KIT | KIT-Bibliothek | Impressum | Datenschutz

Neural Predictive Control for the Optimization of Smart Grid Flexibility Schedules

Jongh, Steven de; Steinle, Sina; Hlawatsch, Anna; Mueller, Felicitas; Suriyah, Michael; Leibfried, Thomas

Abstract (englisch):

Model predictive control (MPC) is a method to formulate the optimal scheduling problem for grid flexibilities in a mathematical manner. The resulting time-constrained optimization problem can be re-solved in each optimization time step using classical optimization methods such as Second Order Cone Programming (SOCP) or Interior Point Methods (IPOPT). When applying MPC in a rolling horizon scheme, the impact of uncertainty in forecasts on the optimal schedule is reduced. While MPC methods promise accurate results for time-constrained grid optimization they are inherently limited by the calculation time needed for large and complex power system models. Learning the optimal control behaviour using function approximation offers the possibility to determine near-optimal control actions with short calculation time. A Neural Predictive Control (NPC) scheme is proposed to learn optimal control policies for linear and non-linear power systems through imitation. It is demonstrated that this procedure can find near-optimal solutions, while reducing the calculation time by an order of magnitude. The learned controllers are validated using a benchmark smart grid.

DOI: 10.1109/UPEC50034.2021.9548179
Zitationen: 2
Zitationen: 2
Zugehörige Institution(en) am KIT Institut für Elektroenergiesysteme und Hochspannungstechnik (IEH)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 08.2021
Sprache Englisch
Identifikator ISBN: 978-1-66544-389-0
KITopen-ID: 1000138468
Erschienen in 56th International Universities Power Engineering Conference (UPEC)
Veranstaltung 56th International Universities Power Engineering Conference (UPEC 2021), Online, 31.08.2021 – 03.09.2021
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 1–6
Bemerkung zur Veröffentlichung Held virtually and hosted by Teesside University, UK
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page