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The characterization of quantum systems is both a theoretical and technical challenge. Theoretical because of the exponentially
increasing complexity with system size and the fragility of quantum states under observation. Technical because of the requirement
to manipulate and read out individual atomic or photonic elements. Adaptive methods can help to overcome these challenges by
optimizing the amount of information each measurement provides and reducing the necessary resources. Their implementation,
however, requires fast-feedback and complex processing algorithms. Here, we implement online adaptive sensing with single spins
and demonstrate close to photon shot noise limited performance with high repetition rate, including experimental overheads. We
further use fast feedback to determine the hyperfine coupling of a nuclear spin to the nitrogen-vacancy sensor with a sensitivity of
445 nT\/“ . Our experiment is a proof of concept that online adaptive techniques can be a versatile tool to enable faster

characterization of the spin environment.
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INTRODUCTION

Quantum sensing uses the readout of quantum systems to obtain
information about the physical world. The accuracy depends on
the sensor response to the parameter of interest and the ability to
collect and process classical information. The ultimate limits to the
sensitivity of quantum sensors can be obtained from the
maximum speed that a quantum state can be driven to an
adjacent state in response to the signal’? and the information
content of probabilistic readout®*

In general, attaining the ultimate sensitivity limits requires prior
knowledge about the parameter to be measured, for example, the
range of values it can take. Protocols that utilize adaptive
measurements can optimize the acquisition of supportive prior
information®> and thus improve the performance of quantum
sensors® by operating them in their most sensitive regime. An
improvement in nonadaptive (NA) techniques is obtained by
updating each sensing sequence based on the results of previous
measurements, in concert with classical processing algorithms. In
particular, adaptiveness allows sensing to be performed in
environments with changing conditions and features higher noise
resilience’™’

In the context of measuring optical phases in interferometry,
experiments using NA'' and adaptive'® phase estimation algo-
rithms (PEAs) have demonstrated nearly Heisenberg-limited
sensitivity. Likewise, for magnetic field sensing, similar techniques
have been transferred to solid-state spins. The negatively charged
nitrogen-vacancy (NV) center in diamond'® has raised particular
attention as atomically sized sensor'*'* with potential application
as a quantum register element for information processing's. For
the characterization of larger registers that incorporate nearby
nuclear spins, it is key to efficiently exploit the available resources,
for example, the measurement time, which can exceed days'’
However, until now, the focus of optimized algorithms has been
on improved estimation of the phase response of single spins to
constant (direct current (DC)) magnetic fields>'®2°. Here, we

extend upon previous work to implement multiparameter
estimation with adaptive measurements and use this methodol-
ogy for fast characterization of the sensor’s quantum environment.
We measure the parallel hyperfine coupling of a single NV center
to a single *C nucleus with 4.4 kHz uncertainty in 16.0 s. Recently,
a one-dimensional (1D) parameter estimation technique has been
used for characterization of nuclear spins®' near to an NV center.
However, this experiment required prior knowledge on the
hyperfine coupling in order to perform conditional two-qubit
gates. Our work is complementary as we require less pre-
characterization but only measure one of the hyperfine tensor
components.

The experiments described here are performed with single NV
centers in diamond. Optical readout of the NV spin state
(eigenstates are denoted here as |0), |1)) allows induced shifts
in the spin population to be detected as a highly sensitive probe
of magnetic fields*. For sensing of static (DC) magnetic fields, a
Ramsey sequence is used to map the sensor-phase response to a
magnetic field intensity B = |Bez| into the population, which is
subsequently read out optically. The symmetry axis e, of the NV
determines the projection of the magnetic field vector. The
accuracy of Ramsey interferometry for estimating B within a total
measurement time T, is limited by the photon shot noise to

V2e
VT3 T

where C< 1 is a dimensionless parameter describing the readout
efficiency, y = 2mx 2.8 MHzG™' is the NV's gyromagnetic ratio
and T; is the phase coherence time of the NV. However, this
accuracy is only reached when using a Ramsey sequence with a
phase evolution time in which the sensor interacts with the
magnetic field for a duration of T ~ T;/2%%. By normalization to
VTn and considering experimental overheads the standard
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measurement sensitivity (SMS) limit ngys = e is obtained
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Fig. 1 Fast feedback for adaptive MFL. a The AWG generates the Ramsey sequence that is applied to the NV. Optical initialization and
readout are performed with a confocal microscope. Photoluminescence photons are counted by a single photon counter. In every epoch of
the MFL, the result of the Ramsey sequence is analyzed by comparing it to a pre-characterized threshold. The likelihood function L(E|B, 1)
(dashed blue and orange line in the first row) is chosen depending on the measured eigenstate of the NV and multiplied according to Bayes’
rule to the prior distribution P(B). From the resulting posterior P(B|E), the current expectation value (dashed green line in the first row) for the
magnetic field and the Ramsey phase evolution time of the next epoch (based on the peak width indicated by blue arrows) are calculated. The
lab computer outputs the AWG memory address of the corresponding sequence to complete the feedback loop. b, Left: pulse sequence for a
Ramsey experiment. Laser pulses are used for initialization and readout of the NV. Phase is acquired between the two microwave n/2 pulses.
Middle: Sketched result for a single NV in the time domain. The oscillation frequency encodes the magnetic field intensity B. To optimize
sensitivity, MFL preferably chooses T close to T, /2 (red dashed line) at later epochs. Right: frequency domain representation of the Ramsey

experiment. The frequency of the 71/2 pulses is indicated as an orange line.

where t,, = T,y — T is the time of all overhead associated with the
experiment (details in “Methods” section).

Due to phase wrapping of the sensor, measuring at a fixed,
maximum T creates an ambiguity because multiple magnetic
fields result in the same sensor output. Only if the field is known
before hand to fall within [B—7=,B+ ;7] can it be measured
uniquely. This fixes the dynamic range of the measurement to
DR = \%’—EC«/Tm/TS- Without prior information on the magnetic
field, the accuracy of an unambiguous Ramsey measurement with
a requisite shortened interaction time decreases drastically, as can
be seen from Methods Equation (2).

Recently, a class of sensing protocols based on quantum-phase
estimation®* has been suggested'®2%?* to overcome the trade-off
that standard approaches for sensing DC magnetic fields suffer:
either high sensitivity but limited dynamic range or vice versa. So
far, the best-known protocols adapt the measurement settings
conditioned on earlier results of the sensing sequence. These
require either cryogenic readout conditions®* or, at room
temperature, have used post-processing on offline experimental
datasets?®. We implement a recently proposed magnetic field
learning (MFL) algorithm?® that changes the Ramsey sensing
sequence applied to a single NV center online and based on
results of previous measurements (Fig. 1a). Each updated Ramsey
pulse sequence is selected from a list of 256 unique sequences
that are applied with an arbitrary waveform generator (AWG).
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The algorithm is implemented as follows. An underlying
Bayesian model encodes the probability of different magnetic
field values in a prior distribution P(B) (Fig. 1a, top middle). In every
epoch, a Ramsey experiment and sensor readout are performed
multiple times before a subsequent Bayesian update. According to
Bayes’ rule, the likelihood function L(E = {0 or 1}|B,T) describing
the probability given the observed experimental outcome (£ = |0)
or E=|1), only the two NV eigenstates are considered) is
multiplied to P(B) in order to obtain a posterior P(B|E). Thus, one
of two possible likelihood functions is chosen determined by
comparing the number of detected photons against a known
threshold value (majority voting)®’, as illustrated in Fig. 1a (top
right). Due to inefficiencies in the optical readout, on average a
photon is recorded only every ~17 experiments (£ average
photon number in the NV superposition state per readout
1~0.059). We repeat each Ramsey experiment with the same
experimental parameters nyp,q/I times, obtaining on average npnot
photons per epoch. The Ramsey sequence for the next epoch i + 1
is chosen by calculating the desired phase evolution time based
on the heuristic rule Ti41 &~ 1/0p, to ensure that the period of the
likelihood function is in the same order as the current uncertainty
op, of the posterior in epoch i. The selection, switching, and
loading from one of the 256 sequences has no associated
overhead (<100 ns duration); however, the feedback loop includ-
ing calculation of the Bayesian update, performed on a computer,
takes ~1 ms.
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Fig. 2 DC magnetic field estimation. a Outcome of MFL for four runs and uncertainty (0B s.d., shaded regions) of the estimated magnetic
field with different applied B (1.8 uT (red) to 169 uT (blue)). b Sensitivity n for different applied magnetic fields By,.x. The theoretical sensitivity
of an unambiguous Ramsey experiment with fixed 1 set by the dynamic range [—Bmax Bmax] is shown in blue, up to T = T; /2, which defines
the standard measurement sensitivity (SMS, red dashed line). The average photon number is ngho ~ 65 for all MFL runs. ¢ Magnetic field
uncertainty oB versus the accumulated phase evolution time t4 for an on average number ngnoc ~ 9 photons per epoch. A NA-PEA simulation
(lilac, optimized parameters G =10, F =1, nphot = 180) with similar readout conditions is plotted (described in the main text). The black line
represents the Heisenberg uncertainty limit for a single experiment with phase evolution ts and no decoherence with identical readout
efficiency to other datasets, the orange dashed line is the theoretical uncertainty of an unambiguous Ramsey experiment repeated at T1=1,
realizing a dynamic range [—Bmax Bmaxl- d The magnetic field sensitivity n versus the accumulated running time including all experimental
overheads t,, for MFL runs with several selected average photon numbers. The effective sensitivity negs >n, which considers the noisy
averaged readout, is optimized at an intermediate photon number. Dashed lines represent simulation data for MFL an NA-PEA, respectively.
Deteriorating sensitivity for a longer running time in NA-PEA is due to phase evolution times well beyond T;, which one would avoid in a
sensor application. The MFL data in b-d represents averaged runs (~50 repetitions per trace or data point) with the same parameters and
applied magnetic field. In a, ¢, d the allowed field range in the initial prior is [0, Bmax = 238] UT, which is by definition >10B.

Importantly, MFL allows magnetic field determination over a Qualitatively, the increased dynamic range of MFL allows
large range without a trade-off in sensitivity. This behavior follows unambiguous estimation of magnetic fields over a range of
from a heuristic that selects evolution times that optimize the 1.8-169 uT, while maintaining a sensitivity close to the theoretical
Fisher information extracted from a typical MFL run. The choice of ~ SMS. We quantify this behavior in Fig. 2b, where the final
a T that maximizes the Fisher information of a single measurement ~ Sensitivity reached for averaged runs at different magnetic fields is
depends on the actual magnetic field value to find the steepest ~ shown. As expected, the sensitivity is nearly constant over the
slope of the Ramsey fringe®>. Consequently, the choice of exactly whole accessible magnetic field range and we_reach sensitivities
T = T;/2 might be unfavorable, if the slope is as low as illustrated ~ €lose to the SMS over the whole dynamic range. In this
in Fig. 1b (middle) or if environmental conditions change®. While ~ Measurement, we demonstrate a dynamic range of 110x (lowest
our algorithm does not perform optimization for each individual ~ neld B=1.43 ), or at the maximum magnetic field of 153.6 T,
magnetic field value, statistically our heuristic enables us to obtain an improvement in sensitivity of 17x over an unambiguous

a sensitivity close to the Crame-Rao bound averaged across all Ramsey experiment with fixed phase evolution time and no prior
vy 28 9 knowledge of the magnetic field range. Details of the sensitivity
magnetic field values~*.

calculations for these Ramsey experiments can be found in the
“Methods” section. We confirm the dynamic range by simulations
RESULTS AND DISCUSSION in S.u.ppleme.ntary Fig. 1, shpwing only weak moQuIation of
DC maanetic field estimation sensitivity with the magnetic field. In our experiment, the

. 9 . . maximum detectable magnetic field is limited due to the
In Fig. 2 we show results of adaptive measurements to estimate restricted memory of the AWG as the number of storable
the DC magnetic field as a single parameter. In Fig. 2a, we plot  experiments with distinct T is finite. We store 256 Ramsey
four single runs of the algorithm at different DC magnetic fields, sequences with linearly spaced 1, where 1, =1+ At This
illustrating the high dynamic range. In every epoch, a Bayesian implies a Shannon-Nyquist sampling limit of f.,., = 1/(2A1), also
update is iteratively applied. Hence, the uncertainty of the  shown in Fig. 2b. When choosing magnetic fields close to or
magnetic field decreases and convergence to the correct field is bigger than 27f..x/y, the MFL fails to obtain correct estimates.
reached. Neglecting the memory constraints of the AWG, the limiting
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Fig. 3 Multiparameter estimation for determination of |A;|. a Exemplary (sampled) priors and likelihoods L(1|B, 7) at epoch 0/500 of the 2D
MFL run in (c). Bright color coding denotes a high probability. Below, the according first quadrant of the 10 isosurfaces representing the
possible position of the 3C spin relative to the NV (NV e; as a red arrow). The outer isosurface in epoch 0 is limited by the sensing volume to
|A;|>1/T5. b, Left: in the time domain, the result of a Ramsey sequence with a coupled single nuclear spin features two frequency components
f1,2, each given by the offset from the driving microwave (MW) to the resonance of the spectrum in the frequency domain (right). ¢ 2D MFL
result estimating the two frequencies yB:/2m (blue), yB,/2m (orange) of the Ramsey fringe. Inset: difference Ag; = y|B, — By|/2m of the final
estimate of subsequent MFL runs, each representing an estimated coupling |A| between NV and 13C. The horizontal line is a fit, yielding A=
(59.10 £ 0.36) kHz. The mean uncertainty (s.d.) on yB,,/2m of a single MFL run is 0By ,y/2m = 5.3kHz. d, Top: average uncertainty ABayg =
(% +%)/2 of the estimated fringe frequencies versus the accumulated phase evolution time t4 of the 2D parameter estimation for 1000
epochs, npnot ~ 90, averaged over ~200 runs. For comparison, a simulation of a 1D estimation with same readout parameters (C, npnor) is

shown. Bottom: corresponding sensitivity including overheads during the running time with a final sensitivity of n,p = 445 nT\/qu.

property of the dynamic range is the Rabi frequency Q,,p; of the
7/2 pulses. If the magnetic field saturates yBuax>Qrabi, it is not
possible to resonantly control the NV spin anymore. For reported
Rabi frequencies of ~100 MHz with NV sensors, Bax~ 3500 uT
would be expected. Controlling the frequency and phase of the
microwave pulses in addition to the Ramsey phase evolution time
could be used to further increase the dynamic range. On the other
hand, the smallest detectable signal for both classical Ramsey
experiments and phase estimation-based protocols is given
by Eq. (1), placing the maximum reachable diqamic range for
our experimental conditions to ~ 4.2x 104\/ﬁg . We note that
measuring such small fields is frequently challenging due to
stability requirements on the test field.

For many applications, the sensor readout rate is an important
device characteristic since this defines how quickly information is
obtained from the device. While PEAs for magnetic field
sensing®'®2% have combined a sensitivity close to the SMS with
a high dynamic range, the experiments differ in how quickly the
final sensitivity can be reached. To obtain a comparable metric, in
Fig. 2c we plot the magnetic field uncertainty against the
accumulated phase evolution time. Three different regimes can
be observed: At the beginning, the MFL acquires coarse knowledge
by choosing short phase evolution times in the Ramsey sequence.
Thus, the magnetic field uncertainty decreases only slowly.
Subsequently, after the field range has been narrowed, longer 7 is
chosen and the uncertainty decreases sharply. When the MFL starts
to request phase evolution times close to the dephasing time of the
NV, a scaling kink is observed. As T cannot be increased anymore,
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the magnetic field uncertainty improves only with statistical
x 1//to behavior. We define the time T, of the scaling kink as
the repetition time of the protocol and plot its dependence against
the average number of photons nynet in Supplementary Fig. 2a.
Clearly, fewer photons per epoch allow faster repetitions rates and
we achieve a minimal T, = 0.24 s for Ny = 6.

Reaching sensitivities close the SMS over a high dynamic range
is a distinct benefit of the MFL. In Fig. 2d we observe that
sensitivity improves with the accumulated running time (accu-
mulated phase evolution time plus all overheads), as expected.
The statistical o /fp scaling after the kink translates into a
constant sensitivity reached at longer sensing times. For photon
numbers on the order of npho~ 10, we approach the SMS. The

best observed sensitivity is n =132 nTy/ Hz ' after a total runtime
of ~1.5 s including all experimental overheads. This sensitivity is a

factor 1.46 higher than the news = 90.5 nTv/Hz ' for the employed
NV. The discrepancy is mainly explained by the overhead of
the feedback loop, which becomes considerable compared to the
phase evolution time per epoch at low ngher. For instance, the
computational overhead makes up for 45% of the total runtime for
an MFL run with ngnee~6 (see Supplementary Fig. 3). Including
this additional dead time in the analysis, the relative difference
between sensitivity and the theoretical limit decreases to only 8%.

These results yield a figure of merit BT;* = 1803+v/Hz, which is to

the best of our knowledge a record for a single NV room-
temperature experiment.

Published in partnership with The University of New South Wales



Not reaching the SMS at higher ngho is an expected behavior: In
every epoch the shape of the likelihood function that is multiplied
to the current prior distribution is fully determined by the phase
evolution time and the binary outcome of the measurement. In
the case of our averaged optical readout, higher photon numbers
increase the (photon shot noise limited) signal-to-noise-ratio (SNR)
and thus lead to less mistaken outcomes. If the error probability is
already low, increasing the SNR only changes the outcomes in few
epochs but adds uninformative measurement time to all epochs.
Equivalently, the majority voting is discarding more and more
information for higher average photon numbers. Hence, the
overall sensitivity is decreased. In Supplementary Fig. 2b, we
characterize the trade-off between reduced precision (ps<1,
defined as the fraction of complete MFL runs that yield correct
magnetic field results) and sensitivity. To this end, we define an
effective sensitivity n.; =n/,/ps that accounts for the fact that
wrong magnetic field attribution due to poor SNR needs to be
balanced by additional MFL repetitions. For our experimental
conditions, an optjmal photon number ngho:~40 exists, where
Net = 204nTv/Hz  is minimized. This effective sensitivity is a
factor of 2.25 higher than the SMS, even considering all
experimental overheads. Arguably, this effective sensitivity is our
most relevant result for application as a DC magnetic field sensor.
A possible route to mitigate sensitivity loss at elevated photon
numbers would be to increase the extracted information per
epoch by considering the exact number of detected photons in
the likelihood function or even their time of arrival®’.

Previously, it was shown that NA phase estimation protocols can
perform nearly as well as adaptive algorithms. However, this
requires careful parameter optimization depending on the readout
efficiency of the experiment®? (often referred to as G, F, and R in
the literature). It is an advantageous property of the MFL that
except for determination of the average photon number /, no
further tuning is required, since adaption to the readout is implicitly
performed by choosing phase evolution times according to the
current width of the posterior distribution. In Fig. 2b, ¢ we also plot
simulations of a parameter optimized NA-PEA® with the same
experimental parameters. An increased noise resilience of MFL is
reflected by the fact that NA-PEA requires significantly higher
average photon numbers of ngnec ~ 180 and delivers a worse overall

sensitivity (0 = 259nTv/Hz ') than MFL, even comparing with its
effective sensitivity defined above. NA-PEA performs best if the
predetermined phase evolution times optimize the extracted Fisher
information, which can be hindered by fixed values of T; and
targeted dynamic range. In terms of repetition rate, one could
expect an advantage for NA-PEA due to the nonexisting computa-
tional overhead as the MW sequence in the AWG is never altered
after an optimized set of parameters has been found. We observe,
however, that MFL operated with moderate photon numbers

Npnot = 62 can reach a sensitivity of n ~ 260 nT NCT equally fast
even considering our current overhead. Optimized hardware
allowing for shorter computation and communication times would
lead to a further advantage for MFL.

Nuclear spin |A;| characterization

Next, we extend our adaptive protocol from sensing a classical DC
magnetic field to multiparameter estimation of the quantum
environment of the sensor. This capability is required for learning
about complex environments. In particular, we use MFL to
determine the parallel component of the sensor's hyperfine
coupling to a '3C nuclear spin in the diamond lattice. As
evidenced by a splitting in the sensor’s energy spectrum, coupling
to the carbon spin increases the Hilbert space of the sensor/
environment interaction, thereby increasing the parameter space
of our estimation. A Ramsey experiment with a single nuclear
spin coupled to the NV yields a result as sketched in Fig. 3b.

Published in partnership with The University of New South Wales
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The oscillation in the time domain now consists of two single
frequencies, which correspond to the offset of the microwave
frequency to the NV-'3C resonances that could be observed in a
pulsed optically detected magnetic resonance experiment. The
parallel hyperfine coupling is given by the difference of both
frequencies |A|| = |fi — f2|. We apply the same methodology as in
the one-dimensional (1D) case to estimate both frequencies of the
Ramsey experiment. As the parameter space grows, the prior
P(B;, By) and the posterior P(B;, B,|E) of the MFL become two
dimensional (2D). The decoherence-free likelihood function

Ly = O.S[COS(@)Z-F cos(@)z} (full case in “Methods” section)

is constructed from equally weighted frequency components. We
show exemplary priors and likelihood functions in Fig. 3a. In
complete analogy to the 1D case, the MFL picks short 1 for early
epochs where a flat prior represents poor knowledge about the
frequencies fi, =yB;2/2m. For the multiparameter estimation,
the corresponding likelihood function shows multiple broad peaks
that are symmetric in either dimension. As the prior becomes
single-peaked during the evolution of the MFL, the choice of
T ensures that the likelihood function at later epochs is multiplying
a single peak of the likelihood to non-zero parts of the prior.

In Fig. 3c the result of a single 2D MFL run is depicted. In the
inset a trace of the differences of the resulting frequencies of
subsequent repetitions of the 2D MFL is plotted. A linear fit to
these frequency differences directly yields the parallel component
of the hyperfine coupling |A| = (59.10£0.36) kHz, whereas the
frequency average gives the background magnetic field strength.
Although the perpendicular hyperfine coupling A, is unknown, it
is possible to deduct the possible position of the nuclear spin as
an isosurface around the NV from |A|||3°. In Fig. 3a we plot this
localization at the beginning and end of a single MFL run.

For 1D parameter estimation, Heisenberg-limited scaling beha-
vior (nzcx T-") has been observed?® for MFL. In our experiments,
the scaling in learning a 2D model is less favorable than learning a
single parameter like the DC magnetic field. In Fig. 3d the slope in
the middle part is reduced for approximately a quarter when
comparing to a simulated 1D case with the same experimental
parameters. Hence, we assume that the heuristic (see “Methods”
section) for multiparameter estimation could be further optimized.
Note that it is not possible to directly compare experimental data,
since we would need to employ distinct NVs for both cases with
different coherence times and fluorescence count rates.

Our experiment operates in a regime where, due relaxation of
the carbon spin during readout, multiple incoherent nuclear spin
flips occur during the course of a single MFL epoch that averages
over multiple (nphot//) readouts of the NV. Thus, the nuclear spin
will be in one of its eigenstates approximately half of the time,
motivating the choice of equal contribution of the frequency
components in the likelihood function. As each component of the
recorded Ramsey fringe has half the contrast compared to the 1D
likelihood, a lower sensitivity bound of Neus:2p = 2Nsms.1p IS
theoretically expected. Generally, the SMS for 2D parameter
estimation is Ngys p = ﬁ']sms,m, assuming that we measure two
distinct Ramsey fringes depending on the state of the nuclear
spin. The theoretical limit, assuming a perfect readout, for
estimating M independent parameters is Ngws yp = vVMNsws.1p-

From the data in Fig. 3d, we calculate a finally obtained
experimental phase acquisition sensitivity which is a factor of
Nop = 2.09 nyp higher than the 1D simulation, indicating that our
experiment operates reasonably close to the optimum achievable
at the given readout conditions. Our best experimental sensitivity
for a 2D MFL is extracted to be n,p =445 nTVHz = (ABayg =
3.1 kHz after 16.0 s including overheads, Fig. 3d). This is a factor of
2.4 higher than the 2D limit neys- ,p, @ fact that is due to the
relatively high average photon numbers (nghoe~90) in this
experiment. As in the 1D simulation, which shows an offset from
the theoretical limit of n;p = 1.9Nsys1p (see Fig. 3d), the use of
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majority voting when high numbers of photons are collected
results in a reduced sensitivity. At high photon numbers,
sensitivity and effective sensitivity coincides closely, n ~ nes, which
allows the factor of 2.4 to be compared to the 1D MFL case (factor
2.25 in terms of nes). We attribute the additional sensitivity
impairment to the increased overhead of the computationally
more intensive 2D MFL. Likewise to the 1D case, a route to
improved sensitivity is the replacement of majority voting to yield
a more informative likelihood function.

Our value can be translated to a spatial sensitivity if A, is

known. For example, the spatial sensitivity yields 76 nmv/Hz , i
we were to determine the location a '>C spin in 5nm distance
(JAL| = 0.15kHz, |A| = 0.26 kHz for an "*C with average A,). We
do not expect this sensitivity to improve compared to A
determination by dynamical decoupling (DD) techniques, since
the photon shot noise limit for the latter is limited by T,. However,
DD techniques typically need to sweep the phase evolution time
axis first, before varying the number of decoupling pulses N,;>'>2
Thus, there is substantial overhead spent for pre-characterization
in the total measurement. As a consequence, we find our
technique to be a valuable tool for characterizing strongly
coupled (>1/T;) external spins, not hidden in the spin bath.
When measuring hyperfine couplings via the nuclear Lamor
precession, measurement back action from the NV can introduce
broadening of the nuclear linewidth®***. For the estimation of A
that we perform, however, we do not expect a detrimental
influence on our estimation sensitivity as our measurement does
not rely on tracking the evolution of a coherent superposition of
the nuclear spin state, but only probes the projection of the
nuclear spin in the measurement basis.

As an important remark, we note that multidimensional
parameter estimation can be combined with arbitrary sensing
sequences, as long as an expression for the likelihood function can
be given. Analytic expressions exist for the coherence in Hahn
echo modulation and DD experiments®'*23>737 which both can
be used for determination of the perpendicular hyperfine
component A;. Since for this purpose two parameters (1, N;)
need to be controlled, this requires more addressable AWG
memory than available in our current experiment. We anticipate
that recent methods for full characterization of a multi-qubit
register®® or spatial reconstruction of the spin environment'”-*°
may benefit from online adaptive sensing. To this end, high-
dimensional likelihood functions encoding all involved coupling
constants and the according computing power to evaluate the
large parameter space will be required.

If a complete MFL run could determine yB to an accuracy <27A
within the relaxation time of a coupled nuclear spin, effectively
providing a single-shot measurement of the nuclear state, our
method would be extendable to allow for quantum feedback
techniques®® conditioned on the nuclear spin state. This will
require implementation of MFL on microcontrollers, field pro-
grammable gate arrays, or other devices with improved real-time
processing capabilities.

CONCLUSION

We have demonstrated an online adaptive MFL algorithm in a room-
temperature quantum sensing experiment. Using fast-feedback
conditioned on measurement of a single spin sensor, we reached a

magnetic field sensitivity of 204nTyv/Hz ', which is by a factor of
2.25 above the SMS, while simultaneously increasing the dynamic
range by a factor of one hundred when compared to measuring at
T=T;/2. By extending the estimation to two parameters, we
measured the parallel hyperfine coupling to a nearby '3C nucleus,
allowing estimation of the hyperfine coupling with an uncertainty of
44 kHz in 16.0 s without requiring any pre-characterization.
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We anticipate that by combining with sensing protocols beyond
Ramsey interferometry, adaptive measurements can become a
powerful tool for imaging and chemical analysis on the nanoscale
and the characterization of complex quantum systems. Since
other sequences generally imply more complex likelihood
functions, it remains as an open question how an optimal
heuristic for choosing the next set of experimental parameters can
be derived. For nanoscale magnetic resonance imaging, the slow
data rate of measurements, obtained by the readout of a single bit
sensor, limits the timescale/speed of experiments. Thus, such
adaptive protocols will be of immense importance. Beyond
improved sensing and characterization, we envision the techni-
ques developed here to allow for quantum feedback and control
methods not achievable with classical feedback methods to have
applications in emerging quantum technologies.

METHODS
Sample

All experiments were carried out with two single NVs (T; = 18.7 us, no
coupled *Cand T; = 19.0 s with coupled '3C; data from classical Ramsey
experiments), which are located ~1 um below the surface in an isotopically
enriched (99.8% '°C) diamond sample grown by chemical vapor
deposition. An external bias magnetic field of By~500G was applied
along the NV axis by a permanent magnet to ensure polarization of the
nitrogen nuclear spin inherent to any NV. For the sake of easier notation
throughout the main text, we discuss applied magnetic fields defined as
B:=B,,s — By denoting the absolute magnetic field as Byps.

Setup

We control and read the NV state with a standard home-built confocal
microscope. Initialization and readout laser pulses of 750ns at a
wavelength of 532 nm are generated by a continuous wave laser and an
acousto-optical modulator. Photon counts are gated by a switch to only
consider the beginning 600 ns of the laser pulse. This value is obtained by
optimizing the SNR of the optical readout. All laser pulse shapes and
microwave waveforms are sampled on an AWG (Tektronix AWG70000A)
amplified and applied to the NV through a copper wire of 20 um diameter
placed on top of the diamond. Photoluminescence photons of the NV in
the >650 nm band are collected through an oil objective lens (Olympus,
%60, NA 1.35), counted by an avalanche photodiode (APD Excelitas SPCM),
and digitized by a counting card (National Instruments 6323). The
experiment is controlled by a custom measurement software*’.

Feedback loop

After the waveform for an epoch has been played, the AWG outputs a
trigger signal that is received by the counting card. An interrupt handler
implemented in Python is invoked, which creates a timestamp on leave of
the handler function. The running time per epoch used for sensitivity
calculation is defined as the difference between two of those timestamps.
Before creating the timestamp, the photon counting register of the
counting card is read out to obtain a binary measurement result by
comparing it to a pre-characterized threshold photon number. Then, the
Bayesian update is performed by multiplying the likelihood function
according to the prior sampled at 1000 (1D MFL) or 2000 (2D MFL)
positions. Depending on the width of the posterior distribution, a new
phase evolution time is calculated. To reduce computational complexity,
we use a particle guess heuristic that samples two positions {B;, By} in
parameter space and choses T = 1/(y|B> — By|) with || denoting the 1-
norm. For 2D estimation, the heuristic is simply translated by calculating
the norm in the 2D space. Then, the memory address of the sequence with
the closest 7 is output to the AWG. As our addressable AWG memory is
limited, it is possible that the MFL requests T longer than present in
memory. Choosing the closest T would then lead to uninformative
repetition of the same sequence. In order to mitigate, we randomly
reshuffle those cases such that on average (1) :%Tz*. By oscilloscope
measurements, we confirm that the computational overhead between the
trigger signal and new address issued is ~1 ms (1D MFL) per epoch. Due to
the increased computational complexity, the feedback loop takes ~3 ms
for 2D estimation. Omitting all computationally intensive code in the
interrupt handler and outputting a static address takes ~0.2 ms, limited by
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the notification time, which the Windows operating system requires to
invoke the handler on receipt of the AWG trigger signal.

Standard measurement limit
The photon shot noise limited SMS of a single NV sensor reads>

/T + tov
Nsws = €7 yer )
where C = (1 + (—2 )2)’1/2 is the readout efficiency defined by the

-V
number of photons per readout pulse in |[0) and |1) state of the NV and
tov = Tm — T is the time of all overhead associated with the experiment. For
the SMS given in this work, we consider t,, = 1.75 us, which is the length of
the readout and laser pulse plus a waiting time for initialization thereafter.

In Fig. 2b we compare against the sensitivity of an unambiguous Ramsey
experiment. Assuming prior knowledge on the bounds as {B+ Bnyad =
{B— 2B+ ZLVT}, around a bias point B=0, the dynamic range of a
Ramsey experiment is defined by [—Bnax Bmax- Thus, we calculate the
phase evolution time T = M’;’m that yields an unambiguous result. Inserting
into Eq. (2) gives the according unambiguous sensitivity.

Data averaging

Since MFL is a probabilistic algorithm, the magnetic field uncertainty
reached in a single run underlies statistical fluctuations. To this end,
we give results averaged over ~50 independent runs. Due to the
irregular spacing of the data points in the time domain, we use a moving
average filter that calculates median values over a filter window
of 100 ms.

Likelihood functions
For 1D estimation of a DC magnetic field, the likelihood function is

L=e"EL +05(1 —e %) with Lr = cos(VTBT)Z. The likelihood function
Lip=e Ly +05(1—e V%) with L)y =05 {cos(@)%r cos(@)z]
used in 2D parameter estimation is symmetric under exchange of the
estimated coupling parameters B, and B,. A priori and given the true values
{B1 4 By, this leads to a nonvanishing prior probabilities p(B; 4, B,,) > 0 as well
as p(B,, B1,) > 0. To ensure a meaningful outcome for T from the heuristic, we
restrict the MFL to solutions where B, > By by setting in every epoch the prior
p(B;, B, < By) =0. The coherence decay of a single qubit under influence of
magnetic noise by a surrounding spin bath in a Ramsey experiment is
—(L)?
frequently given by a factor of e @) . In our experiments, we found
phenomenological agreement with e "/ and adopted it, which also
matches the theoretical work?® proving the optimality of the 1D heuristic.

Simulations

The simulated MFL data shown in Figs. 2c and 3c are obtained by running
the same algorithm and averaging employed for the experiments. An
experimental outcome is generated by evaluation of the likelihood function
p,=L(x, B) at given T while B is constant. We approximately replicate the
limited readout fidelity by randomly adding an offset sampled from a normal
distribution p,noisy = p; + N(u = 0,0 = /I/(4C%npne) and obtain a datum
for a single MFL epoch by majority voting as E = |0} if p,noisy < 0.5 and E=|1)
otherwise. NA-PEA simulations are computed accordingly except for omitting
the moving average filter, since T is not irregularly spaced.
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