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Abstract

Calcium fluoride solid electrolytes have been identified as a candidate for

solid-state fluoride-ion batteries (FIBs). Here, we investigate the doping of

CaF2 with samarium — Ca1�xSmxF2+x (0 ≤ x ≤ 0.15) — obtained by solid syn-

thesis via high-energy ball milling. Structural, morphological, and ionic con-

ductivity studies of the as-prepared materials were examined. It reveals that

the fluorite-type structure is dominating with a crystallite size of 12–14 nm.

The highest ionic conductivity at room temperature had been obtained for

Ca0.95Sm0.05F2.95 with a value of 2.8 � 10�6 S�cm�1. It proves that a small

content of Sm doping can considerably improve the ionic conductivity of CaF2.
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1 | INTRODUCTION

Calcium fluoride (CaF2) is a representative of the fluoride-type structured halides, an essential family of ionic materials
with numerous applications also widely used in metallurgy, construction materials, optics, defense, and other
industries.1,2 CaF2 is a colorless or white crystalline powder and biocompatible material, which has a basic cubic
fluorite-type structure.1,3,4 The material is also well known for being a relative fast-ion conductor, a material in which
the lighter ions (F�) acquire significant mobility comparable to ionic melts at temperatures well below its melting point,
possibly useful for energy storage devices like supercapacitors and batteries.5,6 All-solid-state batteries promising candi-
date and attention for a wide range of applications, including consumer electronics, automotive, renewable sources
such as solar, and grid solutions. The developing of next-generation batteries has set all solid-state batteries into focus
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for which solid electrolytes (SEs) are a critical component for improved stability, safety, higher energy density compati-
bility, and utilization of cost-effective materials.7,8

Alternative approaches to Li-ion batteries (LIBs) like fluoride-ion batteries (FIBs) are theoretically even able to
provide higher energy densities.9 The chemistry of FIBs relies on the shuttle of fluoride ions (F�) between for instance
metal and metal fluoride electrodes, through a fluoride ion-conducting SE.10 Related studies have been focused on
fluoride-ion conductors,10 which still seemed to be a challenging issue at ambient temperatures when compared with
liquid electrolyte performances.11

Two well-known fluoride classes of compounds with high ionic conductivity are of the fluorite-type (Fm-3m)
and tysonite-type (P3c1) structures.12,13 The fluorite-type structure is related to alkaline-earth fluorides (AEF2:
CaF2, BaF2, and SrF2) and the tysonite-type structure to the rare-earth fluorides (REF3 with Re = La, Sm, Ce, Pr,
and Nd). In previous studies, La0.9Ba0.1F2.9 has been reported as a solid-state electrolyte that exhibits high ionic
conductivities for FIBs applications at elevated temperatures.10 Maximum ionic conductivities on single crystals
were reported with La, Ce, Nd, and Sm doped with Ca, Ba, and Sr, vary from 10�3 to 10�5 S�cm�1 at room
temperature (RT) and from 10�2 to 10�3 S�cm�1 at T = 150�C or above.13,14 In a previously reported investigation
about a SmF3 synthesis, a conductivity jump for SmF3 was found around 500�C, which corresponds to the
orthorhombic (YF3)–trigonal (LaF3) phase providing an elevated ionic mobility for the tysonite-type network.15

Recently, we reported that nano-powdered Sm0.95Ca0.05F2.95 material exhibits an ionic conductivity around
10�5 S�cm�1 at RT.16,17

Here, we investigated the unique behavior of fluoride ion-based-conducting SEs with SmF3-doped CaF2 and
prepared Ca1�xSmxF2+x (0 ≤ x ≤ 0.15) solid solutions by applying high-energy ball milling without material
preprocessing or post-processing.

2 | MATERIALS AND METHODS

Solid-state synthesis (high-energy ball milling) was used to prepare samarium-substituted calcium fluoride materials.
The precursor materials (CaF2, 99%, and SmF3 anhydrous, 99.9%, REO) were obtained from Alfa Aesar. The stoichio-
metric compositions of Ca1�xSmxF2+x (0 ≤ x ≤ 0.15) were synthesized by high-energy planetary ball milling. The
as-prepared materials' preparation was similar to authors' previous reports.16,18

The structural and morphological studies of as-prepared materials were carried out by X-ray diffraction (XRD) and
scanning electron microscopy (SEM). The XRD measurements were conducted via an AXS Bruker D5005 Advanced
instrument with Cu Kα radiation (λ1—1.54056 Ǻ; λ2—1.544390 Ǻ). SEM investigations of the ball-milled electrolytes'
microstructures were performed with 4-kV electron high tension (EHT) applying a width of 4 mm.

Electrochemical impedance spectroscopy (EIS) measurements were carried out on solid-state electrolyte pellets
assembled with a pellet press. The pellets were sputtered with gold coating on both sides to block ions from the
electrodes. The thickness and diameter of the pellets were approximately 1 and 10 mm, respectively. The impedance
measurements were conducted with an Agilent 4192A LF impedance analyzer over a frequency range from 5 Hz to
13 MHz at a voltage amplitude of 10 mV, with spectra recording at RT.19

3 | RESULTS AND DISCUSSION

3.1 | Structural and morphological studies

Continuing previous studies, we synthesized and investigated the reverse doped material: Ca1�xSmxF2+x (0 ≤ x ≤ 0.15)
solid-state fluoride conductor. The as-prepared samples exhibit a fluorite-type cubic structure revealed by XRD patterns
of Ca0.95Sm0.05F2.95 (a = 5.4837 Å with space group Fm-3m) (see Figure 1). As per synthesis, we found minor diffraction
peaks from the YF3-type orthorhombic structure originating from SmF3. For this sample, the crystallite size was esti-
mated with the Scherrer equation around 12–14 nm. Slight changes in unit cell dimensions, particle size/shape,
agglomeration/packing, created defects, and geometry frustrations at grain boundaries within the ball-milled powder
are considered.19–21

The SEM microstructures of as-prepared materials' studies were carried out and is illustrated in Figure 2A,B. The
electrolyte samples provided particle sizes of 50–70 nm. A minor content of agglomerates of CaF2 sizes ranging from a
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few dozens to several tens of nanometers is typically being observed. The synthesized samples are pristine and
agglomerated during the milling.

3.2 | EIS investigations

EIS studies were applied to determine the ionic conductivities. The Nyquist plots of the as-prepared Ca1�xSmxF2+x

(0 ≤ x ≤ 0.15) samples are presented in Figure 3A. The spectra consist of two region parts: a semicircle at high frequen-
cies (MHz)—related to the ionic conductivity with grain boundaries — and a straight line towards low frequencies
(Hz) — referring to the electrolyte–electrode polarizing interface phenomenon.22 The fluoride ionic conductivity was
determined by the equation σ = [t/(R � A)] (with resistance R, thickness t, and pellet surface A).16 Different
stochimetric levels of Ca1�xSmxF2+x (x = 0.03, 0.05, 0.07, 0.10, and 0.15) solid electrolytes for their ionic conductivities
were measured at room temperature in the range of 10�6 to 10�7 S�cm�1 at RT were achieved (see Figure 3B). The max-
imum value at RT was obtained for x = 0.05 with 2.8 � 10�6 S�cm�1. This is roughly one magnitude higher than of

FIGURE 1 XRD patterns of Ca1�xSmxF2+x (x = 0.05 and 0.10)

are given: pure CaF2 (black color), ball-milled electrolyte (red and

blue color), while “#” symbol represents minor SmF3 orthorhombic

phase contributions

FIGURE 2 SEM images of (A) Ca0.95Sm0.05F2.95 and (B) Ca0.90Sm0.10F2.90 with different magnifications. The as-prepared samples are

agglomerated, and pristine particles can be observed
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pure ball-milled CaF2 (1.98 � 10�7 S�cm�1) but lower than best results obtained for the reverse doping:
Sm1 � xCaxF3 � x (x = 0.05: 2.8 � 10�5 S�cm�1).15,23

There are numerous reports on enhancing the ionic conductivity of nanocrystalline materials like CaF2, and other
dopant compounds,13 the exact mechanism of conduction, defect chemistry, and the disorder's nature has a variety of
reasons. Related different synthesized and investigated classes of SEs are compiled for comparison in Table 1.

In a previous report, it had been indicated that calcium fluoride ionic conductivity was increased by two orders of
magnitude, to 1.9 � 10�5 S�cm�1 at RT, with enhanced surface defect structure, due to the application of vapor pressure
exposure followed by high-energy ball milling.18 Alternatively, a CaF2 doping of SmF3 (Sm1 � xCaxF3 � x) within the

FIGURE 3 In (A), the Nyquist plots of Ca1�xSmxF2+x (x = 0.03,

0.05, 0.07, 0.10, and 0.15) electrolytes at RT are depicted. The RT

ionic conductivities versus as-prepared materials' composition

(maximum for Ca0.95Sm0.05F2.95 with 2.8 � 10�6 S�cm�1) are

presented in (B)

TABLE 1 Summary of CaF2- and SmF3-based fluoride-ion conductors of various synthesis approaches

Solid electrolyte Ionic conductivity: σ (S�cm�1) Methods and reference

Sm0.95Ca0.05F2.95 1.0 � 10�4 (RT) High temperature-driven solid-state synthesis + mixing (Dieudonné et al.15)

h-CaF2 1.9 � 10�5 (RT) Vapor pressure exposure + ball milling (Molaiyan and Witter18)

Sm0.95Ca0.05F2.95 2.8 � 10�5 (RT) High-energy ball milling (Molaiyan and Witter16)

SmF3 (single crystal) 5.0 � 10�4 (550�C) Melting method (Karimov et al.24)

SmF3 (BM) 1.1 � 10�6 (RT) High-energy ball milling (Molaiyan and Witter16)

Ca0.95Sm0.05F2.95 2.8 � 10�6 (RT) High-energy ball milling (this work)

CaF2 (BM) 1.9 � 10�7 (RT) High-energy ball milling (Molaiyan and Witter18)

CaF2 (single crystal) 8 � 10�8 (260�C) Single-crystal melting method (Ravi et al.25)

Abbreviation: RT, room temperature.
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stoichiometric ratio range 0 ≤ x ≤ 0.15 significantly increased the ionic conductivity of Sm0.95Ca0.05F2.95
(2.8 � 10�5 S�cm�1) at RT. Recently, Karimov et al.24 reported that tysonite SmF3-based (LaF3-type) phases of
Sm1 � yMyF3 � y fluoride ion-conducting SEs substituting Sm3+ with M2+ (M = Ca, Sr, or Ba) or vice versa provide
maximum values of 5 � 10�4 S�cm�1 at 550�C (for y = 0.05). This supports our finding that Sm1 � xCaxF3 � x materials
provide higher ionic conductivities than to reverse doped compounds.

4 | CONCLUSIONS

Ca1�xSmxF2+x (0 ≤ x ≤ 0.15) solid-state electrolytes were successfully prepared by solid synthesis (high-energy ball mill-
ing), a basic and scalable nano-powder preparation method. Structural and morphological studies reveal that the mate-
rials possess the fluorite-type structure with crystallite sizes around 12–14 nm and particle sizes of 50–70 nm. RT
fluoride ionic conductivities were obtained to be in the range of 10�6 to 10�7 S�cm�1 with the maximum of
2.8 � 10�6 S�cm�1 for Ca0.95Sm0.05F2.95 motivating further improvements and investigations. Future studies would
recommend a posttreatment removing contamination and accommodating surface defect enhancements along a
systematic hand-in-hand structural and morphological analysis with continuous parameter variations of chemical
composition for improving its electrochemical applicability.
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