from room temperature to 25 mK and then applied to the
sample through a golden wire antenna.

µSQUID

The µSQUID is designed as a flat loop made of a superconducting Nb-AlOx-Nb
trilayer with two constrictions (micro bridges) and connected to superconducting
DC lines that are used to polarize the device. Besides geometrical parameters, the
properties of the µSQUID depend on the external conditions like temperature,
magnetic field and current density. Bellow, we denote by (Tc, Ic, Bc) the set of
parameters below which the µSQUID is found in a superconducting state. The
parameters are not independent, in fact, the relation between the critical current and
the magnetic flux passing through the SQUIDs loop is used in the µSQUID detection
scheme:

Ic = I0

∣∣∣sin
(

Φ

Φ0

)∣∣∣ (2.1)

where Φ0 = h/2e is the flux quanta and Φ = B · S is the magnetic flux passing
through the SQUID loop.

Figure 2.2 shows the experimental measurement of the critical current as a function of
a magnetic field perpendicular to the µSQUID loop. Significant deviations from the
theoretical prediction (black line) are observed: both branches display a significant
more linear dependence than the predicted sinusoidal one, also the branches cross
at the inflection points. This does not mean that, two values of the critical current
are observed during a single Ic measurement but rather the low or the high value is
determined in subsequent measurements. The differences between the theoretical
model and the measured characteristics are most likely the result of the asymmetry
of the µSQUIDs. The bistability region will be avoided when choosing the working
point in the feedback mode.

The Ic(B) characteristic shows that a small variation of the magnetic field leads to a
large change in the critical current. This observation explains the high sensitivity
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Figure 2.2: a) Schematic representation of the Nb µSQUID. Ip is the polarization current and Φ is the
magnetic flux passing through the SQUID’s loop. b) I(V) characteristic of the µSQUID. The broken
line indicates the current value at which the superconducting-resistive transition occurs. c) Critical
current as a function of a magnetic field perpendicular to the µSQUID loop. Significant deviations from
the theoretical prediction Eq. 2.1 (black line) are observed: positive and negative branches display a
significant more linear dependence than the predicted sinusoidal dependence and a crossing of the
critical current branches is observed. The differences between the theoretical model and the measured
characteristics are most likely the result of the asymmetry of the µSQUIDs. The period of the Ic(Hx)

characteristic gives the flux quanta, Φ0 = h/2e.

of the µSQUID technique. The limit of detection can be estimated by using the
uncertainty principle, ∆E∆t ≈ h̄, with ∆E = Φ2/2L, and thus ∆ΦQ =

√
2Lh̄/

√
∆t.

Measurement protocol

The measurement protocol is based on the periodic determination of the critical
current. Figure 2.3 shows the current polarization of the µSQUID with three distinct
stages. First, the current is increased rapidly to a value close to the critical current
(plateau). The time reserved for this stage (10 µs) is chosen to assure the stability of
the polarization current. Then, the current is ramped linearly towards the critical
value. The transition of the µSQUID from superconducting to resistive regime leads
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to a voltage drop across it. When the voltage is detected the polarization current is
set to zero to avoid the overheating of the sample through the Joule effect. Before
starting a new measurement cycle, sufficient time must be reserved for the SQUID
to cool down and become again superconducting. If no detection is observed in
the measurement period the current is set to zero and a new cycle is started. In the
current measurement scheme the period is limited to around 100 µs.

The plateau and the slope is adjusted so that the critical current is reached during
the linear increase of the polarization current. The duration of the ramp measures
the critical current and thus the objective is to determine it as precisely as possible.
Note that, we are interested in the variation of the critical current and not in its
absolute value.

Most of the measurements of the hysteresis loop of crystals of SMMs are done using
the so called "feedback mode" [123]. The µSQUIDs are sensible to the transverse
dipolar field generated by the SMMs. In the feedback mode we keep the flux constant,
independent of the magnetization of the sample (see Fig. 2.3). Thus, the variation
in the dipolar field (which is proportional to the variation in the magnetization)
is compensated by an opposite applied field, the stability of the working point is
achieved through the implementation of a feedback loop:

δBfeed
x = αδIc (2.2)

where α is the feedback constant.

If the external magnetic field is not applied exactly in the plane of the µSQUID (due
to misalignment issues) then the µSQUID also measures the transverse component
of the applied field. This is accounted for by adding a correction to the feedback
field:

δBplan
x = ayBy + azBz (2.3)

where ay,z are the misalignment slopes.

Low Noise Electronics

The µSQUID electronics is responsible for driving the current through the SQUIDs
and for detecting the superconducting-resistive transition. It contains three distinct
stages. The digital part is responsible for the interface with the device that keeps the
time (the Adwin in our case). An analog circuit responsible for generating low noise
current necessary to polarize the µSQUIDs. And a circuit to detect the voltage drop
across the µSQUID and thus register the transition.
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The analog circuit is a modular voltage generator in series with an externally
adjustable resistor that gives access to polarization currents in the 20 µA – 4 mA
range. The slope can be adjusted in the range ±800 mV/s with a resolution of
±0.2 mV/s while the plateau can be increased up to 4 V in steps of 0.6 µV.

The µSQUID is part of an electric circuit of several hundreds ohms while the change
in the resistance, due to SQUID’s transition from superconducting to resistive state,
is very small. Thus, the transition is detected by monitoring the voltage across the
µSQUID and applying a high pass filter that allows to determine sudden variations
that occurs due to SQUID transitions. If the detected voltage drop exceeds the
threshold value the polarization current is set to zero.

The digital part is responsible for the communication with the Adwin automaton. It
uses two distinct serial communication protocols. A three wire protocol for setting
the values for the plateau, slope and detection threshold. And a two wire protocol for
timing the critical current through the µSQUIDs. The communication was optimized
to use the smallest number of channels.

The two wire protocol (Fig. 2.3) is composed of a "rearme" and a "stop" line. The
"rearme" command line is used to start the µSQUID measurement. The first rising
edge instructs the electronics to increase the current to the plateau value. This level
is maintained as long as the "rearme" signal is high. The falling edge begins the
current ramp. When the transition is detected the signal is transmitted to Adwin
through the "stop" channel. The time difference between the falling edge of the
"rearme" command and the rising edge of the "stop" command is proportional to the
critical current with the proportionality constant being the slope.

Adwin

The Adwin automaton is a "real-time" data acquisition device that is used to
exert time critical control over different modules of µSQUID setup. Adwin’s main
component is the processor T11 which is the master on the main bus and thus
responsible to coordinate and synchronize all the other modules. It has a clock cycle
of 3.3 ns and is not optimized for speed but for reproducibility of the execution time.
The main process running on T11 is responsible for reading the inputs, evaluating
the response and setting the outputs. The period of this process is set to 10 µs chosen
so that the workload never exceeds 90%.

The Adwin comes with a number of developed libraries that facilitates the interface
between the automaton and high level technologies like C++, Python, etc. The
connection to the computer client is done through an Ethernet cable with the support
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Sample

Figure 2.3: a) The measurement protocol used to determine the critical current. The current polarization
of the µSQUID is done in three distinct stages. (1) The current is increased rapidly to a value close to
the critical current (plateau). The time reserved for this stage (10 µs) is chosen to assure the stability of
the polarization current. (2) The current is ramped linearly towards the critical value. The transition
of the µSQUID from superconducting to resistive regime leads to a voltage drop across it. When the
voltage is detected the polarization current is set to zero (3) to avoid the overheating of the sample
through the Joule effect. In the current measurement scheme the period (T) is limited to around 100 µs.
The plateau and the slope is adjusted so that the critical current is reached during the linear increase of
the polarization current. The duration of the ramp (dt) measures the critical current. On the bottom
panel is shown the two wire communication protocol between the Adwin and µSQUID electronics. The
protocol is composed of a "rearme" and a "stop" line. The "rearme" channel is used to start the µSQUID
measurement. The first rising edge instructs the electronics to increase the current to the plateau value.
This level is maintained as long as the "rearme" signal is high. The falling edge begins the current ramp.
When the transition is detected the signal is transmitted to Adwin through the "stop" channel. The
time difference (dt) between the falling edge of the "rearm" command and the rising edge of the top
command is proportional to the critical current with the proportionality constant being the slope. b)
The feedback mode used in the µSQUID magnetometry in which the flux passing through the µSQUID
loop is kept constant, independent of the magnetization of the sample. The variation in the dipolar field
(δBsample

t ), which is proportional to the variation of the magnetization, is compensated by an opposite
applied field through a feedback loop c) and thus ensuring the stability of the working point (P).
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for the TCP protocol. It is also equipped with input/output modules as 14 bits
AD/DA converters with a sampling frequency of 100 MHz.

Important for µSQUID measurements, the Adwin automaton can be equipped with
a subordinate processor with a clock cycle of 50 MHZ and with access to digital
I/O ports, called TiCo. The main processor is used for computational heavy tasks
like the calculation of the feedback field and communication with the computer
client while the TiCo processor is reserved mainly for the purpose of interfacing
with the µSQUID electronics. It is used to set the value of the plateau, slope and
detection threshold and also to keep time in the µSQUID protocol, and to trigger
the RF generator. One can program the TiCo processor in a similar way to the T11
processor but the communication with the process running on TiCo, for ’run-time’
control and data exchange can be done only indirectly through the main Adwin
processor.

NanoQt

The high level control over the experimental setup is done with the help of an
asynchronous acquisition program, called NanoQt. NanoQt was developed in the
C++ framework inside our group to take advantage of the Adwin automaton and
centralize the control over different experimental devices. The user interface is built
with the use of the QT library with a JavaScript wrapper for scripting support. The
communication with the Adwin is done through the use of a specialized library
provided by the development team of the automaton. NanoQt is also used to
communicate with peripheries (e.g., RF source, PID temperature controller) through
Ethernet connections and to design the protocols for the experiments. The central
concept behind the design of a measurement protocol is the definition of a path in
the field parametric space. The user has to define the nodes on the path and the
duration (or the sweeping rate) it takes to go from one step to another. NanoQt also
allows to view the collected data in real time and save it for later analysis.

Microwave device

During my PhD I also worked on developing an extra module for the µSQUID
setup that allows us to excite the sample with electromagnetic radiation and use the
µSQUID as a magnetic probe. To generate electromagnetic radiation, the commercial
AnritsuMG369x arbitrary wave function generator was used. It provides pulses with
frequency in [0.1:40] GHz range, power up to 20 dBm and with a width as small as
1 ns. The RF source is controlled through NanoQt using an Ethernet connection. This
allows to set the parameters of the RF pulses (frequency, power, width, etc.,) that are
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applied in between µSQUID measurements. We operate the source in a triggered
mode, that is, the pulse is generated as a response to an input trigger emitted by
the Adwin automat. For the initial development of the technique, we pursued only
the resonant excitation of the system and thus the amplitude of the RF field and
frequency together with the width of the pulse are the only parameters that we
controlled with no particular interest in the phase of the RF pulses. The EM radiation
is then guided to the sample through a coaxial waveguide with the core made of
stainless steel and the dielectric made of teflon which is thermalized between room
temperature and 40 mK through the thermal contact established at different stages
of the fridge. The microwave coaxial guide is connected to ground through a gold
wire suspended on top of the sample. The wire serves as an antenna that generates
electromagnetic field to excite the sample. The coupling between the sample and the
EM radiation is weak and occurs mainly through the magnetic field component.
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3 Tb3+ molecular magnets

3.1 The role of quadrupolar interaction in tunneling
dynamics of TbPc2 SIMM

Single ion molecular magnets (SIMMs) are the first members in the ever growing
family of magnets that employ molecules as their basic unit [22]. Their simple
magnetic core motivated a considerable scientific effort to correlate different
chemical designs to exhibited magnetic properties [124, 125], and to induce and
control coherent quantum dynamics on a large timescale [72, 73, 77]. The objective
is to reach a level of understanding that will allow to synthesize molecular units
suited to be incorporated in functional devices [126]. In the search for the optimal
molecular design (to enhance bistability and dynamical properties of SIMMs) the
chemical control over the symmetry of the complex and the nature of the ligand
substituents proved to be essential [127, 128]. The progress made in the last decades
being relevant both to the fundamental research in the field of mesoscopic quantum
physics [27], and to the trend and outlook of the current technology [129, 90, 130].

A central property of molecular magnets is their magnetic bistability, that is, the
existence of an energy barrier that separates states of different spin orientation.
Thus, they are envisioned as memory units in high density storage devices [131]. The
obvious strategy to reach this highly sought goal is to enhance the uniaxial anisotropy
to obtain molecular complexes that exhibit hysteresis at high enough temperatures.
Advancement in this direction has been recently reported as a mononuclear Dy
compound was shown to exhibit magnetic hysteresis at temperatures up to 60
K [132, 11]. However many challenges still need to be surmounted, one of which lies
in the intrinsic quantum nature of molecular magnets itself. Notably, underbarrier
relaxation pathways (e.g. pure and phonon assisted quantum tunneling), opened by
transverse interactions that break the axial symmetry of the molecule, results in a
much lower effective energy barrier.

Quantum tunneling of magnetization was also instrumental in reading out and
manipulating both the electronic and the nuclear spin of a mononuclear molecular
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Figure 3.1: a) Side view and b) top view of the TbPc2 molecule which features a Tb3+ ion sandwiched
between two phthalocyanine planes in a square antiprismatic symmetry (D4d) – the Tb3+ ion is
coordinated by 4 nitrogen atoms from each ligand plane and the upper Pc ligand is a mirror reflection
of the lower one (with respect to the x-y plane) rotated by 45◦ around the z-axis. (Colour code: Tb, pink;
N, cyan; C, black; O, red; H atoms have been removed for clarity).

complex [133], to the point of the successful implementation of quantum algo-
rithms [12]. Thus, understanding the mechanisms that operate behind the observed
tunneling dynamics is an important prerequisite to design application oriented
molecular magnets.

Amongst already numerous example of SIMMs, the TbPc2 molecule can be linked
to breakthrough discoveries that greatly helped to advance the agenda of this
research field. First, through ac-measurements it was noticed that a molecule with a
single magnetic center can exhibit a large energy barrier [134]. Then, micro-SQUID
measurements on a diluted TbPc2 molecular crystal experimentally showed resonant
relaxation through quantum tunneling between mixed states of both electronic and
nuclear origin [135]. Thus, it became the system of choice for the first molecular
spintronics devices [136, 84, 137] and it helped to construct the case for using
molecules as potential qubits.

In this section we revisit the analysis of the low temperature hysteresis loop (Fig. 3.2b)
characterizing a diluted crystal of [TbPc2]−1 SIMMs in an isostructural diamagnetic
YPc2 matrix (Tb to Y ration of 1% [138]), measured with the micro-SQUID setup
at subkelvin temperatures [123]. We show that despite the great progress made
in the last decade and numerous studies that looked at the TbPc2 complex [139],
the tunneling dynamics of this system was still poorly understood. We investigate
numerically different interactions that have the potential to promote tunneling
transitions and show that the coupling of the electronic shell to the 159Tb nuclear
spin dominates the environmental and ligand field interactions.
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Figure 3.2: a) Zeeman diagram obtained by numerical diagonalization of the spin Hamiltonian given
by Eq. (3.3). b) The magnetic hysteresis loop characterizing a crystal containing TbPc2 SIMMs diluted
in a diamagnetic, isostructural matrix formed by YPc2 molecules, with [TbPc2]/[YPc2] ratio of 1 %.
Upon sweeping the magnetic field from −1 T up to positive fields as small as 0.05 T, approximately
75 % of the TbPc2 SIMMs undergo quantum tunneling transitions, resulting in sharp steps in the
magnetization curve. The remaining SMM reverse their magnetic moment at larger magnetic fields by
a direct relaxation process (right inset). The quantum tunnel transitions take place between mixed
states of nuclear and electronic origin and are labeled by the change in the nuclear magnetic moment
(|∆mI | = 0, 1 and 2 shown as a square, circle, and triangle, respectively in the Zeeman diagram). The
tunnel splitting (∆) shown in the (left inset) quantifies the state mixing at resonance and is directly
connected to the magnitude of the tunneling transition rates. c) Hyperfine structure of the lowest
doublet, mJ = ±6 in the field region where tunneling transitions take place. The position of the
relaxation steps are fitted to the corresponding level crossings in the Zeeman diagram by using
Ahyp = 26.7 mK and Dquad = 17 mK.

Spin Hamiltonian

The TbPc2 molecule (Fig. 3.1) features a Tb3+ ion sandwiched between two phthalo-
cyanine planes in a square antiprismatic symmetry (D4d), that is, the Tb3+ ion is
coordinated by 4 nitrogen atoms from each ligand plane and the upper Pc ligand is
a mirror reflection of the lower one (with respect to the x-y plane) rotated by 45◦

around the z-axis. The crystal field interaction generates a quantization axis oriented
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perpendicular to the Pc planes and was modeled, with a certain degree of success,
by the following Hamiltonian [135] (see Sect. 1.1):

Hlf =
3

∑
n=1

B0
2nO0

2n + B4
4O4

4 (3.1)

The terms in the sum describe the uniaxial anisotropy while the O4
4 term models

a transverse ligand field interaction that arises from a broken D4d symmetry. The
diagonalization of Hlf in the |J, mJ〉 eigenbasis reveals that the ligand field partially
lifts the degeneracy of the 2J + 1 substates in the ground state multiplet J = 6.
The ground state doublet, mJ = ±6, is separated from the first excited doublet,
mJ = ±5, by approximately 600 K (Fig. 1.3). Then, each mJ-doublet splits in an
external magnetic field, the resulting Zeeman diagram being depicted in Fig. 3.2a.
Therefore, at cryogenic temperatures, the TbPc2 single molecule magnet behaves
with a good approximation as an Ising spin system.

The Tb3+ ion also has a non-zero nuclear spin, I = 3/2, which couples to the
surrounding electronic shell and further splits the ground doublet, mJ = ±6 in a
manifold of four levels. The interaction is modelled by adding a hyperfine and a
nuclear quadrupolar contribution to the spin Hamiltonian:

Hn = Ahyp(J · I) + ID̂quadI (3.2)

Where Ahyp(J · I) is the isotropic hyperfine interaction (Sect. 3.2), while the
non-spherical charge distribution around the 159Tb nucleus with a spin angular
momentum I = 3/2 gives a non-negligible quadrupolar contribution, ID̂quadI. In the
ideal case of a D4d symmetry of the electronic shell, only the axial components (∼ Iz)
need to be preserved. Thus, the total Hamiltonian that also includes the coupling to
a magnetic field (H), is given by the following expression:

HTbPc2 = Hlf + µBµ0H · (geJ + gnI)

+ AhypI · J + ID̂quadI (3.3)

where the second term is the Zeeman interaction parametrized through the electronic
(ge = 1.5) and the nuclear (gn = 1.33) gyromagnetic ratios. The Ahyp and the axial
(dominant) term of D̂quad (Dquad) are uniquely determined by the positions of the
relaxation steps (Fig. 3.2b) that are fitted to the corresponding level crossings in the
Zeeman diagram (Fig. 3.2c), leading to Ahyp = 26.7 mK and Dquad = 17 mK.

Hysteresis loop

Figure 3.2a shows the magnetic hysteresis loop measured by using the µSQUID mea-
surements (Chap. 2) on a crystal containing TbPc2 SIMMs diluted in a diamagnetic,
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isostructural matrix formed by YPc2 molecules, with [TbPc2]/[YPc2] ratio of 1 %.
Upon sweeping the magnetic field from −1 T up to positive fields as small as 0.05 T,
approximately 75 % of the TbPc2 SIMMs undergo quantum tunneling transitions,
resulting in sharp steps in the magnetization curve. The remaining SMM reverse
their magnetic moment at larger magnetic fields by a direct relaxation process [126].
Note the absence of a relaxation step at the level crossings found at zero external
field. This is explained through Kramer’s theory for half integer spin system that
predicts degenerate ground states if only the ligand field is taken into account [55].

The quantum tunnel transitions take place between mixed states of nuclear and
electronic origin and thus can be labeled by the change in the nuclear magnetic
moment (|∆mI | = 0, 1 and 2 shown in Fig. 3.2c as a square, circle, and triangle,
respectively). The tunnel splitting (∆ in the inset of Fig. 3.2b) quantifies the state
mixing at resonance and is directly connected to the magnitude of the tunneling
transition rates [23]. Thus, the main objective of this paper is to evaluate ∆ using
numerical methods and this way to single out the interactions that promote tunneling
relaxation between different hyperfine states.

Transverse interactions

In order to evidence the effect of the nuclear spin on the QTM dynamics of the TbPc2,
we first study the mixing of the electronic states due to non-axial interactions and
then include the hyperfine splitting.

The effectiveness in mixing the electronic spin states by different order transverse
interactions (Bn Jn

±) is shown in Fig. 3.3a. The qualitative character of ∆(Bn) charac-
teristics can be understood using the tools of the perturbation theory which predicts
that the tunnel splitting between the two lowest substates (Jz = ±6) follow the
dependence:

∆ ∼ DJ2
(

Bn Jn

2DJ2

)12/n
(3.4)

where D is the effective zero field splitting given by the diagonal terms in the ligand
field (B0

2 , B0
4 and B0

6). The power law explains the difference in the amplitude needed
for different order interactions to produce the same effect on the level mixing.
Figure 3.3b shows the interplay between different transverse ligand field interactions
as the transverse Zeeman interaction is increased linearly. The oscillations of the
tunnel splitting with the applied transverse field are a consequence of the topological
phase interference.

At this point, we can consider the complete spin Hamiltonian of the TbPc2 complex
(Eq. 3.3) that includes the interaction with the nuclear spin. The O4

4 operator in
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Figure 3.3: a) The effect of the transverse interactions of order n, (Bn
nOn

n = 1/2Bn
n(Jn

+ + Jn
−)), on the tunnel

splitting between the two lowest electronic levels (Jz = ±6). The first order interaction corresponds
to the transverse Zeeman term (1/2(Jn

+ + Jn
−) = Jx). b) The dependence of the tunnel splitting on

the simultaneous action of the different interactions present in the system. The observed pattern of
alternating maxima and minima corresponds to the topological phase interference resulting from the
biaxial nature of the magnetic anisotropy. The fourth order transverse interaction tunes the amplitude
and the period of the observed oscillations. c) The dependence of the tunnel splitting of the three types
of anticrossings (denoted by the change of the nuclear spin, |∆mI| = 0, 1 and 2) on the amplitude of the
O4

4 term in the ligand field interaction.

the ligand field Hamiltonian mixes ±6 electronic states and transitions between
them become allowed. By varying the B4

4 parameter between 10−5 K and 10−2 K,
the tunnel splitting corresponding to the crossings that conserves the nuclear spin
vary between 10−12 K and 10−4 K, while all the other splittings remain negligible
(Fig. 3.3c). This is not a surprising result as a fourth order perturbation can induce
transitions only between states with a total spin that differ by a multiple of four. If
this would be the sole non-axial interaction, only the transitions that conserve the
nuclear spin will be observed – which is not our case.
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Figure 3.4: a) The effect of an applied transverse field on the tunnel splitting of the different hyperfine
transitions. The transverse Hamiltonian includes also the fourth order perturbation with B4

4 = 6 mK.
b) An additional rhombic term (B2

2O2
2) is added to the situation shown in the left panel, where we

consider a constant transverse field, Hx = 1 mT. The observed oscillations are the result of the Berry
phase interference [6].

One factor that is often invoked when explaining why the selection rules are not
obeyed is the transverse component of the magnetic field that can be of both internal
(e.g. dipolar field) or external (e.g. misaligned applied field) origin. When computing
the tunnel splitting as a function of the applied transverse field (Fig. 3.4a), one
observes that a field of at least 1 T is needed in order to have significant splittings
pertaining to the crossings that do not conserve the nuclear spin (taking the ones
that conserve the nuclear spin as a reference). This value is of course much larger
than the environmental fields of dipolar origin. The dipolar field variance for our

sample of 1 % concentration being around
√〈

∆H2
dip

〉
≈ 1 mT. The necessity for

such large values is easy to understand as the coupling between the magnetic field
and the nuclear spin is weak due to the smallness of the nuclear magnetic moment.

The deviation from the tetragonal symmetry by the inclusion of a second order
perturbation (B2

2O2
2) was already done when the low temperature tunneling dynamics

of Mn12-ac was analyzed [140]. If one were to add also the biaxial term to the ligand
field Hamiltonian (Eq. 3.3), the predicted dynamics of the |∆m| = 1 or 2 transitions
would still remain orders of magnitude slower than the relaxation at the crossings
that conserve the nuclear spin (Fig. 3.4b).

The reason why the above factors fail to explain the observed transitions lies in
the magnitude of the different interactions described by Eq. 3.3. The effective total
half integer spin comes from two heterogeneous spins that have a strong uniaxial
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Figure 3.5: (a) Variation of the tunnel splitting with the rhombic term (Equad(I2
x − I2

y )) in the quadrupolar
interaction, computed for a fixed angle misalignment between the ligand field and quadrupolar easy
axis of 1◦ . From other transverse interactions only the O4

4 term was kept, with B4
4 = 0.5 K. (b) Variation

of the tunnel splitting as a function of the misalignment between the ligand field and quadrupolar easy
axis for Equad/Dquad = 0.2 and the same O4

4 term.

anisotropy and are tightly coupled through the hyperfine interaction. The hyperfine
interaction does not promote transitions of both the electronic and nuclear spin
(through terms like Ahyp J+ I−) because the selection rules cannot be satisfied by
both a nuclear and an electronic spin transition. While the electronic states are easily
mixed by the ligand field, the nuclear states, to the first order, remain degenerate.
Thus, in order to explain the observed steps in the magnetization curve, one needs
to look at interactions that strongly couple to the nuclear spin.

Non-axial quadrupolar interaction

We suggest that a solution can be found in the quadrupolar interaction between
the nucleus and the electronic shell. We already mentioned that if we consider a
broken square antiprismatic symmetry we can add a biaxial term to the ligand
field Hamiltonian. This entails us to include the biaxial term to the quadrupolar
Hamiltonian as well, thus:

ID̂quadI = Dquad I2
z + Equad(I2

x − I2
y ) (3.5)

With this term, the states of the nuclear spin that differ by |∆mI | = 2 become mixed
and the entire ensemble’s dynamics at the corresponding crossings is significantly
enhanced (Fig. 3.5a). The odd transitions should still not be allowed. One has to

42



3.1 The role of quadrupolar interaction in tunneling dynamics of TbPc2 SIMM

consider that there is a small misalignment between the uniaxial symmetry of the
ligand field and the quadrupolar interaction which leads to terms of the form: Iz I±.

Figure 3.5b shows the effect of the above described non-axial contributions. It can
be seen that they act mostly independently of each other, as the biaxial term mixes
the hyperfine states with |∆mI | = 2 and the angle deviation mixes the states with
|∆mI | = 1. Thus, the non-axial quadrupolar interaction is a mechanism that can mix
the hyperfine states and promote QTM transitions between the states that do not
conserve the nuclear spin. This result is important both from an academic point
of view as similar dynamics can be observed in other lanthanide single molecule
magnets (see also Sect. 3.4), and from a technological one as tunneling between
hyperfine states can be used to initialize and read-out the nuclear spins when
implementing quantum protocols.
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3.2 Decoherence Measurements in TbPc2 SIMM

The coherent dynamics of an ensemble of weakly coupled spin systems is central
to both the development of mesoscopic quantum physics [141, 70] and to the fast
advancing field of quantum engineering [129, 90, 130]. Amongst solid state electron
spin systems that are researched as potential quantum bits, (e.g. semiconductor
quantum dots [142], nitrogen vacancies centers in diamond [143], molecular magnets,
phosphorus or bismuth in silicon [144]), molecular magnets proved to be especially
useful model systems. We saw in previous sections that many purely quantum
phenomena like ground state tunneling [3], phonon and photon assisted tunneling
transitions [4, 64], spin parity and quantum phase interference [6], phase coherence
and Rabi oscillations [61] were analyzed in great detail in these systems.

When it comes to the study of decoherence, the common ground between different
qubit systems is found in the description of the environment by standardized models
like oscillatory or spin baths [141]. The main advantages of molecular magnets arise
from their diversity and chemical tenability of the spin ground state and the intra-
and intermolecular interactions (e.g. through the appropriate choice of the organic
ligands) [127, 128]. Thus, one of the best characterized molecular system, the Fe8
complex [8], was used to validate the theory of environmental decoherence against
experiment [70]. In the above experiment, as well as, the breakthrough achievements
like the first measurements of the spin relaxation times [72] and the observation of
millisecond coherence time and Rabi oscillations at room temperature [73, 145, 111],
electron paramagnetic resonance (EPR) was the technique of choice. However, the
stringent requirement for a system to be susceptible to EPR investigation is a large
coherence time [75]. In this section we show that using incoherent Landau-Zener
tunneling dynamics [146] we are able to determine the intrinsic tunneling time and
the decoherence rate, thus complementing the resonance techniques and providing
a new tool to probe the quantum properties of molecules that could be candidates
for implementing quantum bits.

We continue to analyze the magnetic response characterizing a diluted crystal of
TbPc2 lanthanide single ion molecular magnets. After writing an effective spin
Hamiltonian for the TbPc2 complex, we review the incoherent Landau-Zener
formalism in which its dynamics is studied. Then, we describe the novel method by
which we obtain the dependence of the tunneling transitions on the sweeping rate,
alongside presenting the first experimental evidence of the thermalization of the
159Tb nuclear spins. Finally, the phenomenological model proposed in Ref [146] is
used to motivate the dynamics of the molecular spin and to study it quantitatively
leading to experimental estimates of both the intrinsic tunneling time and the
dephasing time.
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Figure 3.6: Sweeping rate dependence of a) the magnetization curves and b) their derivatives obtained
after the sample was placed in Bz = −1.3 T for 2000 s at the cryostat temperature of 200 mK. The
correspondence between the hyperfine anticrossings in the Zeeman diagram c) and the QTM steps seen
as peaks in the derivative of the magnetization curves are marked with broken lines. The different
anticrossings that correspond to |∆mI| = 0, 1 and 2 nuclear selection rule are indicated by a square,
circle and triangle, respectively. The adiabatic limit, PLZ → 1, predicted by the Landau-Zener model is
not reached for slow sweeping rates, instead bellow 16 mT/s, all the M(Bz ; dBz/dt) characteristics fall
on the same curve.

Effective spin Hamiltonian

In section 3.1 it was shown that the strong uniaxial character of the ligand field
interaction leads to a ground doublet, mJ = ±6, separated by about 600 K from the
first exited doublet, mJ = ±5. As we work at subkelvin temperatures, the system
is confined to the two lowest states, mJ = ±6, and thus the electronic spin can be
treated as an effective Ising spin 1/2 with an effective g-value, geff = 18. Under an
external field parallel to the anisotropy z-axis, the effective two level Hamiltonian
describing the electronic states can be written as:

He =
geff
2

µBBzσz +
∆

2
σx (3.6)
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Where the first term represents the longitudinal Zeeman interaction and the second
one models the non-axial ligand field interactions. By including the nuclear spin
interaction we have:

HTbPc2 = He + Ahyp|mJ |(σ · I) + IP̂quadI (3.7)

Thus, the states are labelled by using the electronic and nuclear spin components,
|mJ , mI〉, with mJ = ±6 and mI = −3/2 . . . 3/2.

At this point, two important observations need to be made. First, tunneling transitions
within the doublet mJ = ±6 happen between mixed hyperfine states |+6, mI〉 and
|−6, m′I〉. In a first approximation, we consider that tunneling transition events at
different crossings are independent of each other, that is tunneling dynamics at
a specific anticrossing affects only the populations of the two levels that form it.
Second, the interaction between the electronic spin and nuclear spin results in the
non-equidistant splitting of the energy levels, with the energy spacings between
consecutive hyperfine states being around 120, 160 and 190 mK. These spacings
are larger than the lowest temperature of about 25 mK reached with our dilution
cryostat. This suggests that any initial distribution of the nuclear spin population
thermalizes towards the equilibrium Boltzmann distribution.

Figure 3.11 shows equilibrium magnetization curves at different cryostat tempera-
tures measured after the sample was kept for 4000s in Bz = −1.3 T applied magnetic
field. The increase of the occupation number of the exited states is seen in the strong
dependence of the QTM steps on temperature as the variation of the relaxation steps
with temperature depends only on the initial population of the hyperfine levels (in a
first approximation, P, is assumed to be independent of temperature). The detailed
analysis of the thermalization process will be pursued in the next section.

Landau-Zener dynamics

The time evolution of the magnetic moment under a changing magnetic field is
given by the following master equation for the density matrix (ρ):

dρ

dt
=

i
h̄
[ρ,H] (3.8)

Thus, the spin reversal probability, for the case when the magnetic field is swept at a
constant rate, is given by the Landau-Zener expression (Eq. 1.30):

PLZ = 1− exp
(
−π∆2

h̄α

)
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Figure 3.7: a) The trajectory of the molecular spin (red curve) on the Bloch sphere during the Landau-Zener
dynamics. The initial state |1〉 and the intermediate states |Ψ〉 are indicated by blue arrows with the
color gradient indicating the time dimension. The non-adiabatic evolution of the spin through the
level anticrossing is a unitary coherent dynamics, reflected by the motion of the spin on the surface
of the sphere. Far from the level anticrossing, a steady state precession (θ = const) is reached. The
LZ tunneling probability is given by: PLZ = cos2(θ/2). b) Landau-Zener tunneling probability as a
function of the sweeping rate. The continuous line represents the analytical solution to the LZ problem
while the blue points are the numerical solution of Eq. 3.8.

where α = geffµBdBz/dt is the rate of change of the Zeeman interaction.

The usual approach to investigate experimentally the tunneling dynamics in
molecular magnets is to measure the sweeping rate dependence of the relaxation
steps. Figure 3.6a shows the TbPc2’s magnetization curves obtained after a waiting
time of 2000 s at the cryostat temperature of 200 mK for field sweeping rates in
the range dBz/dt ∈ [1 : 256] mT/s. The correspondence between the hyperfine
anticrossings in the Zeeman diagram and QTM steps seen as peaks in the derivative
of the magnetization curves (Fig. 3.6b,c) are marked with dotted lines. Note that,
PLZ → 1 limit predicted by the Landau-Zener model is not reached for slow
sweeping rates, instead bellow 16 mT/s all the M(Bz; dBz/dt) characteristics fall on
the same curve. This is not a surprising result as, Eqs. 3.8 and 1.30 have a limited
domain of applicability, adequately describing the experimental reality only when
the characteristic time of the experiment (the time the system is driven through
resonance) is considerably smaller than the characteristic time of the environmental
perturbation (e.g. dephasing time). The deviations from the Landau-Zener formalism
are thus due to both elastic (dephasing) and inelastic (relaxation and excitation)
processes.

The problem was recently analyzed using measurements performed on a single
TbPc2 molecule in a spin transistor geometry [146] and it was concluded that, in the
limit of small probing currents, the dephasing processes dominates the system’s
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dynamics. The observed behaviour was successfully modeled by a phenomenological
Lindblad operator formalism in which the dephasing process acts through the term
(2LρL† − L†Lρ− ρL†L) added to the right hand side of Eq. 3.8:

dρ

dt
=

i
h̄
[ρ,H] + (2LρL† − L†Lρ− ρL†L) (3.9)

Thus, I shortly present the use of the Lindblad operator formalism in describing the
decoherence dynamics.

Lindblad operators

I will first analyze the two limit cases that corresponds to dephasing processes
between the diabatic or adiabatic states and then discuss the phenomenological
model used to describe the LZ dynamics of TbPc2 in a single molecule transistor
environment.

The decoherence processes will be discussed in terms of a few parameters, namely,
tunneling time, τ∆ = h̄

∆ , the time systems is driven through anticrossings, τac =
∆
α ,

and the dephasing time, τd = 1
γ , where γ is the dephasing rate. Note that, a pure

dephasing process changes the population of the electronic states by affecting the
phase of the spins in their LZ dynamics and does not induce direct transitions
between the eigenstates of the molecular spin.

In the first case, the Lindblad operator is given by:

La(t) =
1

2
√

τd
[|↑〉 〈↑| − |↓〉 〈↓|] (3.10)

where |↓〉 , |↑〉 are the diabatic states.

The operator La describes a dephasing process that affects the linear superposition
of the diabatic states and characterizes a strong coupling regime between the spin
and environmental degrees of freedom. Figure 3.8a,b shows the time evolution
of the spin initialized in the ground state and driven through the anticrossing, as
a function of the dephasing time for slow τac � τ∆ and fast τac � τ∆ sweeping
rates. The dynamics on the Bloch sphere computed by the numerical integration of
Eq. 3.9 is shown in Fig. 3.8c. One can see that, the dephasing transforms the linear
superposition of the diabatic states in a mixture of states. Thus, the decoherence
process is especially effective in the slow sweeping rate limit, that is, τac � τ∆ while
for fast sweeping rates the dynamics is close to the coherent Landau-Zener evolution.

The tunneling probability as a function of the sweeping rate for different dephasing
times obtained by solving the master equation 3.9 is shown in Fig. 3.8d. Note that,
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Figure 3.8: Time evolution of the population of the ground state when the system was initialized in the
ground state and then driven through the anticrossing, as a function of the dephasing time, τd, for
a) slow τac/τ∆ = 5 and b) fast τac/τ∆ = 0.25 sweeping rates, computed by the numerical integration
of Eq. 3.9. The decoherence process is especially effective in the slow sweeping rate limit, τac � τ∆,
while for fast sweeping rates and for τd > τ∆, the dynamics is close to the coherent Landau-Zener
evolution. c) LZ dynamics for L = La shown on the Bloch sphere for τac/τ∆ = 10 and τd/τ∆ = 1.
The dephasing transforms the linear superposition of the diabatic states in a mixture of states. d) LZ
tunneling probability as a function of the sweeping rate for different dephasing times. When τac ≈ τd,
the interference between diabatic states is strongly affected and the system tends to a randomized state
characterized by P = 0.5.

when the time the system is driven through the anticrossing becomes comparable to
the dephasing time, the interference between diabatic states is strongly affected and
the system tends to a randomized state characterized by P = 0.5.

The second case to consider is:

Lb(t) =
η

2
√

τd
[|ε1(t)〉 〈ε1(t)| − |ε2(t)〉 〈ε2(t)|] (3.11)

where |ε1,2(t)〉 are the time-dependent eigenstates ofH an η = 〈ε1(t)| σz |ε1(t)〉. This
time, the Lindblad operator Lb describes a dephasing process between the adiabatic
states and characterizes a weak coupling regime between the molecular spin and
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Figure 3.9: Time evolution of the population of the ground state when the system was initialized in the
ground state and then driven through the anticrossing, as a function of the dephasing time, τd, for
a) slow τac/τ∆ = 5 and b) fast τac/τ∆ = 0.25 sweeping rates, computed by the numerical integration
of Eq. 3.9, with L = Lb. At low sweeping rates, where the evolution is close to an adiabatic one, the
LZ dynamics is hardly affected by the decrease in the dephasing time. This is also seen in c) which
displays the tunneling probability, P, as a function of sweeping rate for different dephasing times. In
the adiabatic limit, P saturates to 1 and not to 0.5 as was the case for L = La.

environmental degrees of freedom. If not at resonance, the adiabatic and diabatic
states tend to coincide and thus the Lindblad operators are very similar. This is
not the case when the system is found at the anticrossing. For example, exactly at
resonance Lb vanishes while La has its strongest impact on the dynamics.

This leads to different effects that the two classes of dephasing processes have on the
LZ dynamics. For example, at low sweeping rates, where the evolution is close to an
adiabatic one, the LZ probability of the spin when L = Lb is only weakly affected
by the decoherence processes (see Fig. 3.9). Thus, the tunneling probability in the
adiabatic limit saturates to 1 and not to 0.5 as was the case for a decoherence process
in the diabatic basis.
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We are now in position to consider the phenomenological model introduced in
Ref. [146], characterized by the Lindblad operator:

Lc(t) =
1

τav

∫ t+τav

t−τav
Lb(τ)dτ (3.12)

The time constant, τav, was introduced as an interpolation parameter between the two
limiting cases in which the environment affects the superposition of the diabatic or
the adiabatic states [147, 146]. For example, for the limit cases τav � τac or τav � τac,
Lc tends to La and Lb, respectively, such that, one gets the above considered cases.
Therefore, at different sweeping rates, different dephasing mechanism will affect
the system’s dynamics.

Figure 3.10b shows the sweeping rate dependence of the tunneling probability for
different τav and a fixed τd = τ∆. The characteristics can be understood by looking at
the relative magnitude of τav with respect to τ∆ and τac. As long as τav is much smaller
than τ∆ the dephasing is dominated by processes that destroy the superposition of
the adiabatic states.

For larger values of the averaging time, that is, for τav ≈ τ∆, the P(dB/dt) char-
acteristics change qualitatively and besides the plateau at zero and 1 a plateau at
P = 0.5 appears. This indicates that, the dephasing affects the linear superposition
of the diabatic states. Decreasing the sweeping rate even further, so that, τav < τac

the tunneling probability starts to increase again and saturates to P = 1. This
corresponds to the transition from a dephasing process between the diabatic states
to one between the adiabatic states.

Figure 3.10a displays the dependence of the spin reversal probability on the dephasing
time τd for fixed τav = 10τ∆. As the dephasing time is decreased, the evolution of
the molecular spin departs from the coherent LZ dynamics with the extra parameter
τav marking the time scale on which a weaker coupling regime is reached.

Magnetization fit

We start the theoretical analysis by describing the numerical procedure by which we
fit the magnetization curves and obtain the dependence of the tunneling probability
at different level crossings, as a function of the field sweeping rate. We use the
knowledge of the equilibrium Boltzmann distribution reached when the sample
is thermalized in an external applied magnetic field, Bz = −1.3 T, and fit the
magnetization curve to infer the tunneling probability.
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Figure 3.10: a) Sweeping rate dependence of the Landau Zener tunneling probability for the case
L = Lc, for different dephasing times τd and a fixed τav = 10τ∆. As the dephasing time is decreased,
the evolution of the molecular spin departs from the coherent LZ dynamics with the extra parameter
τav marking the time scale on which a weaker coupling regime is reached. b) The dependence of the
spin reversal probability on different τav for a fixed τd = τ∆. If τav � τ∆ the dephasing is dominated by
processes that destroy the superposition of the adiabatic states, and the dynamics hardly difference from
the coherent one. For larger values of the averaging time, that is, τav ≈ τ∆, the P(dB/dt) characteristics
changes qualitatively and besides the plateau at zero and 1 a plateau at P = 0.5 appears. When τav < τac

the tunneling probability starts to increase again and saturates to P = 1.

The model for M(Bz) requires to keep track of the fractional populations of the
hyperfine levels,

∣∣mJ , mI
〉
, at an applied longitudinal field Bz, which we denote by

n(mJ , mI ; Bz). The initial state corresponds to the polarized sample in an applied
field Bz = −1.3 T, thus, the only non-zero populations are the ones with mJ = +6.
Note that, by definition, the fractional populations satisfy the relation:

∑
mJ ,mI

n(mJ , mI ; Bz) = 1 (3.13)

The initial, equilibrium distribution is given by the Boltzmann distribution:

n0
i =

exp(−Ei/kBT)
Z

(3.14)

With this notation, the normalized magnetization at an applied field Bz is given by:

M(Bz)/Ms = ∑
mJ ,mI

−
mJ

|mJ |
n(mJ , mI ; Bz) (3.15)

With mJ = ±6 and mI = −3/2 . . . 3/2. As we sweep the magnetic field, the change in
the population of the hyperfine states is assumed to happen only at level anticrossings
in the Zeeman diagram (Fig. 3.6c) with the relation between the tunneling probability
and magnetization step given by:

PLZ = |∆M/(2Min)| (3.16)
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Figure 3.11: Equilibrium magnetization curves at different cryostat temperatures measured after the
sample was kept for 4000 s in Bz = −1.3 T applied magnetic field. The increase of the occupation
number of the exited states is seen in the strong dependence of the QTM steps on temperature as, in a
first approximation, the variation of the relaxation steps with temperature depends only on the initial
population of the hyperfine levels.

Where Min is the initial magnetization of the states involved in the anticrossing and
∆M is the height of the relaxation step.

Before continuing with our analysis let’s discuss the assumptions taken when
constructing the above presented model for M(Bz). First, it is considered that the
tunneling probability does not depend on the sample’s magnetization, that is, all
collective processes can be neglected. Due to dilution, TbPc2 molecules are coupled
only by weak dipolar interactions which are assumed to have the sole effect of
giving a finite width (taken from experiment to be around 1 mT) to the relaxation
steps. Note that, if the dipolar field is quasistatic during the relaxation process
of the individual molecular spins (as it is the case for diluted samples and small
relaxation steps), the effect of the dipolar coupling is just to shift the time origin of
the Landau-Zener process, with no effect on the dephasing process. Also, besides
the dipolar broadening, the steps are artificially broadened due to the time constant
of the feedback loop of the measurement process [123].

Another important limit is the characteristic time of the read-out technique (the time
needed to sweep the [−40 : 40] mT field range) which is around 40 s for the lowest
sweeping rate of 2 mT/s, is much smaller than the characteristic relaxation times of
the 159Tb nuclear spin. This assumption is valid at low temperatures were the time
needed to reach the thermal equilibrium is of the order of thousands of seconds (see
Sect. 3.3) but starts to break down for temperatures larger than 300 mK. One has to
remark that the rate of the electronic inter-well direct spin-phonon transitions also
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Figure 3.12: a) Magnetization curves for different sweeping rates, at 200 mK, fitted by theoretical curves
(black lines). The fitting procedure leads to the spin flip probability corresponding to the 3 types of
anticrossings (∆mI = 0, 1 and 2). The curves were shifted vertically for a better visualization. b) Spin
flip probabilities fitted to the dephasing model outlined in the text, leading to tunneling times of 4.78
and 3.47 µs for ∆mI = 1, 2, respectively and a dephasing time of 0.33 µs.

increases with temperature and constitutes another factor that limits the validity
range of the presented technique.

Taking into account the above presented factors results in an almost perfect fit of the
experimental curves, as seen in Fig. 3.12a. The determined transition probabilities
are shown in Fig. 3.12b. It is important to notice that at very slow sweeping rates
(dB/dt / 5 mT), the model for the magnetization curves starts to fail because the
characteristic time of the experiment approaches the electronic and nuclear spin
lattice relaxation times. Thus, we work in the sweeping rate range in which the
tunneling dynamics dominates over the direct relaxation process.

In order to characterize the dephasing process, we solve numerically the above
presented phenomenological master equation and fit the spin flip transition proba-
bilities using a nonlinear least-square algorithm with three time constants: τ∆, τd and
τav. As seen in Ref. [146], if we are far from the coherent Landau-Zener dynamics,
then τd/τ∆ and τav/τ∆ parameters are uniquely defined by the shape of the P(dB/dt)
characteristic, while a variation of the tunneling time, τ∆, results in a horizontal shift
along the sweeping rate axis. Additionally, to reduce the number of fit parameters,
we make the requirement for τd and τav to be the same for ∆mI = ±1 and ± 2
transitions.

The transitions that conserve the nuclear spin (∆mI = 0) are independent on the
sweeping rate (in the range tested experimentally). The plateau at P0 = 0.5 is
characteristic of a dephasing process that comes from a strong interaction between
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the system and its environment, so that the Lindblad operator is mostly constructed
from the diabatic states [146]. The ∆mI = 1 and 2 transitions are well fitted by using
tunneling times, (τ∆ ≡ h̄/∆), τ∆ = 4.78 and 3.47 µs, respectively, and with the same
dephasing (τd = 0.33 µs or alternatively a decoherence rate γd = 1/τd ≈ 3 MHz)
and averaging time (τav = 93.7 µs). The sweeping rate range for which the plateau of
P0 = 0.5 is observed for ∆mI = 0 means that the tunnel splitting for this anticrossing
is at least one order of magnitude larger than the other two transitions (the fit curve
is not uniquely defined for ∆mI = 0 transition).

The study in Ref. [146] and the present work share the same molecular complex but
which is placed in very different environments. Thus, it is worthwhile to compare
the measured low temperature dynamics. For the TbPc2 molecule in a spin transistor
geometry, tunneling events are observed only at the crossings that conserve the
nuclear spin while for TbPc2 in a single crystal environments, all the transitions
except the ones at zero field are evidenced experimentally [135, 148]. This clearly
shows that the molecules in the two samples are acted upon by different transverse
terms. Also, the measured P(dB/dt) characteristics differ significantly between the
two experiments proving that the dynamics of a molecular spin driven though an
avoided level crossing is strongly dependent on the coupling to its environment. In
the former study, the conduction electrons that tunnel through the ligand quantum
dot are expected to play the dominant role in the decoherence process, while for
a molecular crystal at very low temperatures, the incoherent dynamics is caused
mainly by the surrounding spin bath comprised of nuclear and other molecular spins.
Establishing the connection between the phenomenological model that uses Lindblad
operators and a microscopic description that includes explicitly the environmental
degrees of freedom is an important outlook of the present study.
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3.3 Nuclear spin lattice relaxation

In this section we investigate the thermalization of the 159Tb nuclear spin. We use
the acquired understanding on the LZ dynamics of its magnetization to develop a
read-out technique for the population of the hyperfine states. Then, the time evolution
of the population of the hyperfine states, obtained by fitting the magnetization
curves, is evaluated in the framework of a Markovian master equation that allows
us to discuss the dynamics in terms of spin-phonon relaxation rates. Finally, by
evaluating the temperature dependence of the relaxation process we identify the
main mechanism responsible for the thermalization of the nuclear spins. We find
that a direct process that involves phonon modulation of the hyperfine interaction is
sufficient to explain the magnitude of the determined relaxation rates.

Thermalization of 159Tb nuclear spins

The experimental protocol used to evidence and investigate the thermalization
of 159Tb nuclear spins is shown in the inset of Fig. 3.13a. In order to start with a
reproducible initial state we sweep back and forth through the zero field resonances
until a demagnetized state, M = 0, is reached. Through this procedure, the nuclear
spin population is heated-up to an effective temperature much higher than the
cryostat temperature. The sample is then saturated in a high longitudinal magnetic
field (Bz = −1.3 T). During this stage, the molecular spins population is completely
polarized, that is, all the molecules will be characterized by mJ = +6 while the
nuclear spin population remains out of equilibrium. The sample is kept polarized
in Bz = −1.3 T for a definite time, called the cooling time (tc). During this time
the population of the 159Tb nuclear spins is allowed to evolve towards thermal
equilibrium. The last step is to read-out the nuclear spin states by inverting the
applied field while measuring the M(Bz) characteristic.

Figure 3.13a shows a zoom of the measured magnetization curves for increasingly
larger cooling times. We can see that the steps corresponding to excited hyperfine
states, (mJ = +6, mI > −3/2) for Bz < 0 T, gradually diminish and then disappear
as the system evolves towards thermal equilibrium. Describing the above highlighted
dynamics is the main focus of the current section.

In the previous section we used the knowledge about the equilibrium Boltzmann
distribution to fit the magnetization curve and infer the tunneling probability while
in the present study we take advantage of the acquired understanding to obtain
the time evolution of the population of the nuclear spin states. When studying
the field sweeping rate dependence of the tunneling probability (PLZ), we found a
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Figure 3.13: a) Magnetization curves of a diluted TbPc2 crystal measured with the µSQUID technique at
50 mK as a function of the time the sample is kept in Bz = −1.3 T (cooling time). The full procedure to
measure these magnetization curves is show in the inset: (1) initialize the sample by sweeping through
the zero field resonances multiple times until the M = 0 state is reached, (2) saturate the sample,
(3) wait a certain time for nuclear spins to thermalize and (4) read-out the hyperfine populations by
inverting the magnetization while measuring M(Bz). b) Hyperfine structure of the ground doublet,
mJ = ±6 , as a function of the applied longitudinal field obtained after numerical diagonalization of the
Hamiltonian given by Eq. (3.7). The large black arrows are meant to illustrate how the 159Tb transitions
from the state |+6,+1/2〉 to the state |+6,−1/2〉 during the thermalization process are seen in the
magnetization curve as a decrease in the magnitude of the relaxation step.
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behaviour qualitatively different from the predicted Landau-Zener dynamics of an
isolated spin. The observed tunneling relaxation was shown to be dominated by the
environmentally induced decoherence with the central feature for the present study
being the PLZ −→ 0.5 limit observed at small sweeping rates (compared to PLZ −→ 1
expected for the adiabatic limit of the Landau-Zener dynamics).

The analysis of the hysteresis curves is done following the same procedure as
described in the previous section. The fit of the magnetization curve through Eq. 3.15
for different tc at fixed T and fixed tc with varying T is shown in Fig. 3.14 with the
population of the hyperfine states (ni), as fit parameters. A good agreement between
the model and the experimental data is observed for T < 300 mK for all values of tc.

Figure 3.15 shows the time evolution of the population of the hyperfine states
as a function of tc at different temperatures obtained from the fit of the M(Bz)

characteristics. We can see that the initial state corresponds indeed to a strongly
non-equilibrium configuration, the populations of the hyperfine states being close
to equal. Also, at 50 mK, the relaxation is rather slow as the equilibrium Boltzmann
distribution is reached on the time scale of thousands of seconds. Another observation
regards the population of |+6,−1/2〉 state (and to some degree of |+6,+1/2〉which
remains practically unchanged during the initial phase of the thermalization process.
This suggests that the relaxation process that brings the system to the equilibrium
Boltzmann distribution follows the selection rule: ∆mI = ±1.

To get further insight into the relaxation process(es) that dominates the observed
dynamics, we model the thermalization of the nuclear spins in Bz = −1.3 T where
the sample is polarized. For this, we make use of a standard master equation for a
memoryless, Markovian evolution:

d
dt

n(m; t) = ∑
q=m±1

[γm
q n(q; t)− γ

q
mn(m; t)] (3.17)

Where m and q denote the hyperfine states and take values between −3/2 . . . 3/2
while mJ = +6 for all the states involved in the relaxation. γm

q coefficients denote
the transition rate from the state |+6, q〉 to the state |+6, m〉. The relaxation rates γm

q
obey the detailed balance condition:

γm′
m /γm

m′ = exp
(

β(E(m)− E(m′))
)

(3.18)

with β = 1/(kBT). The sum in (3.18) is taken only over the nearest neighbour levels
to reflect the above selection rule and reduce the number of fit parameters. The fit of
the master equation (3.18) to the thermalization process at different temperatures is
shown as black lines in Fig. 3.15 with the three de-excitation rates, γm−1

m (from now
on denoted simply γm) as the only fitting parameters.
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0.00 0.00

Figure 3.14: Fit of the magnetization curves measured with dBz/dt = 8 mT/s and (a) fixed T = 50 mK
for different cooling times, b) fixed tc = 1024 s for different T. The fitting parameters are the initial
populations of the hyperfine states and the relaxation is assumed to be dominated by incoherent
quantum tunneling events occurring with the probability, PLZ = 0.5. A good agreement between the
model and the experimental data is observed for T < 300 mK for all values of tc.

In order to identify the relaxation process we repeat the above presented analysis
for temperatures up to 300 mK where the model for the magnetization curve starts
to break down and the estimation of the population of the hyperfine states is no
longer accurate (see Fig. 3.14).

Figure 3.16a shows the obtained temperature dependence of the relaxation rates.
The transition rates increase with the spacing between the hyperfine levels. Also,
for temperatures roughly smaller than 100 mK, the relaxation process becomes
temperature independent. This suggests that the transition rates are determined
by the sum of a spontaneous and an induced process. Thus, considering a pair of
adjacent hyperfine levels, |+6, m〉 and |+6, m− 1〉, separated in energy by ∆Em, the
transition rate γm can be expressed as:

γm = F (∆Em)
exp (β∆Em)

exp (β∆Em)− 1
(3.19)

The fit curves are shown in Fig. 3.16a as black lines withF (∆Em) = 1.09, 3.81 and 8.86
(×10−3s−1) for the three de-excitation transitions, γm, with m = −1/2, 1/2 and 3/2.
The expression (3.19) works especially well at low temperatures (T . 200 mK) while
the deviations that we start to see at higher temperatures suggest that the inclusion
of higher order processes (e.g. Raman or Orbach mechanisms [14]) may play a role
in the relaxation dynamics.

We can also compute the lifetime, τm, of each hyperfine level through the expression:
1/τm =

(
γm−1

m + γm+1
m

)
. Figure 3.16b shows the evaluation of the lifetime of the
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hyperfine levels using the determined relaxation rates from the master equation and
also by using the above expression (black lines in Fig. 3.16b). As one can expect, in
the T −→ 0 limit, the lifetime of the ground state, |+6,−3/2〉 becomes infinite, as
there are no phonons with sufficient energy to excite the nuclear spin, while the
finite lifetime of the excited states are determined by the spontaneous emission
process.

In order to interpretF (∆Em), the coupling mechanism between the nuclear spins and
phonon bath should be considered. The electronic shell of the Tb3+ ion couples to
the lattice vibrations through the ligand field interaction, while the link between the
electronic configuration and the 159Tb nuclear spins is made through the hyperfine
(mainly the spin orbit term) and quadrupolar interactions.

Thus, we follow Ref. [23, 42] and compute the transition rates induced by the phonon
modulation of the nuclear spin Hamiltonian:

Nuclear spin phonon relaxation rate

Phonons transform any position vector r into r + u where u is called the displacement
field. If one considers a rotation of the crystal characterized by the vector Ω then:

Ω = −1
2
∇× u (3.20)

The dominant energy at the nuclear site is the isotropic hyperfine interaction,
H = Ahyp Iz Jz. If k̂ is the unit vector of the easy axis then after the rotation Ω

transforms into k̂′ = k̂ + Ω× k̂. The hyperfine term ,Ahyp(J · k̂)(I · k̂), transforms
into:

H′ = Ahyp(J · k̂′)(I · k̂′) = Ahyp(Jz + JxΩy − JyΩx)(Iz + IxΩy − IyΩx) (3.21)

We neglect terms proportional to Jx,y because we keep the sample polarized in
high fields and, at sub-kelvin temperatures, phonons do not have enough energy to
induce transitions of the electronic spin. We are also interested in evaluating first
order effects, thus we also ignore terms ∝ Iα Iβ with α, β = x, y, z.

The Hamiltonian becomes:

H′ = Ahyp Jz Iz + Ahyp Jz(IxΩy − IyΩx) (3.22)

Thus, the perturbation induced by a uniform rotation Ω is:

δH = H′ −H = Ahyp Jz[(∂xuz − ∂zux)Ix + (∂yuz − ∂zuy)Iy] (3.23)
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mI = -3/2 -1/2 1/2 3/2 fit

T = 50 mK

T = 100 mK

T = 200 mK

T = 350 mK

Figure 3.15: Evolution towards thermal equilibrium of the populations of the hyperfine levels at 50 mK,
100 mK, 150 mK and 200 mK obtained from the fit of the M(Bz) characteristics. The initial state
corresponds to a strongly non-equilibrium configuration with the populations of the hyperfine states
being close to equal. At 50 mK, the relaxation is rather slow as the equilibrium Boltzmann distribution
is reached on the time scale of thousands of seconds. The relaxation dynamics is evaluated in the
context of the master equation (3.17), with the black lines showing the resulting fit. The only fitting
parameters are the de-excitation transition rates, γm .

The Fourier transform of the displacement field is:

u(r) =
1√
N

∑
q

u(q)eiq·r (3.24)

where N is the number unit cells and q are reciprocal vectors and obtain:

δH = −
iAhyp Jz

2
√

N
{[(qxuz − qzux)− i(qyuz − qzuy)I+]+

[(qxuz − qzux) + i(qyuz − qzuy)I−]}
(3.25)
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The transitions rates (γm) from the state |m〉 to the state |m− 1〉, a process in which
the spin relaxes and a phonon is emitted, is computed by using Fermi’s golden rule:

γm =
2π

h̄ ∑
q
| 〈nq + 1, m− 1| δH |nq, m〉 |2δ− (3.26)

where δ− = δ(h̄ωq − (Em − Em−1)) and nq denotes the number of phonons charac-
terized by the wave vector q and energy h̄ωq.

To evaluate Eq. 3.26 one uses the canonical transformation: u =
√

h̄
2Mω (c† + c)

together with the properties of the ladder operators:

c |n〉 =
√

n |n− 1〉
c† |n〉 =

√
n + 1 |n + 1〉

S± |s, m〉 =
√
(s∓m)(s±m + 1) |s, m± 1〉

(3.27)

Thus, one obtains:

γm =
π

4

A2
hypm2

J s−
NM ∑

q

1
ωq

[(qx − qz)− i(qy − qz)]
2(nq + 1)δ− (3.28)

where s− = (s + m)(s−m + 1).

By using the thermal average for the phonon modes:
〈
nq
〉
= 1/(eβh̄ωq − 1) with

β = 1/(kBT), and the continuous approximation: (1/N) ∑q → (a3/(2π)3)
∫

d3q one
gets:

γm =
A2

hypm2
J s−

32π2ρ

∫
d3q

1
ωq

eβh̄ωq

eβh̄ωq − 1
[(qx − qz)

2 + (qy − qz)
2]δ− (3.29)

where ρ = M/a3 is the crystal density.

The change to spherical coordinates gives:

γm =
A2

hypm2
J s−

6πρ

∫
dq

q4

ωq

eβh̄ωq

eβh̄ωq − 1
δ− (3.30)

Finally, by using the Debye model, ωq = cq where c is the sound velocity, one gets:

γm =
A2

hypm2
J s−∆E3

m

6πρc5 h̄4
eβ∆Em

eβ∆Em − 1
(3.31)

where ∆Em = Em − Em−1.
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3.3 Nuclear spin lattice relaxation

Figure 3.16: a) Temperature dependence of the relaxation rates fitted to a direct relaxation process
characterized by a spontaneous and a induced component and given by Eq. (3.19). b) Temperature
dependence of the lifetime of the hyperfine levels computed by using: 1/τm =

(
γm−1

m + γm+1
m

)
. The

continuous lines denote the evaluation of the level lifetimes. In the T −→ 0 limit, the lifetime of the
ground state, |+6,−3/2〉, becomes infinite, while τm of the excited states are mainly determined by the
spontaneous emission process.

F (∆Em) =
m2

J δA2
hyp∆E3

m

6πh̄4ρc5
(I(I + 1)−m(m− 1)) (3.32)

Where ρ is the crystal density and c is the sound velocity.

To our knowledge, measurements of both ρ and c in TbPc2 crystals were not reported
so far, thus one has to take them as free parameters. Especially, variations in the sound
velocity will have a big impact on the relaxation rate as it enters in Eq. 3.31 to the fifth
power. Also, the Debye model (a linear dispersion for the acoustic phonon modes)
used in the derivation is an over-simplification. However, as we miss the value of ρ

and the details on the lattice modes, we will be content with a rough estimation of the
order of magnitude of the relaxation rates. Thus, by using Eq. (3.31) for the evaluation
of γ−1/2 at 50 mK we get: ρc5 ≈ 3.5× 1019 kg ·m2/s5. And by setting a sensible
value for ρ = 1500 kg/m3, we obtain c = 1877 m/s, which is a reasonable enough
value (for example, c = 1450 m/s was used to explain phonon-assisted tunneling in
Mn12-ac [42]) to confirm the proposed mechanism for the thermalization process.

Nuclear pin phonon transitions in SMM

The identified direct relaxation channel between the 159Tb nuclear spins and the
phonon bath is a rather unexpected find for the relaxation of a nuclear spin embedded
in a molecular complex. For example, measurements on 55Mn nuclear spins at the core
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of Mn12-ac SMM were used to check the predictions of the spins bath theory for the
dynamics of molecular spin–nuclear bath coupled system[149]. Most of the observed
phenomenologies, with the exception of 55Mn thermalization, were successfully
explained. It was suggested that 55Mn nuclear spins thermalize through the quantum
dynamics of the molecular spins because the spin lattice interactions were found
inefficient to explain the measured relaxation rates. However, so far no theoretical
solution to this problem was found. The relaxation mechanism that we evidence
for 159Tb is not efficient in the case of 55Mn nuclear spins because the hyperfine
interaction in transition metal ion compounds is around one order of magnitude
smaller.

Another interesting example to consider is the spin lattice relaxation of 159Tb in TbPc2
molecular spin transistor geometry[83]. The relaxation process, with a characteristic
time of tens of seconds, was found to be dominated by the interaction with the
electrons that tunnel through the molecular quantum dot. The comparison between
the two experiments, that share the same molecular complex placed in very different
environments, suggests that the direct relaxation mechanism that we highlight in
this work sets the lower limit for the nuclear relaxation rate in potential lanthanide
SMMs based spintronics devices.
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3.4 Electronic and nuclear spin dynamics in Tb2Pc3 dinuclear SMM

3.4 Electronic and nuclear spin dynamics in Tb2Pc3

dinuclear SMM

In the previous sections we explored quantum phenomenologies seen in lanthanide
molecular magnets by using the TbPc2 molecule as a model system. We made the case
that the displayed phenomenologies are prototypical for other lanthanide SMMs. In
this section we show that the ferromagnetic interaction between the electronic spins
in a dinuclear complex, Tb2PcHx8Pc2 (from here on referred as Tb2Pc3 ) increases
the multiplicity of nuclear spin states and that their state can be read-out through
cooperative tunneling of the electronic spins (co-tunneling). The measurements on
Tb2Pc3 will also be used to show that the compound exhibits relaxation QTM steps
induced by the nuclear quadrupolar interaction. Also, nuclear spin-lattice relaxation
processes, given by the modulation of the hyperfine interaction, are observed,

Tb2Pc3 SMM

Details on the synthesis and structural characterization of the molecule are found
in Ref. [2]. The Tb2Pc3 is an asymmetric, dinuclear compound with one Tb1 ion
sandwiched between PcHx8 and a Pc plane while the second Tb2 ion is found
between two Pc planes (see Fig. 3.17). The point symmetry at the metal sites can
be approximated to a square antiprism symmetry with CShM of 2.553 for Tb1 and
CShM of 1.593 for Tb2. Thus, a significant deviation from the ideal D4d symmetry
(even more so than in the case of TbPc2) is observed (see Fig. 3.18).

The molecules crystallize in the monoclinic P21/c space group with four molecules
in the unit cell. Two molecules are related by an inversion symmetry and the other
two are generated by glide and skrew plane symmetry operations. There is a small
angle of about 6◦ between the easy axis of the molecules in the two groups. The
intramolecular Tb-Tb distance is 3.52 Å while the shortest intermolecular Tb-Tb
distance is 10.85 Å, leading to a small couplings between the individual SMMs and
to a significant magnetic interaction between the Tb ions of the same molecule.
To further reduce the spin-spin interactions between different molecular units,
we performed measurements on diluted samples with the host matrix made of
Y2PcHx8Pc2.
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3 Tb3+ molecular magnets

Figure 3.17: Side and top views of the Tb2PcHx8Pc2 complex that encapsulates one Tb1 ion sandwiched
between PcHx8 and a Pc plane and a second Tb2 ion found between two Pc planes. The point symmetry
at the metal sites can be approximated to a square antiprism symmetry with CShM of 2.553 for Tb1 and
CShM of 1.593 for Tb2. Color code: Tb, dark blue; N, cyan; C, gray. H atoms are omitted for clarity.

Spin Hamiltonian

The spin Hamiltonian of the compound is written as:

H = H1
Tb +H

2
Tb +Hexc (3.33)

Where
HTb = Hlf + gJµBµ0H · J + Ahyp(J · I) + IP̂quadI (3.34)

is the Hamiltonian characterizing each individual Tb ion with

Hlf = B0
2O0

2 + B0
4O0

4 + B4
4O4

4 + B0
6O0

6 (3.35)

describing the ligand field interaction (the indexes indicating the individual ions
were dropped to simplify the notation).

Hexc = J1 ÂdJ2 (3.36)

describes the ferromagnetic interaction between the ions with Âd containing both
dipolar and exchange contributions. The Steven’s coefficients were obtained by
simultaneous fit of ac-susceptibility and NMR measurements on a similar Tb
dinuclear compound [151]. The Bq

k parameters are slightly different for each Tb site
reflecting the asymmetry of the molecule.
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3.4 Electronic and nuclear spin dynamics in Tb2Pc3 dinuclear SMM

Figure 3.18: The comparison between the ligand field anisotropy of the Tb ion in TbPc2 SMM and Tb2 in
Tb2PcHx8Pc2 computed in the classical approximation of the spin Hamiltonian. The distorted electronic
environment of the Tb ions is taken into account through the B4

4O4
4 term. B4

4 = 11.78× 10−2 K for Tb2 in
Tb2PcHx8Pc2 and B4

4 = 17.6× 10−4 K for the Tb ion in TbPc2 SMM. Despite the large difference between
the off-diagonal terms, the uniaxial symmetry of the Tb ions in the Tb2Pc3 compound is preserved and
their ground state is well defined as mJ = ±6.

The distorted electronic environment of the two Tb ions is taken into account through
the B4

4O4
4 term with B4

4 = 11.78× 10−2 K which is two orders of magnitude larger
than the value found for the TbPc2 sibling molecule, B4

4 = 17.6× 10−4 K. Despite the
large difference, the uniaxial symmetry of the compound is preserved (see Fig. 3.18)
and the ground state for each Tb ion is well defined as mJ = ±6.

Due to the slight difference of the electronic environments of Tb1 and Tb2, the
Ahyp and P̂quad terms are expected to be different for each ion. However, in a
first approximation, we can assume that they are equal. This allows to compute
the dominant axial components of the hyperfine and quadrupolar interaction by
fitting the steps in the magnetization curves and we obtained Ahyp = 0.03 K and
Pquad = 0.014 K. Note that, Ahyp and Pquad are slightly different when compared to
the values obtained for the TbPc2 complex( Ahyp = 0.0267 K and Pquad = 0.017 K),
showing that the ligand field gives the important contribution to the effective
coupling between the Tb molecular and nuclear spin.

We work in the diabatic basis
∣∣J1

z , I1
z
〉 ∣∣J2

z , I2
z
〉

and diagonalize the spin Hamiltonian
as a function of the longitudinal applied magnetic field. The Zeeman diagram
displayed in Fig. 3.20c results in 100 level crossings close to zero field characterized
by simultaneous flip of the electronic and nuclear spins:∣∣∣+6, m1

〉 ∣∣∣+6, m2
〉
→
∣∣∣−6, n1

〉 ∣∣∣−6, n2
〉

(3.37)
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Figure 3.19: a) and c) Temperature dependence of the hysteresis loops and d) its derivative for Tb2Pc3

measured with a fixed sweeping rate of 140 mT/s. QTM events are observed in the Bz ∈ [−0.05 : 0.05] T
region as step occurring at ±14, ±34 and ±47 mT. These transitions correspond to the avoided level
crossings that conserve the nuclear spin. The co-tunneling transition rates depend not only on the
tunnel splittings of the mixed states but also on the thermal population of the hyperfine levels, thus the
steps are strongly temperature dependent. At Bz = 0.55 T, an additional broad transitions is observed
that corresponds to the transition from the ferromagnetic to the antiferromagnetic alignment of the
electronic spins. The hyperfine structure of this step is not experimentally resolved due to the small
distributions of the ligand field parameters and the 6◦ degree misalignment of the two Tb ions. b) The
sweeping rate dependence of the hysteresis loops at the cryostat temperature of 30 mK. As the dBz/dt
is decreased the adiabatic regime is approached and most of the molecules relax through co-flipping of
the electronic spins.

where mi and ni take values between −3/2 and 3/2, and describe the nuclear spin
components. However, out of these, only the crossings that conserve the nuclear
spin are split by B4

4O4
4 term while the crossings characterized by |∆mI| 6= 0 require a

non-axial quadrupolar interaction to be mixed.

µSQUID measurements

We performed µSQUID measurements on micrometer sized crystals containing
Tb2PcHx8Pc2 molecules that are diluted in an isostructural, diamagnetic matrix
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Figure 3.20: a) Magnetization curves (M(Bz)) and b) dM/dBz characterizing a diluted Tb2Pc3 crystal
at 50 mK as a function of the time the sample is kept in Bz = −1.3 T. The nuclear spins were
thermalized with the same procedure used to observe the nuclear spin lattice relaxation in TbPc2. That
is, we first sweep the field back and fourth in the region where tunneling transitions are observed
(∼ [−0.06, 0.06] T), thus the nuclear spins are heated up. We then saturate the sample in a field of
−1.3 T and wait for the nuclear spins to relax. The nuclear spins in Tb2Pc3 thermalize on a similar scale
as in the TbPc2 sibling molecule with a waiting time of the order of thousands of seconds needed to
thermally equilibrate the nuclear spin system at 50 mK. Besides the main transitions that conserve
the nuclear spins (circles), the transitions that do not conserve the nuclear spins are also observed
(squares in Fig. 3.20). Similar to the case of TbPc2 studied in Sect. 3.1 these steps are the result of the
non-axial quadrupolar interaction that mixes the states with different nuclear spin states. c) Hyperfine
structure of the ground states as a function of the applied longitudinal field obtained after numerical
diagonalization of the Hamiltonian given by Eq. (3.34).
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formed by Y2PcHx8Pc2 molecules with a concentration of 1%. The sample’s dilution
controls the dipolar interaction between the molecular spins and consequently is
used to reduce the probability of the collective effects. Thus, on one hand, a diluted
sample shows a well resolved hyperfine structure and on the other, its dynamics
can be understood in terms of the properties of an ensemble of non-interacting
molecular spins.

Before each field sweep the nuclear spins were thermalized with the same procedure
used to observe the nuclear spin lattice relaxation in TbPc2. That is, we first sweep
the field back and fourth in the region where tunneling transitions are observed
(∼ [−0.06, 0.06] T), thus the nuclear spins are heated up. We then saturate the sample
in a field of−1.3 T and wait for the nuclear spins to reach the equilibrium Boltzmann
distribution. The thermalization process at 50 mK is shown in Fig. 3.20a,b. One
can see that the nuclear spins in Tb2Pc3 thermalize on a similar scale as in the
TbPc2 sibling molecule with a waiting time of more than 2000 s at 50 mK needed
to thermally equilibrate the nuclear spin system with the phonon bath. This is an
expected result as both compounds are characterized by similar hyperfine constants.

Let’s look closer to the temperature dependence of the hysteresis loops and its
derivative measured with a fast, fixed sweeping rate of 140 mT/s (Fig. 3.19). A
fast sweeping rate was chosen in order to highlight the main QTM transitions and
simplify the initial interpretation of the measurements.

Starting with a saturated sample, the QTM events are observed first in the Bz ∈
[−0.05 : 0.05]T field region where a staircase like structure with seven main transitions
occurring at ±14, ±34 and ±47 mT, emerges. These transitions correspond to the
avoided level crossings that conserve the nuclear spin. The co-tunneling transition
rate depends not only on the tunnel splittings of the mixed states but also on the
thermal population of the hyperfine levels. The strong temperature dependence
of the QTM state is dictated by the temperature dependence of the equilibrium
Boltzmann distribution.

Increasing the magnetic field further, an additional broad transitions is observed
at Bz = 0.55 T, that corresponds to the transition from the ferromagnetic to the
antiferromagnetic alignment of the electronic spins [2]. The hyperfine structure of
this step is not experimentally resolved due to the small distributions of the ligand
field parameters and 6◦ degree misalignment of the two Tb ions. It was shown that
these transitions cannot be reproduced by employing a purely dipolar coupling
between the molecular spins and thus, an exchange coupling between them was
introduced.

The sweeping rate dependence of the hysteresis loops at the cryostat temperature
of 30 mK is shown in Fig. 3.19b. As the dBz/dt is decreased the adiabatic regime
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is approached. This suggest that the incoherent LZ dynamics in Tb2Pc3 is affected
by the ferromagnetic interaction of the Tb3+ spins. The quantitative analysis of
the dynamics through the use of the Lindblad operator formalism is an important
outlook of the present section.

Besides the main transitions seen at fast sweeping rates (circles in Fig. 3.20), the
transitions that do not conserve the nuclear spins are also observed at small sweeping
rates (squares in Fig. 3.20). Similar to the case of TbPc2 studied in Sect. 3.1 these
steps are the result of the non-axial quadrupolar interaction that mixes the states
with different nuclear spin states.
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4 Hyperfine enhanced phonon
assisted tunneling

The advancement towards industrially viable quantum technologies like quantum
computing and nanoscale magnetometry depends largely on our ability to control
the immediate environment of a system of interacting quantum objects (qubits). The
main objective is to preserve coherence during external manipulations and thus
exploit intrinsic quantum properties like interference and entanglement. Depending
on their nature and coupling strength, most environmental degrees of freedom in
interaction with the qubit can be mapped either into a bosonic bath, for non-local,
weak interaction, or to a spin bath, in the case of localized, strong interactions [152].
The later case is especially important as it can induce decoherence even in the
T −→ 0 limit, that is, the dephasing is not accompanied by dissipative processes.
Thus, the complex problem of a central quantum system coupled to localized
environmental excitations, for example, nuclear spins or paramagnetic centers, is
pivotal in mesoscopic quantum physics [153].

Amongst experimental implementations of the above model (e.g, NV centers in
diamond [143], nanomagnets [154], SQUIDs [155] and impurities in silicon [143]),
molecular magnets illustrate especially well the intimate relationship that exists
between the manifested quantum phenomenologies (e.g. quantum tunneling of
magnetization (QTM) [3], spin parity effect [48], Rabi oscillations [61]) and the spin
bath. After the experimental evidence of the magnetic bistability in Mn12-ac [2], event
that marks the birth of the field of molecular magnetism, the breakthrough discoveries
of both phonon-assisted and ground state quantum tunneling [3, 5] greatly boosted
the interest in these systems. Theoretical inquires to explain the observed dynamics
were resolved by carefully considering the effect of the environmental interactions
(both spin-phonon and spin-spin couplings) and thus contributed significantly to
the development of the theory of the spin bath [156].

Molecular magnets also proved to be ideal systems for testing the predictions made
by the constructed theory. Thus, both the influence of the isotopic composition
through variation of the hyperfine interaction on the relaxation rate [33] and the
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Figure 4.1: a) Chemical structure of the (163,164)Dy(tmhd)3)2bpm compounds. b) Polyhedral represen-
tation of N2O6 coordination environment of the Dy ion formed by six oxygen atoms from the tmhd and
two nitrogen atoms of the bpm. The coordination geometry around the dysprosium ions can be best
described as a square antiprism with a continuous shape measure (CShM) of 0.607 for 163Dy2bpm and
0.615 for 164Dy2bpm. Green arrows represent the anisotropy axis for each Dy(III) obtained from ab
initio CASSCF calculations. Colour code: C, grey; N, cyan; O, red; Dy, dark blue.

peculiar square root law for the relaxation at low temperatures and short times were
promptly verified [157].

The strong correlations between the dynamics of the spin bath and the relaxation
of the molecular spin were also evidenced by measuring directly the nuclear spins
through resonant techniques [158]. Both the longitudinal and transverse relaxation
times were linked directly to the electronic spin dynamics [159] proving that nuclear
spins can serve as microscopic probes for the molecular spin [160]. The theory of the
spin bath was also successfully applied in the study of the decoherence in crystals of
molecular magnets [75, 70], paving the way for molecular optimization for quantum
information processing nanodevices.

Most of the experimental and theoretical investigations into the subject of spin-bath
were done using transition metal ion compounds as model systems. However, the last
decade saw the rise of molecular complexes that employ lanthanide ions as magnetic
centers and at the moment one can make an argument that this class of SMMs are
amongst the most promising ones. Unquenched orbital angular momentum, large
single ion anisotropy and a strong hyperfine interaction are just some characteristics
that distinguish lanthanide complexes in the field of molecular magnetism [13].
For example, in the Chap. 3 was shown that the nature of the strong interaction
between the electronic shell of the lanthanide ion and its own nuclear spin has
strong repercussions on the tunneling dynamics [135, 148]. Also, the non-zero orbital
momentum brings upfront the spin-phonon interaction. Thus, even in the range
where the dynamics is temperature independent, the phonon bath can no longer be
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ignored. Despite these observations, the quantum dynamics of lanthanide SMMs in
the framework of the spin bath theory is a subject largely unexplored.

In Sect. 3.3 we investigated the thermalization of 159Tb nuclear spin belonging
to the archetypical TbPc2 complex and proven that the relaxation is due to the
phonon modulation of the hyperfine interaction. In the current chapter we show
that the uncharacteristic, phonon induced hyperfine fluctuations is important in the
phonon-assisted tunneling dynamics of lanthanide molecular magnets.

The effect of the nuclear isotopes on the molecular spin relaxation will be studied
using two model systems: Dy(tmhd)3)2bpm and HoIIIF2[15-MCNi-5]. We show
experimentally that the presence of the nuclear spin leads to a significant increase of
the relaxation rate at crossover temperatures, that is, when molecular spin tunneling
and phonon assisted transitions occur with comparable rates. Then, the characteristics
of their relaxation process will be explained by including nuclear spin fluctuations
in the theoretical framework of phonon assisted tunneling. We show that thermal
fluctuations of the nuclear spin in lanthanide SMMs open additional relaxation
channels for the molecular spin and thus leads to an exponential increase of the
relaxation time.

4.1 Dy2dpm isotopologue SMMs

The X-ray single crystal analysis showed that the Dy isotopologue complexes feature
two neutral dinuclear systems with formula (163,164Dy(tmhd)3)2bpm (denoted
by 163,164Dy2bpm) where tmd = tris(tetramethylheptanedionato) and bpym =
bipyrimidine (see Fig. 4.1 and Ref. [4] for the detailed structural and chemical
characterization of the compounds). Note that, the two compounds are characterized
by different nuclear spin moments with I(163Dy) = 7/2 and I(164Dy) = 0.

Both isostructural complexes, crystallise in the triclinic P1 space group, with half-
molecule in the asymmetric unit, thus, both dysprosium ions are related by an
inversion centre. A single molecule resides in the unit cell. At the metal side, each
Dy ion possesses a N2O6 coordination geometry formed by six oxygen atoms from
the tmhd and two nitrogen atoms of the bpm (Fig. 4.1). The coordination geometry
around the dysprosium ions can be best described as a square antiprism with a
continuous shape measure (CShM) of 0.607 for 163Dy2bpm and 0.615 for 164Dy2bpm.
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Figure 4.2: Temperature dependence of the magnetic hysteresis loops at a field sweeping rate of
70 mT/s for a) 164Dy2bpm and b) 163Dy2bpm. The two sharp QTM steps at positive and negative field
correspond to ferromagnetic ↔ antiferromagnetic transitions. At Bz > 0.3 T the loops have a broad
step due to direct electronic transitions. Also, M(Bz) characteristics of 163Dy2bpm a more temperature
dependent for 164Dy2bpm, suggesting a weaker spin-phonon coupling in the isotopically purified
compound.

Hysteresis loops

The µSQUID measurements were performed on undiluted single crystals of
163,164Dy2bpm. Figure 4.2 shows the hysteresis loops of the 163,164Dy2bpm measured
at different temperatures and a fixed sweeping rate of 70 mT/s. Well-resolved
two-steps hysteresis loops were obtained for both compounds with the width of
the loops increasing as the temperatures is decreased. The loops are typical of two
antiferromagnetically coupled Ising-like spins, that is, around zero field, the loops
have a S-shape with two sharp QTM steps at positive and negative fields. For fields
larger that 0.3 T the loops display a broad step, which is strongly field-sweep-rate
dependent and is a consequence of the direct relaxation process between the an-
tiferromagnetic and ferromagnetic spin states. Additionally, the loops exhibit a
small hysteresis at 0 T which comes from the fact that some of the molecules do not
tunnel to the antiferromagnetic ground state but remain pinned to the ferromagnetic
state. Upon simple comparison of the hysteresis curves of the two compounds it
can be observed that the loops for 163Dy2bpm show a more temperature dependent
behaviour than for 164Dy2bpm, indicating that the relaxation mechanism is more
effective for this system.
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Figure 4.3: Temperature dependence of the derivatives of the magnetic hysteresis loops at a field
sweeping rate of 70 mT/s for a) 164Dy2bpm and b) 163Dy2bpm. The steps are fitted to the ferromagnetic
↔ antiferromagnetic transitions in the Zeeman diagram.

The mean exchange field (Hex) can be directly extracted from the inflexion points in
the hysteresis loops, leading to an effective exchange constant between the Ising
spins of the Dy(III) ions:

Je =
gJµB Hex

mJ
(4.1)

here mJ = 15/2 and gJ = 4/3. The determined Je = 4.18 mK is slightly larger than
the one obtained from a purely point dipolar approximation ( Jdip = 3.53 mK for
distance of 6.7964(4) Å between the two Dy ions). Thus, the interaction between the
Dy(III) pairs is mainly of dipolar origin, with a small exchange contribution.

Low-Temperature QTM dynamics

To begin with our analysis, we focus on the low-temperature magnetic properties
of the individual 164Dy2bpm SMMs as the lack of the nuclear spins simplifies the
analysis.
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Figure 4.4: a) Equilibrium magnetization curves of both Dy2bpm compounds for different temperatures.
At T = 0.3 K, M(Bz) are paramagnetic in nature which is not the case experimentally for either of
the two compounds. Thus, the relaxation time of the experiment is significantly smaller than the
relaxation time of the molecular spins. b) Fit of the magnetization curves of 164Dy2bpm and 163Dy2bpm
through the models described in the text with the sole fit parameter being the tunneling probability,
p = 0.74 for 164Dy2bpm and p = 0.76 for 163Dy2bpm at the anticrossings that conserve the nuclear spin.
(inset) Fit of the magnetization curves of 164Dy2bpm at different sweeping rates. The curves are shifted
upwards for better visibility.

The single ion magnetic properties of the Dy(III) dimers are dominated by the
spin-orbit coupling and the interaction with the surrounding ligands, leading to a
separation of 188 K between the ground, mJ = ±15/2 and first excited, mJ = ±13/2
multiplet. This allows us to describe the complex as two Ising spins 1/2 coupled
through dipolar interaction by a term of the form: Jeffσ

1
z σ2

z , where Jeff = Jem2
J and

where σ1,2
z are the z-Pauli matrices.

Thus, under the action of an external magnetic field applied along the easy axis, the
spin Hamiltonian is written as:

164H = geffµBµ0Hz(σ
1
z + σ2

z ) + ∆/2(σ1
x + σ2

x ) + Jeffσ
1
z σ2

z

where geff = 20 is an effective g-factor and ∆ is the tunnel splitting that arises from
the transverse interactions in the system. Figure 4.3 represents the corresponding
Zeeman diagram.

With this we can start to understand the hysteresis loop of the 164Dy2bpm complex
(Fig. 4.2). At Hz = −1 T (with Oz chosen along the easy axis of the complex) the
sample is polarized and all the spins are in the ground state |15/2, 15/2〉. As we
sweep the magnetic field, the molecules remain in the ground state until the external
field compensates the bias field, Br ∼ −35 mT, and the SMMs make a transition
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from the ferromagnetic to the antiferromagnetic order by quantum tunneling. The
position of the relaxation step gives the value of the effective coupling constant,
Jeff = 4.18 K, as described above. The height of the relaxations step (∆M) is related to
the tunneling probability (p) through the relation: p = ∆M/(2Min), where Min is the
initial magnetization. The next transition happens at B ∼ 35 mT where the molecules
relax non-adiabatically from the state |15/2,−15/2〉 to |−15/2,−15/2〉, with the
same probability, p. The above discussion is valid only for the idealized situation
describing a system of isolated molecules. In a real crystal the molecules are coupled
by weak dipolar (and sometimes exchange) interactions and collective effects like
the reshuffling of the internal fields have an important influence on the relaxation
process. Thus, in order to properly describe the dynamics of the ensemble of SMMs,
a multi-body model should be employed. However, in a first approximation, we can
assume that the resonance fields of the molecules that tunnel follow a Gaussian
distribution around the bias field (Br):

∆N ∼ exp
(
−(B− Br)2

2σ2

)
(4.2)

with the variance of this distribution depending linearly on the sample’s magnetiza-
tion:

σ(H) = σ0|M(H)|+ σmin (4.3)

Using the above assumptions we are able to fit the magnetization curves (Fig. 4.4),
with the sole fit parameter being the tunneling probability, p, which for the sweeping
rate of 2 mT/s is found to be p = 0.74. The parameters σ0 and σoff that describe
the distribution of the resonance fields are chosen so that a simultaneous fit of the
magnetization curves under different sweeping rates is obtained.

Now we are ready to consider 163Dy2bpm complex. The 163Dy isotope has a nuclear
magnetic moment I = 5/2 coupled to the electronic shell by the hyperfine (AhypI · J)
and quadrupolar interaction (Pquad I2

z ). Thus, the total Hamiltonian of the 163Dy2bpm
complex can be written as:

163H =164 H+
2

∑
i=1

AhypIi · Ji + Pquad Ii
z Ii

z (4.4)

with Ahyp = 7.14 mK and Pquad = 19.6 mK. The corresponding Zeeman diagram is
shown in Fig. 4.3.

The analysis of the magnetization curve of the 163Dy2bpm complex (Fig. 4.2) is
done in a similar fashion to the analysis of the 164Dy2bpm complex, with two
new assumptions related to the presence of the nuclear spin. We consider that the
hyperfine levels corresponding to the ground multiplet |15/2, 15/2〉 are initially
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Please do not adjust margins

Figure 4.5: The out of phase component of χ(ω; T) under a zero DC applied magnetic field (HDC = 0 T)
for (a)) 163Dy2bpm and (b)) 164Dy2bpm. For 163Dy2bpm, at the lowest temperature of 2 K, the maximum
is centered around 7 Hz, and stays practically constant until reaching 5 K. Above 5 K the maximum is
clearly temperature dependent, shifting swiftly up to 18 K. In contrast, for the 164Dy2bpm analogue, at
the lowest temperature of 2 K, the maximum lies below our minimum working frequency of 0.1 Hz,
while for temperatures between 4 K and 18 K the relaxation shows a strong temperature dependence.
The continuous lines are fits of the susceptibility measurements using the generalized Debye model,
Eq. 4.5 with the parameter, α, taking values between 0.02 < α < 0.37 for 163Dy2bpm, and 0.02 < α < 0.21
for 164Dy2bpm.

uniformly populated and tunneling transitions are allowed only between the levels
that conserve the nuclear spin, with a fixed probability, p. The resulting fit is shown
in Fig. 4.4b, which yields the tunneling probability, p = 0.76, for the sweeping rate
of 2 mT/s.

We see that the magnitude of the tunneling probability for the two compounds does
not change (the small difference may originate in the difference in size and shape of
the sample – shape anisotropy). The nuclear spins have the sole role of broadening
the relaxation steps. Thus, the magnetic behavior observed at higher temperatures is
entirely due to the interaction with the phonon bath.

AC-measurements

In order to get further insight into the role played by the nuclear spins in the relaxation
process of the two isotopologues, we turn to alternating current (AC) susceptibility
measurements. The reported measurements are performed on polycrystalline
samples under an oscillating field of 35 Oe. We investigate both the temperature
dependence of the susceptibility under a constant frequency, χ(T; ω), and the
frequency dependence undera fixed temperature,χ(ω; T). The χ(T; ω) characteristics
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reveals that both compounds exhibit a SMM behaviour. For example, a maximum
around 18 K in the out of phase component of the χ(T; ω) is observed for both SMMs
at the highest frequency available of 1512 Hz. Noticeable differences between the
two isotopoloques are better seen in the frequency dependence of the susceptibility,
thus we will first focus on these measurements.

Fig. 4.5 shows the out of phase component of χ(ω; T) under a zero DC applied
magnetic field (BDC = 0 T) for 163Dy2bpm and 164Dy2bpm, respectively. For
163Dy2bpm, at the lowest temperature of 2 K, the maximum is centered around
7 Hz, and stays practically constant until reaching 5 K. Above 5 K the maximum
is clearly temperature dependent, shifting swiftly up to 18 K. In contrast, for the
164Dy2bpm analogue, at the lowest temperature of 2 K, the maximum lies below our
minimum working frequency of 0.1 Hz, while for temperatures between 4 K and
18 K the relaxation shows a strong temperature dependence. In order to compare the
characteristic relaxation time of the two compounds at different temperatures we
successfully fit the susceptibility measurements using the generalized Debye model:

χ(ω) = χS +
χS − χS

1 + (iωτ)1−α
(4.5)

where χT and χS are the isothermal and adiabatic susceptibilities, and τ is the
relaxation time. The obtained temperature dependence of the relaxation times is
shown in Fig. 4.6 with the parameter α taking values between 0.02 < α < 0.37 for
163Dy2bpm, and 0.02 < α < 0.21 for 164Dy2bpm. The wide distribution of α and its
increase with temperature indicates the presence of multiple relaxation channels that
affects the relaxation time (more so for 163Dy2bpm than for the 164Dy2bpm complex).
The big difference between the relaxation time of 163Dy2bpm and 164Dy2bpm at low
temperatures (T < 5 K) can be understood qualitatively by considering the effect
of the nuclear spin on the processes that dominates the relaxation of the electronic
spins in this temperature range.

First, for a polycrystalline sample, the presence of nuclear spins increases the fraction
of molecules that can relax through quantum tunneling. That is, the relaxation of
164Dy2bpm through QTM takes place only when the bias local field satisfies the
resonance condition (B ≈ Br), while for 163Dy2bpm the hyperfine splitting leads to
level anticrossings that are spread in the region [−75 : 75] mT (Fig. 4.3) and thus a
larger fraction of molecules are found at resonance at any given time. Second, the
hyperfine interaction in 163Dy2bpm results in broader electronic levels and thus in a
stronger coupling between the molecular spins and the vibrational acoustic modes.
This leads to single phonon processes (direct relaxation) that, in the intermediate
temperature range (2 K < T < 5 K), dominates the spin-lattice relaxation dynamics.
The stronger spin-phonon coupling for 163Dy2bpm is also observed when comparing
the temperature dependence of the hysteresis loops measured with the micro-SQUID
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Please d

Figure 4.6: Temperature dependence of the relaxation time, τ, for Dy2bpm isotopologues obtained
from the fit of the ac-measurements for a) zero applied field HDC = 0 T and b) HDC = 30 T. Field
dependence of the relaxation time, τ, at a fixed temperature of c) T = 5 K and d) T = 14 K. Significant
difference in the magnitude of the relaxation times of the two compounds is observed for T < 5K and
HDC < 25 T, while at higher temperatures and field the overbarrier Orbach process characterized by
and effective energy barrier of Ueff ≈ 81 (black line) K.

technique (Fig. 4.2). For temperatures larger than 5 K, the relaxation times of the two
isotopologues are very similar to each other and are well fitted by the Arrhenius law:

τ = τ0 exp (−Ueff/kBT) (4.6)

The fits shown in Fig. 4.6 lead to similar effective energy barriers: Ueff = 81.66 K for
163Dy2bpm and Ueff = 81.04 K for 164Dy2bpm.

To investigate further the differences between the dynamic magnetic properties of
the two isotopologues, τ was examined in detail by field dependent studies, i.e. τ(B)
at a fixed temperature of 5 K with fields ranging from -30 to 500 mT (Fig. 4.5). We
first should notice that the difference in the magnitude of the relaxation times of the
two compounds is preserved for fields with amplitude smaller than 25 mT. Also for
164Dy2bpm, a modulation of τ(B) with a local maximum at zero and a minimum at
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around 30 mT is observed because when applying a small external field we increase
the fraction of molecules that are found at resonance and can relax through QTM.
The polycrystalline nature of the sample is responsible for shifting the minimum to
smaller field value (B ≈ 30 mT) as compared to the resonance field of about 35 mT
observed for a monocrystal. At the same time, no such modulation, is observed
for 163Dy2bpm because the multiple hyperfine crossings and stronger spin-lattice
coupling results in practically uniform relaxation rates. As we increase the field
past 25 mT, a significant decrease in the relaxation rate is observed as the molecules
are gradually shifted out of resonance and already at 30 mT the relaxation of the
two compounds becomes very similar (Fig. 4.6c). At higher fields, B > 200 mT,
the relaxation is again enhanced due to the direct relaxation process (see also the
micro-SQUID measurements in Fig. 4.2).

Interestingly, for fields larger than 100 mT the relaxation of 164Dy2bpm is faster than
that of 163Dy2bpm. This is unexpected result and explaining it will require further
investigations. However, in order to confirm that this is due to the presence/absence
of nuclear spins we measure τ(B) at 14 K (Fig. 4.6d), where nuclear spin effects are
expected to be less important. And indeed we can see that the difference in τ(B)
characteristics of the two isotopologues is greatly reduced. Before we construct
a quantitative interpretation of the above observations let’s also briefly look at
µSQUID and ac-measurements performed on a polynuclear Ho complex.
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4.2 Phonon assisted tunneling in HoIIIF2[15-MCNi-5]

Below we report single crystal and powder measurements on HoIIIF2[15-MCNi-5]
(from here on denoted HoNi5). For details on its chemistry see Ref. [7].

The high level structure of the molecule involves the Ho ion surrounded by the
crown of five Ni ions and then coordinated axially by two F ions, resulting in a
compressed pentagonal geometry (see Fig. 4.7a). The axial F-Ho-F moiety leads to
a large uniaxial anisotropy while the crown-like structure of Ni5 results in small
transverse ligand field interactions and will be shown to play a central role in the
dynamics of the compound. The isostructural HoNi5 molecules form single crystals
characterized by the triclinic space group.

Figure 4.7b shows the results of the ab-initio calculations on HoNi5 using MOLCAS
package [7]. The axial F ligation of the Ho ion was found to result in a record
splitting of the J = 8 ground multiplet with a separation of 577 cm−1 between
mJ = ±8 and mJ = ±7 doublet. The Ni ions are strongly coupled through exchange
interactions leading to a singlet ground state, S = 0, and a triplet exited state,
S = 1. The interaction between the Ho ion and Ni5 crown results in a ground state
splitting of about 20 cm−1. The Holmium ion is also the nuclear spin carrier - the
165Ho isotope (100% natural abundance) has a nuclear spin I = 7/2. The hyperfine
interaction further splits the electronic states with the resulting states characterized
by |mJ , mS, mI〉 with mJ = ±8, mS = 0, 1, and mI = −7/2, .., 7/2. Our main interest
in this complex comes from the unusual ground state splitting of the Ho ion in
interaction with Ni5 ring that results in a significant temperature range in which the
QTM transitions rates are comparable with the spin-phonon transition rates. This
leads to rather unique τ(T, B) characteristics.

µSQUID measurements

We investigate the low temperature magnetic properties of the HoNi5 complex by
performing µSQUID measurements on a monocrystal containing HoNi5 SMMs
diluted in the YIIIF2[15-MCNi-5] matrix with a concentration of 5%. The effect of
different field sweeping rates (dBz/dt) on the magnetic response (M(Bz)) of the
sample is measured at temperatures starting from 30 mK up to 4 K.

Figure 4.8 shows the temperature dependence of the hysteresis loops at a fixed
sweeping rate of 1 mT/s and 128 mT/s. We first should notice that the molecules
exhibit hysteresis up to 4 K bearing evidence of the large uniaxial anisotropy of the
molecule. Then, the hyperfine interaction between the Ho electronic shell and its
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Figure 4.7: a) Chemical structure of HoIIIF2[15-MCNi-5] complex [7]. The molecule presents the Ho ion
surrounded by the crown of five Ni ions and then coordinated axially by two F ions, resulting in a
compressed pentagonal geometry. The axial F-Ho-F moiety leads to a large uniaxial anisotropy while
the crown-like structure of Ni5 results in small transverse ligand field interactions and will be shown
play a central role in the dynamics of the compound. Color code: purple (Ho), green (Ni), grey (C),
red (O), light blue (N) b) Energy diagram obtained from the ab-initio calculations on HoNi5 using
MOLCAS package [7]. The axial F ligation of the Ho ion was found to result in a record splitting of the
J = 8 ground multiplet with a separation of 577 cm−1 between mJ = ±8 and mJ = ±7 doublet. The Ni
ions are strongly coupled through exchange interactions leading to a single ground state, S = 0, and a
triplet excited state, S = 1. The interaction between the Ho ion and Ni5 crown results in a ground state
splitting of about 20 cm−1.

own nuclear spin results in a well resolved hyperfine structure that is observed as
relaxation steps in the magnetization curve.

At very low temperatures, starting with a saturated sample in a large negative
magnetic field and sweeping the zero field we observe that the molecules relax
mainly through tunneling transitions between mixed states of hyperfine origin in
the ground multiplet. The relaxation rates reflect to some degree both the magnitude
of the tunnel splitting and the population of the hyperfine states. As we increase
the temperature, phonon assisted processes start to play an important role in the
measured dynamics and eventually dominate the relaxation process.

Important features of the relaxation process, central to the following discussion, can
be observed in the derivatives of the hysteresis curves measured at different sweeping
rate and at a fixed temperature of 3 K (Fig. 4.8c). Equally spaced transitions around
zero field seen as sharp peaks in dM/dBz correspond to the hyperfine crossings
that conserve the nuclear spin. The position of the peaks (±151,±108,±65,±22 mT)
and the period of ∆Bz = 43 mT leads to the axial value of the hyperfine constant of
Ahyp = 0.0251 cm−1. Also, the magnitude of the transitions is constant for negative
resonance fields and decreases for positive fields. This can be understood by taking
into account the direct relaxation which shows larger rates at higher fields.
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Figure 4.8: Temperature dependence of the hysteresis loops at a fixed sweeping rate of a) 1 mT/s and b)
128 mT/s. The molecules exhibit hysteresis up to 4 K bearing evidence of the large uniaxial anisotropy
of the molecule. The hyperfine interaction between the Ho electronic shell and its own nuclear spin
results in a well resolved hyperfine structure that is observed as relaxation steps in the magnetization
curve. c) The derivatives of the hysteresis curves measured at different sweeping rate and at a fixed
temperature of 3 K (the inset shows M(Bz) characteristics). Equally spaced transitions around zero
field seen as sharp peaks in dM/dBz correspond to the hyperfine crossings that conserve the nuclear
spin. The position of the peaks (±151,±108,±65,±22 mT) and the period of ∆Bz = 43 mT leads to
the axial value of the hyperfine constant of Ahyp = 0.0251 cm−1. The magnitude of the transitions is
constant for negative resonance fields and decreases for positive fields due to the direct relaxation
which shows larger rates at higher fields. d) Hyperfine splitting of the electronic ground state mJ = ±8.

Direct relaxation process

For illustrative purposes we may consider only two levels (|↑〉 and |↓〉) that are
split by the Zeeman interaction and the spins are all initialized in |↓〉 state. Under
an negative applied field there is a non-zero chance for the spins to make a direct
transition to the state |↑〉 by absorbing a phonon, a process that can be characterized
by the rate γ↓↑.
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Once excited the spins can relax back to the ground state by giving back the phonon
(γ↑↓). At equilibrium, the two transition rates are connected by the Boltzmann factor:

γ↓↑
γ↑↓

= exp
(
− ∆E

kBT

)
(4.7)

Thus, the excitation process (γ↓↑) is always less probable than the de-excitation one
(γ↑↓). Especially, when the level splitting is comparable to the cryostat temperature.
At positive fields, the |↓〉 state becomes the exited state and thus γ↓↑ > γ↑↓. With the
inequality becoming more strong as the field increases. An example of the dynamics
described above is seen in many lanthanide SMMs at subkelvin temperatures where
besides tunneling around zero field, a broad step at higher fields is observed. To apply
the above mechanism to rigorously explain why the derivative of the magnetization
curves of HoNi5 are constant at negative fields and decrease at positive fields is a
more complex problem. The levels are split by the hyperfine interaction, thus the
dM/dB does not directly reflect the difference between the transition rates as it also
depends on the number of spins that can relax.

AC-measurements

Alternating current susceptibility measurement were performed on powder samples
of HoNi5 for temperatures between 4 and 50 K and applied DC fields up to 0.2 T.
The Cole-Cole plots at zero field were fitted to the phenomenological Debye model
(Fig. 4.9a). The parameter α takes values between 0.18 and 0.36 indicating a narrow
distribution of the relaxation time.

The relaxation time obtained from the fit of the ac-measurements at different applied
magnetic field and two fixed temperatures, is displayed in Fig. 4.9b. The four minima
located at 30, 80, 130 and 170 mT are slightly larger than those observed in µSQUID
measurements on single crystals (Fig. 4.8c). The difference is due to the distribution
of the axial Zeeman and dipolar interaction of the Ho ion in the powder sample.

Note that, when we analyzed, ac-measurements measurements of Dy(tmhd)3)2bpm
we saw that the minima in relaxation time moved to lower fields (and not larger)
compared to µSQUID on single crystals. The qualitative difference between the
two SMMs lies in the antiferromagnetic nature of the ground state of the Dy2bpm
compounds, characterized by 〈M〉 = 0 equilibrium state in zero magnetic field.
Thus, at resonance the relaxation of the Dy2bpm compound leads to a narrower
distribution of the local dipolar fields.

The damping of the variation of the relaxation time can be explained by a quadratic
rise of the direct relaxation rate with the applied magnetic field, a dynamics similar
to what we saw in µSQUID measurements (Fig. 4.8c).
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Figure 4.9: AC-susceptibility measurement performed on powder samples of HoNi5 for temperatures
between 4 and 50 K and applied DC fields up to 0.2 T. a) The Cole-Cole plots at zero field fitted to
the phenomenological Debye model. The parameter α takes values between 0.18 and 0.36 indicating
a narrow distribution of the relaxation time. b) The relaxation time obtained from the fit of the
ac-measurements at different applied magnetic fields and two fixed temperatures. The four minima
located at 30, 80, 130 and 170 mT are slightly larger than those observed in µSQUID measurements on
single crystals. The difference is due to the distribution of the axial Zeeman and dipolar interaction
of the Ho ion in the powder sample. c) The relaxation time as a function of temperature at different
applied fields. The characteristics show two distinct regions with the crossover temperature being
around 37 K. The two branches are fitted to the Arrhenius law with different effective energy barriers
(Eq. 4.8). The high temperature regions, at different DC fields, gives a shared Ueff = 577 K. In the inset
is shown the variation of ∆ between 18.6 and 22.9 cm−1 as a function of the applied DC field. The
effective energy barrier at high temperature is the result of an Overbach activation process while ∆ in
the low temperature region indicates that phonon-assisted tunneling dominates the relaxation process.

The relaxation time as a function of temperature at different applied fields (Fig. 4.9c)
reveals two distinct regions with the crossover temperature being around 37 K. The
two branches are fitted to the Arrhenius law with different effective energy barriers:

τ = τ01 exp (−Ueff/kBT) + τ02 exp (−∆/kBT) . (4.8)
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For the high temperature region, we obtain a shared Ueff = 577 K, independent of
the applied DC field, while for T < 35 K, ∆, varies between 18.6 and 22.9 cm−1 for
HDC < 0.2 T (Inset of Fig. 4.9c).

The effective energy barrier at high temperature is the result of an Overbach
activation process while ∆ in the low temperature region indicates that phonon-
assisted tunneling dominates the relaxation process.

To our knowledge, the Ueff of 577 cm−1 sets a new record for Ho-SMMs. Note that,
ab-initio calculations predicts a reversal barrier of 421 cm−1 which is lower than the
experimental value. This can be explained through the lack of dynamic correlation
effects at the CASSCF level.
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4.3 Phonon assisted tunneling in Mn12-ac

We start the analysis of the relaxation processes observed in our study of
Dy(tmhd)3)2bpm and HoIIIF2[15-MCNi-5] by first replicating the results obtained by
Leuenberger and Loss [163] regarding the phonon assisted tunneling in Mn12-ac
and then proceed to construct case studies used to highlight different aspects of the
relaxation process. There are a few reasons to take this approach:

• It allows to acquire deep insight into the phonon-assisted tunneling dynamics.

• We can identify which of the observed characteristics of the relaxation process
in the two model systems are general characteristics of the phonon-assisted
tunneling dynamics and thus are also observed in Mn12-ac and what charac-
teristics are due to the strong hyperfine interaction in Ln SMMs. Note that,
in the initial analysis of the Mn12-ac complex, the hyperfine broadening was
neglected because for T > 1 K the linewidth given by spin-phonon interaction
is significantly larger.

• The results reported in Ref. [163] can be used as benchmark for the numerical
analysis.

The objective of this section is to build upon the understanding of the phonon-assisted
tunneling dynamics in Mn12-ac complex and identify the changes induced by the
strong hyperfine interaction in lanthanide compounds.

Spin Hamiltonian

In the ground state, Mn12-ac is characterized by a giant spin S = 10 and the following
spin Hamiltonian:

Hs = −DS2
z − BS4

z + B4(S4
+ + S4

−) + gµ0µB(HxSx + HzSz) (4.9)

where D = 0.54 K, B = 1.1× 10−3 K. B4 = 8.5× 10−5 K. The energy spectrum as
a function of an longitudinal applied magnetic field is represented in Fig. 4.10b.
Classically, the first term leads to a potential barrier that hinders the relaxation
of the electronic spin. Thus, the relaxation process for a system initialized on the
right side of the barrier requires an external source of energy to help the spin to
overcome the energy barrier. Such an external field is the interaction between the
molecular spin and the lattice through spin-phonon interactions. Thus, to describe
the spin in interaction with the phonon bath we have to include in the Hamiltonian
the terms that describe the lattice degrees of freedom and also the coupling between
the molecular spin and the phonon modes.
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Figure 4.10: Schematic representation of the phonon-assisted tunneling mechanism in Mn12-ac. The
molecular spin is found in a potential barrier that hinders its relaxation. Thus, to thermalize, a system
initialized on the right side of the barrier requires an external source of energy to help the spin to
overcome the energy barrier. Such an external field is the interaction between the molecular spin and
the lattice through spin-phonon interactions. The over-barrier relaxation path is indicated by the broken
black line while the incoherent tunneling path is shown with the red. The process involves two steps;
first the spin is excited to a mixed doublet with the rate Wm,n and then tunnels through the barrier.
The rate of the phonon-assisted tunneling dynamics is given by: Γm,m′ . b) The energy spectrum as a
function of an longitudinal applied magnetic field obtained through the numerical diagonalization of
the spin Hamiltonian 4.9.

In the approximation of an harmonic phonon bath, the Hamiltonian describing
the lattice modes is written as a function of phonon creation (b̂α) and annihilation
operators (b̂†

α):
Hph = ∑

α

h̄ωα(b̂†
α b̂α + 1/2) (4.10)

where h̄ωα is the energy of the α phonon mode. The spin-phonon interaction in the
linear approximation can be written as:

Hs-ph = ∑
α

(
∂Hs

∂q̂α

)
q̂α (4.11)

where q̂α = 1/
√

2(b̂α + b̂†
α) is the displacement operator. Thus, the total Hamiltonian

is:
H = Hs +Hph +Hs-ph (4.12)
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Master equation

The dynamics of the spin-phonon coupled system is described by the master equation
for the density matrix operator:

dρ

dt
=

i
h̄
[ρ,H] (4.13)

which is too complicated to solve exactly because of the large number of degrees of
freedom. One common approximation that allows us to separate the spin degree
of freedom from the phonon modes is the Markov approximation which works
well when the characteristic time of phonon processes is significantly smaller than
the spin relaxation time. Thus, the spin evolves under the average field created by
the spin-lattice interactions with its dynamics described by the following master
equation [163]:

dρmm′

dt
=

i
h̄
[ρ,H]mm′ + δmm′ ∑

n
ρnWmn − γmm′ρmm′ (4.14)

Where

Wm′m = C2
c f

∆E3
m′m

exp(β∆Em′m)− 1
(4.15)

are the spin phonon transition rates computed with the use of Fermi’s golden
rule, γmm′ = 1/2(Wm + Wm′ ) and Wm = ∑n Wnm. Finally, by projecting the spin
Hamiltonian to the subspace generated by |m〉 and |m′〉 eigenstates we obtain:

dρm

dt
= −Wmρm + ∑ ρnWm,n + Γmm′ (ρm′ − ρm) (4.16)

Where
Γmm′ =

∆mm′

2
γmm′

∆E2
mm′ + h̄2γ2

mm′
(4.17)

is the incoherent tunneling rate between the |m〉 and |m′〉 states and determined by
the tunnel splitting ,∆mm′ (Table 4.10a), energy differences ,∆Emm′ , in the Zeeman
diagram (Fig. 4.10b), and the escape rate, γmm′ .

When the Hamiltonian is diagonal in the Sz basis (the off-diagonal terms, ∼ Sx,y, are
set equal to zero) the we recover the master equation that describes an over-the-barrier
relaxation process:

dρm

dt
= −Wmρm + ∑ ρnWmn + Γmm′ (ρm′ − ρm) (4.18)

In the case where the transverse terms in the spin Hamiltonian are considered,
Eq. 4.18 holds its ground as long as we are far from level anticrossings.
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Figure 4.11: a) The tunnel splitting between states |m〉 and |m′〉 at the resonance field Br(T) for the low
lying anticrossings, computed by using the spin Hamiltonian given by Eq. 4.9. b) Smallest relaxation
rates at different applied longitudinal fields, obtained after the diagonalization of the transition matrix,
W̄. The first mode corresponds to the equilibrium Boltzmann distribution. The expected w0 → 0 is
not reached because of numerical precision of the diagonalization process. Excluding this mode, the
dominant interwell relaxation process is found through the use of the relation: τ = max |1/wi |. c)
Field dependence of the relaxation time for two fixed temperatures. The overall shape of the τ(Bz ; T)
characteristics correspond to a over-barrier, thermally activated process. As we increase the field, we
lower the energy barrier the spin has to overcome to thermalize and thus a decrease of the relaxation
time is observed. The distinct feature of the relaxation curve are the resonant transitions at field values
corresponding to avoided level crossings (indicated in the Zeeman diagram (d) with the help of the
dotted lines).

At resonance, the transverse interactions lead to eigenstates that are a linear
superposition of the diabatic states. The overlap between the wavefunctions leads
to a non-zero probability for the system to relax through quantum tunneling of
magnetization, taken into account through the off-diagonal terms of the density
matrix. In this case the relaxation is dominated by phonon assisted tunneling rates
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4 Hyperfine enhanced phonon assisted tunneling

described by the Γmm′ rates. The spin is excited to a mixed anticrossing and then
tunnels trough the energy barrier (see Fig. 4.10a).

In order to find the characteristic relaxation time, we rewrite the master equation in
the form:

ρ̇ = W̄ρ (4.19)

where W̄ is called the transition matrix. Numerical diagonalization of W̄ allows
to identify the modes of the relaxation process characterized by the set of real
eigenvalues, {wi}, and eigenvectors: {{φk

i }}. Thus, the time dependence of the
magnetization of the sample is [23]:

M(t) = ∑
m

m ∑
k

λkφ
(k)
m exp(−wkt) (4.20)

where m is an eigenvalue of the Sz spin operator and λk are constants determined
by the initial conditions.

Table 4.11 shows the smallest relaxation rates at Bz = 0.01, 0.1 and 1 T, DC applied
fields obtained after diagonalization of the transition matrix, W̄. The mode with
the smallest rate corresponds to the equilibrium Boltzmann distribution. Note
that, the expected w0 → 0 is not reached because of the numerical precision of the
diagonalization process. Excluding this mode, the dominant interwell relaxation
process is found through the use of the relation:

τ = max{−1/Real(wi)} (4.21)

Relaxation paths

Figure 4.11b shows the field dependence of the relaxation time for two distinct
temperatures. The overall shape of the τ(Bz; T) characteristics correspond to an
over-barrier, thermally activated process. As we increase the field, we lower the
energy barrier the spin has to overcome to thermalize and thus a decrease of the
relaxation time is observed.

Distinct features of the relaxation curve are the resonant transitions at field values
corresponding to avoided level crossings (indicated in the Zeeman diagram,Fig. 4.11d,
with the help of dotted lines). The main peaks correspond to anticrossings generated
purely by transverse ligand field interaction (∆m = 4k) but transitions originating in
the transverse Zeeman interaction can also be observed. The width of the resonance
peaks is given by the incoherent QTM rates (Eq. 4.17). At resonance, the relaxation
process is dominated by the presence of the higher split excited states. Relaxation
through these channels opened by the active spin phonon interactions leads to an
increase in the observed relaxation rates.
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4.3 Phonon assisted tunneling in Mn12-ac

Figure 4.12: a) The relaxation time as a function of the applied magnetic field for different temperatures
for HT = B6

6O6
6 . The peak in zero field corresponds to the phonon assisted tunneling process. The

relaxation path consists of an excitation from ground doublet |±10〉 to |±6〉 levels and then tunneling to
the other side of the barrier. As the temperature is increased, one can observe an exponential decrease
in the relaxation time. b) Field dependence of Γ at different fixed temperatures. For temperatures
smaller that 5 K, Γ is not changing greatly on the logarithmic scale while the truncation of the peaks by
phonon transition rates at high temperatures leads to an effective energy barrier. c) The dependence of
the relaxation rate on temperature at a fixed field. For |Bz| < 0.001 T the two distinct relaxation regions
can be fitted by the Arrhenius law: τ = τ0 exp (−Ueff/kBT). For the low temperature region one obtains
an effective barrier of Ueff = 44.46 K which is close to the separation between the ground, |±10〉, and
the split exited states, |±6〉. For temperatures larger than ∼ 5 K, one obtains Ueff = 67.66 K which is
very close to the value predicted by the axial interactions (∼ 65 K), which indicates that the dominant
relaxation is an over-barrier mechanism. For Bz = 0.1 T the Orbach activation process determines the
relaxation for all temperatures. d) Temperature dependence of the relaxation time at a fixed applied
field for the case: ∆10,−10 = ∆6,−6 = 10−3 K. Two distinct temperature regimes, for low temperatures
(T � ∆E±10,±6) and for high temperatures (T > ∆E±10,±6), are observed. The energy barrier in the
low-T region takes values significantly smaller than the separation between the ground and excited
doublet resulting from ground state QTM transitions. The inflection point that denotes the transition
between the two regions moves to lower temperatures as we move out of the tunnel window.

95



4 Hyperfine enhanced phonon assisted tunneling

Study case: B6
6O6

6

For most resonant field values there are multiple relaxation paths that contribute to
the relaxation process of the magnetic moment. This hinders the further exploration
of the phonon assisted tunneling dynamics. As the problem lies in the complexity of
the spin Hamiltonian of the Mn12 system, we can imagine a simplified, ’fictious’
spin Hamiltonian and compute the relaxation dynamics. Even though, the studies
presented below do not correspond to a specific systems there are definite advantages
in taking this approach. For example, we can easily single out the effect of different
parameters that determine the spin-phonon dynamics.

First, let’s assume that the transverse ligand field interaction is determined only
by the B6

6O6
6 term, which in zero field mixes only the |±6〉 states. The relaxation

time as a function of the applied magnetic field for different temperatures is shown
in Fig. 4.12a. The peak in zero field corresponds to the phonon assisted tunneling
process. The relaxation path consists of an excitation from ground doublet |±10〉
to |±6〉 levels and then a QTM transition to the other side of the barrier. As the
temperature is increased, one can observe an exponential decrease in the relaxation
time, similar to the case when we consider the full spin Hamiltonian (see Fig. 4.11c).
Note that, the incoherent QTM rates, Γ, depends on temperature through the escape
rate which in turn depends on the phonon spectrum, and spin-phonon coupling
constants.

Figure 4.12b displays the field dependence of Γ at different fixed temperatures.
We see that for temperatures smaller than 5 K, Γ is not changing greatly on the
logarithmic scale while the truncation of the peaks by phonon transition rates at high
temperatures leads to an effective energy barrier. Thus, the temperature dependence
of the relaxation time in Fig. 4.12a does not come from the Γ(T) dependence but
from the increase of the population of the excited |±6〉 doublet.

The above argument is also supported by the dependence of the relaxation rate on
temperature at a fixed field shown in Fig. 4.12c. When we are inside the tunneling
window (|Bz| < 0.1 T) one can observe two distinct relaxation regions that can be
fitted by the Arrhenius law:

τ = τ0 exp (−Ueff/kBT) (4.22)

For the low temperature region one obtains an effective barrier of Ueff = 44.46 K
which is close to the separation between the ground, |±10〉, and the split excited
states, |±6〉 (see Fig. 4.11c).
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4.3 Phonon assisted tunneling in Mn12-ac

For temperature larger than 5 K, one obtains Ueff = 67.66 K which is very close to
the value predicted by Eq. 4.9:

U = DS2 + BS4 = 65 K (4.23)

which indicates that the dominant relaxation is an over-barrier mechanism. When
we choose an applied field that lies outside the tunnel window (e.g., Bz > 0.1 T)
then the Orbach activation process determines the relaxation for all temperatures
(blue circles in Fig. 4.12c).

Next we may ask how the dynamics changes when we add the possibility for the
system to relax through the ground state (e.g., ∆10,−10 = ∆6,−6 = 10−3 K). This case
is of high interest here as it describes an energy spectrum qualitatively close to
the HoNi5 complex. The presence of the ground state relaxation channel increases
the relaxation rate and leads to a slightly different dynamics, compared to the
previous case. This is best seen in the temperature dependence of the relaxation
time at a fixed applied field (Fig. 4.12d). Similar to the case when we had only an
excited state splitting we see two distinct temperature regimes, for low temperatures
(T � ∆E±10,±6) and for high temperatures (T > ∆E±10,±6). However this time, the
obtained energy barrier in the low-T region takes values significantly smaller than
the separation between the ground and excited doublet showing that tunneling
dynamics leads to an effective anisotropy.

Also, the crossover temperature that denotes the transition between the two regions
decreases as we move out of the tunnel window. This is dictated by the spread of the
incoherent tunneling rates in the field space.

Nuclear spin 1/2

As we observed the general characteristics of the electronic phonon assisted tunneling,
we are ready to investigate what would be the effect of a nuclear spin strongly
coupled to the molecular spin. The 55Mn ion has a nuclear spin 5/2 which is coupled
to the electronic shell through the hyperfine interaction, with Ahyp ≈ 2.4 mK.

This interaction, however, leads to a broadening of the resonance peak which is
much smaller than the level broadening due to phonons. This observation and the
fact that the shape of the peaks (Lorentzian and not Gaussian as expected for an
inhomogeneous broadening) prompted the Authors in Ref. [163] to neglect the
hyperfine splitting.

Our objective is to understand the role played by the nuclear spin in the thermalization
process of lanthanide molecular complexes which is characterized by an hyperfine
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4 Hyperfine enhanced phonon assisted tunneling

Figure 4.13: a) Hyperfine splitting of the energy levels of Mn12 by coupling the molecular spin with a
nuclear spin, I = 1/2 with Ahyp = 10 mK. The inset shows a zoom on the hyperfine crossings close
to zero field. b) The change in the magnetization induced by the modes of the transition matrix, W̄
in the t → ∞ limit. The relaxation time is given by the mode that induces the biggest change on a
long timescale. c) Relaxation time as a function of the applied field for I = 0 and I = 1/2 case studies.
Nuclear spin fluctuations leads to a significant increase in the relaxation rate.

constant roughly one order of magnitude larger compared to 3d compounds. Thus,
we consider a model in which the hyperfine interaction is large enough so that the
transitions corresponding to different nuclear spin orientations are well resolved. We
will also take I = 1/2 which gives a simple enough energy structure to investigate the
hyperfine enhanced phonon-assisted tunneling. This, results in a term, Ahyp(S · I),
that is added to the spin Hamiltonian (Eq. 4.9) with Ahyp = 10 mK. Because of the
smallness of the nuclear spin moment, we neglect, as it is customary, the nuclear
Zeeman interaction.

The resulting energy spectrum of the electron-nucleus system is shown in Fig. 4.13a
with the inset showing a zoom on the crossings close to zero field. If we neglect the
off-diagonal terms then each state is characterized by the electronic and nuclear spin
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4.3 Phonon assisted tunneling in Mn12-ac

component, |mS, mI〉. Thus, in general both phonon induced processes and tunneling
events will involve the change of both nuclear and electronic spin projection.
However, a reasonable approximation is to assume that the processes that dominates
the dynamics are the ones that evolve the state of the electronic spin and conserve
the nuclear spin or the ones that change the nuclear spin projection but conserves
the electronic spin. For the former case, the relaxation rate is given by a relation
similar to Eq. 4.15

γe
m′SmS

= Wm′SmS
δmI ,m′I

(4.24)

where δ is the Kronecker symbol. While the nuclear spin transitions due to spin-
phonon interactions are given by (see Sect. 3.3):

γn
mI ,mI−1 =

S2 A2
hyp∆E3

m[I(I + 1)−mI(mI − 1)]

6πh̄4ρc5

exp (β∆Em)

exp (β∆Em)− 1
δmS ,m′S

(4.25)

Thus, the transition rates between |mS, mI〉 and
∣∣m′S, m′I

〉
are given by:

W
m′S ,m′I
mS ,mI = γe

mS ,m′S
+ γn

mI ,m′I
(4.26)

To obtain the characteristic relaxation time we find the eigenvalues of the transition
matrix W̄ through numerical diagonalization. However, the presence of the hyperfine
splitting results in two different time constants for the inter-well dynamics of
comparable rates and thus the criterion we used before given by Eq. 4.21 cannot be
applied.

To determine which mode dominates the relaxation process we use the eigenvectors
of the transition matrix and compute the change in the magnetization induced by
each mode in the t→ ∞ limit (see Fig. 4.13b), by using Eq. 4.20.

The computed relaxation time for the case when we don’t consider the hyperfine
splitting and the case when we do is shown in Fig. 4.13c. It is clearly seen that
the hyperfine splitting leads to a significant increase in the relaxation rate. It is
expected that a similar process explains the differences between the relaxation of
the 163,164Dy2bpm isotopologues.
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5 µSQUID-EPR on Gd3+ SIMMs

Most Ln3+ single ion molecular magnets (SIMMs) are based on ions from the second
half of the lanthanide series n > 7 due to their large magnetic moment and single
ion anisotropy [164]. This is also reflected by the studies presented in this thesis, in
Chap. 3 we investigated Tb compounds while in Chap. 4, Dy and Ho complexes were
chosen as model systems. On the other hand Gd3+ compounds (n = 7) are heavily
underrepresented with only a few examples reported in literature [165]. This is in
striking contrast to the inorganic Gd3+ doped crystals that were used extensively in
the past to elucidate the puzzle of S-state ion magnetic anisotropy [166].

Together with Eu2+, Mn2+ and Fe3+, Gd3+ is characterized by the half filled magnetic
shell and thus a zero average orbital angular momentum. The theoretical interest in
S-state ions was largely based on the desire to understand second order anisotropy
inducing effects, that are observable due to 〈L〉 = 0 property of these ions [167]. They
were also used as local probes to study phase transition, spin currents in conductors
and semiconductors, site symmetries and orientation of the host lattice.

In the above studies, one cannot overstate the importance of EPR technique as it was
used to investigate the properties of the ions in a variety of host lattices [14, 166].
The success of the technique also pushed the edge of experimental innovation to
the point where we now have a multitude of specialised EPR tools that are used in
many branches of physical science [168]. The most common EPR devices operate
at a fixed frequency and varying magnetic field. Even though, frequency variation
devices were also developed, the use of the zero field method (ZFR) in the study of
transition metal ions is scarce [169].

In this chapter we discuss µSQUID-EPR measurements on diluted crystals of Gd3+

containing SIMMs. Besides the main objective of explaining the science behind the
measurements, the following sections will also be used to display the power of this
particular device to investigate the magnetic properties of molecular magnets.

In what follows we will investigate two variants of Gd3+ molecules, Et4N[160GdPc2]
and 157Gd(tmhd)3Phen, that are characterized by similar geometries (both show
a distorted D4d geometry) but differ in the nature of the ligated ions (Fig. 5.1
and 5.10). In particular, measurements on Et4N[160GdPc2] are used to display the
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5 µSQUID-EPR on Gd3+ SIMMs

power of the combined µSQUID and EPR techniques to rationalize the observed
magnetic phenomenology while the investigation of 157Gd(tmhd)3Phen showcases
the potential of these measurements to establish magnetostructural correlations.
The two Gd3+ compounds were chosen as model systems due to their high spin
value (S = 7/2) with the ligand field splittings in the microwave region that results
in a large number of transitions in the |H| < 1 T field range.

We start by describing the chemistry of Et4N[160GdPc2] and its structural characteris-
tics. Then, we continue with an overview of the theoretical tools used in the analysis
with the emphasis on general principles behind spin Hamiltonian parametrization
and their connection to the underlying physical processes.

In the experimental investigation of Et4N[160GdPc2] we start by presenting the "clas-
sical" µSQUID measurements and expose some of the problems that one encounters
when trying to rationalize its dynamics. To improve on these measurements, we
introduce the EPR module that allows us to excite the sample with electromagnetic
radiation while performing magnetization scans. The results are successfully fit to
a set of spin Hamiltonian parameters. The "high resolution" of the obtained spin
Hamiltonian is used to explain the magnetic phenomenology of the Et4N[160GdPc2]
compound.

We finish by a short investigation of the 157Gd(tmhd)3Phen complex where we
highlight its potential for magnetostructural analysis.

5.1 Et4N[160GdPc2] SIMM

Synthesis and chemical structure

The synthesis procedure, described in Ref. [8], gives diluted crystals of isotopically
purified Et4N[160GdPc2](I = 0) in Et4N[YPc2] with a concentrations of 5%, crystallized
in regular block tetragonal red crystals. The X-ray diffraction analysis shows that the
Et4N[160GdPc2] compound comprises a double-decker motif and crystallizes in the
tetragonal P4/nmm space group with one half of the molecule per asymmetric unit
while two molecules reside in the entire unit cell. The Gd–N (Fig. 5.1) distances are
in the range of 2.4394 – 2.4439 Å. Locally, each Gd3+(III) ion possesses approximate
D4d coordination geometry with a continuous shape measure (CShM) of 0.695. The
anionic complex is charge-balanced by a tetraethylammonium cation.
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5.1 Et4N[160GdPc2] SIMM

Figure 5.1: a) Side view and b) top view of the unit cell of Et4N[160GdPc2] showing the two molecules
that reside in the unit cell. Hydrogen atoms have been removed for clarity. (Colour code: Gd, dark blue;
O, red; N, cyan; C, grey.

Spin Hamiltonian

The Gd3+ ion at the core of Et4N[160GdPc2] is characterized by the [Xe]4f7 electronic
configuration which in the Russell-Saunders coupling scheme leads to the 8S7/2
ground state separated by more than 30 kcm−1 from the first exited multiplet 6P.
Due to the isotropic nature of the ground state, the degeneracy can be removed only
by an odd perturbation, for example, the coupling to an external magnetic field
through the linear Zeeman term: HZ = gµBB · S where g ≈ 2 is the value of the free
electron.

The picture described above holds for the pure 8S7/2 state while a small admixture
with the first exited state 6P gives a ground state that can be written as:√

(1− α2) 8S7/2 + α 6P7/2 + .. (5.1)

with the corresponding g-value:

(1− α2)g(8S7/2) + α2g(6P7/2) + .. (5.2)

where α ∼ 10−3. Thus, the spin orbit admixture in the ground state is responsible
for the ligand field splitting effects, around two orders of magnitude smaller than
in 〈L〉 6= 0 lanthanide molecular magnets. For a detailed account of anisotropy
inducing interactions in S-state ions see Ref. [167].
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5 µSQUID-EPR on Gd3+ SIMMs

The ligand field interaction can be modelled through the use of equivalent Steven’s
operator formalism (see Sect. 2.3):

Hlf =
3

∑
n=1

B0
2nO0

2n + B4
4O4

4 + B4
6O4

6 (5.3)

where Ok
q are the Steven’s operators [14] and Bk

q are the ligand field parameters.

In what follows, we make a few observations regarding the form of Hlf. First, the
ligand field Hamiltonian contains only even terms in order to account for time
reversal symmetry. Then, the axial terms, B0

2nO0
2n, are invariant with respect to the

point symmetry of the Gd3+ site (D4d) while the non-axial terms B4
4O4

4 and B4
6O4

6
are the result of the deviation from the ideal square antiprismatic symmetry of the
molecule (distortion of the 45◦ angle between the two Pc planes). If the symmetry
is broken even further, for example through the loss of solvent molecules, as was
observed for Mn12-ac, an additional orthorhombic term B2

2O2
2 needs to be added to

Eq. 5.3. Finally, the choice of the principle axis is not unique: different sets of spin
Hamiltonian parameters are related by rotational operations.

The complete Hamiltonian for Et4N[160GdPc2] is now the sum of the Zeeman and
ligand field interaction:

H = gµBB · S +
3

∑
n=1

B0
2nO0

2n +
(

B2
2O2

2 + B4
4O4

4 + B4
6O4

6

)
(5.4)

µSQUID on Et4N[160GdPc2]

We start by discussing µSQUID measurements performed on a micrometer sized
monocrystals containing Et4N[160GdPc2] diluted in the isostructural, diamagnetic
matrix of Et4N[YPc2] with [Gd/Y] ratio of 5%. The crystals are placed on an
array of µSQUIDs and thermalized to sub-kelvin temperatures with the help of a
3He/4He dilution refrigerator. The field can be applied in any direction by using a
3d orthogonal coil system that allows to identify the easy axis of the molecules by
using the transverse field method (for more details on the experimental procedure
see Chap. 3).

Figure 5.2a shows the temperature dependence of the hysteresis loops measured at
fixed field sweeping rate of 128 mT/s. The first observation regards the uniaxial
character of the magnetic anisotropy of the molecule. The transition from open
hysteresis loop to a superparamagnetic behaviour occurs at the blocking temperature
Tb ∼ 0.3 K. This means that, phonons have sufficient energy to induce overbarrier
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5.1 Et4N[160GdPc2] SIMM

Figure 5.2: (left) Hysteresis loops of the isotopically purified Et4N[160GdPc2] (I = 0) in Et4N[YPc2] with
a concentrations of 5%, measured with µSQUID technique at temperatures between 0.025 and 0.3 K
and at a fixed sweeping rate of 128 mT/s and (right) at a fixed temperature of 25 mK and different
sweeping rates.

relaxation of the molecular spin and thermalize the sample on a timescale faster
than the timescale of the experiment, about 10 s.

An estimation of the axial zero field splitting term from kBTB ≈ 3(|B0
2 |S2 − |B0

2 |/2)
gives |B0

2 | = 8.5 mK, which compares well with what one would expected from the
previous discussion on the ligand field splitting of the S-state ions. For example,
|B0

2 | = 6.017 K for TbPc2 molecule (see Sect. 5) which is around three orders of
magnitude larger than the value estimated for the Et4N[160GdPc2].

Another important feature is the butterfly shape of the hysteresis loops due to
quantum tunneling of magnetization in zero magnetic field. Note that, the Gd3+ ion
is characterized by a ground state with a half integer spin S = 7/2. Thus, according
to Kramer’s theorem (see Sect. 2), the ground state doublet m = ±7/2 should be
degenerate. It is usually assumed that the coupling to environmental spins, both of
electronic and nuclear origin, breaks the Kramer’s degeneracy and thus makes the
relaxation through QTM possible.

To estimate experimentally the magnitude of the tunnel splitting and evaluate the
truth value of the above statement, we measure the dependence of the nonadiabatic
transitions on the field sweeping rates at a fixed cryostat temperature of 25 mK
(Fig.5.2b). For sweeping rates in the range [1..128] mT/s, the zero field relaxation
step is practically constant. Which indicates that, under the specified experimental
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5 µSQUID-EPR on Gd3+ SIMMs

Figure 5.3: a) Temperature dependence of the magnetization curves and b) their derivatives for
T < 0.1 K, at a fixed sweeping rate of 8 mT/s. The red dotted lines indicate the relaxation steps present
even at the lowest temperature of T ≈ 25 mK while the black dotted lines mark the steps that appear as
T increases. c) The Zeeman diagram obtained by diagonalization of the Spin Hamiltonian given by
Eq.5.4 with g = 2, B0

2 = −1.5× 10−2 K, B2
2 = 0.5× 10−2 K and B4

4 = −1.7× 10−5 K.

conditions, the systems is in the adiabatic relaxation regime and larger field sweeping
rates are needed to push the system in the Landau-Zener regime.

Another feature that can be observed in Fig.5.2b is the emergence of the fine structure
in the magnetization curves at small sweeping rates. In order to investigate the
origin of the observed structure, let’s look closer at the temperature dependence of
the magnetization curves and their derivatives in the temperature range where large
variations occurs, T < 0.1 K, at a fixed sweeping rate of 8 mT/s (Fig.5.3).

A first distinction can be made between steps present even at the lowest temperature
of T ≈ 25 mK, shown with red doted lines, and the steps that appear as T increases,
indicated with black doted lines. Temperature dependence of these steps suggests
that the ones at 0.048 and 0.067 mT depend only on the ground state population
while the rest of the transitions are related to the population of the exited states that
become occupied with increasing temperature.
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5.1 Et4N[160GdPc2] SIMM

In order to fit the spin Hamiltonian given by Eq. 5.4 to the shown fine structure, we may
reasonably assume that the steps at 0.048 and 0.067 mT are due to crossings between
the ground state |7/2〉 and first exited states |−5/2〉 and |−3/2〉, respectively. While
the transitions that are not observed at T = 25 mK are due to collective dynamics, and
not due to the direct anticrossing with the exited levels because the corresponding
steps at negative fields are not observed. Note that, the relaxation in zero field
doesn’t induce excitations from |±7/2〉 to |±5/2〉 (and thus explain the new steps)
because ground state quantum tunneling dynamics is a non-dissipative process.

By considering that the anisotropy is dominated by the axial terms (as it is usually
the case for uniaxial SMMs) one obtains the following relation between the field
value of the level crossings between |m〉 and |m′〉 and Stevens coefficients B0

2 and B0
4 :

Hn =
3nB0

2
gµB

[1 +
B0

4
3B0

2
((m− n)2 + m2)] (5.5)

where n = m + m′ is the order of the level crossing. And by adjusting the off-diagonal
terms B2

2O2
2 and B4

4O4
4 we can make the thermally exited steps to correspond to

spin-spin cross relaxation processes. The corresponding Zeeman diagram is shown in
Fig.5.3c with a satisfactory fit to the measured fine structure. However, the obtained
set of fit parameters is not unique as it is based on the assumptions made on the
origin of the steps.

In fact, all the steps can originate from collective processes (which is actually
suggested by the relative magnitude of the steps at zero/non-zero field) leading to a
different set of parameters. Thus, for this particular system, additional information
is needed in order to determine the ligand field coefficients. Also, one should point
out that, the µSQUID technique, in most cases, is not sensitive enough to obtain
quantitative information on the off-diagonal terms.

To overcome this problems we enhance the µSQUID technique with an EPR module,
that is, we excite the system with microwave pulses while we continue to monitor
the magnetization of the sample with the µSQUID technique.

µSQUID - EPR measurements on Et4N[160GdPc2]

The proof of principle for the use ofµSQUID as a magnetic probe in an EPR experiment
was shown in the past when the same setup was used to study resonant photon
absorption in S = 1/2 systems, Cr7Ni and V15 [64] and to investigate photon-assisted
tunneling in Fe8 [65, 63]. During my PhD I’ve worked on developing measurement
protocols towards a more complete spectroscopic technique.
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Figure 5.4: a) Magnetization curves as a function of the frequency of the RF source obtained while
sweeping the magnetic field with a fixed sweeping rate of 8 mT/s and by applying pulses of 40 µs width
and 300 µs period. b) Resonant maps obtained by sweeping the easy axis with a constant sweeping
rate of 8 mT/s and applying RF pulses with 40 µs width every 300 µs. The labels correspond (m, m′)
transitions (see the main text).

We used the AnritsuMG369x frequency synthesizer triggered by a pulse generator that
allows us to generate EM pulses with a width ranging from nanosecond to continuous
radiation with powers up to 20 dBm. The generated signal is transmitted through
a coaxial microwave cable which is thermalized between room temperature and
40 mK stage of the cryostat and then applied to the sample through a shortcuted wire
suspended above the crystal. Thus, the RF magnetic field is roughly perpendicular
to the easy axis of the crystal. The power is adjusted for each frequency to maximize
the absorption of the RF signal.

Figure 5.4a shows magnetization curves as a function of frequency obtained while
sweeping the magnetic field with a fixed sweeping rate of 8 mT/s and by applying
RF pulses of 40 µs width and a period of 300 µs in between µSQUID measurements.
One can observe the resonant transitions as absorption dips in the magnetization
curve, following the resonant condition: hν = |E(m)− E(m′)|.

By applying a Gaussian filter to extract the absorption peaks and by plotting the set
of measurements for B ∈ [−0.5 : 0.1] T and ν ∈ [1 : 35] GHz as a color map where
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5.1 Et4N[160GdPc2] SIMM

Figure 5.5: a) Linear fit of the resonance map by using: g = 1.96, B0
2 = −6.83 × 10−1 GHz,

B0
4 = −1.5× 10−3 GHz, B0

6 = 1.6× 10−8 GHz obtained from Eq. 5.7. (m, m± 1) dipolar transitions are
shown as black lines superimposed on the resonance map. b) Zeeman diagram with marked level
anticrossing, according to the selection rules: ∆m = 4 (blue), ∆m = 6 (green), ∆m = 5 (yellow) and ∆m = 3
(red).

the color stands for the magnitude of the peak, we get Fig.5.4b. In what follows we
will build first a qualitative understanding of the main feature seen in Fig.5.4b and
then describe the fitting procedure based on a least square non-linear algorithm.

The resonance map is typical of a SMM with pseudo uniaxial magnetic anisotropy
(i.e., an approximate linear dependence of the transition lines on the axial applied
magnetic field) confirming the results of the structural analysis and previously
presented µSQUID measurements. This allows us to label different transitions by
(m, m′) where m are m′ designates the eigenvalues of Sz operator: Sz |m〉 = m |m〉.
This notation works well for the transitions in high longitudinal magnetic fields and
for large |m + m′| values where the axial approximation holds.
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5 µSQUID-EPR on Gd3+ SIMMs

The transition lines can be grouped in sets characterized by similar absolute value
of the slope. Each group corresponds to transitions with different selection rule.
Most of the transition lines are part of the set with the smallest absolute value of
the slope (denoted by, 1 , 2 , 3 ,.., in Fig.5.4) and correspond to ’allowed’ dipolar
transitions characterized by the selection rule ∆m = ±1.

Amongst these transitions, the magnitude of the zero field splitting obtained from
µSQUID measurements, the linearity and the relative intensity of different lines,
indicate that 1 corresponds to the (7/2, 5/2) transition. Thus, the subsequent lines

results from (5/2, 3/2), (3/2, 1/2) .., transitions. Also, 7 , 8 , and 9 designate
higher order transitions allowed by the non-axial interactions. Additional features in
the resonance map that indicate to the interactions that break the axial symmetry are
the deviation from linearity at small fields, |B| < 0.2 T, and the direct observation of
level anticrossing, marked with circles in Fig.5.5. With the above considerations in
mind we can start the quantitative analysis.

Using the uniaxial nature of the system, we evaluate the magnitude of the g-value
by fitting the linear (high field region) part of the spectrum and obtain:

g =
h

µB

dν

dB
= 1.96(1) (5.6)

The main contributions to g-value for S-state ions, that are discussed in literature,
are as follows:
- quantum electrodynamical value for a free electron: 2.0023
- mixing of 6P exited state in the ground state 8S7/2: −0.0078
- Judd and Lindgren relativistic contributions: −0.0017
The final theoretical value of g = 1.992(8) was confirmed by numerous experiments
on Gd3+ doped in inorganic lattices.

The experimental value that we obtain, g = 1.9(6) differs significantly from
this theoretical prediction. However, before one tries to look seriously into this
discrepancy, for example, by taking into consideration higher order Zeeman terms,
the accurate calibration of the 3d-axes coil system should be performed because we
estimate that the current experimental precision is not far of 2%.

Axial Ligand Field Interaction

We will now proceed with an initial evaluation of the diagonal ligand field terms
by assuming an axial approximation. Extrapolating the linear high field region
of the (7/2, 5/2), (5/2, 3/2), (3/2, 1/2) transitions to zero field one gets the zero
field resonant (ZFR) splittings, that we denote by: ν01, ν02 and ν03. And by using
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17.6 GHz

Figure 5.6: a) The resonance map when the field was swept along the easy axis with an additional,
constant transverse field of 20 mT. b) The resonant map while sweeping different directions in the
(easy-hard) plane at a constant frequency of 17.6 GHz. c) and d) shows the sampling of the resonance
maps. (k, ∆m) denotes an individual transition with k being the order of the eigenvalue and ∆m the
corresponding selection rule.

the algebraic form of three axial O0
2n Steven operators, one obtains the following

relations between ZFR values and the Steven’s coefficients:

hν01 = | − 6B0
2 + 720B0

4 − 17640B0
6 |

hν02 = | − 12B0
2 + 600B0

4 + 17640B0
6 |

hν03 = | − 18B0
2 + 1200B0

4 − 7560B0
6 |

(5.7)
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5 µSQUID-EPR on Gd3+ SIMMs

which allows to solve exactly for B0
2n.

The eigenvalues of the axial Hamiltonian as a function of the applied magnetic field is
shown in Fig.5.5 and the respective (m, m± 1) dipolar transitions are shown as black
lines superimposed on the resonance map. The observed, reasonably good agreement
with the experimental points indicates that the hypothetical axial symmetry is a
good approximation for Et4N[160GdPc2] and confirms the indexation of different
transition lines. Also, we can now identify the observed higher order transitions in
Fig.5.4. For example, 7 corresponds to the transition (7/2,−7/2) and 8 , 9 , are
(7/2, 3/2) and (7/2, 1/2), respectively.

Transverse interactions

When considering the off-diagonal interactions in Eq. 5.4 the eigenvectors ofH are no
longer the eigenvector of Sz but instead they should be written as a linear combination
of the |m〉 states. The exact analytical solution to the eigenvalue-eigenvector problem
of a generalized spin Hamiltonian is often hard to find and a perturbative approach
is preferred.

Two states, |m〉 and |m′〉 mixed by the transverse term of order k, BSk
±, results in the

following expression for the tunnel splitting:

∆m′
m ∼ B0

2S2[BSk/(2B0
2S2)](m

′−m)/k (5.8)

Note the spin parity effect, that is, the mixing between levels |m〉 and |m′〉 is possible
only if the difference |m−m′| is a multiple k. Thus, the admixing of different states
is mostly significant for levels at the top of the barrier (small absolute value of m)
and at level crossings where the axial and transverse interactions are comparable
in magnitude. This makes the repelling regions in the parallel Zeeman pattern a
central features for exploring non-axial interactions (see Table A.3 for the relation
between the repelling points and the point symmetry of the ion).

In Fig.5.5 we indicate the anticrossings with circles in the Zeeman diagram. Note
that, two repelling regions in the transition map correspond to the same anticrossing
in the Zeeman diagram. The selection rule involved in the mixing of the energy
levels is shown in the following color code: blue – ∆m = 4, green – ∆m = 6, yellow –
∆m = 5 and red – ∆m = 3.

In was shows in the past that deviations from the ideal D4d symmetry through an
distortion angle between the Pc planes leads to B4

4O4
4 and B4

6O4
6 terms in the spin

Hamiltonian. Thus, the expected anticrossings are the ones characterized by: ∆m = 4
selection rule.
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5.1 Et4N[160GdPc2] SIMM

Figure 5.7: Fit of the transverse field maps with g = 1.96, φ = 3◦ , B0
2 = −6.80 × 10−1 GHz,

B0
4 = −1.57× 10−3 GHz, B0

6 = 1.6× 10−7 GHz, B2
2 = −2.75× 10−1 GHz and B4

4 = 3.38× 10−3 GHz. The
fit lines were shifted upwards by 20 MHz to better visualize the experimental transitions. Blue circle
indicates the oscillations of ∆1/2

−5/2 as a function of the applied transverse field bearing evidence to the
phase interference effect.
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5 µSQUID-EPR on Gd3+ SIMMs

The tunnel splitting,∆, is the result of the linear combination of O4
4 and O4

6 interactions,
without direct means to distinguish between them. For this reason in the following
discussion B4

4O4
4 is the only term that will be considered but one should remember

that it incorporates the B4
6O4

6 component.

All the other observed tunneling gaps cannot be explained by the direct application of
B4

4O4
4 and a combination of odd and even transverse interactions has to be employed.

For example, mixing of |5/2〉 and |−5/2〉 states with ∆m = 5 is possible only if one
includes an environmental magnetic field. While the anticrossings with ∆m = 3 or 6
indicate to the orthorhombic interaction B2

2O2
2. As mentioned, when studying the

dynamics at low T of the Mn12-ac molecule, the O2
2 term was found to originate in

the loss of solvent molecules.

Control over the non-axial interactions

One big advantage of our technique is the control over the non-axial spin Hamiltonian
through the application of a transverse magnetic field. Thus, two measurements will
be discussed in the following:
- keep the direction of the applied field fixed and vary the frequency at different
constant applied transverse field.
- fix the frequency and vary the direction of the applied magnetic field.

Fig.5.6a shows the resonance map where the field was swept along the easy axis with
an additional, constant transverse field of 20 mT, applied. The effect of the transverse
field is directly observed as an increase in the magnitude of the tunnel splittings.

Fig.5.6b shows the resonant map while sweeping different directions in the (easy-
hard) plane at a constant frequency of 17.6 GHz. The angular dependence allows to
determine the sign of the off-diagonal terms as the tunnel splittings gives access
only to the magnitude of the ligand field coefficients.

Fitting procedure

We are know in position to discuss the fitting procedure to obtain the complete spin
Hamiltonian. First, we have to reconsider the labeling system because as we increase
the transverse field, a significant level mixing of the states occurs and (m, m′) does
not identify the transitions anymore. Thus, we relabel the observed transitions by
using the order of the eigenvalue and the corresponding selection rule: (k, ∆m).
Figures 5.6c,d, show the sampling of the resonance maps with the emphasis on the
new labeling system.
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6.15 GHz

 9.0 GHz

17.6 GHz

20.0 GHz

Figure 5.8: (left) Resonance maps obtained by sweeping the angle at fixed frequency of 6.15 GHz, 9 GHz,
17.6 GHz and 20 GHz. (right) Fit of resonance maps giving g = 1.96, φ = 3◦ , B0

2 = −6.80× 10−1 GHz,
B0

4 = −1.57× 10−3 GHz, B0
6 = 1.6× 10−7 GHz, B2

2 = −2.75× 10−1 GHz and B4
4 = 3.38× 10−3 GHz.

In the following we discuss the numerical procedure used to fit the resonance
maps. The initial set of parameters, B0

k , are obtained from the analysis made in
the axial approximation, and take the transverse ligand field coefficients to be of
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5 µSQUID-EPR on Gd3+ SIMMs

Figure 5.9: a) The magnitude of the ground state tunnel splitting as a function of an applied transverse
magnetic field. (inset) Nonadiabatic transition rates when sweeping the zero field resonance, computed
with the use of the LZS model. b) The fitted resonance map in zero transverse field and c) the
corresponding Zeeman digram obtained by the diagonalization of Eq. 5.4. Derivative of magnetization
for T = 25 mK (green) and T = 100 mK (red) with the vertical dotted lines identify the position of the
steps in the magnetization curve.

the same order as diagonal terms. We then diagonalize the spin Hamiltonian at
the experimental points. We evaluate the deviation square between the theoretical
prediction and experimental points: χ2 = ∑ (νexp − νSHP)

2 and minimize χ2 in an
iterative process by using the Marquardt-Levenberg nonlinear algorithm with: g, φ,
B0

2, B0
4, B0

6, B2
2, B4

4 as fit parameters.

Figures 5.7 and 5.8 show the simultaneous fit (black lines) of both the transverse
field maps and angular maps, with g = 1.96, φ = 2.8◦, B0

2 = −6.80× 10−1 GHz,
B0

4 = −1.57 × 10−3 GHz, B0
6 = 1.6 × 10−7 GHz, B2

2 = −2.75 × 10−1 GHz and
B4

4 = 3.38× 10−3 GHz. One should notice that, the resonance lines broaden and
then split at large transverse fields due to the presence of two inequivalent Gd3+

centers with a slight angle between their easy axis. Then, we obtain an unexpected
large contribution of the orthorhombic term, that points to a low symmetry at the
Gd3+ ion site. The B2

2O2
2 term leads to the observation of the oscillation of the tunnel
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5.1 Et4N[160GdPc2] SIMM

Figure 5.10: a) Side view and b) top view of 157Gd(tmhd)3Phen molecule (Me and Hidrogen groups
have been omitted for clarity. Colour code: Gd, dark blue; O, red; N, cyan; C, grey.

splitting between |1/2〉 and |−5/2〉 (blue circle in Fig.5.7) bearing evidence to the
phase interference effect. Finally, we found a 2.8◦ angle misalignment φ between the
swept plane and the easy axis of the complex that explains the mixing of levels with
odd selection rule: ∆m = 3 and ∆m = 5.

Equipped with the detailed knowledge on the Et4N[160GdPc2] spin Hamiltonian,
we are now in the position to solve the issues that were raised when we presented
the µSQUID measurements.

Kramer degeneracy

When discussing the tunneling dynamics of Et4N[160GdPc2] in zero field it was
hypothesized that the degeneracy predicted by Kramer’s theorem is broken by
environmental interactions, mainly spin-spin interactions of dipolar nature with
other molecular or nuclear spins.

The precision of the spin Hamiltonian that we obtained by using the µSQUID-EPR
module allows us to evaluate the magnitude of the ground state tunnel splitting
as a function of an applied transverse magnetic field (Fig.5.9a). As expected for
a half integer spin systems, a sharp increase in ∆ with the applied transverse
field is observed. The dotted lines show the lower and upper bound estimates for
environmental magnetic field that predicts a tunnel splitting in the 10−4 − 10−5 K
range.

The corresponding nonadiabatic transition rates when sweeping the zero field
resonance, computed with the use of the LZS model,

PLZ = 1− exp
(
− π∆2

2h̄µ0µB|δm|dB/dt

)
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5 µSQUID-EPR on Gd3+ SIMMs

Figure 5.11: a) Resonant transition map and b) the Zeeman diagram when sweeping a direction close
to the easy axis, with the following spin Hamiltonian parameters: φ = 18.67◦ , B0

2 = −8.0× 10−1 GHz,
B0

4 = −3.42× 10−4 GHz, B0
6 = 1.5× 10−6 GHz, B2

2 = −4.23× 10−1 GHz, B4
4 = −1.2× 10−4 GHz, with

gz = 2.27, gx = 2.0 and gy = 1.77.
with marked level anticrossings.

is shown in the inset of Fig.5.9a. From PLZ(dB/dt) curves can be seen that for
sweeping rates smaller than 1 T/s, the tunnel probability is close to unity, that is, all
molecules are expected to tunnel.

Note that, experimentally we measure only about 75% of molecules to relax in zero
field. The difference can be attributed to environmental effects like the reshuffling
of the local fields and to decoherence interactions that destroy the phase of the
tunneling spin.
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Spin-spin cross relaxation

The second feature that we discussed is the fine structure observed in the B ∈ [0.02 :
0.08] T region. Figure 5.9b shows the fitted resonance map for zero transverse field
and the corresponding Zeeman digram obtained by the diagonalization of Eq. 5.4.

The derivative of magnetization for T = 25 mK and T = 100 mK with the vertical
dotted lines identify the position of the steps in the magnetization curve.

We immediately see that, our initial fit based solely on µSQUID measurements is
incorrect. Instead, all observed transitions correspond to spin-spin cross relaxation
transitions. The steps that are observed at the lowest accessible temperature corre-
spond to the transitions: |7/2, 7/2〉 to |−7/2,−5/2〉 and |7/2, 7/2〉 to |−7/2,−3/2〉.
While the steps that emerge with increasing temperature correspond to |7/2, 5/2〉
to |−7/2, 3/2〉 and |7/2, 5/2〉 to |−7/2, 1/2〉, transitions.

The latter processes require the |5/2〉 state to be populated and thus are not observed
at T = 25 mK because all the molecules are in the ground state |7/2〉.

5.2 Measurements on 157Gd(tmhd)3Phen

Bellow we discuss measurements on the second Gd3+ molecule, 157Gd(tmhd)3Phen
and highlight the potential held by theµSQUID-EPR technique for magnetostructural
analysis.

Synthesis and chemical structure

Similar to Et4N[160GdPc2] all the measurement were performed on micrometer sized
diluted monocrystals containing 157Gd(tmhd)3Phen in an isostructural, diamagnetic
matrix of Y(tmhd)3Phen with [Gd3+/ Y] ratio of 5%. The 157Gd(tmhd)3Phen molecule
(Fig.5.10) crystallise in the triclinic space group with the entire molecule in the
asymmetric unit. Two molecules reside in the unit cell (Fig.5.10). At the metal side,
each metal ion possesses a N2O6 coordination geometry formed by six oxygen atoms
from the tmhd groups and two nitrogen atoms of the Phen. The Gd3+– O distances
range between 2.2994 Åto 2.3767 Å, whilst the Gd3+– N distances in both cases are
longer, with values ranging from 2.6110 Åto 2.6151 Å. The coordination geometry
around the dysprosium ions can be best described as a square antiprism with a
CShM of 0.610.
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5 GHz

 10 GHz

15 GHz

20 GHz

Figure 5.12: Fit of the angular resonance maps at different RF frequencies with the following
parameters: φ = 18.67◦ , B0

2 = −8.0 × 10−1 GHz, B0
4 = −3.42 × 10−4 GHz, B0

6 = 1.5 × 10−6 GHz,
B2

2 = −4.23× 10−1 GHz, B4
4 = −1.2× 10−4 GHz, with gz = 2.27, gx = 2.0 and gy = 1.77.

Figure 5.11 shows that the resonance map obtained while sweeping a direction close
to the easy axis and Fig.5.12 displays the angular dependence maps.
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5.2 Measurements on 157Gd(tmhd)3Phen

To fit the resonance maps, we follow the same procedure as described for
Et4N[160GdPc2]. The resonances are fit with the following spin Hamiltonian pa-
rameters: φ = 18.67◦, B0

2 = −8.0 × 10−1 GHz, B0
4 = −3.42 × 10−4 GHz, B0

6 =

1.5× 10−6 GHz, B2
2 = −4.23× 10−1 GHz, B4

4 = −1.2× 10−4 GHz, with gz = 2.27,
gx = 2 and gy = 1.77.

As one would expect from the crystal structure, the 157Gd(tmhd)3Phen complex
displays a lower symmetry at the Gd3+ site with significantly larger orthorhombic
term. However, the striking difference was found in the Zeeman interaction which
now is written as a function of an anisotropic g-value:HZ = (gzµBBzSz + gxµBBxSx +

gyµBBySy) with gz = 2.27, gx = 2.0 and gy = 1.77. With significant deviation from
the isotropic free electron value, g = 2.0023. At the moment, it is still not clear if this
is an artifact of the fitting procedure or if the ligand field is the cause of this anomaly.
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6 Conclusions and Outlook

In this thesis I discuss quantum phenomenologies observed in mononuclear and
dinuclear lanthanide single molecule magnets. Even though they have been under
intense investigation in the last two decades, their chemical variety still makes for a
scientifically reach landscape.

A perfect example of the depth of the field of molecular magnets is made by the
TbPc2 SMM that was central to the development of both the field of single molecule
magnets and molecular spintronics. The analysis of its magnetic bistability proved
that a molecular complex with a single magnetic center can exhibit a large effective
energy barrier [134]. Shortly after, the possibility to dilute the TbPc2 molecules in a
isostructural diamagnetic matrix and the strong hyperfine interaction, characteristic
of lanthanide ions, allowed to experimentally evidence the resonant quantum
tunneling between mixed states of electronic and nuclear origin [135]. Furthermore,
the planar structure of the molecule made possible its deposition on different
substrates, and thus subsequent inclusion in spintronics devices [171, 136]. The
TbPc2 single molecule spin transistor was first used to read out and control both the
electronic and the nuclear spin [133], and then to successfully implement quantum
algorithms [12]. The same device provided the experimental means to explore how
the effective character of the resonant tunneling changes when the dephasing of
environmental or measurement origin is taken into account [146]. Despite being
the central object in a great number of studies, we showed that many aspects of its
dynamics were poorly understood.

We started by taking an in depth look at the potential non-axial interactions that
can promote QTM transitions between the hyperfine states of the TbPc2 SMM.
The rare combination of strong uniaxial character of the ligand field with the tight
hyperfine coupling results in characteristics that are substantially different from
the ones in transition metal ion molecular compounds [172]. The nuclear spin
dominates the dynamics of the molecular spin, as the usual suspects in the form of
the environmental transverse magnetic field and non-axial ligand field interactions
fail to explain the transitions that do not conserve the nuclear spin. It was then
proposed through the non-axial quadrupolar interaction a potential mechanism that
mixes the hyperfine states.
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Crystal defects, solvent disorder, lattice mismatch between the YPc2 and TbPc2
molecules, and also the presence of a radical electronic spin non-uniformly dis-
tributed on the phthalocyanine ligands, are all factors that can lead to significant
inhomogeneities in the electric field that can couple to the quadrupolar moment of
the 159Tb nucleus. The problem was investigated in a subsequent study [173] and
indeed was found that molecular distortions leads to significant non-axial terms in
the quadrupolar interaction, thus confirming our findings. This result is important
both from an academic point of view as similar dynamics can be observed in other
lanthanide single molecule magnets, and from a technological one as tunneling
between hyperfine states can be used to initialize and read-out the nuclear spins
when implementing quantum protocols.

We then present the novel approach by which we fit the magnetic hysteresis
loops and study the Landau-Zener dynamics. The incoherent LZ dynamics was
used to infer relevant information regarding the quantum dynamics in crystals
of molecular magnets as both the tunneling time and dephasing time of different
hyperfine anticrossings were determined through low temperature magnetometry.
The powerful combination of µSQUID measurements with appropriate theoretical
tools in the form of Lindblad operators was shown to have the potential to complement
the resonant techniques used so far to study coherence in SMMs. It should be noted
that, previous treatments of the dissipative Landau-Zener problem are known to
theory [174], however the main advantage of the Lindblad formalism lies in the
ability to study the decoherence process without requiring the detailed knowledge
of the coupling between the molecular spin and the environmental degrees of
freedom. Establishing the connection between the phenomenological model that
uses Lindblad operators and a microscopic description that includes explicitly the
environmental degrees of freedom is an important outlook of the present study.

The obtained insight in the LZ dynamics allowed us to investigate the thermalization
of 159Tb nuclear spin belonging to the TbPc2 complex Surprisingly, it was found
that the observed relaxation is due to the phonon modulation of the hyperfine
interaction. Then, it was argued that the direct contact of the nuclear spins to the
phonon modes in lanthanide compounds is an important feature that has to be
considered both in the continuous search for molecular compounds with optimized
magnetic properties and fundamental investigations on the spin bath dynamics.
The direct nuclear spin phonon relaxation rate also gives the lower bound for the
relaxation rate of the nuclear spins in future candidates for molecular spintronics
devices.

The resonant QTM has also been studied in a dimeric Tb2PcHx8Pc2 SMM. Low
temperature µSQUID measurements allowed the determination of the hyperfine and
quadrupolar parameters. The analysis of the magnetization characteristics showed
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that the resonant QTM transitions can be ascribed to co-tunneling events of the Tb
electronic spins. It is argued that the transitions that do not conserve the nuclear
spins are induced by the nuclear quadrupolar interaction as it was the case for TbPc2.
The evidence of the relaxation of 159Tb nuclear spins in the molecular environment
of the Tb2Pc3 was presented and it was noticed that they thermalize on the same
time scale as the 159Tb spins in TbPc2 complex. This is not a surprising result as the
magnitude of the hyperfine interaction is similar in both compounds.

The effect of the nuclear isotopes on the molecular spin relaxation was studied
through the use of two model system: Dy(tmhd)3)2bpm and HoIIIF2[15-MCNi-5].
Experimental evidence was provided to show that the presence of the nuclear
spin leads to a significant increase of the relaxation rate at crossover temperatures,
that is, when molecular spin tunneling and phonon assisted transitions occur with
comparable rate. It was hypothesized that the missing ingredient for constructing a
quantitative explanation of the observed dynamics is the thermal fluctuations of
the nuclear spin. Thus, the characteristics of their relaxation process is explained by
including nuclear spin fluctuations in the theoretical framework of phonon assisted
tunneling. And it was found that, indeed, thermal fluctuations of the nuclear spins
in lanthanide SMMs open additional relaxation channels for the molecular spin and
thus leads to an exponential increase of the relaxation time.

Finally, resonant photon absorption in Et4N[160GdPc2] and Gd(tmhd)3Phen was
investigated with a home built EPR device that uses the µSQUID as a magnetic
probe. The resonance transition maps are successfully fit to a set of spin Hamiltonian
parameters and immediate results like, the true point symmetry at the Gd3+ site, the
magnitude of the axial and non-axial interactions, the presence of two inequivalent
centers, are pointed out. The "high resolution" of the obtained spin Hamiltonian is
used to explain the broken Kramer’s degeneracy in zero field, the fine structure in
the magnetization curve as spin-spin cross relaxation processes. We finish by a short
investigation of the 157Gd(tmhd)3Phen complex where we highlight its potential for
magnetostructural analysis.

In this thesis, exploits in the investigation of the quantum phenomenologies related
to the magnetic properties of molecular magnets are reported. Even though there
still remain a number of open questions regarding the physics of these fascinating
mesoscopic systems, both theoretical and experimental progress has been reported.
This work represents another step towards understanding the complex dynamics of
an ensemble of interacting quantum systems, so that we can get closer to functional
devices that make use of their properties.

125





Bibliography

[1] A. Caneschi, D. Gatteschi, R. Sessoli, A. L. Barra, L. C. Brunel, and
M. Guillot, “Alternating current susceptibility, high field magnetiza-
tion, and millimeter band epr evidence for a ground s= 10 state in
[Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O,” Journal of the American
Chemical Society, vol. 113, no. 15, pp. 5873–5874, 1991.

[2] R. Sessoli,H.-L. Tsai,A. R. Schake,W. Sheyi, J. B. Vincent,K. Folting,D. Gatteschi,
G. Christou, and D. N. Hendrickson, “High-spin molecules:[mn12o12 (o2cr) 16
(h2o) 4],” Journal of the American Chemical Society, vol. 115, no. 5, pp. 1804–1816,
1993.

[3] J. R. Friedman, M. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement
of resonant magnetization tunneling in high-spin molecules,” Physical review
letters, vol. 76, no. 20, p. 3830, 1996.

[4] L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, et al., “Macroscopic quantum
tunnelling of magnetization in a single crystal of nanomagnets,” Nature,
vol. 383, no. 6596, p. 145, 1996.

[5] C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, “Quantum
tunneling of the magnetization in an iron cluster nanomagnet,” Physical review
letters, vol. 78, no. 24, p. 4645, 1997.

[6] W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects
in magnetic molecular clusters,” Science, vol. 284, no. 5411, pp. 133–135, 1999.

[7] D. Gatteschi and R. Sessoli, “Quantum tunneling of magnetization and related
phenomena in molecular materials,” Angewandte Chemie International Edition,
vol. 42, no. 3, pp. 268–297, 2003.

[8] J. R. Friedman and M. P. Sarachik, “Single-molecule nanomagnets,” Annu.
Rev. Condens. Matter Phys., vol. 1, no. 1, pp. 109–128, 2010.

[9] W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,” Nature
materials, vol. 6, no. 11, pp. 841–850, 2007.

127



Bibliography

[10] W. Wernsdorfer, N. Chakov, and G. Christou, “Determination of the magnetic
anisotropy axes of single-molecule magnets,” Physical Review B, vol. 70, no. 13,
p. 132413, 2004.

[11] C. A. Goodwin, F. Ortu, D. Reta, N. F. Chilton, and D. P. Mills, “Molecular
magnetic hysteresis at 60 kelvin in dysprosocenium,” Nature, vol. 548, no. 7668,
p. 439, 2017.

[12] C. Godfrin, A. Ferhat, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer,
and F. Balestro, “Operating quantum states in single magnetic molecules:
Implementation of grover’s quantum algorithm,” Physical review letters,vol. 119,
no. 18, p. 187702, 2017.

[13] D. N. Woodruff, R. E. Winpenny, and R. A. Layfield, “Lanthanide single-
molecule magnets,” Chemical reviews, vol. 113, no. 7, pp. 5110–5148, 2013.

[14] A. Abragam and B. Bleaney, Electron paramagnetic resonance of transition ions.
OUP Oxford, 2012.

[15] J. M. Clemente-Juan, E. Coronado, and A. Gaita-Ariño, “Mononuclear lan-
thanide complexes: Use of the crystal field theory to design single-ion magnets
and spin qubits,” Lanthanides and Actinides in Molecular Magnetism, pp. 27–60,
2015.

[16] K. Stevens, “Matrix elements and operator equivalents connected with the
magnetic properties of rare earth ions,” Proceedings of the Physical Society.
Section A, vol. 65, no. 3, p. 209, 1952.

[17] N. Ishikawa, M. Sugita, T. Okubo, N. Tanaka, T. Iino, and Y. Kaizu, “Determi-
nation of ligand-field parameters and f-electronic structures of double-decker
bis (phthalocyaninato) lanthanide complexes,” Inorganic chemistry, vol. 42,
no. 7, pp. 2440–2446, 2003.

[18] O. Waldmann, “A criterion for the anisotropy barrier in single-molecule
magnets,” Inorganic chemistry, vol. 46, no. 24, pp. 10035–10037, 2007.

[19] N. Ishikawa,M. Sugita,T. Ishikawa,S.-y. Koshihara,and Y. Kaizu,“Mononuclear
lanthanide complexes with a long magnetization relaxation time at high
temperatures: a new category of magnets at the single-molecular level,” The
Journal of Physical Chemistry B, vol. 108, no. 31, pp. 11265–11271, 2004.

[20] S. K. Langley, D. P. Wielechowski, B. Moubaraki, and K. S. Murray, “Enhancing
the magnetic blocking temperature and magnetic coercivity of {Cr III2 Ln
III2} single-molecule magnets via bridging ligand modification,” Chemical
Communications, vol. 52, no. 73, pp. 10976–10979, 2016.

128



Bibliography

[21] R. Layfield, F.-S. Guo, B. Day, Y.-C. Chen, M.-L. Tong, and A. Mansikamäkki,
“A dysprosium metallocene single-molecule magnet functioning at the axial
limit,” Angewandte Chemie International Edition, 2017.

[22] Y.-Z. Zheng, Z. Zheng, and X.-M. Chen, “A symbol approach for classification
of molecule-based magnetic materials exemplified by coordination polymers
of metal carboxylates,” Coordination Chemistry Reviews, vol. 258, pp. 1–15, 2014.

[23] D. Gatteschi, R. Sessoli, and J. Villain, Molecular nanomagnets, vol. 5. Oxford
University Press on Demand, 2006.

[24] S. Hill, S. Datta, J. Liu, R. Inglis, C. J. Milios, P. L. Feng, J. J. Henderson, E. del
Barco, E. K. Brechin, and D. N. Hendrickson, “Magnetic quantum tunneling:
insights from simple molecule-based magnets,” Dalton Transactions, vol. 39,
no. 20, pp. 4693–4707, 2010.

[25] D. Gatteschi and A. Bencini, “Electron paramagnetic resonance of exchange
coupled systems,” 1990.

[26] I. Tupitsyn and B. Barbara, “Quantum tunneling of magnetization in molecular
complexes with large spins–effect of the environment,” Magnetism: Molecules
to Materials: 5 Volumes Set, pp. 109–168, 2001.

[27] B. Barbara, “Quantum tunneling of the collective spins of single-molecule
magnets: From early studies to quantum coherence,” in Molecular Magnets,
pp. 17–60, Springer, 2014.

[28] A. Garg, “Topologically quenched tunnel splitting in spin systems without
kramers’ degeneracy,” EPL (Europhysics Letters), vol. 22, no. 3, p. 205, 1993.

[29] R. Schilling, “Quantum spin-tunneling: a path integral approach,” in Quantum
Tunneling of Magnetization—QTM’94, pp. 59–76, Springer, 1995.

[30] D. Garanin, “Spin tunnelling: a perturbative approach,” Journal of Physics A:
Mathematical and General, vol. 24, no. 2, p. L61, 1991.

[31] F. Hartmann-Boutron, P. Politi, and J. Villain, “Tunneling and magnetic
relaxation in mesoscopic molecules,” International Journal of Modern Physics B,
vol. 10, no. 21, pp. 2577–2637, 1996.

[32] W. Wernsdorfer, T. Ohm, C. Sangregorio, R. Sessoli, D. Mailly, and C. Paulsen,
“Observation of the distribution of molecular spin states by resonant quantum
tunneling of the magnetization,” Physical review letters, vol. 82, no. 19, p. 3903,
1999.

129



Bibliography

[33] W. Wernsdorfer, A. Caneschi, R. Sessoli, D. Gatteschi, A. Cornia, V. Villar,
and C. Paulsen, “Effects of nuclear spins on the quantum relaxation of the
magnetization for the molecular nanomagnet fe 8,” Physical review letters,
vol. 84, no. 13, p. 2965, 2000.

[34] J. J. Alonso and J. F. Fernández, “Tunnel window’s imprint on dipolar field
distributions,” Physical review letters, vol. 87, no. 9, p. 097205, 2001.

[35] I. Tupitsyn, P. Stamp, and N. Prokof’ev, “Hole digging in ensembles of tunneling
molecular magnets,” Physical Review B, vol. 69, no. 13, p. 132406, 2004.

[36] L. Landau, “Zur theorie der energieubertragung. ii,” Phys. Z. Sowjetunion,
vol. 2, no. 46, pp. 1–13, 1932.

[37] C. Zener, “Non-adiabatic crossing of energy levels,” in Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, vol. 137,
pp. 696–702, The Royal Society, 1932.

[38] E. Stueckelberg, “Theory of inelastic collisions between atoms(theory of inelas-
tic collisions between atoms, using two simultaneous differential equations),”
Helv. Phys. Acta,(Basel), vol. 5, pp. 369–422, 1932.

[39] S. Miyashita, “Dynamics of the magnetization with an inversion of the magnetic
field,” Journal of the Physical Society of Japan, vol. 64, no. 9, pp. 3207–3214, 1995.

[40] S. Miyashita, “Observation of the energy gap due to the quantum tunneling-
making use of the landau-zener mechanism,” Journal of the Physical Society of
Japan, vol. 65, no. 8, pp. 2734–2735, 1996.

[41] M. Thorwart, M. Grifoni, and P. Hänggi, “Tunneling and vibrational relaxation
in driven multi-level systems,” Phys. Rev. Lett., vol. 85, no. quant-ph/9912024,
p. 860, 2000.

[42] M. N. Leuenberger and D. Loss, “Incoherent zener tunneling and its application
to molecular magnets,” Physical Review B, vol. 61, no. 18, p. 12200, 2000.

[43] W. Wernsdorfer, S. Bhaduri, A. Vinslava, and G. Christou, “Landau-zener
tunneling in the presence of weak intermolecular interactions in a crystal of
mn 4 single-molecule magnets,” Physical Review B, vol. 72, no. 21, p. 214429,
2005.

[44] G. Taran, E. Bonet, and W. Wernsdorfer, “Decoherence measurements in
crystals of molecular magnets,” Physical Review B, vol. 99, no. 18, p. 180408,
2019.

130



Bibliography

[45] P. Bruno, “Berry phase, topology, and degeneracies in quantum nanomagnets,”
Physical review letters, vol. 96, no. 11, p. 117208, 2006.

[46] Y. N. Demkov and P. B. Kurasov, “Von neumann-wigner theorem: Level
repulsion and degenerate eigenvalues,” Theoretical and Mathematical Physics,
vol. 153, no. 1, pp. 1407–1422, 2007.

[47] J. Henderson, C. Koo, P. Feng, E. Del Barco, S. Hill, I. Tupitsyn, P. Stamp,
and D. Hendrickson, “Manifestation of spin selection rules on the quantum
tunneling of magnetization in a single-molecule magnet,” Physical review
letters, vol. 103, no. 1, p. 017202, 2009.

[48] W. Wernsdorfer, S. Bhaduri, C. Boskovic, G. Christou, and D. Hendrick-
son, “Spin-parity dependent tunneling of magnetization in single-molecule
magnets,” Physical Review B, vol. 65, no. 18, p. 180403, 2002.

[49] E. Del Barco,A. D. Kent,S. Hill, J. North,N. Dalal,E. Rumberger,D. Hendrickson,
N. Chakov, and G. Christou, “Magnetic quantum tunneling in the single-
molecule magnet mn12-acetate,” Journal of Low Temperature Physics, vol. 140,
no. 1-2, pp. 119–174, 2005.

[50] H. De Raedt, S. Miyashita, K. Michielsen, and M. Machida, “Dzyaloshinskii-
moriya interactions and adiabatic magnetization dynamics in molecular
magnets,” Physical Review B, vol. 70, no. 6, p. 064401, 2004.

[51] B. D. Josephson, “Possible new effects in superconductive tunnelling,” Physics
letters, vol. 1, no. 7, pp. 251–253, 1962.

[52] D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, and J. Clarke, “High-transition-
temperature superconducting quantum interference devices,” Reviews of
Modern Physics, vol. 71, no. 3, p. 631, 1999.

[53] Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in the
quantum theory,” Physical Review, vol. 115, no. 3, p. 485, 1959.

[54] W. Wernsdorfer, M. Soler, G. Christou, and D. Hendrickson, “Quantum phase
interference (berry phase) in single-molecule magnets of [mn 12] 2-,” Journal
of applied physics, vol. 91, no. 10, pp. 7164–7166, 2002.

[55] W. Wernsdorfer, N. Chakov, and G. Christou, “Quantum phase interference
and spin-parity in mn 12 single-molecule magnets,” Physical review letters,
vol. 95, no. 3, p. 037203, 2005.

131



Bibliography

[56] S. Adams, E. H. da Silva Neto, S. Datta, J. Ware, C. Lampropoulos, G. Christou,
Y. Myaesoedov, E. Zeldov, and J. R. Friedman, “Geometric-phase interference
in a m n 12 single-molecule magnet with fourfold rotational symmetry,”
Physical review letters, vol. 110, no. 8, p. 087205, 2013.

[57] H. M. Quddusi, J. Liu, S. Singh, K. Heroux, E. Del Barco, S. Hill, and D. Hen-
drickson, “Asymmetric berry-phase interference patterns in a single-molecule
magnet,” Physical review letters, vol. 106, no. 22, p. 227201, 2011.

[58] C. M. Ramsey, E. Del Barco, S. Hill, S. J. Shah, C. C. Beedle, and D. N.
Hendrickson, “Quantum interference of tunnel trajectories between states of
different spin length in a dimeric molecular nanomagnet,” Nature Physics,
vol. 4, no. 4, pp. 277–281, 2008.

[59] A.-L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz, and R. Sessoli,
“Superparamagnetic-like behavior in an octanuclear iron cluster,” EPL (Euro-
physics Letters), vol. 35, no. 2, p. 133, 1996.

[60] S. Mossin, M. Stefan, P. ter Heerdt, A. Bouwen, E. Goovaerts, and H. Weihe,
“Fourth-order zero-field splitting parameters of [mn (cyclam) br2] br de-
termined by single-crystal w-band epr,” Applied Magnetic Resonance, vol. 21,
no. 3-4, pp. 587–596, 2001.

[61] S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, and B. Barbara,
“Quantum oscillations in a molecular magnet,” Nature, vol. 453, no. 7192,
pp. 203–206, 2008.

[62] L. Sorace, W. Wernsdorfer, C. Thirion, A.-L. Barra, M. Pacchioni, D. Mailly,
and B. Barbara, “Photon-assisted tunneling in a fe 8 single-molecule magnet,”
Physical Review B, vol. 68, no. 22, p. 220407, 2003.

[63] M. Bal, J. R. Friedman, Y. Suzuki, K. Mertes, E. Rumberger, D. Hendrickson,
Y. Myasoedov, H. Shtrikman, N. Avraham, and E. Zeldov, “Photon-induced
magnetization reversal in the fe 8 single-molecule magnet,” Physical Review B,
vol. 70, no. 10, p. 100408, 2004.

[64] W. Wernsdorfer, A. Müller, D. Mailly, and B. Barbara, “Resonant photon
absorption in the low-spin molecule v15,” EPL (Europhysics Letters), vol. 66,
no. 6, p. 861, 2004.

[65] K. Petukhov, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Resonant photon
absorption in fe 8 single-molecule magnets detected via magnetization
measurements,” Physical Review B, vol. 72, no. 5, p. 052401, 2005.

132



Bibliography

[66] I. I. Rabi, “Space quantization in a gyrating magnetic field,” Physical Review,
vol. 51, no. 8, p. 652, 1937.

[67] M. Grifoni and P. Hänggi, “Driven quantum tunneling,” Physics Reports,
vol. 304, no. 5, pp. 229–354, 1998.

[68] A. Schweiger and G. Jeschke, Principles of pulse electron paramagnetic resonance.
Oxford University Press on Demand, 2001.

[69] W. H. Zurek, “Decoherence, einselection, and the quantum origins of the
classical,” Reviews of modern physics, vol. 75, no. 3, p. 715, 2003.

[70] S. Takahashi, I. Tupitsyn, J. Van Tol, C. Beedle, D. Hendrickson, and P. Stamp,
“Decoherence in crystals of quantum molecular magnets,” Nature, vol. 476,
no. 7358, pp. 76–79, 2011.

[71] J. Shim, S. Bertaina, S. Gambarelli, T. Mitra, A. Müller, E. Baibekov, B. Malkin,
B. Tsukerblat, and B. Barbara, “Decoherence window and electron-nuclear
cross relaxation in the molecular magnet v 15,” Physical review letters, vol. 109,
no. 5, p. 050401, 2012.

[72] A. Ardavan, O. Rival, J. J. Morton, S. J. Blundell, A. M. Tyryshkin, G. A.
Timco, and R. E. Winpenny, “Will spin-relaxation times in molecular magnets
permit quantum information processing?,” Physical review letters, vol. 98, no. 5,
p. 057201, 2007.

[73] J. M. Zadrozny, J. Niklas, O. G. Poluektov, and D. E. Freedman, “Millisecond
coherence time in a tunable molecular electronic spin qubit,” ACS central
science, vol. 1, no. 9, pp. 488–492, 2015.

[74] J. Yang, Y. Wang, Z. Wang, X. Rong, C.-K. Duan, J.-H. Su, and J. Du, “Observing
quantum oscillation of ground states in single molecular magnet,” Physical
review letters, vol. 108, no. 23, p. 230501, 2012.

[75] S. Takahashi, J. van Tol, C. C. Beedle, D. N. Hendrickson, L.-C. Brunel, and M. S.
Sherwin, “Coherent manipulation and decoherence of s= 10 single-molecule
magnets,” Physical review letters, vol. 102, no. 8, p. 087603, 2009.

[76] K. Bader, D. Dengler, S. Lenz, B. Endeward, S.-D. Jiang, P. Neugebauer, and J. van
Slageren, “Room temperature quantum coherence in a potential molecular
qubit,” Nature communications, vol. 5, 2014.

[77] M. Atzori, L. Tesi, E. Morra, M. Chiesa, L. Sorace, and R. Sessoli, “Room-tem
perature quantum coherence and rabi oscillations in vanadyl phthalocyanine:
Toward multifunctional molecular spin qubits,” Journal of the American Chemical
Society, vol. 138, no. 7, pp. 2154–2157, 2016.

133



Bibliography

[78] J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu, and M. Monthioux,
“Carbon nanotube superconducting quantum interference device,” Nature
nanotechnology, vol. 1, no. 1, pp. 53–59, 2006.

[79] L. Bogani and W. Wernsdorfer, “Molecular spintronics using single-molecule
magnets,” Nature materials, vol. 7, no. 3, pp. 179–186, 2008.

[80] N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, and F. Balestro, “Quantum
phase transition in a single-molecule quantum dot,” Nature, vol. 453, no. 7195,
pp. 633–637, 2008.

[81] S. Sanvito and A. R. Rocha, “Molecular-spintronics: the art of driving spin
through molecules,” Journal of Computational and Theoretical Nanoscience, vol. 3,
no. 5, pp. 624–642, 2006.

[82] A. S. Zyazin, J. W. van den Berg, E. A. Osorio, H. S. van der Zant, N. P.
Konstantinidis, M. Leijnse, M. R. Wegewijs, F. May, W. Hofstetter, C. Danieli,
et al., “Electric field controlled magnetic anisotropy in a single molecule,”
Nano letters, vol. 10, no. 9, pp. 3307–3311, 2010.

[83] S. Thiele, R. Vincent, M. Holzmann, S. Klyatskaya, M. Ruben, F. Balestro, and
W. Wernsdorfer, “Electrical readout of individual nuclear spin trajectories in a
single-molecule magnet spin transistor,” Physical review letters, vol. 111, no. 3,
p. 037203, 2013.

[84] M. Urdampilleta, S. Klyatskaya, J.-P. Cleuziou, M. Ruben, and W. Wernsdorfer,
“Supramolecular spin valves,” Nature materials, vol. 10, no. 7, pp. 502–506,
2011.

[85] M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,”
Nature, vol. 410, no. 6830, pp. 789–793, 2001.

[86] M. N. Leuenberger and D. Loss, “Grover algorithm for large nuclear spins in
semiconductors,” Physical Review B, vol. 68, no. 16, p. 165317, 2003.

[87] F. Meier, J. Levy, and D. Loss, “Quantum computing with spin cluster qubits,”
Physical review letters, vol. 90, no. 4, p. 047901, 2003.

[88] F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos,
G. Timco, and R. Winpenny, “Molecular engineering of antiferromagnetic rings
for quantum computation,” Physical review letters, vol. 94, no. 20, p. 207208,
2005.

[89] S. Carretta, P. Santini, G. Amoretti, F. Troiani, and M. Affronte, “Spin triangles
as optimal units for molecule-based quantum gates,” Physical Review B, vol. 76,
no. 2, p. 024408, 2007.

134



Bibliography

[90] F. Troiani and M. Affronte, “Molecular spins for quantum information tech-
nologies,” Chemical Society Reviews, vol. 40, no. 6, pp. 3119–3129, 2011.

[91] J. Lehmann, A. Gaita-Arino, E. Coronado, and D. Loss, “Spin qubits with
electrically gated polyoxometalate molecules,” Nature nanotechnology, vol. 2,
no. 5, pp. 312–317, 2007.

[92] J. Bartolomé, F. Luis, and J. F. Fernández, “Molecular magnets,” Physics and
Applications, 2014.

[93] D. P. DiVincenzo et al., “The physical implementation of quantum computa-
tion,” arXiv preprint quant-ph/0002077, 2000.

[94] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computa-
tion,” in Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, vol. 439, pp. 553–558, The Royal Society, 1992.

[95] A. Steane, “Quantum computing,” Reports on Progress in Physics, vol. 61, no. 2,
p. 117, 1998.

[96] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pp. 212–219, ACM, 1996.

[97] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332,
1999.

[98] E. Abe, H. Wu, A. Ardavan, and J. J. Morton, “Electron spin ensemble strongly
coupled to a three-dimensional microwave cavity,” Applied Physics Letters,
vol. 98, no. 25, p. 251108, 2011.

[99] I. Chiorescu, N. Groll, S. Bertaina, T. Mori, and S. Miyashita, “Magnetic strong
coupling in a spin-photon system and transition to classical regime,” Physical
Review B, vol. 82, no. 2, p. 024413, 2010.

[100] C. Clauss, D. Bothner, D. Koelle, R. Kleiner, L. Bogani, M. Scheffler, and
M. Dressel, “Broadband electron spin resonance from 500 mhz to 40 ghz
using superconducting coplanar waveguides,” Applied Physics Letters, vol. 102,
no. 16, p. 162601, 2013.

[101] M. Jenkins, T. Hümmer, M. J. Martínez-Pérez, J. García-Ripoll, D. Zueco, and
F. Luis, “Coupling single-molecule magnets to quantum circuits,” New Journal
of Physics, vol. 15, no. 9, p. 095007, 2013.

135



Bibliography

[102] S. Carretta, A. Chiesa, F. Troiani, D. Gerace, G. Amoretti, and P. Santini,
“Quantum information processing with hybrid spin-photon qubit encoding,”
Physical review letters, vol. 111, no. 11, p. 110501, 2013.

[103] M. Trif, F. Troiani, D. Stepanenko, and D. Loss, “Spin electric effects in molecular
antiferromagnets,” Physical Review B, vol. 82, no. 4, p. 045429, 2010.

[104] F. Troiani, V. Bellini, A. Candini, G. Lorusso, and M. Affronte, “Spin entangle-
ment in supramolecular structures,” Nanotechnology, vol. 21, no. 27, p. 274009,
2010.

[105] J. Nossa, M. Islam, C. M. Canali, and M. Pederson, “First-principles studies
of spin-orbit and dzyaloshinskii-moriya interactions in the {Cu 3} single-
molecule magnet,” Physical Review B, vol. 85, no. 8, p. 085427, 2012.

[106] M. J. Graham, J. M. Zadrozny, M. Shiddiq, J. S. Anderson, M. S. Fataftah, S. Hill,
and D. E. Freedman, “Influence of electronic spin and spin–orbit coupling
on decoherence in mononuclear transition metal complexes,” Journal of the
American Chemical Society, vol. 136, no. 21, pp. 7623–7626, 2014.

[107] G. A. Timco, S. Carretta, F. Troiani, F. Tuna, R. J. Pritchard, C. A. Muryn,
E. J. McInnes, A. Ghirri, A. Candini, P. Santini, et al., “Engineering the
coupling between molecular spin qubits by coordination chemistry,” Nature
nanotechnology, vol. 4, no. 3, pp. 173–178, 2009.

[108] J. Ferrando-Soria, E. M. Pineda, A. Chiesa, A. Fernandez, S. A. Magee,
S. Carretta, P. Santini, I. J. Vitorica-Yrezabal, F. Tuna, G. A. Timco, et al., “A
modular design of molecular qubits to implement universal quantum gates,”
Nature communications, vol. 7, 2016.

[109] A. Ardavan, A. M. Bowen, A. Fernandez, A. J. Fielding, D. Kaminski, F. Moro,
C. A. Muryn, M. D. Wise, A. Ruggi, E. J. McInnes, et al., “Engineering coherent
interactions in molecular nanomagnet dimers,” arXiv preprint arXiv:1510.01694,
2015.

[110] J. M. Zadrozny, J. Niklas, O. G. Poluektov, and D. E. Freedman, “Multiple
quantum coherences from hyperfine transitions in a vanadium (iv) complex,”
Journal of the American Chemical Society, vol. 136, no. 45, pp. 15841–15844, 2014.

[111] L. Tesi, E. Lucaccini, I. Cimatti, M. Perfetti, M. Mannini, M. Atzori, E. Morra,
M. Chiesa, A. Caneschi, L. Sorace, et al., “Quantum coherence in a processable
vanadyl complex: new tools for the search of molecular spin qubits,” Chemical
Science, vol. 7, no. 3, pp. 2074–2083, 2016.

136



Bibliography

[112] S. Gómez-Coca, A. Urtizberea, E. Cremades, P. J. Alonso, A. Camón, E. Ruiz, and
F. Luis, “Origin of slow magnetic relaxation in kramers ions with non-uniaxial
anisotropy,” Nature communications, vol. 5, 2014.

[113] M. Shiddiq, D. Komijani, Y. Duan, A. Gaita-Ariño, E. Coronado, and S. Hill,
“Enhancing coherence in molecular spin qubits via atomic clock transitions,”
Nature, vol. 531, no. 7594, pp. 348–351, 2016.

[114] J. S. Hodges, J. C. Yang, C. Ramanathan, and D. G. Cory, “Universal control
of nuclear spins via anisotropic hyperfine interactions,” Physical Review A,
vol. 78, no. 1, p. 010303, 2008.

[115] P. Santini, S. Carretta, F. Troiani, and G. Amoretti, “Molecular nanomagnets as
quantum simulators,” Physical review letters, vol. 107, no. 23, p. 230502, 2011.

[116] Y. Zhang, C. A. Ryan, R. Laflamme, and J. Baugh, “Coherent control of two
nuclear spins using the anisotropic hyperfine interaction,” Physical review
letters, vol. 107, no. 17, p. 170503, 2011.

[117] G. F. Whitehead, B. Cross, L. Carthy, V. A. Milway, H. Rath, A. Fernandez, S. L.
Heath,C. A. Muryn,R. G. Pritchard,S. J. Teat, et al., “Rings and threads as linkers
in metal–organic frameworks and poly-rotaxanes,” Chemical Communications,
vol. 49, no. 65, pp. 7195–7197, 2013.

[118] A. Ueda, S. Suzuki, K. Yoshida, K. Fukui, K. Sato, T. Takui, K. Nakasuji, and
Y. Morita, “Hexamethoxyphenalenyl as a possible quantum spin simulator: An
electronically stabilized neutral π radical with novel quantum coherence owing
to extremely high nuclear spin degeneracy,” Angewandte Chemie International
Edition, vol. 52, no. 18, pp. 4795–4799, 2013.

[119] A. Candini, S. Klyatskaya, M. Ruben, W. Wernsdorfer, and M. Affronte,
“Graphene spintronic devices with molecular nanomagnets,” Nano letters,
vol. 11, no. 7, pp. 2634–2639, 2011.

[120] M. Urdampilleta, S. Klayatskaya, M. Ruben, and W. Wernsdorfer, “Magnetic
interaction between a radical spin and a single-molecule magnet in a molecular
spin-valve,” ACS nano, vol. 9, no. 4, pp. 4458–4464, 2015.

[121] A. Ghirri, F. Troiani, and M. Affronte, “Quantum computation with molecu-
lar nanomagnets: Achievements, challenges, and new trends,” in Molecular
Nanomagnets and Related Phenomena, pp. 383–430, Springer, 2014.

[122] R. Piquerel, Retournement de l’aimantation assisté par un champ micro-onde d’une
nanoparticule individuelle. PhD thesis, Grenoble, 2012.

137



Bibliography

[123] W. Wernsdorfer,“From micro-to nano-squids: applications to nanomagnetism,”
Superconductor Science and Technology, vol. 22, no. 6, p. 064013, 2009.

[124] J. Luzon and R. Sessoli, “Lanthanides in molecular magnetism: so fascinating,
so challenging,” Dalton Transactions, vol. 41, no. 44, pp. 13556–13567, 2012.

[125] J. Tang and P. Zhang, Lanthanide single molecule magnets. Springer, 2016.

[126] M. Ganzhorn and W. Wernsdorfer, “Molecular quantum spintronics using
single-molecule magnets,” in Molecular Magnets, pp. 319–364, Springer, 2014.

[127] J.-L. Liu, Y.-C. Chen, and M.-L. Tong, “Symmetry strategies for high perfor-
mance lanthanide-based single-molecule magnets,” Chemical Society Reviews,
2018.

[128] S. G. McAdams, A.-M. Ariciu, A. K. Kostopoulos, J. P. Walsh, and F. Tuna,
“Molecular single-ion magnets based on lanthanides and actinides: Design
considerations and new advances in the context of quantum technologies,”
Coordination Chemistry Reviews, vol. 346, pp. 216–239, 2017.

[129] P. C. Stamp and A. Gaita-Arino, “Spin-based quantum computers made by
chemistry: hows and whys,” Journal of Materials Chemistry, vol. 19, no. 12,
pp. 1718–1730, 2009.

[130] A. Ghirri, A. Candini, and M. Affronte, “Molecular spins in the context of
quantum technologies,” Magnetochemistry, vol. 3, no. 1, p. 12, 2017.

[131] M. Affronte and F. Troiani, “Potentialities of molecular nanomagnets for
information technologies,” in Molecular magnets, pp. 249–273, Springer, 2014.

[132] F.-S. Guo, B. M. Day, Y.-C. Chen, M.-L. Tong, A. Mansikkamäki, and R. A.
Layfield, “A dysprosium metallocene single-molecule magnet functioning
at the axial limit,” Angewandte Chemie International Edition, vol. 56, no. 38,
pp. 11445–11449, 2017.

[133] S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, and W. Wernsdorfer,
“Electrically driven nuclear spin resonance in single-molecule magnets,”
Science, vol. 344, no. 6188, pp. 1135–1138, 2014.

[134] N. Ishikawa, M. Sugita, T. Ishikawa, S.-y. Koshihara, and Y. Kaizu, “Lanthanide
double-decker complexes functioning as magnets at the single-molecular
level,” Journal of the American Chemical Society, vol. 125, no. 29, pp. 8694–8695,
2003.

138



Bibliography

[135] N. Ishikawa, M. Sugita, and W. Wernsdorfer, “Quantum tunneling of mag-
netization in lanthanide single-molecule magnets: Bis (phthalocyaninato)
terbium and bis (phthalocyaninato) dysprosium anions,” Angewandte Chemie
International Edition, vol. 44, no. 19, pp. 2931–2935, 2005.

[136] T. Komeda, H. Isshiki, J. Liu, Y.-F. Zhang, N. Lorente, K. Katoh, B. K. Breedlove,
and M. Yamashita, “Observation and electric current control of a local spin in
a single-molecule magnet,” Nature communications, vol. 2, p. 217, 2011.

[137] R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer, and F. Balestro, “Electronic
read-out of a single nuclear spin using a molecular spin transistor,” Nature,
vol. 488, no. 7411, pp. 357–360, 2012.

[138] H. Konami, M. Hatano, and A. Tajiri, “An analysis of paramagnetic shifts in
proton nmr spectra of non-radical lanthanide (iii)-phthalocyanine sandwich
complexes,” Chemical Physics Letters, vol. 160, no. 2, pp. 163–167, 1989.

[139] N. Ishikawa, “Functional phthalocyanine molecular materials,” Struct Bond,
vol. 135, pp. 211–228, 2010.

[140] E. Del Barco,A. D. Kent,S. Hill, J. North,N. Dalal,E. Rumberger,D. Hendrickson,
N. Chakov, and G. Christou, “Magnetic quantum tunneling in the single-
molecule magnet mn 12-acetate,” Journal of Low Temperature Physics, vol. 140,
no. 1-2, pp. 119–174, 2005.

[141] P. Stamp, “Environmental decoherence versus intrinsic decoherence,” Phil.
Trans. R. Soc. A, vol. 370, no. 1975, pp. 4429–4453, 2012.

[142] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. Vandersypen,
“Spins in few-electron quantum dots,” Reviews of Modern Physics, vol. 79, no. 4,
p. 1217, 2007.

[143] D. D. Awschalom, R. Epstein, and R. Hanson, “The diamond age diamond
age of spintronics,” Scientific American, vol. 297, no. 4, pp. 84–91, 2007.

[144] J. J. Morton, D. R. McCamey, M. A. Eriksson, and S. A. Lyon, “Embracing the
quantum limit in silicon computing,” Nature, vol. 479, no. 7373, p. 345, 2011.

[145] M. Atzori, L. Tesi, E. Morra, M. Chiesa, L. Sorace, and R. Sessoli, “Room-
temperature quantum coherence and rabi oscillations in vanadyl phthalocya-
nine: toward multifunctional molecular spin qubits,” Journal of the American
Chemical Society, vol. 138, no. 7, pp. 2154–2157, 2016.

139



Bibliography

[146] F. Troiani, C. Godfrin, S. Thiele, F. Balestro, W. Wernsdorfer, S. Klyatskaya,
M. Ruben, and M. Affronte, “Landau-zener transition in a continuously
measured single-molecule spin transistor,” Physical review letters, vol. 118,
no. 25, p. 257701, 2017.

[147] A. Novelli, W. Belzig, and A. Nitzan, “Landau–zener evolution under weak
measurement: manifestation of the zeno effect under diabatic and adiabatic
measurement protocols,” New Journal of Physics, vol. 17, no. 1, p. 013001, 2015.

[148] G. Taran, E. Bonet, and W. Wernsdorfer, “The role of the quadrupolar interaction
in the tunneling dynamics of lanthanide molecular magnets,” Journal of Applied
Physics, vol. 125, no. 14, p. 142903, 2019.

[149] A. Morello and L. De Jongh, “Dynamics and thermalization of the nuclear
spin bath in the single-molecule magnet mn 12- ac: Test for the theory of spin
tunneling,” Physical Review B, vol. 76, no. 18, p. 184425, 2007.

[150] E. Moreno-Pineda, S. Klyatskaya, P. Du, M. Damjanovic, G. Taran, W. Wernsdor-
fer, and M. Ruben, “Observation of cooperative electronic quantum tunneling:
Increasing accessible nuclear states in a molecular qudit,” Inorganic chemistry,
vol. 57, no. 16, pp. 9873–9879, 2018.

[151] N. Ishikawa, T. Iino, and Y. Kaizu, “Interaction between f-electronic systems in
dinuclear lanthanide complexes with phthalocyanines,” Journal of the American
Chemical Society, vol. 124, no. 38, pp. 11440–11447, 2002.

[152] N. Prokof’ev and P. Stamp, “Theory of the spin bath,” Reports on Progress in
Physics, vol. 63, no. 4, p. 669, 2000.

[153] W. Yang, W.-L. Ma, and R.-B. Liu, “Quantum many-body theory for electron
spin decoherence in nanoscale nuclear spin baths,” Reports on Progress in
Physics, vol. 80, no. 1, p. 016001, 2016.

[154] A. Morello, “Quantum nanomagnets and nuclear spins: an overview,” in
Quantum Magnetism, pp. 125–138, Springer, 2008.

[155] S. Tomsovic, Tunneling in complex systems, vol. 5. World Scientific, 1998.

[156] N. Prokof’Ev and P. Stamp, “Low-temperature quantum relaxation in a system
of magnetic nanomolecules,” Physical review letters, vol. 80, no. 26, p. 5794,
1998.

[157] W. Wernsdorfer, R. Sessoli, and D. Gatteschi, “Nuclear-spin–driven resonant
tunnelling of magnetisation in mn12 acetate,” EPL (Europhysics Letters), vol. 47,
no. 2, p. 254, 1999.

140



Bibliography

[158] Y. Furukawa, K. Watanabe, K. Kumagai, F. Borsa, and D. Gatteschi, “Magnetic
structure and spin dynamics of the ground state of the molecular cluster mn 12
o 12 acetate studied by 55 mn nmr,” Physical Review B, vol. 64, no. 10, p. 104401,
2001.

[159] A. Morello, O. N. Bakharev, H. B. Brom, R. Sessoli, and L. J. de Jongh, “Nuclear
spin dynamics in the quantum regime of a single-molecule magnet,” Physical
review letters, vol. 93, no. 19, p. 197202, 2004.

[160] Z. Jang, A. Lascialfari, F. Borsa, and D. Gatteschi, “Measurement of the
relaxation rate of the magnetization in mn 12 o 12-acetate using proton nmr
echo,” Physical review letters, vol. 84, no. 13, p. 2977, 2000.

[161] E. Moreno-Pineda, G. Taran, W. Wernsdorfer, and M. Ruben, “Quantum
tunnelling of the magnetisation in single-molecule magnet isotopologue
dimers,” Chemical science, vol. 10, no. 19, pp. 5138–5145, 2019.

[162] S.-G. Wu, Z.-Y. Ruan, G.-Z. Huang, J.-Y. Zheng, V. Vieru, G. Taran, J. Wang, Y.-C.
Chen, J.-L. Liu, L. T. A. Ho, et al., “Field-induced oscillation of magnetization
blocking in holmium metallacrown magnet,” arXiv preprint arXiv:2006.04401,
2020.

[163] M. N. Leuenberger and D. Loss,“Spin tunneling and phonon-assisted relaxation
in mn 12-acetate,” Physical Review B, vol. 61, no. 2, p. 1286, 2000.

[164] R. A. Layfield and M. Murugesu, Lanthanides and actinides in molecular mag-
netism. John Wiley & Sons, 2015.

[165] M. Martínez-Pérez, S. Cardona-Serra, C. Schlegel, F. Moro, P. Alonso, H. Prima-
García, J. Clemente-Juan, M. Evangelisti, A. Gaita-Ariño, J. Sesé, et al., “Gd-
based single-ion magnets with tunable magnetic anisotropy: molecular design
of spin qubits,” Physical review letters, vol. 108, no. 24, p. 247213, 2012.

[166] H. Buckmaster and Y. Shing, “A survey of the epr spectra of gd3+ in single
crystals,” physica status solidi (a), vol. 12, no. 2, pp. 325–361, 1972.

[167] G. Siu and D. Newman, “Contributions to the ground state splitting of s-state
ions. i. the 8s7/2 state of gd3+,” Journal of Physics C: Solid State Physics, vol. 15,
no. 33, p. 6753, 1982.

[168] D. Goldfarb and S. Stoll, EPR spectroscopy: fundamentals and methods. John
Wiley & Sons, 2018.

[169] D. Newman and W. Urban, “Interpretation of s-state ion epr spectra,” Advances
in Physics, vol. 24, no. 6, pp. 793–844, 1975.

141



Bibliography

[170] G. Taran, E. Bonet, E. Moreno-Pineda, V. Chibotaru, F. Balestro, M. Ruben, and
W. Wernsdorfer, “High resolution anisotropy maps of molecular magnets,”
2020, in preparation.

[171] A. Cornia, A. C. Fabretti, M. Pacchioni, L. Zobbi, D. Bonacchi, A. Caneschi,
D. Gatteschi, R. Biagi, U. Del Pennino, V. De Renzi, et al., “Direct observation
of single-molecule magnets organized on gold surfaces,” Angewandte Chemie
International Edition, vol. 42, no. 14, pp. 1645–1648, 2003.

[172] J. Liu, E. del Barco, and S. Hill, “A microscopic and spectroscopic view of
quantum tunneling of magnetization,” in Molecular Magnets, pp. 77–110,
Springer, 2014.

[173] A. L. Wysocki and K. Park, “Nature of hyperfine interactions in tbpc2 single-
molecule magnets: Multiconfigurational ab initio study,” Inorganic Chemistry,
vol. 59, no. 5, pp. 2771–2780, 2020.

[174] K. Saito, M. Wubs, S. Kohler, Y. Kayanuma, and P. Hänggi, “Dissipative landau-
zener transitions of a qubit: Bath-specific and universal behavior,” Physical
Review B, vol. 75, no. 21, p. 214308, 2007.

142



List of Publications

[1] G. Taran, E. Bonet, and W. Wernsdorfer, “Molecular magnetism: Single-molecule
magnets and molecular quantum spintro,” Handbook of Magnetism and Magnetic
Materials, pp. 1–31, 2020.

[2] E. Moreno-Pineda, S. Klyatskaya, P. Du, M. Damjanovic, G. Taran, W. Wernsdorfer,
and M. Ruben, “Observation of cooperative electronic quantum tunneling:
Increasing accessible nuclear states in a molecular qudit,” Inorganic chemistry,
vol. 57, no. 16, pp. 9873–9879, 2018.

[3] G. Taran, E. Bonet, and W. Wernsdorfer, “The role of the quadrupolar interaction
in the tunneling dynamics of lanthanide molecular magnets,” Journal of Applied
Physics, vol. 125, no. 14, p. 142903, 2019.

[4] E. Moreno-Pineda,G. Taran,W. Wernsdorfer,and M. Ruben,“Quantum tunnelling
of the magnetisation in single-molecule magnet isotopologue dimers,” Chemical
science, vol. 10, no. 19, pp. 5138–5145, 2019.

[5] G. Taran, E. Bonet, and W. Wernsdorfer, “Decoherence measurements in crystals
of molecular magnets,” Physical Review B, vol. 99, no. 18, p. 180408, 2019.

[6] G. Taran, E. Bonet, and W. Wernsdorfer, “Thermalization of nuclear spins in
lanthanide molecular magnets,” arXiv preprint arXiv:2110.00161, 2021.

[7] S.-G. Wu, Z.-Y. Ruan, G.-Z. Huang, J.-Y. Zheng, V. Vieru, G. Taran, J. Wang, Y.-C.
Chen, J.-L. Liu, L. F. Chibotaru, et al., “Field-induced oscillation of magnetization
blocking barrier in a holmium metallacrown single-molecule magnet,” Chem,
vol. 7, no. 4, pp. 982–992, 2021.

[8] G. Taran, E. Bonet, E. Moreno-Pineda, V. Chibotaru, F. Balestro, M. Ruben, and
W. Wernsdorfer, “High resolution anisotropy maps of molecular magnets,” 2021,
in preparation.

143





Acknowledgements

If a PhD would be a sporting discipline, I would say, it’s an endurance event, in
many ways similar to the ’Tour de France’. By far the most important structure is the
’peloton’ as having people ’riding with you’ greatly helps to overcome resistance and
make progress. It often feels like an adventure, exciting whenever the experiment
deviates from one’s expectation but also unpredictable and high stacked as a small
mistake can make months worth of effort go to waste. Thus, having people to help
you avoid the pitfalls and steer you in the right direction is of utmost importance.
During my PhD, I was fortunate enough to have encountered such people that both
supported and guided me but also encouraged to take risks and enjoy physics.

Most importantly, I want to thank my supervisor, Wolfgang Wernsdorfer, for giving
me the opportunity to pursue this PhD program. Doing research with you was a
real privilege. Your work ethic and dedication to science always inspired me and
gave me the necessary courage to tackle even the most difficult problems. I greatly
appreciate the freedom you gave me in pursuing the subjects I found interesting.
I’m sure the practices I’ve learned from you will have a lasting impact on my life.

I’m very grateful to Edgar Bonet with whom I shared an office and whose expertise
was invaluable in the progress that I report in this thesis. Your ability to identify the
core of the problem and attack it in the most straightforward way never ceased to
impress me.

I’m thankful to Franck Balestro who helped me with many administrative and
technical issues at the Neel Institute and thus greatly facilitated my work.

I would like to thank Eufemio Moreno-Pineda who is responsible for the synthesis
and structural characterization of a number of molecular systems that I investigated
during my PhD. I always found our collaborations very productive and engaging.
Your persistence and energy definitely helped in the advancing our projects.

I’m grateful to Mario Ruben who provided me with molecular crystals upon which
I’ve built my PhD and who agreed to co-referee this thesis.

I would like to thank all my fellow students in our group who made my trips to
Karlsruhe really enjoyable. As a newly formed group, I found all of you full of

145



6 Acknowledgements

energy and ambition. Building the experimental infrastructure from scratch is not a
small endeavor but I’m convinced that your results will be greatly rewarding.

I’m deeply grateful to my high school teacher Liliana Alexandru who helped me
discover and nurse my passion for physics. Your teaching modeled the way I
approach problem-solving and your unconditioned support both through my high
school and undergraduate years gave me an example that I’ll always try to follow. All
my thoughts and prayers are with you my dear teacher as I wish you never-ending
power and hope against the disease that you battle at the moment.

There are no good words to express my love and gratitude towards my parents
Victoria and Stefan and my sister Anastasia. You made countless sacrifices to help
me reach this point in my life. I hope that through this work I make a small testimony
of your efforts. Thank you for being there for me and for giving me the courage to
always pursue the things I love.

Finally, I’m very grateful to my wife Andriana and my little girl Eliza. Thank you
for the patience and understanding with the never-ending workdays and for the
invaluable support that you gave me during my entire PhD. The last year, marked
by the birth of our little one, was the happiest year of my life. You are my treasures
and I’m looking forward to the new adventures that await us in the future.

Karlsruhe, October 2020 Gheorghe Taran

146




	Contents
	1 Introduction
	1.1 Spin Hamiltonian Formalism
	1.2 Quantum Tunneling of Magnetization
	1.3 Spin Parity and Quantum Phase Interference
	1.4 Quantum Coherence in Molecular Magnets
	1.5 Molecular Quantum Spintronics

	2 Experimental Details
	3 Tb3+ molecular magnets
	3.1 The role of quadrupolar interaction in tunneling dynamics of TbPc2 SIMM
	3.2 Decoherence Measurements in TbPc2 SIMM
	3.3 Nuclear spin lattice relaxation
	3.4 Electronic and nuclear spin dynamics in Tb2Pc3 dinuclear SMM

	4 Hyperfine enhanced phonon assisted tunneling
	4.1 Dy2dpm isotopologue SMMs
	4.2 Phonon assisted tunneling in HoIIIF2[15-MCNi-5]
	4.3 Phonon assisted tunneling in Mn12-ac

	5 SQUID-EPR on Gd3+ SIMMs
	5.1 Et4N[160GdPc2] SIMM
	5.2 Measurements on 157Gd(tmhd)3Phen

	6 Conclusions and Outlook
	Bibliography
	List of Publications
	Acknowledgements

