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Abstract

In this thesis, the substrates of two intramembrane proteases were investigated. The

transmembrane domain of the amyloid precursor protein (APP) is a substrate of γ-secretase

that is related to Alzheimer’s disease. The other substrate was the transmembrane domain

of the serine/threonine-protein phosphatase PGAM5, which is cleaved by the Rhomboid

PARL that is associated with Parkinson’s disease.

Intramembrane proteases cleave their substrates at the membrane level. These unusual

enzymes are involved in a large variety of biological processes. The cleavage mechanism

of these proteases has not been studied on the structural level so far, however, the structure

and dynamics of their substrates are thought to be decisive features. Unlike soluble

proteases, intramembrane proteases do not recognise a consensus sequence, but are

nevertheless sensitive to point mutations in the substrate sequence.

APP, the first substrate studied, is cut by γ-secretase at the ε-cleavage site and then

successively processed until a short fragment is released, called Aβ. Different processing

routes are possible, leading to different products. The two main products are Aβ40 and

Aβ42, the latter forming the amyloid plaques that are found in the brains of patients with

Alzheimer’s disease. In the two FAD mutations studied in this thesis, the level of Aβ42 was

found to increase compared to Aβ40. Since both mutations were found in patients with

familial Alzheimer’s disease, the shift of this ratio is suspected to be one of the reasons for

the early onset and lethality of the disease.

With nuclear magnetic resonance spectroscopy, the wild type of the APP transmembrane

domain and four single-point mutations were thoroughly investigated. These were the two

FAD mutants near the ε-cleavage site (V44M and I45T) and two mutations at the central

G37G38-motif. The proline mutant (G38P) was introduced to destabilise the transmembrane

domain at this site. For stabilisation, the same glycine was exchanged for leucine (G38L).

A set of NMR spectra was recorded from which structural parameters were derived.

Secondary chemical shifts were determined that report on the secondary structure at each

amino acid site. Based on restraints derived from NMR data, three-dimensional structures

were calculated. In addition, the hydrogen-deuterium exchange was measured, which

reports on the structural flexibility of the peptide.

The peptides were analysed in TFE/H2O, as this solvent mimics the properties of the

water-filled cavity at the active site of the enzymes. The four mutants showed only slight

deviations from the wild type. No structural differences were observed at the ε-cleavage site

that could explain the altered processing. All peptides, wild type and mutants, consisted

of two α-helical regions separated by the G37G38-motif. Strikingly, the overall structures

were not straight but bent. The G37G38-motif acted as a hinge, with the angle between

the two parts limited to a certain range. Furthermore, the relative rotation of the two

regions with respect to each other was also restricted. Both the strength of the kink and

the preferred directions were affected differently by each mutation.
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Based on MD simulations of substrate entry into γ-secretase by M. Hitzenberger, it was

postulated that the substrate must kink at this G37G38-hinge in order to enter into the

active site of γ-secretase. The WT structure fitted nicely into this model whereas mutant

structures collided with the TMDs of the enzyme.

PARL, a rhomboid protease, does not recognise a consensus sequence either. Thus, it

is assumed that it selects its substrates based on their structure and dynamics as well.

The transmembrane domain of the PARL substrate PGAM5 WT and four single-point

mutations were also analysed with NMR spectroscopy. Here, three residues were mutated

that are conserved between different organisms, as these were assumed to fulfil essential

functions. All three amino acids were exchanged for leucine (C12L, G17L, G18L) and

additionally a serine mutant was investigated (C12S).

As for APP TMD, secondary chemical shifts were determined and the three-dimensional

structures calculated. Furthermore, hydrogen-deuterium exchange was measured. This

showed that the TMD of PGAM5, like that of APP, consisted of two helical regions. In

PGAM5, however, they were connected by a longer unstructured stretch of amino acids.

Therefore, in contrast to APP, the comparison of the five peptides did not result in a clearly

defined preferred direction of the WT. However, tendencies were visible. By means of

X-ray structural analysis, it had been shown for another rhomboid, GlpG, that the region

around the scissile bond must be highly dynamic as soon as it leaves the membrane. The

model postulated in literature suggests that the region around the scissile bond must

completely unwind before it can enter the active site. The calculated structures of PGAM5

suggest that substrate selection is based on a similar mechanism.

In summary, the transmembrane domains of both APP as a substrate of γ-secretase and

PGAM5, consisted of two segments. In the case of APP TMD, their relative orientation

was comparatively strongly restricted, whereas no clear preference emerged for PGAM5.

Based on these results, a hypothesis for γ-secretase substrates could be proposed using the

NMR data: Only the structure of the wild type can bend in the direction adopted in the

MD simulation, whereas the structures of the four mutants have to be rotated to interact

with the enzyme. This rotation could then lead to altered substrate processing.
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Zusammenfassung

In dieser Arbeit wurden die Substrate zweier Intramembranproteasen untersucht. Beim

ersten Substrat handelte es sich um die Transmembrandomäne des Amyloid Precursor Pro-

tein (APP), ein Substrat der γ-Sekretase. Es ist im Zusammenhang mit Morbus Alzheimer

bekannt. Das zweite Substrat war die Transmembrandomäne der Serin/Threonin-Protein

Phosphatase PGAM5, die von PARL prozessiert und mit Morbus Parkinson in Verbindung

gebracht wird.

Intramembranproteasen, die an einer Vielzahl biologischer Prozesse beteiligt sind,

schneiden ihre Substrate in der Ebene der Membran. Bisher wurden die Spaltungsprozesse

selbst noch nicht auf struktureller Ebene untersucht, aber man geht davon aus, dass die

Struktur und die Dynamik ihrer Substrate von entscheidender Bedeutung sind. Im Ge-

gensatz zu löslichen Proteasen wird in Intramembranproteasen keine Konsensussequenz

erkannt, trotzdem reagieren sie empfindlich auf Punktmutationen in der Substratsequenz.

APP, das erste untersuchte Substrat, wird von der γ-Sekretase zunächst an der ε-

Schnittstelle geschnitten und dann in mehreren Schritten weiter verkürzt, bis ein kurzes

Fragment entsteht, das Aβ genannt wird. Dabei sind verschiedene Prozessierungswe-

ge möglich, die zu unterschiedlichen Produkten führen. Die zwei Hauptprodukte sind

Aβ40 und Aβ42, wobei letzteres die im Zusammenhang mit Morbus Alzheimer bekannten

Amyloid-Plaques im Gehirn bildet. Bei den beiden in dieser Arbeit untersuchten FAD

Mutationen wurde festgestellt, dass der Anteil von Aβ42 im Vergleich zu Aβ40 zunimmt.

Da beide Mutationen bei Patienten mit erblichem Morbus Alzheimer gefunden wurden,

wird die Veränderung dieses Gleichgewichts als einer der Gründe für die früh einsetzende

und schnell zum Tod führende Krankheit vermutet.

Mit hochaufgelöster Kernresonanzspektroskopie wurden der Wildtyp der APP Trans-

membrandomäne sowie vier Punktmutationen intensiv untersucht. Dabei handelte es sich

einerseits um die zwei FAD Mutanten nahe der ε-Schnittstelle (V44M und I45T), anderer-

seits um zwei Mutationen am zentralen G37G38-Motiv. Eine Prolinmutante (G38P) wurde

eingeführt, um die Transmembrandomäne an dieser Stelle zu destabilisieren. Zur Stabilisie-

rung wurde das gleiche Glycin gegen Leucin (G38L) ausgetauscht. Es wurden verschiedene

NMR Spektren aufgenommen, aus denen Strukturparameter abgeleitet werden konnten.

Zum einen waren dies sekundäre chemische Verschiebungen, die die Sekundärstruktur

beschreiben. Zum anderen konnten dreidimensionale Strukturen auf Basis der NMR Daten

errechnet werden. Zusätzlich wurde der Wasserstoff-Deuterium Austausch gemessen, der

Rückschlüsse auf die Stabilität von Wasserstoffbrücken zulässt.

Die Analysen wurden in TFE/H2O durchgeführt, da das aktive Zentrum des Enzyms mit

Wasser gefüllt ist. TFE/H2O ist deshalb besonders gut geeignet, um die Bedingungen im

Inneren des Enzyms abzubilden. Die vier Mutanten unterscheiden sich in ihrer Struktur

kaum vom Wildtyp. An der ε-Schnittstelle waren keine Unterschiede zu erkennen, die

die unterschiedliche Spaltung erklären könnten. Auffällig war, dass es sich zwar in allen
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Fällen um durchgehende α-Helices handelte, diese aber aus zwei Bereichen bestanden.

Dabei bildete das G37G38-Motiv eine Art Scharnier zwischen beiden Abschnitten, sodass

die Gesamtstruktur nicht gerade, sondern geknickt war. Der Winkel zwischen den bei-

den Segmenten war dabei auf einen bestimmten Bereich beschränkt. Auch die relative

Orientierung, also die Richtung des Knicks, war eingeschränkt. Sowohl die Stärke des

Knicks, als auch die Vorzugsrichtungen wurden von jeder Mutation anders beeinflusst.

Auf der Grundlage von MD-Simulationen von M. Hitzenberger wurde daraufhin postuliert,

dass das Substrat an diesem G37G38-Scharnier knicken muss, um das aktive Zentrum der

γ-Sekretase erreichen zu können. Hitzenberger hatte den initialen Komplex von Enzymen

und Substrat untersucht. Die NMR Strukturen des APP TMD Wildtyp passten gut zu

diesem Modell, wohingegen die Strukturen der Mutanten mit den TMDs der γ-Sekretase

kollidierten.

Für PARL, eine Rhomboid Protease, wird angenommen, dass es Substrate ebenfalls

anhand ihrer Struktur und Dynamik erkennt, da hier ebenfalls keine Konsensussequenz

erkannt wird. Die Transmembrandomäne des PARL Substrats PGAM5 WT und vier Punkt-

mutationen wurden ebenfalls mittels NMR untersucht. Im Falle von PGAM5 wurden drei

Reste mutiert, die zwischen verschiedenen Organismen konserviert sind, da angenommen

wurde, dass diese eine essentielle Funktion erfüllen. Alle drei Aminosäuren wurden gegen

Leucin ausgetauscht (C12L, G17L, G18L). Als vierte Mutation wurde eine Serin-Mutante

untersucht (C12S).

Auch hier wurden verschiedene sekundäre chemische Verschiebungen ermittelt und

die dreidimensionalen Strukturen berechnet. Zusätzlich wurde ebenfalls der Wasserstoff-

Deuterium Austausch gemessen. Dabei zeigte sich, dass die TMD von PGAM5 genauso

wie die von APP aus zwei helikalen Bereichen bestand. Bei PGAM5 waren diese allerdings

durch einen unstrukturierten Bereich verbunden. Deshalb ergab sich aus dem Vergleich der

fünf Peptide, anders als bei APP, keine klar definierte Vorzugsrichtung. Allerdings waren

Präferenzen zu erkennen. Mittels Röntgenstrukturanalyse war für ein anderes Rhomboid,

GlpG gezeigt worden, dass der Bereich um die Schnittstelle hoch dynamisch sein muss,

sobald er die Membran verlässt. Das in der Literatur postulierte Modell geht davon aus,

dass sich der entsprechende Bereich der Helix vollständig entwinden muss, bevor er ins

aktive Zentrum gelangen kann. Die berechneten Strukturen von PGAM5 lassen vermuten,

dass in diesem Falle ein ähnlicher Mechanismus zugrunde liegt.

Zusammenfassend lässt sich sagen, dass die Transmembrandomänen sowohl von APP als

Substrat der γ-Sekretase als auch von PGAM5 aus zwei Segmenten bestanden. Im Falle von

APP TMD war deren relative Anordnung vergleichsweise stark eingeschränkt, während

sich für PGAM5 hingegen keine klare Präferenz ergab. Basierend auf diesen Ergebnissen

konnte anhand der NMR Daten eine Hypothese für Substrate der γ-Sekretase formuliert

werden: Nur die Struktur des kann in die von der MD Simulation vorgegebene Richtung

abknicken, wohingegen die Strukturen der vier Mutanten gedreht werden müssen, um

mit dem Enzym interagieren zu können. Diese Drehung könnte dann dazu führen, dass

das Substrat anders prozessiert wird.
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1. Introduction

1.1. Intramembrane Proteolysis

In this thesis, substrates of two intramembrane proteases were investigated.

Intramembrane proteases cleave their substrates within the hydrophobic core of a

membrane [1]. These versatile enzymes, which were first discovered in the 1990s, occur in

all kingdoms of life.

In eukaryotic cells, intramembrane proteases are even found in all cellular compartments

except peroxisomes. They fulfil two main functions. First, intramembrane proteolytic

cleavage events can be part of signalling cascades. The activation of transcription factors

containing a transmembrane domain or the secretion of growth factors after cleavage

of their membrane anchor belong to this category. Second, intramembrane proteases

assist regulated protein degradation when substrate fragments are metastable and can be

successively degraded by the proteasome. Malfunctions in these important enzymes were

linked to severe diseases such as Alzheimer’s or Parkinson’s disease. [2, 3] Due to their

involvement in many essential processes on the one hand and severe diseases on the other,

intramembrane proteases are intriguing subjects of investigation.

Four families of these diverse enzymes have been identified based on their transmem-

brane topologies and catalytic residues: Aspartyl proteases, serine proteases, one glutamyl

protease and zinc metalloproteases. All of them are polytopic membrane proteins, but

differ in structure and active site residues [4]. Aspartyl proteases are characterised by

the GxGD motif with two catalytic aspartates in their active site. They include, most

prominently, presenilin (PSEN), the catalytic subunit of γ-secretase, but also signal peptide

peptidase (SPP) and SPP-like proteases (SPPLs) [2, 5–7]. Serine proteases, in turn, consist

of a conserved six transmembrane domain core that opens to the periplasmic site, similar

to zinc metalloproteases[8, 9]. They were found to harbour a catalytic serine-histidine

diad [10, 11]. The only known glutamyl protease is Ras-converting enzyme 1 (RCE1) with

its catalytic Glu-His in the active site [12]. And finally, Zinc-metalloproteases, such as

site-2-protease (S2P), harbour a catalytic zinc atom in the centre of a six transmembrane

helix bundle. Water, which is important for the cleavage step, can enter the catalytic cleft

through a channel-like opening to the cytosolic site [13, 14].

Some of these intramembrane proteases mentioned are specialized on single-span

transmembrane helices as substrates, while others also process polytopic transmembrane

proteins [15]. They are generally not specialized on a single substrate but process a variety

of different substrates. Whether ectodomain shedding is required prior to intramembrane

cleavage or full length proteins are recognised depends on the specific protease [16].

Intramembrane proteases even differ in their topology within one family. SPP and SPPL

exhibit a Nout topology, this means their N-termini are located on the extracellular side,

1



1. Introduction

in contrast to presenilin whose N-termius is situated in the cytosol (Nin). Moreover, the

former do not require cofactors for their activity, whereas PSEN, the catalytic subunit of

γ-secretase forms a complex with nicastrin, APH-1 and PEN-2 [2, 17, 18].

Intramembrane proteases are found in a variety of cell-types and cellular compartments.

γ-Secretase, which exists in up to six different complexes as two PSEN and two APH-1

isoforms are known, is found in various subcellular locations. PSEN2 complexes that are

associated with Alzheimer’s Disease are mainly situated in endosomes and lysosomes in

neurons and brain tissue [19]. The only intramembrane protease known in mitochondria,

PARL, a serine protease, is located at the inner mitochondrial membrane [20]. Its malfunc-

tion is associated with familial Parkinson’s disease [21, 22]. The endoplasmic reticulum

(ER) and the inner nuclear membrane in contrast, harbour a variety of intramembrane

proteases of all four families. As the ER is the cellular compartment where translocated

proteins mature and begin to fold, it is crucial to remove misfolded proteins prior to their

release to the cytosol [23, 24]. The function of these proteases is to clear out transmem-

brane peptide remainders in the membrane or, as in the case of ZMPSTE24, to remove

peptides stuck in translocon channels [6, 25, 26]. Additionally, intramembrane proteases

in the ER are part of pathways themselves by creating peptide fragments that trigger

for example the ER-associated degradation pathway [23]. Three other intramembrane

proteases are located at the Golgi apparatus: S2P, the first intramembrane protease ever

identified, that is part of the secretory pathway regulation, the aspartyl protease SPPL3

and the serine protease RHBDL1 [9, 27–29].

Intramembrane proteolysis is a multi-step process. The membrane-incorporated sub-

strate must bind to the exosite of the enzyme, a secondary binding site remote from the

active site, and enter the water-filled catalytic cavity. Two principle mechanisms describing

the migration of the substrate from the initial exosite to the active site are discussed in the

community. The first, simpler model proposes that after detachment from the exosite the

substrate slides laterally into the enzyme towards the catalytic cleft, where it unfolds and

exposes its scissile bond to the catalytic residues [30–32]. The second, more complicated

theory states that the substrate does not fully enter the enzyme but remains partially

bound to the exosite. By bending at a hinge motif within the transmembrane domaine

of the substrate, the amino acid stretch harbouring the scissile bond can approach the

catalytic residues where it unfolds [10, 33–37].

1.2. Scope of this Thesis

Although intramembrane proteases have been studied intensively in the last decades,

neither the full repertoire of substrates and their functions nor the prerequisites that

define a substrate as such are known. Essentially, the only certainty is, at least in the case

of aspartyl proteases and rhomboids, that there is no consensus sequence. The known

substrates are enormously diverse in terms of their amino acid sequence and their only

commonality is their α-helical structure. Seemingly, in contrast, these unusual enzymes

also react very sensitively to point mutations. Thus, substrates are most likely selected

based on criteria other than sequence. Structure and dynamics of their transmembrane

domains have been extensively discussed as decisive discriminators without final proof.
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1.2. Scope of this Thesis

Structural investigations of the possible substrates, if they have been investigated,

have so far mostly been limited to analysis in membrane or membrane mimetics, which

resembles their natural environment before they enter the enzyme. It is assumed that the

migration from the membrane into the enzyme is one of the decisive steps that determines

whether a peptide is recognised as a substrate or not.

In order to shed more light on the structural properties that make up a substrate, the

transmembrane domains of substrates of two intramembrane proteases were investigated

in this work. The main focus were their structure and dynamics which were examined

by liquid-state NMR and complementary CD spectroscopy. The first substrate was the

transmembrane domain of the amyloid precursor protein, the most widely known substrate

of γ-secretase. The second substrate studied was the transmembrane domain of PGAM5, a

substrate of the rhomboid PARL.

In order to understand the conditions in the enzyme and the transition from the mem-

brane to the enzyme when the restrictions of the lipid environment no longer apply, a

mixture of TFE and water was chosen as a solvent, which is considered a good approxima-

tion of the conditions in the enzyme.

Because both enzymes are known to be very sensitive to the exchange of single amino

acids, four single point mutants of the corresponding transmembrane domains were

examined comparatively in addition to the respective wild types. Based on the NMR

data, three-dimensional structures of all ten peptides could be calculated. In the case of

γ-secretase, of which various structures exist, among others of the enzyme with bound

substrates, a hypothesis could thus be formulated which properties distinguish a good

substrate from a bad one.

In order to reconstruct the discrepancies between the known structures of the trans-

membrane domain of the amyloid precursor protein determined in lipid mimetics, a longer

APP construct was produced by cell-free protein expression. This was incorporated into

DPC micelles and analysed by liquid-state NMR spectroscopy.
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2. Biomolecular NMR Spectroscopy

The fundamental observations, based on which nuclear magnetic resonance spectroscopy

(NMR) could be developed, were made about 100 years ago, by Zeeman in 1897 and by

Gerlach & Stern in 1922 [38, 39]. Several Nobel Prizes honoured the developments that led

to nowadays modern NMR spectroscopy. Otto Stern received the Nobel Prize in Physics

in 1943. Rabi, who with his co-workers observed the resonance effect for the first time

in 1938 [40] was awarded the Nobel Prize in Physics in 1944. In 1946 nuclear magnetic

resonance of
1
H was discovered by two groups independently: Felix Bloch and colleagues

and Edward Purcell and co-workers [41, 42]. Their contributions were honoured with the

Nobel Prize in Physics 1952. Few years later the chemical shift was observed for the first

time [43]. The introduction of Fourier transform by Ernst & Anderson in 1966 was the

priming event for modern NMR spectroscopy [44]. The first NMR spectrometer, developed

in the following years by Varian, had a resonance frequency of 30 MHz [45]. Only some

years later, the first spectra of a protein, Ribonuclease A, were acquired by Martin Saunders

at 40 MHz [46]. After the introduction of two-dimensional NMR by Jeener in 1971, and

the first 2D spectrum by Richard Ernst and co-workers in 1975, a NMR-derived protein

structure was first published in 1984 by Kurt Wüthrich and colleagues [47–49]. Richard

Ernst and Kurt Wüthrich were each awarded Nobel Prizes in Chemistry: Ernst 1991 for

his contributions to the development of high resolution NMR and Wüthrich in 2002 for

the application of NMR to the structure determination of proteins in solution.

In the following years many methodological and technical improvements followed,

that nowadays allow the elaborate analysis of proteins by NMR spectroscopy. The most

important point on the spectrometer side were increasing magnetic fields strengths to

as high as 1.2 GHz in 2020, which dramatically enhanced sensitivity and resolution and

the development of cryoprobes that allow further noise reduction. Electronics were

improved and computers became faster. On the methodological side, further parameters

such as residual dipolar couplings (RDCs) were discovered [50, 51]. Size limitations

could be overcome by new experiments like TROSY (Transverse Relaxation Optimized

Spectroscopy) that allows to access proteins larger than 100 kDa [52]. Development of

three-dimensional experiments and the introduction of
13
C and

15
N-labelling allowed

to overcome limitations due to peak overlap in two-dimensional spectra and provided a

variety of new techniques to study protein dynamics [53].

Initially suspiciously regarded by the X-ray crystallographic community, acceptance

was increased when the NMR derived structure of metallothionein-2 suggested that the

corresponding X-ray structure needed to be revised [54]. The great benefit of NMR

compared to crystallography is that NMR spectra can be acquired under (almost) native

conditions, thus no crystals have to be prepared. The other huge advantage is that not

only structures but also protein dynamics, conformational changes, folding and chemical

reactions can be explored. Moreover, apart from proteins alone, protein-protein or protein-
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2. Biomolecular NMR Spectroscopy

ligand interactions can be studied. [55] Despite these advantages, NMR structures still

account for a rather small share of published three-dimensional protein and nucleic acid

assemblies, since NMR is limited to rather small proteins up to 100 kDa, whereas by means

of X-ray crystallography proteins larger than 200 kDa can be analysed. To date, more than

153 000 X-ray (88.3%), 13 000 NMR (7.6%) and almost 7000 cryo-EM structures (4%) have

been deposited in the Protein Data Bank (PDB) (www.rcsb.org/stats/summary) [56]).

2.1. NMR Observables

The General Principle of NMR Spectroscopy

Like all spectroscopy techniques, NMR is based on energy transitions between two or

more states that differ in their individual energy levels. Interactions of a nuclear magnetic

dipole moment with an external magnetic field induce the energies of these states in NMR.

The magnetic momentum 𝜇 is defined by the nuclear spin angular momentum 𝐼 and the

gyromagnetic ratio 𝛾 as

𝜇 = 𝛾𝐼 𝑎𝑛𝑑 𝜇𝑧 = 𝛾𝐼𝑧 (2.1)

𝜇𝑧 and 𝐼𝑧 are the 𝑧-components of 𝜇 and 𝐼 , respectively, as the external magnetic field is

defined along 𝑧.

Nuclei with 𝐼 = 1

2
have two spin quantum numbers𝑚 = +1/2 and𝑚 = −1/2, correspond-

ing to two spin states. This holds true for the nuclei usually observed in biomolecular

NMR:
1
H,

13
C,

15
N and

31
P.

When the spins are exposed to an external magnetic field 𝐵0, applied along the 𝑧-axis,

their interaction with the magnetic field results in the so-called Zeeman effect. The energy

levels (𝛼 for𝑚 = +1/2 and 𝛽 for𝑚 = −1/2), the so-called Zeeman levels, are

𝐸𝑚 = −𝛾𝐼𝑧𝐵0 = −𝑚ℏ𝛾𝐵0 (2.2)

with the reduced Planck constant ℏ. The energy required for a transition between the two

states, 𝛼 → 𝛽 and 𝛽 → 𝛼 is given by

Δ𝐸 = ℏ𝛾𝐵0 (2.3)

The so-called Larmor frequency 𝜈0 or 𝜔0 describes the precession of the spin angular

momentum around the magnetic field 𝐵0. This frequency is equal to the frequency of

radiation required to induce transitions between the states and is, according to Planck’s

Law, defined as

𝜔0 = Δ𝐸/ℏ = −𝛾𝐵0 (2.4)

in rad s
-1
and

𝜈0 = −𝜔0/2𝜋 = −𝛾𝐵0/2𝜋 (2.5)

in Hz.

The number of nuclei in each state is given by the Boltzmann distribution. As the energy

difference between the two states is very small, the population difference between the

spin states is small as well. This makes NMR a very insensitive method. [57, 58]
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2.1. NMR Observables

Chemical Shifts

The resonance frequency of each nucleus is dependent on the local environment that

induces the effective magnetic field at that nucleus (𝐵𝑙𝑜𝑐 ). This is the sum of the external

magnetic field 𝐵0 and the secondary fields induced by its environment, which is described

by the local shielding tensor 𝜎𝑘𝑘 . Thus, the local field depends on 𝐵0 and the local shielding

tensor 𝜎𝑘𝑘
𝐵𝑙𝑜𝑐 = (1 − 𝜎𝑘𝑘𝐵0) (2.6)

In isotropic solution, molecular tumbling leads to rapid reorientations of the shielding

tensor, which is averaged to a scalar value 𝜎 . The average isotropic shielding constant

reduces to

𝜔 = −𝛾 (1 − 𝜎)𝐵0 (2.7)

Chemical shifts are defined as the resonance frequency of the given nucleus with respect

to a reference frequency

𝛿 [𝑝𝑝𝑚] = 10
6
𝜈 − 𝜈0

𝜈0

(2.8)

where 𝜈 is the Larmor frequency in Hz and 𝜈0 that of a reference compound. Using chemical

shifts instead of frequencies has the great advantage that chemical shifts are independent

of 𝐵0. That makes them easily comparable between spectra acquired at different external

field strengths. [58]

While chemical shift ranges are well known for small molecules, the correlation between

chemical shifts and protein structure was unravelled over the past 25 years. In contrast

to small molecules, proteins, although relatively uniform in their covalent structure due

to neighbouring effects, exhibit not a few but hundreds of chemical shifts. Based on

chemical shifts, the secondary structure of proteins can be identified, torsion angles can

be calculated, the flexibility of proteins can be estimated and structural models can be

established. [59–63]

Chemical shifts of proteins are very sensitive to the protein structure. The first spectrum

acquired of a protein sample is usually a
1
H-

15
N-HSQC as shown in Figure 2.1. In this

spectrum,
1
H and directly bound

15
N are correlated. This results in one signal per residue

due to the chemical nature of amino acids. The signal dispersion in this spectrum already

indicates whether the molecule is more structured or unstructured. In structured proteins,

the chemical shifts are influenced by ring currents and dipolar interactions that lead

to a wide range of resonances, while these effects are averaged out in random coil-like

structures. Thus, in the folded state, backbone amide resonances are usually distributed

over a range of 3 ppm. Also Hα chemical shifts report on the secondary structure. In α-

helices their chemical shifts are usually located between 3.4 and 4.1 ppm, while in β-sheets

they are between 4.9 and 6.0 ppm. In random coil structures they are found in-between

the two regions [64–66].

Based on these initial observations, it was discovered that Hα, Cα and Cβ chemical shifts

in peptides and proteins can predict secondary structure. So-called secondary chemical

shifts, Δ𝛿 were defined as the difference between measured, 𝛿𝑜𝑏𝑠 , and random coil shifts,

7



2. Biomolecular NMR Spectroscopy

𝛿𝑟𝑐 , thus the part of chemical shifts that is influenced by the three-dimensional protein

structure [67–71]:

Δ𝛿 = 𝛿𝑜𝑏𝑠 − 𝛿𝑟𝑐 (2.9)

As neighbouring amino acids can also impact chemical shifts, for example prolines

strongly affect the preceding residue, nearest neighbour correction factors were introduced

to compensate for these effects [70].

Figure 2.1. Exemplary 1H-15N-spectrum of APP26-55: On the 𝑥-axis 1
H chemical shifts

are shown, on the 𝑦-axis 15
N chemical shifts. Each signal correponds to the HN-N-pair of a

specific amino acid.

Dihedral angles derived from chemical shifts are of great importance for structure

calculation. Tools like TALOS+ compare the chemical shifts of an amino acid stretch with

database values that are correlated with Φ and Ψ backbone dihedral angles. [72]

Chemical shift changes can report on subtle alterations around the respective residue.

Especially resonances of the protein backbone (
1
HN and

15
N, the two observables in the

1
H-

15
N-HSQC, as shown above) are very sensitive to perturbations of their environment.

The exchange of one amino acid within a peptide can, for example, influence numerous

cross-peaks (see Figure 4.15, p. 60). The chemical shift changes in
1
HN and

15
N are caused

by different effects and are therefore almost uncorrelated.
1
H chemical shift differences

are mostly influenced by through-space interactions, while
15
N shifts are affected by

both through-bond and through-space interactions such as hydrogen bonds. Combined

chemical shift perturbations (CSP) are often used to summarize effects on both
1
HN and

15
N. The

15
N shift is weighted according to the relative shift ranges of

1
H and

15
N. The
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weighing factor is always an approximation, however. The CSP of every single amino acid

can be calculated for glycines as

Δ𝛿𝑡𝑜𝑡𝑎𝑙 =
√︁
(Δ𝛿𝐻2)2 + (0.2 ∗ Δ𝛿𝑁 )2

(2.10)

and as

Δ𝛿𝑡𝑜𝑡𝑎𝑙 =
√︁
(Δ𝛿𝐻2)2 + (0.14 ∗ Δ𝛿𝑁 )2

(2.11)

for all other amino acids. The CSP can be employed to follow changes upon ligand binding

or to quantify differences between mutants. [73]

Scalar Couplings

The interaction of nuclear spins mediated by their connecting chemical bonds is called

scalar coupling (or J-couplings). Scalar couplings are denoted as follows:

𝑛
J𝐴𝐵

This expression refers to the coupling constant between nuclei 𝐴 and 𝐵 connected

through 𝑛 bonds. The strength of J-couplings depends on various factors.

The magnitude of vicinal scalar couplings,
3
J, depends on the dihedral angle Φ according

to Karplus:

3
J (𝜃 ) = 𝐴 𝑐𝑜𝑠2(Φ) + 𝐵 𝑐𝑜𝑠 (Φ) +𝐶 (2.12)

The constants 𝐴, 𝐵 and 𝐶 were determined empirically by correlating observed coupling

constants with angles known, for example, from X-ray structures. On this basis, the

dihedral angles in proteins (see Figure 2.2) can be estimated from
3
JHH coupling constants.

[58, 74]

Figure 2.2. Backbone dihedral angles in proteins [75]
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2. Biomolecular NMR Spectroscopy

The Nuclear Overhauser Effect

Nuclear spins can be regarded as magnetic dipoles that generate a magnetic field around

themselves. Another spin in the vicinity interacts with this field, while the first spin in

turn experiences the field of the second spin. This so-called dipole-dipole coupling results

from the interaction through space of these two spins, which can be oriented parallel or

antiparallel to the external magnetic field. The interaction depends on their distance and

the angle between the external magnetic field 𝐵0 and the vector connecting the two spins.

The dipolar coupling 𝐷𝐼𝑆 between two spins, 𝐼 and 𝑆 , can be described as

𝐷𝐼𝑆 = −ℏ𝛾𝐼𝛾𝑆𝜇0

16𝜋2

〈
1

𝑟 3

𝐼𝑆

(3𝑐𝑜𝑠2𝜃 − 1)
〉

(2.13)

with the gyromagnetic ratio of the two nuclei 𝐼 and 𝑆 , 𝛾𝐼 and 𝛾𝑆 , the angle 𝜃 between their

internuclear vector and 𝐵0, their distance 𝑟𝑖 𝑗 and the permeability of the vacuum 𝜇0. [76]

While scalar couplings are in the Hertz range (
1
JCH ≈ 110 − 220 𝐻𝑧), dipolar couplings

can reach values of several thousand Hz. In solid-state NMR they lead to extremely

large linewidths, but the dipolar couplings are averaged out due to molecular tumbling

in solution. The distance between the two spins, 𝑟𝐼𝑆 , and the angle of their internuclear

vector relative to the external magnetic field, 𝜃 , adopt all kinds of values and are therefore

averaged with time, as indicated in Equation 2.13 by the angle brackets. Nevertheless,

cross-relaxation, the transfer of 𝑧-magnetization between these two spins, remains. This

effect is called the Nuclear Overhauser Effect (NOE).

For a pair of two isolated protons (𝐼 and 𝑆) in a rigid molecule the NOE is defined as

𝜎𝐼𝑆 =
ℏ2𝜇2

0
𝛾4

𝐻
𝜏𝑐

160𝜋2𝑟 6

𝐼𝑆

(
−1 + 6

1 + 4𝜔2

0
𝜏2

𝑐

)
(2.14)

with the permeability of the vacuum 𝜇0, the gyromagnetic ratio of the two nuclei 𝛾𝐻 , the

larmor frequency of the nuclei 𝜔0, the rotational correlation time 𝜏𝑐 and the distance 𝑟𝐼𝑆
between the two protons observed . All the variables are properties of the single spins

except for their distance 𝑟 . Thus the NOE intensity between two protons within a given

molecule is proportional to their distance:

𝐼𝑁𝑂𝐸 ∼ 𝑘 1

𝑟 6
(2.15)

When the factor 𝑘 is known, the distance of a pair of protons, up to 5Å, can be calculated

from the NOE intensity. 𝑘 can either be calibrated based on a known distance or calculated.

[57, 58]

In proteins, different types of NOEs are observed. Intraresidual between nuclei of the

same amino acid, sequential between the amino acid and the following or preceding,

medium range between amino acids two to four residues apart and long range NOEs

where the distance is five or more amino acids. Characteristic NOE patterns are observed

for structural motifs like α-helices or β-sheets. NOEs are usually interpreted as upper
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distance limits and not as absolute values, because the NOE intensity depends not only on

distance but also on internal motions and exchange. [55]

Residual Dipolar Couplings

For the sake of completeness, residual dipolar couplings (RDCs) as structural parameters

cannot be neglected here. RDCs could not be obtained for the peptides investigated in

this thesis and incorporated into structure calculations, as mainly natural abundance

peptides were used. Due to the low natural abundance of
15
N, about 0.3%, extremely high

concentrations would have been required to measure RDCs and this was not achievable.

In liquid-state NMR dipolar couplings, orientation dependent interactions through space

are averaged out due to molecular tumbling, as described above. Dipolar couplings can,

to some extent, be reintroduced by partial alignment along the external magnetic field,

this partially restricts the molecules in their isotropic tumbling and introduces a slight

preference orientation. The dipolar couplings are in the kHz range, but if an alignment is

induced for, e.g., 0.1% of the time, the dipolar coupling is accordingly reduced to a few Hz.

[50, 51, 77]

Partial alignment can be achieved by anisotropic media like liquid crystals, stretched

polyacrylamide gels, pf1 phages or poly-(ethylenglykol)-diacrylate (PEG-DA) gels. The

latter can be used for a wide range of molecules, from small organic molecules to proteins,

as their properties are adaptable. Besides, they tolerate a wide variety of solvents. [78–83]

The residual dipolar coupling is then proportional to the distance between the two

respective nuclei and, more importantly, the angle between their connecting vector and 𝐵0.

In contrast to NOE restraints, which only report on close proton pairs, RDCs can define

long-range orders. [51]

Dipolar couplings can be described by Equation 2.13, explained above. When RDCs

are measured, the distance between the two nuclei is generally assumed constant. Thus,

the coupling constant depends on the angle between the external magnetic field and

internuclear vector only:

𝐷𝑖 𝑗 = −ℏ𝛾𝐼𝛾𝑆𝜇0

16𝜋2𝑟 3

𝐼𝑆

(
3

〈
𝑐𝑜𝑠2𝜃

〉
− 1

)
(2.16)

This angle is averaged over time, but as the vectors are oriented for a small fraction of

the time, as explained above, the mean value is not zero. 𝐷𝑖 𝑗 cannot be measured directly,

but as it adds to the scalar coupling, it can be derived from the difference of coupling

constants obtained in an istotropic and an anisotropic spectrum. [58]

In labelled proteins especially, various
1
H-

13
C and

1
H-

15
N RDCs can be obtained.

1
H-

15
N

RDCs are usually measured with an alignment in the range of -20 Hz to +20 Hz. RDCs

also report on dynamics, as motions in a picosecond to millisecond time range can alter

the dipolar splitting. [84–90]
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2.2. Protein Structure Determination by NMR

Structure determination by liquid-state NMR essentially follows the same principle. Re-

straints are derived from a set of NMR spectra, which are in most cases be NOEs from

which distances between proton pairs are calculated. Additionally, dihedral angles can be

estimated from backbone chemical shifts. Based on these restraints, the three-dimensional

structure is calculated. The individual steps are explained more closely in the following

sections.

Resonance Assignment

The first step on the path to three-dimensional structures is the assignment of resonances to

the respective nuclei in the protein. Small, unlabelled proteins and peptides can be assigned

using a combination of 2D-
1
H-

1
H-TOCSY (Total Correlation Spectroscopy) (or COSY

(Correlated Spectroscopy )) and 2D-
1
H-

1
H-NOESY (Nuclear Overhauser Enhancement

Spectroscopy) experiments. This is the oldest method used before isotope labelling was

introduced. For isotope labelled proteins, a series of triple resonance experiments has been

developed for easy and unambiguous assignment. [68, 91]

COSY and TOCSY rely on magnetization transfer via scalar couplings. In COSY spectra,

only correlations between spins connected by two or three bonds (
2
J and

3
J) are obtained,

while in TOCSY experiments the magnetization is transferred over the entire spin system.

In biomolecular NMR, each amino acid can generally be considered as an isolated spin

system, as at least four bonds separate the protons of neighbouring amino acids. [92–94]

Figure 2.3. Assignment based on TOCSY and NOESY spectra: Resonances visible in the

TOCSY (light blue) spectrum are present in the NOESY (dark blue) spectrum as well. The

NOESY shows additional peaks corresponding to HN of the current amino acid (i) and Hα

of the preceding one (i-1). This connection is indicated by solid lines. By following this

"sequential walk", the amino acid chain of a protein can be assigned one after the other.

These individual spin systems can be linked by NOESY spectra. Signals between Hα,i and

the amide proton of the following residue (HN,i+1) are generally close enough to experience

a NOE. In Figure 2.3 the so called "sequential walk", initially described by Kurt Wüthrich,

is shown. The corresponding
13
C and

15
N resonances can be identified in the respective
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HSQC spectra. They cannot be directly linked by triple resonance experiments as the

protein is unlabelled and concentrations of a few mM are generally too low.[68, 95, 96]

Triple Resonance Experiments

With increasing protein size, growing peak overlap progressively complicates unambiguous

resonance assignment. To overcome this problem, triple resonance experiments are used

that significantly reduce signal overlap by introducing a third dimension.

Figure 2.4. Average coupling constants between the different nuclei in the protein:
Schematic representation of the protein backbone spin systems with the

1
J and

2
J coupling

constants used in tripleresonance experiments. [97] Reprinted from Progress in Nuclear Magnetic Resonance Spectroscopy,

34, M. Sattler et al., Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients, pp.

93-158 (1999), with permission from Elsevier

In triple resonance experiments magnetization is transferred via
1
J and

2
J scalar cou-

plings between
1
H,

13
C and

15
N. The respective coupling constants are shown in Figure 2.4.

As the scalar couplings are usually larger than the linewidth, coherence transfer is efficient

even for large molecules. Furthermore, as the coupling constants are quite different for dif-

ferent pairs of nuclei, magnetization can be transferred selectively between the respective

types of nuclei. This principle was first applied in 1990 to calmodulin. [97–99]

One distinguishes between the experiments used for assignment and those needed to

obtain structural data. The most basic experiments used for sequential protein backbone

resonance assignment are HNCA, HN(CO)CA andHNCO. The HNCA-experiment allows to

correlate
1
HN,

15
N and

13
Cα resonances of the same amino acid to its preceeding neighbour

in a three-dimensional spectrum. Magnetization is transferred from
1
H to

15
N, then to

13
Cα, and back via

15
N to

1
H. This results in two

13
Cα resonances, as the Cα-N J-coupling

has a similar value for both cases, within the residue (∼11 Hz) and to its preceding residue

(∼ 7 Hz) (see Figure 2.4). In the HN(CO)CA experiments, in contrast, magnetization is

transferred via the carbonyl
13
C to the

13
Cα of the preceding amino acid in an unambiguous

way. By combining the two spectra, Cα,i and Cα,i-1 can be clearly distinguished and the

backbone residues can be sequentially assigned, as depicted in Figure 2.5. [99–103]

HNCACB and HN(CO)CACB experiments follow the same principle but correlate one

further piece of information, the
13
Cβ chemical shift. These experiments are generally

less sensitive than HNCA and HN(CO)CA and require considerably longer acquisition

times. Further experiments like HBHA(CO)HN (
1
HN-

15
N correlated to

1
Hα and

1
Hβ of

13



2. Biomolecular NMR Spectroscopy

Figure 2.5. Resonance assignment path based on triple resonance experiments:
Schematic representation of

15
N slices of 3D experiments. HNCA (dark blue) shows peaks

at the HN (and N) frequency of a given amino acid (i) for the Cα of the same residue (i) and

the Cα of the preceding residue (i-1), while the HN(CO)CA (light blue) exclusively shows a

cross peak to the preceding residue. The combination of these two spectra allows to follow

a path along the backbone resonances.

the preceding residue) or CC(CO)NH (
1
HN-

15
N correlated to all side chain carbons of the

preceding amino acid) allow assignments of most of the remaining proton resonances.

[101, 104, 105]

Distance restraints for structure calculation derived from three-dimensional
13
C and

15
N

edited NOESY-HSQC spectra are the main source of structural information. [106–109] The

2D-NOESY is expanded by a third dimension to alleviate spectral overlap. This dimension

(
15
N or

13
C) correlates a proton with its attached heteroatom before it cross relaxes to a

neighbouring proton and gives rise to a NOE.

Three-dimensional Structure Calculation

Simulated Annealing

For structure calculation based on NMR restraints simulated annealing (SA) [110, 111] can

be used. Annealing in general refers to a physical process: a solid is heated until it reaches

the liquid phase. In this state, all particles are randomly distributed. When the system is

cooled down slowly, the particles arrange themselves in the state with the lowest energy.

Simulated annealing adapts this principle to structure calculations: The starting structure

is heated up slowly until it reaches liquid phase. In this state all particles are randomly

distributed and each atom has a high velocity, respectively kinetic energy. At this stage the

atoms can move almost freely, overcoming energy barriers due to bonds, dihedral angles,

and interactions with neighbouring atoms. When the temperature is gradually diminished

in many discrete cooling steps, the atoms slow down and interactions like Van der Waals

forces and chemical bonds become more and more important. In these steps, gradually

distance restraints come into play and exert their ordering influence. Multiple phases of

successive heating and cooling allow to overcome local energy barriers and the structure

to converge to the energetically favoured conformation. [112]

Due to the usually much larger number of adjustable variables compared to the number

of atoms in the molecule, numerous local energy minima exist besides the global minimum

14



2.2. Protein Structure Determination by NMR

[113]. With SA, local energy barriers can be crossed. Thus, a greater share of the energy

landscape can be explored, hopefully leading to the global energy minimum.

The target function 𝐸, with 𝐸 being the equivalent of potential energy in the system is

defined as

𝐸 = 𝐸𝑐ℎ𝑒𝑚 + 𝐸𝑑𝑎𝑡𝑎 =
∑︁
𝑖

𝑤𝑖𝐸𝑖 (2.17)

where 𝐸𝑐ℎ𝑒𝑚 comprises empirical contributions of geometrical properties like covalent

bonds, bond angles, dihedral angles and other bonded and non-bonded interactions, based

on a molecular modelling force field [114]:

𝐸𝑐ℎ𝑒𝑚 = 𝑤𝑏𝑜𝑛𝑑𝐸𝑏𝑜𝑛𝑑 +𝑤𝑎𝑛𝑔𝑙𝑒𝐸𝑎𝑛𝑔𝑙𝑒 +𝑤𝑑𝑖ℎ𝑒𝑑𝐸𝑑𝑖ℎ𝑒𝑑 +𝑤𝑖𝑚𝑝𝐸𝑖𝑚𝑝 +𝑤𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑𝐸𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 (2.18)

𝐸𝑑𝑎𝑡𝑎 in contrast contains energy contributions based on NMR data, like NOEs, dihedrals

or RDCs

𝐸𝑑𝑎𝑡𝑎 = 𝑤𝑁𝑂𝐸𝐸𝑁𝑂𝐸 +𝑤𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 +𝑤𝑅𝐷𝐶𝐸𝑅𝐷𝐶 (2.19)

To balance forces, each energy contribution is scaled with a weighting factor (𝑤𝑖 ) that

is determined by independent protocols [115]. The single energy contributions of the

experimental parameters are defined as

𝐸𝑁𝑂𝐸 = 𝑘𝑁𝑂𝐸

∑︁
𝑁𝑂𝐸

(𝑑 − 𝑑0)2
(2.20)

𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 = 𝑘𝑡𝑜𝑟𝑠𝑖𝑜𝑛

∑︁
𝑡𝑜𝑟𝑠𝑖𝑜𝑛

(𝜃 − 𝜃0)2
(2.21)

with 𝑑 and 𝜃 being the distance and torsion angle of the distances in the calculated

structure while 𝑑0 and 𝜃0 are the experimentally determined values. 𝑘𝑁𝑂𝐸 and 𝑘𝑡𝑜𝑟𝑠𝑖𝑜𝑛
are the respective force constants. When | (𝜃 − 𝜃0) | and | (𝑑 − 𝑑0) | are smaller than the

respective error margins in the case of flat bottom potential, the corresponding energy is

set to 0. [58, 112, 113]

As the distances derived from NOE cross peak volumes are generally only approxima-

tions, an interval defined by upper and lower distance limits is used. The energy is then

described as a harmonic potential with zero energy between the limits [68]. Dihedral angle

and RDC restraints are treated accordingly.

Ambiguous Distance Restraints

Due to the large number of NOE contacts within a protein, peak overlap in the NOESY-

spectra cannot be avoided. Thus, a single NOE can contain contributions of many interac-

tions and the size of each is a priori not known. ARIA is a program to automatically assign

NOESY peaks and calculate structures by simulated annealing [116–118]. To untangle
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ambiguous distance restraints, an effective distance 𝐷̄ is calculated as the sum of the

inverse sixth power of all distances contributing to the signal volume:

𝐷 =

(
𝑁𝑐∑︁
𝑐=1

𝑑−6

𝑐

)
(2.22)

where 𝑁𝑐 runs over all possible assignments with 𝑑𝑐 , the corresponding distance. The

resulting 𝐷 is always smaller than the individual distance contributions as the reciprocal

of the sixth power of the distances is used. In an iterative process, the assignments

and distances are refined and a structural ensemble is calculated. The consistency of

assignments is evaluated and the assignment ambiguity is accordingly reduced for the

next iteration. [119]

Spin Diffusion

Long NOE mixing times theoretically result in higher peak intensities, but the signal inten-

sities are adulterated by spin diffusion. Spin diffusion refers to the transfer of magnetization

via indirect pathways, usually resulting in too elevated intensities.

Assuming a three-spin system in which spins 𝐼1 and 𝐼3 are too far apart to experience

direct magnetization transfer via cross-relaxation, but cross-relaxation between 𝐼1 and 𝐼2
and between 𝐼2 and 𝐼3 takes place, spin diffusion can cause indirect magnetization transfer

between spins 𝐼1 and 𝐼3 via 𝐼2. That leads to a cross peak between 𝐼1 and 𝐼3 in the spectrum.

In addition, back transfer can occur, for example 𝐼1 → 𝐼2 → 𝐼1, which decreases the

intensity of the cross peak between 𝐼1 and 𝐼2. Thus, spin diffusion leads to increased cross

peak intensities of spins far apart and decreased cross peak intensity of spins close together,

resulting in inaccurate distance restraints. Spin diffusion effects can be avoided by short

mixing times, but this leads to overall low NOE intensities. [58]

The calculation of a relaxation matrix, as incorporated in ARIA, allows to compensate

for cross-relaxation effects. This calculation requires information on the mixing time, the

rotational correlation time and the spectrometer frequency. To account for errors in the

assignment or miscalculated distances arising from conformational dynamics, restraints

exceeding a certain difference between input distances and recalculated distance in a larger

share of the calculated structure, are removed for further iterations [120, 121].

Structure Validation

Structures based on NMR restraints result in a bundle of conformations. These conformers

all fulfil the input data, but reflect a certain uncertainty because soft restraints, namely

upper and lower bounds are applied. Thus, deviations between the single structures of a

bundle do not necessarily imply dynamics, but simply report on all conformations that are

compatible with the distance restraints. A subset is selected from this structural ensemble

to account for unphysiological structures within the structural bundle. This is based on an

energy cut-off.

The total number of NOE restraints applied should not be used as a criterion for the

quality of calculated structures. Many restraints are redundant, for example specific
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interresidual distances that are always in a certain distance range, such as between Hα

and HN of the same residue. Additionally, the number of NOEs depends on the number of

amino acids, the amino acid type and the secondary and tertiary structure of the protein.

And lastly, due to conformational dynamics, NOEs that might be expected for a static

model may not be observable. [120]

The uncertainty in the obtained molecular coordinates of a NMR-based structural en-

semble can be described by the root mean square deviation (RMSD). One has to distinguish

between precision and accuracy. Accuracy is the closeness of the obtained structures

to the true structure, while precision describes the closeness of one single value to the

mean of all values. In the context of structure calculation, this describes how well a given

structure within the bundle superimposes with the mean structure. Presuming accuracy

is quite good, precision describes how the experimental values are spread around the

true values. There are three possible scenarios that all lead to different errors. When the

experimental values are too precise, the true variance is underestimated. This might result

in a bundle of perfectly overlaying structures that does not contain information on all

accessible conformations. When the variance of physical errors is larger than the true

variance, the structures are less precise and result in a bundle that probably envelopes the

true structure in a too wide range. In the ideal case, the spread of experimental values

resemble the true values. [120, 122]

The second quality parameter is the geometric quality, this means errors or abnormalities

in the geometry have to be eliminated. There are different methods available. Bond lengths

and dihedral angles, for example, can be compared with reference values to identify outliers.

[123–125]

2.3. Protein Dynamics Accessible by Liquid-State NMR

Figure 2.6. NMR accessible time scales of protein motion: By liquid-state NMR protein

dynamics can be measured on a timescale of 18 orders of magnitude by a variety of

experiments. [126] Reprinted from Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1814, I. Kleckner & M. Foster, An introduction to

NMR-based approaches for measuring protein dynamics, pp. 942-968 (2011), with permission from Elsevier.

Dynamics play an important role regarding the biological function of proteins. Structural

fluctuations occur in many processes like protein folding, enzymatic catalysis and protein

regulation. A variety of NMR methods allow to access a broad range of motions on a

timescale ranging from picoseconds to several seconds or even hours, as depicted in

Figure 2.6. The great advantage of NMR as a tool to probe protein dynamics is that, in
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contrast to methods such as fluorescence based methods, many nuclei can be observed

simultaneously. [127]

Rotational Correlation Time 𝜏𝑐

The time required for a molecule to tumble by one radian due to Brownian motion is

called the rotational correlation time 𝜏𝑐 . It depends on the molecular mass and shape of

the protein, the viscosity of the solvent 𝜂𝑊 and the temperature𝑇 . 𝜏𝑐 can be approximated

by Stoke’s law presuming a globular protein with effective hydrodynamic radius 𝑟 3

𝐻
as

𝜏𝑐 =
4𝜋𝜂𝑊 𝑟

3

𝐻

3𝑘𝐵𝑇
(2.23)

The peak linewidth strongly depends on 𝜏𝑐 , as longer correlation times usually lead to

broader lines. 𝑇1 and 𝑇2 relaxation times are correlated to 𝜏𝑐 (see below). 𝑇1 describes the

recovery of z-magnetization to its equilibrium state and is due to interactions of spins

with their environment. 𝑇2 is the decay of magnetization orthogonal to the z-axis to its

zero equilibrium value.

𝑇2 decreases almost linearly with 𝜏𝑐 , see Figure 2.7.

Figure 2.7. T1 and T2 relaxation times depend on the correlation time 𝜏𝑐 : Large, slowly
tumbling molecules exhibit short T2 times. Taken from [128].

The linewidth at half height (Δ𝜈1/2) of a signal depends on 𝑇2 as

Δ𝜈1/2 =
1

𝜋𝑇2

(2.24)

and 𝑇2 in turn is small for large, slowly tumbling molecules with long 𝜏𝑐 . This results in

very broad lines for large molecules like proteins. [55, 58]

Slow Exchange: 𝜏𝑒𝑥 > 1𝑠

Chemical shifts depend on protein structure, as explained above. When a protein exists in

two conformations, each is characterized by a distinct set of chemical shifts. For a given
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2.3. Protein Dynamics Accessible by Liquid-State NMR

Figure 2.8. Chemical exchange processes and their influence on the NMR observables:
(a) The exchange of two states A and B can be described by the respective rate constants kA

and kB. The populations of both states depend on the ratio of the respective rate constant

and the sum of kA and kB. PA+PB=1. (b) The influence of various kex on spectra of two

differently populated states with Δ𝜈=100 Hz. In the slow exchange regime signals of

both states are sharp and separated by Δ𝜈 . The peak intensities are corresponding to the

relative population of both states. In the intermediate exchange regime, depending on the

exchange rates, the two peaks approach each other and experience severe linebroadening

until eventually the two peaks merge in one signal. In the fast exchange regime this one

signal is sharp again, its position, intensity and linewidth are determined by the relative

populations of both states. [126] Reprinted from Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1814, I. Kleckner & M.

Foster, An introduction to NMR-based approaches for measuring protein dynamics, pp. 942-968 (2011), with permission from Elsevier.

19



2. Biomolecular NMR Spectroscopy

nucleus these signals are separated by Δ𝜈 and characterized by their intensities depending

on the relative populations of both states. As long as Δ𝜈 is much larger than the exchange

rate 𝑘𝑒𝑥 between the two states, two separate, sharp peaks can be distinguished in the

spectrum. This characterizes the slow exchange regime, as shown in Figure 2.8. Exchange

is simulated here with the following parameters: States A and B are interchanging with

the rates constants 𝑘𝐴 and 𝑘𝐵 . Their relative populations are 𝑃𝐴 = 75% and 𝑃𝐵 = 25%. The

exchange rate between the two states, 𝑘𝑒𝑥 = 1 𝐻𝑧 is much smaller than the frequency

separation, Δ𝜈 = 100 𝐻𝑧, of the signals corresponding to A and B. This results in signal

intensities according to the relative populations. The signals of both states, A and B,

are clearly visible, even though state B is only 25% populated. Processes in the slow

exchange regime comprise protein folding and solvent-hydrogen exchange or slightly

faster processes like domain movement or secondary structure interconversion [126, 129–

131].

Slow exchange can be followed by real-time NMR by perturbation of the system. When

a protein is titrated with a ligand and interactions are within the slow exchange regime, a

second set of peaks in addition to the resonances of the unbound protein appears, those

of the protein-ligand complex appears. With increasing ligand concentration, the peak

intensities of the unbound protein decrease while those of the complex increase. This can

be followed by a series of 2D-
1
H-

15
N-HSQC spectra. [58]

Fast Exchange: 𝜏𝑒𝑥 < 1𝑚𝑠

When two states are in the fast exchange regime, i. e. 𝑘𝑒𝑥 >> Δ𝜈 , the two states are no

longer distinguishable. As shown in Figure 2.8, only one sharp line at an average position

can be observed. Its chemical shift depends on the relative populations of the two states.

Applied to the example above, this means that titration of a protein with its ligand when

the unbound protein is in rapid exchange with the complex does not noticeably change

the linewidth or intensity of the protein resonances. As the ligand concentration increases,

they observed signals slowly shift because the chemical shift depends on the relative

populations of the free protein and the complex. Very fast dynamics in the picosecond to

nanosecond range can be indirectly probed by measuring
15
N relaxation times and the

heteronuclear Nuclear Overhauser Effect (hetNOE).
15
N relaxation is a method to probe

peptide bonds in proteins that can report on conformational exchange. However, not every

effect on
15
N relaxation must be due to conformational exchange. [127, 132, 133]

When global or internal motions induce the reorientation of the
1
H-

15
N bond vector of

a given spin pair, the local field fluctuates. This is to a first approximation due to dipolar

interactions between
1
H and

15
N. This interaction is averaged out by molecular tumbling.

But as these fluctuations are time-dependent and sensitive to external perturbations by

radio-frequency pulses, their relaxation rates report on dynamic parameters. With
15
N

relaxation experiments either spin-lattice relaxation, 𝑇1, or spin-spin relaxation, 𝑇2, can be

monitored.

𝑇1 can be calculated by fitting an exponential function to the observed decay of the

signal intensity 𝐼 (𝑡). For small proteins the rate constant 𝑅1 = 1/𝑇1 is between 0.5 and 5

Hz.
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𝐼 (𝑡) = 𝐼 (0) (1 − 𝑒𝑥𝑝 (−𝑅1𝑡)) (2.25)

Transverse relaxation or spin-spin relaxation, 𝑇2 is the loss of phase coherence in the

𝑥-𝑦-plane mainly caused by spin-spin interactions and field inhomogeneities. The rate

constant 𝑅2 = 1/𝑇2 typically ranges from 5 to 50 kHz.

𝐼 (𝑡) = 𝐼 (0) 𝑒𝑥𝑝 (𝑅2𝑡) (2.26)

The main determinant of 𝑇2 in proteins is the correlation time 𝜏𝑐 . This in turn depends

on protein size and shape, as described above. Short rotational correlation times result in

long 𝑇2 times, while slow tumbling gives short 𝑇2 times as shown in Figure 2.7.

The hetNOE is a method to quantify thermal fluctuations in the protein. It relies on

magnetization transfer between
1
HN and the directly bound

15
N. Unfolded or unstructured

domains, due to their short correlation times, result in signals of opposite sign and can

therefore be identified easily. The HetNOE depends on the gyromagnetic ratios of
1
H and

15
N, 𝛾𝐻 and 𝛾𝑁 , their NOE 𝜎𝑁𝐻 and the 𝑇1 rate constant 𝑅1. [134]

𝐻𝑒𝑡𝑁𝑂𝐸 = 1 + 𝛾𝐻
𝛾𝑁

𝜎𝑁𝐻

𝑅1

(2.27)

The combination of the three parameters, 𝑅1, 𝑅2 and hetNOE allows the fast motion of

N-H bonds of each amino acid to be studied.

A spectral density function 𝑗 (𝜔) of each bond vector is determined. The spectral density

gives the amount of motion for a given frequency and is defined as the Fourier transform

of the correlation function 𝐶 (𝜏) that describes the time-dependence of bond reorientation.

The correlation functions results from the bond vector orientation at t=0 and its value at

another time point.

The "model-free" formalism, introduced by Lipari & Szabo, allows to discriminate the

individual motion of the H-N vector from the contribution of overall molecular tumbling.

It is a variant of the spectral density function

𝑗 (𝜔) = 2𝜏𝑐

1 + 𝜔2

0
𝜏2

𝑐

(2.28)

extended by an order parameter 𝑆2
that describes the amplitude of internal motions or

the degree to which information on the orientation of the H-N bond vector is lost due to

dynamics processes

𝑗 (𝜔) = 𝑆2
𝜏𝑚

1 + (𝜔𝜏𝑚)2
+ (1 − 𝑆2) 𝜏

1 + (𝜔𝜏)2
(2.29)

with 𝜏−1 = 𝜏−1

𝑚 + 𝜏−1

𝑒 . Thus, the relaxation rate depends on three paramters: 𝜏𝑚 , the overall

correlation time, 𝜏𝑒 the
1
H-

15
N internal correlation time and the order paramter 𝑆2

that

describes the amplitude of internal motions. When the internal motion is very fast, 𝜏𝑒
approaches 0 and when there is no internal motion at al, S

2
approaches 1. 𝑆2

can adopt

values between 1 and 0, while 1 refers to a completely rigid bond. With the increasing
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amplitude of internal motion 𝑆2
decreases. By

15
N relaxation, both, amplitude 𝑆2

and

timescale 𝜏𝑒 can be determined. S
2
allows to discriminate between rigid and mobile motifs

within a protein, while 𝜏𝑒 reports on sites where local dynamics occur.

Intermediate to Fast Exchange

When 𝑘𝑒𝑥 approximates the difference between the two frequencies, Δ𝜈 , signals approach
each other and get broader and the lower populated state might not be observable any

more, as indicated in Figure 2.6(b). This is called "intermediate exchange regime". With

increasing exchange rate the two signals are shifted towards each other until they merge in

one broad signal when 𝑘𝑒𝑥/Δ𝜈 = 1, this phenomenon is called coalescence. If the states are

differently populated, it happens that one signal is not observable even before coalescence,

as it is not distinguishable from the noise due to linebroadening. [126, 129] Employing the

example of a protein that is titrated with a ligand once more, the processes can be described

as follows: The signals of the free protein get broader with increasing ligand concentration.

When the concentrations of free protein and the complex are almost equal, the protein

signal disappears due to linebroadening. At some point, when ligand concentrations are

even higher, the protein signal reappears, possible at another position. [58] The position

of the intermediate signal can be predicted by the McConnell equations, which are an

extension of the Bloch equations taking chemical exchange into account [135].

A popular method to measure intermediate to fast exchange is based on a principle

already introduced in the 1950s by Erwin Hahn: the Spin Echo [136]. CPMG (Carr-Purcell

Meiboom-Gill) relaxation dispersion uses the spin echo to gain information on relative

populations of the states and exchange rates on a micro- to milliseconds timescale [137,

138]. During a fixed time interval a variable number of refocusing pulses is applied, the

so-calle "spin echo" element that consists of two delays 𝜏 enclosing a 180° refocusing

pulse. With every refocusing pulse, chemical shift evolution is inverted. When the rate

of refocusing pulses (𝜈𝐶𝑃𝑀𝐺 ) is slower than interconversion between the two different

states, dephasing and thus linebroadening occurs, because chemical evolution is not fully

refocused. When 𝜈𝐶𝑃𝑀𝐺 is faster than the exchange the resulting signal can be even

narrower as interconversion is reduced. The exchange parameters can then be deduced

from the dependence of linewidth on 𝜈𝐶𝑃𝑀𝐺 . [129, 139] The value determined is the

exchange contribution (𝑅𝑒𝑥 ) to the transverse relaxation rate 𝑅𝑜𝑏𝑠
2

𝑅𝑜𝑏𝑠
2

= 𝑅𝑒𝑥 + 𝑅0

2
(2.30)

𝑅𝑒𝑥 in turn depends on the population of states A and B, 𝑃𝐴 and 𝑃𝐵 , chemical shift

difference Δ𝜈 or the difference in frequency Δ𝜔2

𝐴𝐵
, the exchange rate constant 𝑘𝑒𝑥 (or its

reciprocal 𝜏𝑒𝑥 ) and pulse frequency 𝜈𝐶𝑃𝑀𝐺 = 1/(4𝜏) [140]:

𝑅𝑒𝑥 = (1 − 4𝜈𝐶𝑃𝑀𝐺𝜏𝑒𝑥 )𝑃𝐴𝑃𝐵Δ𝜔2

𝐴𝐵𝜏𝑒𝑥 (2.31)
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Over a series of spectra 𝜈𝐶𝑃𝑀𝐺 is varied during a constant total time𝑇𝐶𝑃𝑀𝐺 . The observed

signal intensity can be used to calculate 𝑅2

𝑜𝑏𝑠
:

𝑅𝑜𝑏𝑠
2

(𝜈𝐶𝑃𝑀𝐺 ) =
−𝑙𝑛 𝐼 (𝜈𝐶𝑃𝑀𝐺 )

𝐼0

𝑇𝐶𝑃𝑀𝐺
(2.32)

The obtained 𝑅𝑜𝑏𝑠
2

can then be used to determine 𝑅0

2
, 𝑘𝑒𝑥 , 𝑃𝐴 and 𝑃𝐵 and the frequency

difference between the two states Δ𝜔 . The Carver-Richards equations are applicable for
any exchange regime while the simpler Ishima-Torchia equation can be used for skewed

populations (𝑃𝐴 << 𝑃𝐵) and the fast exchange equation for the case when 𝑘𝑒𝑥 > Δ𝜈 . [55,
58, 141]

Hydrogen-Deuterium Exchange

Hydrogen-deuterium exchange (HDX) is a long established method to monitor slow

dynamics that are correlated to hydrogen bonds. Hydrogen-deuterium exchange can be

measured by a series of spectra in real time. Fully protonated proteins are dissolved in

deuterated solvent and a set of
1
H-

15
N-HSQC or

1
H-

1
H-TOCSY spectra is acquired. As in

liquid-state NMR spectroscopy usually
1
H are observable whilst D are not, the successive

exchange of hydrogen against deuterium leads to decreasing signal intensity with time.

This can be approximated by an exponential function with the exchange rate constant kex:

𝐼𝑡 = 𝐼0𝑒
−𝑘𝑒𝑥 𝑡

(2.33)

The standard model states that every hydrogen bond can exist either in a closed (𝑁 −𝐻 )𝐶
or in an open (𝑁 −𝐻 )𝑂 state. Exchange can only occur in the open state with the exchange

rate 𝑘𝑖𝑛𝑡 . The scheme then is as follows:

(𝑁 − 𝐻 )𝐶
𝑘𝑜𝑝

⇌
𝑘𝑐𝑙

(𝑁 − 𝐻 )𝑂
𝑘𝑖𝑛𝑡−→ (𝑁 − 𝐷)𝑂

When the structure is relatively stable, 𝑘𝑐𝑙 > 𝑘𝑜𝑝 and reclosing is faster than exchange

(𝑘𝑐𝑙 > 𝑘𝑖𝑛𝑡 ), the exchange rate depends on the fraction of time the open form exists:

𝑘𝑒𝑥 =
𝐾𝑜𝑝

1 + 𝐾𝑜𝑝𝑘𝑐ℎ

with the opening equilibrium constant 𝐾𝑜𝑝 [142].

The underlying mechanism, admittedly, remains unclear and data should be interpreted

with caution. Exchange is catalysed by hydroxide ions under most conditions. The rate

depends on steric effects of secondary structure and side-chains of neighbouring residues

[143]. Exchange rates are fast for unstructured, completely solvent-exposed amide protons.

In the base catalysed regime the exchange rate is pD dependent in a simple manner.

Increase of pD by one unit enhances exchange approximately by a factor of ten. Thus, a

broad range of exchange rates can be covered by measurements at different pD values

[144].
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3. Materials and Methods

3.1. Peptides

Synthetic Peptides

Synthetic peptides were purchased from Core Unit Peptid - Technologien, Leipzig. THe

sequences are given below:

30 40 50
APP26-55 SNKGA IIGLMVGGVV IATVIVITLV MLKKK
APP26-55, 8lab SNKGA IIGLMVGGVV IATVIVITLV MLKKK
G38L SNKGA IIGLMVGLVV IATVIVITLV MLKKK
G38P SNKGA IIGLMVGPVV IATVIVITLV MLKKK
V44M SNKGA IIGLMVGGVV IATMIVITLV MLKKK
I45T SNKGA IIGLMVGGVV IATVTVITLV MLKKK

10 20 30
PGAM5 WT2-36 AFRQALQLA ACGLAGGSAA VLFSAVAVGK PRAGGD
PGAM5 C12S AFRQALQLA ASGLAGGSAA VLFSAVAVGK PRAGGD
PGAM5 C12L AFRQALQLA ALGLAGGSAA VLFSAVAVGK PRAGGD
PGAM5 G17L AFRQALQLA ACGLAGLSAA VLFSAVAVGK PRAGGD
PGAM5 S18L AFRQALQLA ACGLAGGLAA VLFSAVAVGK PRAGGD

Cell-Free Expression Construct

APP0-55 WT was inserted in the Pivex2.3d vector that was kindly provided by Daniel Hus-

ter’s Lab, Leipzig. Pivex2.3d (Biotechrabbit, Hennigsdorf, Germany) is a plasmid designed

for cell-free expression and yields a C-terminal His-tag, T7 promotor and terminator,

ampicillin resistance and various restriction enzyme cleavage sites. The vector map is

given in the appendix (p. 151).

The APP0-55 expression construct:

0 10 20 30 40
APP0-55, cf M DAEFRHDSGY EVHHQKLVFF AEDVGSNKGA IIGLMVGGVV

50 60
IATVIVITLV MLKKKPGGGS HHHHHH
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3. Materials and Methods

3.2. Sample Preparation

Synthetic Peptides in TFE/H2O

The lyophilized peptide was dissolved in 500 µL 80% TFE-d2 and 20% H2O (V/V) by gentle

vortexing and supersonication. The sample concentration was set to 500 µM and pH values

were adjusted with HCl and NaOH. The sample was transferred to a 5 mm NMR tubes

and measured. APP WT TMD and mutants in TFE/H2O were measured at pH 7. PGAM5

WT TMD and mutants in TFE/H2O were measured at pH 5.

For hydrogen deuterium exchange experiments the peptide was dissolved in 80% TFE-d3

and 20% D2O to a final concentration of 500 µM. pD values were adjusted with DCl and

NaOD to 4.0, 5.0 and 6.5 respectively.

APP0-55, cf in DPC micelles

Following cell free expression and purification the lyophilized peptide and deuterated

dodecylphosphocholine (DPC-d38) were mixed, 180 µL NMR-buffer (see p. 153) was added.

The detergent to peptide ratio was set to 70:1.

Sample homogeneity was achieved by several freeze-thaw cycles (15 minutes at -20 °C,

15 minutes at 37 °C in the ultrasonic bath). The sample was transferred to 3 mm NMR

tubes (Norell® Select Series™ 3 mm high-throughput NMR tube) and measured.

3.3. NMR Data Acquisition and Resonance Assignment

Spectrometer

All spectra were acquired on a 600 MHz Bruker Avance III spectrometer, equipped with a

CPTCI cryogenically cooled probehead (Bruker BioSpin GmbH, Rheinstetten, Germany).

Pulse Sequences

The following pulse sequences were used:
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3.4. Structure Calculation Based on NMR Restraints

𝑧𝑔𝑔𝑝𝑤5
1
H 1D [145]

𝑑𝑖𝑝𝑠𝑖2𝑔𝑝𝑝ℎ𝑝𝑟 1
H-

1
H-TOCSY 2D

𝑛𝑜𝑒𝑠𝑦𝑔𝑝𝑝ℎ𝑝𝑟 1
H-

1
H-NOESY 2D [146, 147]

ℎ𝑠𝑞𝑐𝑒𝑡𝑔𝑝 1
H-

13
C-HSQC 2D

𝑐𝑙𝑖𝑝𝑐𝑜𝑠𝑦19.𝑚𝑘 1
H-

1
H-CLIP COSY 2D [148]

ℎ𝑠𝑞𝑐𝑒𝑡 𝑓 3𝑔𝑝𝑠𝑖 1
H-

15
N-HSQC 2D [149–151]

ℎ𝑠𝑞𝑐𝑐𝑡𝑒𝑡𝑔𝑝𝑠𝑖𝑠𝑝 constant time
1
H-

13
C-HSQC 2D

𝑏_ℎ𝑛𝑐𝑜𝑔𝑝3𝑑 HNCO 3D [152, 153]

𝑏_ℎ𝑛𝑐𝑜𝑐𝑎𝑔𝑝3𝑑 HN(CO)CA 3D [153]

𝑏_ℎ𝑛𝑐𝑎𝑔𝑝3𝑑 HNCA 3D [152, 153]

𝑏_ℎ𝑛𝑐𝑜𝑐𝑎𝑐𝑏𝑔𝑝3𝑑 HN(CO)CACAB 3D [153]

𝑏_ℎ𝑛𝑐𝑎𝑐𝑏𝑔𝑝3𝑑.2 HNCACB 3D [152, 153]

𝑛𝑜𝑒𝑠𝑦ℎ𝑠𝑞𝑐 𝑓 3𝑔𝑝𝑠𝑖3𝑑 NOESY-HSQC 3D [149–151]

𝑑𝑖𝑝𝑠𝑖ℎ𝑠𝑞𝑐 𝑓 3𝑔𝑝𝑠𝑖3𝑑 TOCSY-HSQC 3D [149–151]

Assignment of Unlabelled APP TMD in TFE/H2O

1
H-

15
N-HSQC,

1
H-

13
C-HSQC,

1
H-

1
H-TOCSY and

1
H-

1
H NOESY spectra were acquired at

300 K. For structure calculation longer
1
H-

1
H-NOESY spectra with 1000 increments in the

indirect dimension and 200 ms mixing time were acquired.

Spectra were processed using TopSpin (Bruker BioSpin, Rheinstetten, Germany). For

peak assignment and integration CCPN was used [154].

Assignment of labelled APP 0-55, cf in DPC

Besides
1
H-

15
N-HSQC and real-time

1
H-

13
C-HSQC experiments, a set of 3D experiments

at 320 K was acquired: HNCO, HNCA, HN(CO)CA, HNCACB and HN(CO)CACB.

Spectra were processed using TopSpin (Bruker BioSpin, Rheinstetten, Germany). For

peak assignment and integration CCPN was used [154].

3.4. Structure Calculation Based on NMR Restraints

Three-dimensional structures were calculated based on NOE constraints and dihedral

angles. Dihedral angles were obtained from TALOS+ [72]. NOESY peaks were integrated

and exported for structure calculation with CCPN [154]. Structures were then calculated

with ARIA2/CNS [118, 155, 156].

Peaks were assigned manually, no automated assignment was used. Seven iterations

with 200 structures each were calculated, the last iteration comprised 400 structures of

which the 20 best (lowest energy) were chosen. Spin diffusion correction was applied to

all calculations. Graphical representations of structures were created with PyMol (The

PyMOL Molecular Graphics System, ver. 2.3.4, Schrödinger, LLC, 2015).
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3. Materials and Methods

Determination of Kink and Swivel Angles

Kink θ and swivel angle ϕwere calculated using a script written in python by C. Muhle-

Goll. The kink angle was defined as the angle between the axis of the C-terminal and

the N-terminal helices. The swivel angle was calculated as the relative rotation of the

N-terminal helix around the C-terminal part. The axis through the C-terminal helix was

aligned along the z-axis and the x-axis was defined by the V46 Hα-Cα bond vector. The

swivel angle was then caluclated as the projection of the N-terminal helix axis onto the

x-y-plane [157].

3.5. Cell-Free Protein Expression

For cell-free protein expression APP0-55 gene sequence was transferred into the Pivex 2.3d

vector. pQE60 vector containing the full C99-sequence was obtained from Harald Steiner

(DZNE, Munich) and Pivex2.3d from Ulrike Krug (AK Prof. Huster, University of Leipzig).

Polymerase Chain Reaction

PCR standard mix and standard conditions are given in the appendix (p. 152). Primers

(sequences p. 151) were purchased from Eurofins Genomics, Ebersberg, Germany; Pfu-

Polymerase was purchased fromNew England Biolabs (Ipswich, MA, USA). After PCRDNA

was purified using the peqGold CyclePure Kit (VWR Peqlab), then PCR fragments were

separated from residual primers and template DNA by agarose gel electrophoresis (2% low

melt agarose, TAE-buffer (p. 153) and SybrGreen) and subsequent gel extraction with the

QIAquick Gel Extraction Kit (Quiagen, Hilden, Germany). Afterwards followed a second

purification step using the peqGold CyclePure Kit to remove EDTA from TAE-buffer.

Restriction Enzyme Digestion

The used restriction enzymes, NcoI and SmaI, were purchased from New England Biolabs

(Ipswich, MA, USA). Digest of empty Pivex2.3d and PCR product was carried out at 37 °C

for two hours (digestion mix see p. 152). CutSmart®Buffer recommended by NEB for both

enzymes was used. Afterwards Antarctic Phosphatase (New England Biolabs,Ipswich, MA,

USA) was added to the plasmid containing batch and the mixture was incubated further 30

minutes. Both batches, PCR product and plasmid were purified, again using the peqGold

CyclePure Kit.

Ligation

Ligation with T4 DNA-Ligase from New England Biolabs (Ipswich, MA, USA) was carried

out for 45 minutes at room temperature (see p. A.1).
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3.5. Cell-Free Protein Expression

Transformation

For transformation 50 µL NEB®5-alpha Competent E.coli were thawed on ice for 10

minutes and then incubated with 1 µL purified vector on ice for 30 minutes. Heat shock

was carried out in a water bath at 42 °C for 45 s, the mixture was cooled down on ice for

five more minutes. 800 µL SOC medium (see appendix p. 153) were added and the batch

was incubated with gently shaking at 37 °C for 60 min. 200 µL of the mixture were spread

onto a selection plate with ampicillin (1:1000) and incubated at 37 °C over night.

Colony PCR

To preselect colonies carrying the desired vector colony PCR was performed prior to

plasmid preparation and sequencing. The components and conditions are given in the

appendix (see p. A.1). To ensure cell disruption the initial denaturation step was extended

to ten minutes. PCR products were analysed by agarose gel electrophoresis, as above.

Positive colonies were picked.

Over Night Culture

Two or more flasks containing 10 ml LB medium (see standard recipe on p. 153) with

Ampicillin (1:1000) were inoculated with one colony each and incubated over night at

37 °C.

Small Scale Plasmid Preparation

Plasmid extraction and preparation was done with the PeqGold Plasmid Miniprep Kit

(VWR, Darmstadt, Germany). For final elution 50 µL sterile H2O was used.

Sequencing

Samples were sent to Eurofins Genomics (Eurofins Genomics, Ebersberg, Germany) for

sequencing.

Large Scale Plasmid Preparation for Cell-Free Protein Expression

For cell-free protein expression lare quantities of vector are needed. Therefore large scale

plasmid preparation was done. Transformation with the validated vector was done as

described above. 200 mL LB medium (see p. 153) with Ampicillin (1:1000) were inoculated

with the respective cells and incubated over night at 37 °C. Plasmid were isolated with the

PeqGold Plasmid Maxiprep Kit (VWR, Darmstadt, Germany). Final elution was done with

500 µL sterile H2O.

Solutions and Reagents for Cell-Free Protein Expression

S21 extracts were prepared following a protocol of Daniel Huster’s group in Leipzig,

Germany with the help of Ulrike Krug at their facilities.
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3. Materials and Methods

Solutions and reagents are given on pages 154 and 155 in the appendix. If not stated

otherwise all compounds are dissolved in H2O. Amino acid stocks were set to pH 7.4 with

KOH.

Amino Acid Mixtures

The individual compositions of the amino acid mixtures are next displayed next to the

respective CF-scheme.

Cell-Free Protein Expression

Cell-free protein expression was established from scratch to overcome problems emerging

with recombinant protein expression. It is a considerably faster, less labor-intensive and

easy to apply once alternative. As all amino acids are added separately special sample

requirements, for example
15
N,

13
C and/or 2D labelling can be achieved easily. Furthermore

the incorporation of unnatural amino acids is feasible.

APP0-55 was expressed using continuous exchange, precipitation based cell-free synthe-

sis.

Hydrophobic proteins like APP0-55 simply precipitate and can, at least in most cases,

remain correctly folded or will fold correctly upon solubilization.

Cell-Free Containers

Three different RM containers were used. For analytical scale expression 150 µL RM were

used. For preparative scale expressions one first a 650 µL container was used but for even

higher yield a 1 mL container was developed with the highest surface to volume ratio

achievable.

Cell-Free Setup

First the amino acid mix adjusted for the respective peptide was prepared. Then the

master mix (MM) was generated, this was used to prepare feeding mix (FM) and reaction

mix (RM). RM was prepared immediately before start of the expression and was kept

cool. Volumes were adjusted depending on the desired FM:RM ratio and the RM volume.

Reaction conditions varied from 30 to 34 °C in temperature and 20 to 22 h in duration.

Both cell extracts (P- and R-extract) were tried. One exemplary batch is given on the next

page. The others can be found in the appendix (pp. 158, 159, 160).

The membrane used had a molecular weight cutoff of 12 - 14 kDa (ZelluTrans/ROTH

T3). As precipitation based cell-free expression was used, diffusion of the peptide with

MW of about 4 kDa out of the RM did not occur despite the high MWCO.

An examplary setup is given on the next page. APP0-55 was expressed in precipitation

mode. Mg
2+

was 14 mM, K
+
was 240 mM. FM:RM was 12:1 and 1 mL RM was used. The

reaction was carried out for 21 h at 34 °C.
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3.3 mL

AA

ddH2O Ala 4.0 mM 1.00 mM 130

HEPES (pH 8.4) 2510 mM 100.00 mM 518 Arg 2.0 mM 0.50 mM 65

Mg(OAc)2 2021 mM 5.63 mM 36 Asn 1.0 mM 0.25 mM 33

KOAc 4002 mM 94.78 mM 308 Asp 6.0 mM 1.50 mM 195

PEG 8000 40.03 % m/V 2.00 % m/V 649 Cys 0.0 mM 0.00 mM 0

NaN3 10.25 % m/V 0.05 % m/V 63 Gln 1.0 mM 0.25 mM 33

Folinic acid 20.00 mg/mL 0.10 mg/mL 65 Glu 6.0 mM 1.50 mM 195

DTT 515 mM 2.00 mM 50 Gly 8.0 mM 2.00 mM 260

NTP 75.00 x 1.00 x 173 His 8.0 mM 2.00 mM 260

Complete 50.00 x 1.00 x 260 Ile 4.0 mM 1.00 mM 130

PEP 1016 mM 20.00 mM 256 Leu 4.0 mM 1.00 mM 130

AcP 1000 mM 20.00 mM 260 Lys 4.0 mM 1.00 mM 130

aa-Mix 4.00 mM 1.00 mM 1625 1625 Met 6.0 mM 1.50 mM 195

Mastermix 4028 237 Phe 3.0 mM 0.75 mM 98

S30 C buffer 1.00 x 0.35 x 4200 Pro 1.0 mM 0.25 mM 33

PK 2.40 mg/mL 0.04 mg/mL 17 Ser 3.0 mM 0.75 mM 98

tRNA 40.00 mg/mL 0.50 mg/mL 12.5 Thr 2.0 mM 0.50 mM 65

T7RNAP 200.00 U/µL 6.00 U/µL 30 Trp 0.0 mM 0.00 mM 0

RiboLock 40.00 U/µL 0.30 U/µL 7.5 Tyr 1.0 mM 0.25 mM 163

DNA 749.00 µg/mL 26.00 µg/mL 35 Val 8.0 mM 2.00 mM 260

S30-Extract 100.00 % 40.00 % 400 H2O 780

ND (MSP-buffer) 0.35 mM 0.00 mM 0 Total (µL) 3250

ddH2O 2147 262

Mg2+ 14 mM

K+ 280 mM

Plasmid 749 µg/mL Start

End

Pivex+APP, 

02.05.2019

AA µL

Cond.

15:00

Stock 

Concentration

Total (µL) 1000120004265

P-Extrakt, Nov 

18

APP MDAE P-CF 07.01.20, markiert FM:RM 12:1

Compound MM (µL) FM (µL) RM (µL)
Final 

Concentration

AA Mix ges

Stock c. Final c.

12:00

34 °C, 

100 rpm



3. Materials and Methods

Reaction Mix to Feeding Mix Ratios

Different reaction mix (RM) to feeding mix (FM) ratios were tested to find the best compro-

mise between high yields at reasonable consumption of expensive compounds like labelled

amino acids in the FM. FM:RM 8:1, 12:1, 17:1 and 20:1. As 8:1 resulted in significantly

lower amounts of peptide whereas 12:1, 17:1 and 20:1 did not lead to notably different

yields. Thus for large scale expressions FM:RM ratio of 12:1 was used.

Magnesia Concentrations

Cell-free expression is largely influenced byMg
2+
(and to a lesser extent K

+
) concentrations.

Mg
2+

can be adjusted by the amount of Mg(OAc)2 solution added while it has to be taken

into account that S30 C buffer and S30 extract already contain Mg
2+
. For this reason total

concentrations of 14 mM, 16 mM and 18 mM were tested. The best results were obtained

when using 14 mM Mg
2+
.

P- and R-Extract

Both cell extracts were tried. In the case of APP higher yields were obtained using P-extract.

Interestingly, within the scope of a Master’s Thesis [158] , cell-free expression of TNR12

was tried where R-extract lead to better results. Thus it seems to be dependent from the

construct which cell extract works better.

Detergent Based Cell-free Expression

In the context of the Master’s Thesis mentioned above detergent based cell-free expression

was tested as TNR12 did not provide as high yields as APP and seemed to form aggregates

that could not be dissolved.

Hein et al. suggest, amongst others, Brij-98 as detergent to use in cell-free expression

[159]. To improve protein folding Brij-98 was added in a final concentration of 1.7 mM

to the reaction mix for TNR12 expression. TNR12 was successfully incorporated into the

micelles but detergent exchange with detergents established for NMR spectroscopy, DPC

for example, was not easily achieved.

Disulphide Bond Formation

To prevent aggregation due to formation of unintentional disulphide bonds glutathione

can be added during cell-free expression [160]. The addition of oxidized and reduced

glutathione keeps newly forming disulphide bonds in equilibrium and promotes correct

folding. 1 mM oxidized and 4 mM reduced glutathione were added to the reaction mix

[158]. This seemed a promising approach for proteins with disulphide bonds but was not

applied to APP that does not contain cysteines.
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3.6. Circular Dichroism Spectroscopy

Purification

Due to the hydrophobic nature of the expressed peptides they precipitated in the RM,

what made purification easy. Peptides were harvested by centrifugation (10000 xg, 30

min, 4°C). Supernatant was discarded and the pellet was incubated with 500 µL CF wash

buffer (pp. 153) at 30 °C for 30 min. After a second centrifugation step the pellet was again

dissolved in 500 µL CF wash buffer (pp. 153), incubated again. Then a third centrifugation

step followed. The supernatant was discarded, the pellet resuspended in 200 µL H2O and

lyophilised.

Nanodisc Preparation and Assembly

MSP Expression and Purification

MSP1D1∆H5 expression was done according to the protocol published by Hagn et al. in

2017 [161]. pet28a-MSP1D1∆H5 plasmid was purchased from addgene (addgene, Water-

town, MA 02472,USA [162]).

Nanodisc Assembly

Nanodiscs were prepared following the protocol of Hagn et al. [161]. MSP1D1∆H5 was

concentrated to a final concentration of 500 µM. A 50 mM DMPC stock solution was

prepared in 100 mM cholate buffer. For nanodisc assembly the compounds were mixed as

follows:

Volume component final concentration

1.2 mL MSP-buffer

0.6 mL DMPC stock 10 mM

1.2 mL MSP1D1∆H5 200 µM

The mixture was incubated at room temperature for one hour. To remove detergents

Bio-Beads (Bio-Rad, Hercules, California) were added, incubated for one hour, then the

same amount of Bio-Beads was added and incubated for another two hours. After Bio-Bead

removal the solution was dialysed against MSP-buffer.

Cell-Free Protein Expression into Nanodiscs

Cell free expression of TNR12 into nanodiscs was tried (pipetting scheme p. 160). Nanodiscs

were assembled according to the procedure described above and dialysed against MSP

buffer without EDTA because EDTA might impair cell-free expression. Nanodiscs were

supplied at a final concentration of 0.05 mM.

After expression the RM was purified via Ni-NTA affinity chromatography following

the procedure described above. Buffer was exchanged against NMR buffer.

3.6. Circular Dichroism Spectroscopy

CD spectra were acquired on a JASCO J-810 spectrometer (Jasco, Pfrungstadt, Germany)

of IBG-2, KIT. Scanning mode was 10 nm/min, scanning speed 8s, data pitch 1 nm and
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3. Materials and Methods

three spectra were accumulated. Measured was circular dichroism (CD), voltage (HT)

and absorbance (Abs) from 180 to 250 nm. Sample concentratation was set to 50 µM and

pathlength was 1 mm.

Data was analysed using the BestSel online tool [163] [164].
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4. Amyloid Precursor Protein

4.1. Introduction

4.1.1. Alzheimer’s Disease

General Overview

Alzheimer’s disease (AD), that contributes to 60% to 80% of dementia cases [165] was first

described by Alois Alzheimer in 1906 [166]. In 2013, the G8 held the first dementia summit,

addressing dementia as a global health problem. One of the aims defined there was to find

a cure or therapy by 2025.

While dementia describes the loss of mental ability due to the damage or destruction of

neurons that interferes with daily life in general, Alzheimer’s is a specific brain disease

and thus a type of dementia. Common symptoms of AD are, at early stages, difficulties

remembering recent information, apathy and depression. With progression of the disease,

symptoms become more severe, such as problems with speaking, walking and swallowing.

In 2013, the diagnostic criteria of AD were updated to include alterations in the brain

before symptoms appear [167–170].

The main risk factor for dementia, and therefore AD, is age [171], with 15% of patients

being between 65 and 74 years old and 44% between 75 and 84. AD is relatively rare in

people who are younger than 65 [172]. While 1.9% of the German population suffered from

dementia in 2018, the number of AD patients is expected to reach almost 3.5% of the total

population in Germany within the next 30 years [172]. In the United States more than 25%

of deaths are due to AD [173]. The second risk factor is family history [174], as people

with relatives suffering from Alzheimer’s are more likely to develop the disease [175].

Whether this is due to genetic or rather environmental and lifestyle factors is unclear.

Another factor is the ε4 form of the APOE gene that increases risk of AD compared to its

other variants, especially at a younger age [176–179].

Indicators of AD in the Brain

In 1984, Glenner et al. isolated Amyloid beta (Aβ) peptides from the cerebrovascular

amyloid of a patient and unravelled their amino acid sequence [180]. One year later,

Masters et al. linked them to amyloid plaques when they determined the amino acid

sequence of Aβ in these plaques [181], which led to the identification of the gene encoding

for the β-amyloid precursor protein (APP) [182–185].

The two indicators of AD are the accumulation of Aβ fragments outside neurons in the

brain and tau protein tangles inside neurons, which ultimately lead to neuronal damage

and death [165]. Aβ plaques are believed to impair neuron-to-neuron communication and
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4. Amyloid Precursor Protein

tau tangles to prevent the transport of metabolites into neurons [165]. Amyloid plaques

result from the accumulation of Aβ peptides. These are the product of subsequent cleavage

of the β-amyloid precursor protein (APP), first by β-secretase and then by γ-secretase

[186].

The amyloid hypothesis dominated AD research in the last decades [187–190]: Normally,

Aβ is released from the cell and rapidly degraded. Under pathological conditions, however,

the Aβ fragments cannot be degraded but accumulate. The two main components of these

agglomerates are Aβ40, which is 40 amino acids long, and the more hydrophobic Aβ42,

which is two amino acids longer. Amyloid fibrils that mature into plaques are formed

when Aβ42 levels increase. These clusters then induce tau pathology and subsequently

neuronal cell death and neurodegeneration.

Early Onset Familial Alzheimer’s Disease

The vast majority (more than 90%) of AD cases are sporadic at older age [191]. Early onset

familial Alzheimer’s disease (FAD) leads to AD symptoms at unusually young age. This

form accounts for 1% to 6% of all AD cases. It is generally hereditary, and patients carrying

one of these mutations are not only more likely to develop AD, but literally guaranteed to

[192]. Mutations within three genes are known to cause FAD: APP, PSEN1 or PSEN2 genes.

Most mutations are found in the PSEN1 gene, which encodes for the catalytic subunit of

γ-secretase, presenilin (PSEN) [193].

AD Drug Development

Drug development concentrated on blocking Aβ formation. The inhibition of β-secretase

BACE1, which performs the first step of APP processing, alters APP cleavage and results in

peptide fragments other than Aβ [194]. The second promising drug target is γ-secretase, so

several so-called γ-secretase modulators (GSM) or inhibitors (GSI) are being investigated.

Two potential drug candidates, Semagacestat, which blocks APP and Notch cleavage

[195], and Avagacestat, which selectively prevents APP processing over Notch, have been

investigated in clinical trials [196]. Furthermore, allosteric GSIs were intended to impair

Aβ42 production [197]. The second large branch are anti-amyloid agents as, for example,

monoclonal antibodies targeting Aβ [198]. More recent developments concentrated on

targeting plaque formation in the early stages of the disease.

4.1.2. Amyloid Precursor Protein

The amyloid precursor protein, a central feature of Alzheimer’s disease [199], is the most

widely studied γ-secretase substrate on the basis of which proteolytic processing was

assessed.

APP is expressed in various tissues but is concentrated in the synapses of neurons [200].

Its precise function is not yet clear, but it has been shown to be involved in neural plasticity

[201] and regulation of synapse formation [202]. After synthesis in the endoplasmic

reticulum (ER), it is transported to the Golgi apparatus where it is modified. Subsequently,

it is transported to the cell surface via the secretory pathway [203]. It is also endocytosed
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from the cell surface and processed in the endosomal-lysosomal pathway [204]. APP

and Aβ have been found in mitochondria and have been implicated in mitochondrial

dysfunction [205, 206].

Figure 4.1. Summary of the different processing routes of APP: Full length APP is

incorporated into the cell membrane. It can be processed following two principal routes.

First, it is cleaved by either α-secretase or β-secretase, resulting in the formation of sAPPα

and C83 or sAPPβ and C99, respectively. C83 and C99 are then further processed by γ-

secretase, leading to the generation of p3 and AICD or Aβ and AICD. The AICD is released

into the cell, while p3 and Aβ are released to the extracellular space.

In neuronal cells, there are two major APP proteolysis pathways: The more prevalent

non-amyloidogenic pathway leading to small p3 peptides [207] and the amyloidogenic

pathway resulting in Aβ generation. Both pathways follow the same principle as depicted

in Figure 4.1. Following the non-amyloidogenic pathway, α-secretases initiate cleavage

by the ADAM-family metalloproteases ADAM10 or ADAM17 at or near the cell surface,

resulting in soluble sAPPα and membrane anchored C83 [208]. α-Secretase mediated

cleavage of APP has been observed in the trans-Golgi network, at the plasma membrane

and in endocytic compartments [209, 210]. The N-terminal fragment is released into the

intracellular space and the remaining membrane-anchored C83 is further cleaved twice by

γ-secretase, resulting in the release of APP intracellular domain (AICD) and the small p3

peptide (Aβ17-42) [211–215]. The p3 peptide might be neurotoxic as it has been shown to

induce apoptosis in cell cultures [216] and modulate inflammatory response [217]. sAPPα

was assumed to represent the primary physiological function of APP based on multiple

studies [218–220]. Its effect on neurons is generally assumed to be positive [221, 222]. C83

is a poorer substrate for γ-secretase than C99, which is generated via the amyloidogenic

pathway [223]. Therefore, the generation of C83 indirectly prevents Aβ production [224].

The amyloidogenic route shown in Figure 4.1 initiates with cleavage of APP by β-

secretase (BACE), releasing soluble sAPPβ and leaving membrane-anchored C99 [225–

228]. C99 is subsequently cleaved by γ-secretase at various cleavage sites, again following

multiple pathways. The first cleavage occurs at the so-called ε-cleavage site [229], which

is buried three or four residues inside the lipid bilayer on the cytosolic side. This generates

AICD, that is released into the cytosol, and a remaining membrane-anchored Aβ peptide.
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sAPPβ has been shown to exhibit neuroprotective effects like sAPPα but is less effective

[221]. C99 has been found to be toxic and to induce symptoms of AD [230, 231].

The AICD, which is the same in both pathways, assembles in a complex with the

adaptor proteins Fe65 and Tip60, translocates to the nucleus, and regulates apoptosis and

the transcription of genes such as KAI1, glycogen kinas-3β, neprilysin and p53 [213, 215,

232, 233].

Multiple pathways of C99 processing exist (Figure 4.2). Initial ε-cleavage can occur after

either residue L49 or T48, leading to Aβ49 and AICD49 or Aβ48 and AICD50 [229, 234, 235].

Subsequent tripeptide and to a lesser extent tetra- and pentapeptide cleavage result in

different Aβ species [236, 237]. Under normal conditions less than 10% of total Aβ is the

more aggregation-prone Aβ42 and about 90% of Aβ is Aβ40 [238–240].

Figure 4.2. Successive processing of C99 by γ-secretase: Left: The processing of C99

starts at the ε-cleavage site at either L49 or T48. Then, two or three tripeptide fragments are

removed, resulting in Aβ42 or Aβ40. Right: In addition to these two main routes, alternative

routes are possible. Aβ43 and Aβ42 can be further processed to Aβ38 or pathway transitions

may occur [241]. Reprinted from Seminars in Cell & Developmental Biology, 105, Funamoto et al., Successive cleavage of β-amyloid precursor protein

by γ-secretase, pp. 64-72 (2020), with permission from Elsevier.

Apart from these two major routes, interconversion between pathways is possible as

depicted in Figure 4.2. Thus, the final Aβ length is not strictly determined by the initial

ε-cleavage site, but a variety of paths are possible, resulting in all kinds of Aβ. In most

cases, C99 processing follows the main routes. [241, 242].

There is evidence that this tripeptide cleavage scheme holds true for other γ-secretase

substrates as well. Investigation of C83 processing showed that five different tripeptides

were released, also suggesting two product lines (unpublished observation in [243]). γ-

Secretase processing of APLP1 was found to produce three different, Aβ-like peptides

and the collocation of cleavage sites in the transmembrane domain (TMD) suggested

a tripeptide cleavage mechanism [244]. Accordingly, Notch1 proteolysis was found to

generate three or four amino acid long fragments [245] and Nβ fragments of varying

lengths (Nβ21, Nβ25) [246]. Cleavage site location resembled those of APP as well [247].

And, last but not least, PSEN autoproteolysis was also found to follow a tripeptide scheme

[248].
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APP TMD Structure

Four experimentally determined structures of APP TMD in membrane mimetics, shown in

Figure 4.3, were published.

Figure 4.3. APP TMD structures in micelles: From left to right: APP TMD monomer in

LPMG micelles (PDB: 2LP1; Barrett et al. [249]), APP TMD monomer in DPC micelles (PDB:

2LLM; Nadezhdin et al. [250]), left-handed APP TMD dimer in DPC micelles (PDB: 2LOH;

Nadezhdin et al. [251]), right-handed APP TMD dimer in DPC micelles (PDC: 2LZ3; Chen

et al. [252])

Barrett et al. observed a monomeric, highly curved structure in lyso-myristoyl phos-

phatidylglycerol (LMPG) micelles (PDB: 2LP1) with the apex of curvature at the GlyGly-

motif in the middle of the TMD. For structure determination, they used a combination

of NMR restraints such as NOE distances, RDC values and distances derived from para-

magnetic relaxation enhancement experiments. [249] Nadezhdin et al. observed APP

TMD as monomer and as dimer in n-dodecylphosphocholine (DPC) micelles, depending

on the detergent to peptide ratio they used. When they used 50 DPC molecules per APP

TMD they observed two sets of signals in a
1
H-

15
N-HSQC spectrum, from which they

assumed that monomeric and dimeric APP TMD were present in the sample. When they

increased the detergent to peptide ratio to 70:1 only one set of signals was visible in the

corresponding spectrum. Therefore, they concluded that the monomer dimer equilibrium

could be shifted to the respective side by means of the detergent concentration. Structures

calculated based on NOE restraints derived from filtered NMR experiments resulted in a

left-handed parallel dimer, with the dimerization motif basically along the whole TMD

(PDB: 2LOH). The monomer structure they had published one year before (PDB: 2LLM)

only deviates slightly from the structures of the two molecules forming the dimer. [250,

251] Chen et al. published a further dimer structure, also in DPC micelles. In contrast to

the structure of Nadezhdin et al. they observed a right handed dimer with the interface

mainly at G38XXXA42. However, similar to Nadezhdin et al. they detected hydrophobic

side chain contacts almost along the whole APP TMD. [253] These structures will be

analysed further in the context of experimental data obtained in this thesis.
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4.1.3. γ-Secretase

γ-Secretase is considered the "proteasome of the membrane" [254], due to the large number

of substrates. Güner & Lichtenthaler recently described 149 γ-secretase substrates [255,

256]. Its supposed function is to clear out protein stubs in the membrane that cannot be

degraded by the proteasome. However, when cleaved by γ-secretase, intracellular and

extracellular domains can emerge from the membrane to be degraded by the proteasome

[255]. Contradicting this theory, γ-secretase was found not to cleave all protein stubs and

γ-secretase inhibited cells did not accumulate large amounts in their membranes [257,

258].

γ-Secretase substrates

γ-Secretase substrates and their cleavage products cover a broad range of physiological

functions as many γ-secretase substrates are, for example, involved in regulatory processes.

APP was shown to be crucial for synapse formation and function [202], axonal transport

[259], neurite extension [260] or cell adhesion [261, 262]. Furthermore, numerous key

signalling pathways were found to depend on γ-secretase processing [263–265]. In AD

related neurodegeneration some of these processes are disturbed [204, 266].

Besides APP, some of the best studied γ-secretase substrates are Notch1, cadherin, ErbB4,

p75NTR, TREM2 and BCMA [255].

Notch receptors (Notch1, Notch2, Notch3 and Notch4) are part of signalling pathways

in many aspects of animal development [267, 268]. γ-Secretase plays an important role in

the Notch1 pathway during development [269–272], as the intracellular cleavage product

(Notch intracellular domain, NICD) enters the nucleus where it regulates expression of

genes involved in cell differentiation [245]. The importance of balanced Notch1 expression

and processing can be deducted from the finding that the inhibition of Notch1 signalling

by γ-secretase knockouts was shown to be lethal in embryonic cells [269, 270] and lead to

severe toxic effects like gastrointestinal bleeding, immunosuppression, and skin lesion in

clinical trials [273, 274]. On the other hand, tumour growth (for example leukaemia) is

induced when Notch signalling is hyperactivated [275–277].

N-cadherin, a cell adhesion molecule, is involved in regulation of transcription factors

after γ-secretase cleavage, which in turn are involved in various processes like cell growth,

differentiation and apoptosis [264].

γ-Secretase Substrate Features

γ-Secretase substrates share no obvious common features, such as a consensus sequence at

or near the cleavage site that would allow to distinguish substrate from non-substrate. Most

γ-secretase substrates are α-helical type I transmembrane proteins, i.e. single-pass pep-

tides with cytosolic C-termini and extracellular N-termini harbouring large ectodomains

[255, 256]. Because the enzyme prefers short ectodomains [257], a shedding step takes

place before γ-secretase cleavage [278, 279]. BCMA is the only known substrate whose

ectodomain is inherently short enough to be processed directly [280]. More precisely,

it has been shown that exceedingly long ectodomains impair γ-secretase cleavage and

that the TMD of the substrate is sufficient for high-affinity binding [278, 281], as APP,
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for example, could be cleaved when only the TMD and few additional N-terminal amino

acids were provided (E22 to K55) [282]. Therefore, ectodomain shedding could be the first

step of substrate selection. Few non-substrates are known, which further complicates

the narrowing of substrate requirements. One non-substrate is integrin β1 [257], whose

amino acid sequence, however, does not reveal any noticeable features that could explain

why it is not cleaved by γ-secretase. As a consequence, it was hypothesised that the TMD

topology, conformation and flexibility of the substrate determined the cleavability [283].

As explained above, APP is not always processed following the same pathway, but two

ε-cleavage sites and several ζ- and γ-sites have been identified. To further complicate

matters, transitions between the two major pathways are possible, as shown in Figure 4.2

[237, 284]. Therefore, it was assumed that ε-cleavage preference and the other processing

steps were uncoupled and possibly dependent on different substrate properties [243].

Three major models have been proposed to explain how enzymes select their substrates.

The first theory was proposed by Emil Fischer in 1894, the lock-and-key hypothesis [285].

A few decades later, the induced fit hypothesis was suggested by Dan Koshland, accounting

for conformational plasticity of enzymes [286]. Another 50 years after that Ruth Nussinov

introduced the conformational selection hypothesis, which recognises that enzymes (and

their substrates) are ensembles of many differentially populated states [287]. In the case

of γ-secretase, it seems unlikely that there is a fixed enzyme conformation in which the

substrate, presumably also stationary, may or may not fit. It is more likely that the complex

formation is based on induced-fit or the selection of a suitable substrate conformer from

a structural ensemble, as has been described for other systems [288, 289]. Both cases

require conformational ductility of substrate and/or enzyme. This fits with the finding

that proteases generally need their substrates to unfold around the cleavage site [290] and

that cleavage efficiency is related to the TMD stability of the substrate [33, 35–37, 291–

293]. Various conformational transformations of membrane proteins have been described

[294–296]. Many deviate from α-helical conformation and exhibit bends, curved axes or

π- or 310-helical regions [297, 298]. In addition to the helix backbone, the side chains are

also flexible and can switch between rotameric states [299] and intrahelical hydrogen

bonds can open and close. All these local fluctuations taken together can result in global

conformational changes such as helix bending or twisting [300].

For APP, in particular, flexibility at a double glycine motif in the middle of its TMD has

been proposed to be required for substrate entry into the enzyme. It was assumed that

this motif acts as a hinge, facilitating the necessary bending motion during translocation

to the catalytic cleft [249, 301].

γ-Secretase Structure

γ-Secretase is a complex of four integral membrane proteins: Nicastrin, anterior pharynx-

defective 1 (APH1), presenilin enhancer 2 (PEN-2) and the catalytic subunit presenilin

(PSEN) [302]. Structures obtained by cryo-electron microscopy (cryo-EM) confirmed that

the γ-secretase complex consists of one entity of each subunit [303–305]. γ-Secretase

compositions vary between cell types and tissues [306]. Between four and six different γ-

secretase complexes exist, since twoAPH1 isoforms have been described in humans (APH1a

and APH1b) [306] and two PSEN variants (PSEN1 and PSEN2) have been found [307, 308].
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The complexes containing PSEN1 were found in the secretory pathway compartments,

especially at the plasma membrane whereas PSEN2 is rather localized in endosomes and

lysosomes [309, 310].

Figure 4.4. γ-Secretase structure (PDB: 5A63 [311]): The four subunits are shown in

different colours: nicastrin (yellow), APH1a (green), PEN2 (dark blue) and PSEN1 (light

blue). The catalytic aspartates of PSEN are depicted in red.

The catalytic subunit PSEN is an aspartyl protease, as mentioned above. In TMD 6 (D257)

and TMD 7 (D385) of PSEN, there are two aspartates, marked in red in Figure 4.4, which are

located near the border between membrane and intracellular side. They have been shown

to be crucial for cleavage as their mutation completely prevented APP processing [213,

312, 313]. The active site is therefore most likely located between these two TMDs. During

assembly of the γ-secretase, PSEN undergoes autoproteolysis within the loop connecting

TMD 6 and TMD 7 [314, 315]. The two catalytic aspartates of PSEN are involved in this

step as well [312, 313].

The bulky nicastrin ectodomain governs entry and retains the substrate in the complex

[278, 316]. This was shown as reducing disulphide bonds in nicastrin allowed cleavage of

substrates with longer ectodomains that previously could not be processed with intact

nicastrin [278, 279]. PEN-2, which stabilises the two PSEN fragments after autoproteolysis

[317], consists of a single-pass TMD (TMD 2) and another TMD that enters the membrane

but does not traverse (TMD 1). TMD 1 forms a reentrant loop that turns back within the

membrane [318]. PEN-2 interacts directly with TMD 4 of PSEN1 [319, 320]. The catalytic

pore itself was found to be constantly accessible to water molecules that are required for

proteolysis [30].
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Enzyme-Substrate Complex

Figure 4.5. cryo-EM structures of the γ-secretase-substrate complex: The substrates
were covalently bound to PSEN at their N-termini by a disulphide bond. Furthermore, D385

was mutated to alanine to deactivate the enzyme. Left: Notch-100 (PDB: 6IDF [304]). Right:

C83 (PCB: 6IYC [305]) Nicastrin (yellow), APH1a (green), PEN2 (dark blue) and PSEN1

(light blue). APP and Notch are depicted in red.

PSEN1, APH1 and PEN-2 are arranged in a horseshoe-like shape in the membrane,

covered by nicastrin, as it could be confirmed by the first cryo-EM structure without

substrate [311]. Recently, cryo-EM structures of the γ-secretase-substrate complex have

been published and are shown in Figure 4.5. Zhou & Yang et al. introduced a cysteine

residue into loop 1 of PSEN1 and another one within the N-terminus of each substrate

shortly before the beginning of their TMDs. In addition, to prevent cleavag one of the

catalytic residues, D385, was mutated to alanine. The substrate was located in a cavity

formed by TMD 2, TMD 3, TMD 5, TMD 6, and TMD7 of PSEN1. They found that APP

TMD unwound at its C-terminus and formed a hybrid β-sheet, fromM51 to K55, with two β-

strands on loop 2 of PSEN1. The preceding residues, T48, L49 and V50 adopted a completely

extended conformation that enabled access to the scissile bond, by the catalytic residues.

For Notch1, they observed a similar conformation as it likewise formed a hybrid β-sheet

with loop 2 of PSEN1. [304, 305] In the case of APP, the positioning of the substrate TMD

between PSEN NTF and PSEN CTF was revealed earlier when Fukumori et al. found amino

acids A42, V44, I45 and L49 to interact with PSEN NTF and M51 and L52 with PSEN CTF via

photoreactive labelling assays [321]. Furthermore, the cryo-EM structures showed that

the N-terminal domain of the substrate is in contact with PSEN1 and that both substrates,

which are supposed to bend upon entry into the enzyme, appeared straightened again

[304, 305].
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Dynamics of γ-Secretase

The two structures of the γ-secretase-substrate complexes provide valuable insights into

the substrate positioning within the catalytic cleft [304, 305]. However, like all cryo-EM

structures, they represent only static snapshots of what are most likely dynamic events.

γ-Secretase domain motions were studied under different conditions. Nicastrin has

been shown to be the most mobile subunit, with its ectodomain moving up and down and

rotating [322–324]. In addition, the small and large lobe of nicastrin were found to move

independently [325] but this mobility appears to be uncoupled from the TMD movement

around the active site [322, 324, 325]. Since interactions between APP, PSEN2 and nicastrin

have been observed in photo-affinity studies [321], nicastrin might play a role in substrate

adaption or stabilisation of the enzyme-substrate complex.

TMD 2, TMD 3 and the cytosolic fragment of TMD 6 of PSEN1 were found to be highly

mobile in molecular dynamics (MD) simulations based on the cryo-EM structure of γ-

secretase with the γ-secretase inhibitor DAPT (PDB: 5FN2) [311]. Transitions from the

active to the inactive state required motions of TMD 1, TMD 6, TMD 7, TMD 8 and TMD 9

(for TMD numbering see Figure 4.6) [322, 325].

The general mechanism of aspartic proteases suggests that one aspartate acts as an

acid and attacks the peptide bond [326, 327], which was confirmed by MD simulations

showing that one of the aspartates has to be protonated to form the active site [322]. In

the absence of substrate, the active site was stabilised by either a water-bridged structure

or a hydrogen bond between the two catalytic aspartates [325].

Substrate Recognition by γ-Secretase

It has been suggested that the initial contact between the substrate and the nicastrin

exosite occurs prior to contact with the active site [321]. Moreover, it has been shown

that conformational changes in PSEN1 TMDs, PEN-2, and the hydrophilic loop 1 were

necessary to enable the interaction. In particular, loop 1 connecting TMD 1 and TMD 2 of

PSEN, interacted with charged residues of APP, whereas the G29XXXG33XXXG37-motif of

APP TMD interacted with PSEN TMD 2. Consequently, the ε-site was exposed to the lipid

interface. [311, 323]

Substrate entry into γ-secretase

Substrate entry to the catalytic site of γ-secretase was not unravelled yet. Three main

scenarios are discussed that are shown in Figure 4.6: Entry could occur through an opening

between TMD 2 and TMD 6 [328–330]. This would require the N-terminus of the substrate

to wiggle underneath the loop connecting TMD 1 and TMD 2 (loop 1), which in turn

would have to be highly mobile to act as a gatekeeper at all. Bolduc et al. showed that

nicastrin was the limiting factor for the size of the substrate ectodomain. They used a

construct of C83 bound to ubiquitin to introduce a very bulky ectodomain. This fusion

protein was not cleaved under native conditions. When they reduced the disulphide bonds

of nicastrin, however, they observed that ubiquitin-bound C83 was efficiently processed.

They concluded that if loop 1 were the gatekeeper, the reduction of disulphide bonds should

not have enabled processing of ubiquitin-bound C83. Thus, nicastrin must have been the
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size limiting factor [278]. Entry between TMD 2 and TMD 3 on the other hand would

avoid this obstacle but there is another steric barrier. TMD 2 and TMD 3 are connected by

a relatively short cytosolic loop (loop 2), that the C-terminus of the substrate would have

to overcome [325]. And the third pathway would be through the cleft between TMD 6 and

TMD 9. Hitzenberger & Zacharias tested all three possible entry routes by MD simulations.

They found the substrate in the catalytic cleft only in the case when the path through

TMD 2 and TMD 3 was chosen as entry route. It has to be noted that they pulled the

substrate into the enzyme much faster than it enters naturally and that they used a shorter

fragment (V12 to Y57), neither including the whole N-terminal nor the whole C-terminal

domains. Their starting structure was based on the kinked structure determined in LMPG

micelles, described above (PDB: 2LP1) [249]. Interestingly, they observed that H-bonding

at the catalytic cleft with the substrate at its ε-site was already possible before the whole

C-terminus had entered the enzyme. Additionally, they found TMD 2 and the N-terminal

part of TMD 3 of PSEN to be quite flexible, allowing a wider opening for substrate entry

than expected [325].

Figure 4.6. Possible substrate entry pathways into γ-secretase: a) Three-dimensional

structure of γ-secretase b) Substrate entry was proposed via three different entry ways:

Through the opening between TMD 2 and TMD 6 (blue arrow), which would require the

N-terminus of the substrate to wiggle underneath loop 1 connecting TMD 1 and TMD 2;

Between TMD 2 and TMD 3 (black arrow), which requires the C-terminus of the substrate

to overcome loop 2 connecting TMD 2 and TMD 3; And between TMD 6 and TMD 9 (red

arrow). The orange dot indicates the catalytic residues. [325] Reprinted with permission from ACS Chem. Neurosci.

2019, 10, 3, 1826-1840

During substrate entry, Hitzenberger & Zacharias observed a kink at G37G38 when the

N-terminus of APP had already reached its final position and its C-terminus bypassed

loop 2. It was proposed earlier that the N-terminal substrate domain might remain bound
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to the exosite, while the C-terminal domain could move into the active site by hinging

at the double-glycine motif [249, 300, 301, 331]. When the C-terminus had reached its

destination, the kink disappeared and APP adopted a straight conformation similar to the

one observed in the cryo-EM structures [304, 325].

Substrate Unwinding and Cleavage

Once the substrate has reached its final position within the catalytic cleft, three more steps

are required to finalize processing. The scissile bond of the substrate must be exposed to

the catalytic residues to enable the actual hydrolysis and subsequently the products are

released.

Upon final docking the C-terminal helix of the substrate is weakened [311, 332, 333].

One full helical turn is unwound (T48, L49 and V50) while the residues further towards the

C-terminus form a β-sheet with two domains of PSEN1 [304]. Similar observations were

made in the case of Notch [305].

γ-Secretase processing was found to be quite slow compared to soluble proteases as

cleavage rate constants are about one per hour, for both Notch and APP [278, 334]. This

was dramatically slower than cleavage rates observed in soluble proteases, which were

about 40 per minute [335]. Thus, hydrolysis itself is unlikely to be the rate-limiting factor.

Substrate unwinding, nevertheless, requires a high transition step energy, so this was

proposed to be the rate-limiting step [289, 336].

Figure 4.7. PSEN has three substrate binding pockets: Two large ones, S1’ and S3’, which

can accommodate bulky amino acids and one small one, S2’, that is limited to small amino

acids with short side chains.

Three S’ pockets were identified in the active site, schematically shown in Figure 4.7.

Mutation assays suggested that the S1’ and S3’ pockets were large enough to accompany

bulky amino acids, whereas S2’ was considerably smaller and therefore limited to amino

acids with short side chains [278, 325, 337]. Bolduc et al. also showed that cleavage

pathways could be conducted (see Figure 4.2) by mutating V50 or M51. The exchange of

V50 with phenylalanine, tryptophan, or tyrosine, i.e. bulky amino acids at P2’, led to initial

ε49-cleavage resulting in Aβ40 mainly. In contrast, replacement of M51 with phenylalanine,

tryptophan or tyrosine prevented ε49 cleavage, as the bulky amino acid would then be

in S2’, and shifted the cleavage line to ε48-cleavage, resulting in a predominant Aβ42.

Additionally, they could show that not only ε-cleavage was affected but also ζ-cleavage.

Furthermore, bulky amino acids at position 40 almost completely inhibited Aβ38 generation.

[278] Thus, product line preferences appear to be mainly controlled by the amino acid that

has to fit into S2’. Moreover, the product lines can also be shifted after ε-cleavage.
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To enable successive cleavage steps along a substrate TMD helix, the distance between

the two catalytic aspartates might fluctuate in a way that is facilitated by the glycine

residues in the GXGD active site motif of TMD7 of PSEN. γ-Secretase was observed in three

distinct states: closed, semi-open and open. They were discriminated by varying distances

between TMD 2, TMD 3 and TMD 6 [325, 330]. MD simulations suggested that due to the

different TMD distances, the size of the catalytic cleft changed and thus influenced the

stability of the enzyme-substrate complex [330]. When APP TMD was bound, not only

the closed, but also the semi-open and open states could be observed in MD simulations

[328]. The semi-open state was determined as the most active, leading to shortest cleavage

products while in the open state longer peptides arouse from shorter residence times [330].

Experimental results of Szaruga et al. substantiated these observations. They found that

the enzyme-substrate complex was destabilised by the shortening of the substrate and that

mutations of both PSEN and C99 destabilised the complex, resulting in longer cleavage

products. However, when the complex was stabilised, processing continued and shorter

fragments were produced [338].

4.1.4. Familial Alzheimer’s Disease Mutations

Figure 4.8. Known FAD mutations of APP: FAD mutations detected within the APP

sequence. Marked red are positions where mutations were pathogenic, green indicates

non-pathogenic mutation sites, yellow protective and blue mutations with unclear impact.

(www.alzforum.org) [339]

Most FAD mutations of APP are located around the γ-secretase cleavage sites, as shown

in Figure 4.8 [339] and generally result in a change of APP cleavage preferences, usually

increasing the ratio of more toxic Aβ42 over Aβ40. Different mutations have different

modes of action and affect ε-cleavage, processivity in general, or promote transitions

between product lines. [2, 340–343]

In vitro experiments showed that the most abundant Aβ peptide generated by the

processing of the C99 wild type (WT) was Aβ40, and to a lesser extent Aβ42, Aβ39 Aβ38

and Aβ37 [344, 345].
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The so-called French mutation, V44M, was first described in 1999 [346]. It has been

shown to lead to elevated Aβ42/Aβ40 ratios and to shift ε-cleavage preference from L49 to

T48, as could be revealed by double mutation essays [278, 347]. Pathway switching between

initial ε- and γ-cleavage was excluded, as blocking ε-cleavage at T48 (V50F mutation) led to

Aβ42/Aβ40 ratios comparable to WT levels [278]. Compared to WT, Aβ40 levels decreased

and Aβ42 increased, leading to almost equal amounts [347]. Moreover, V44M was the only

mutation in the study of Xu et al. that led to slightly increased protease activity compared

to C99 WT, whereas all other FAD mutations investigated within the C-terminal part of

C99 TMD diminished cleavage activity [347].

The other FAD mutant investigated in this thesis, I45T, was detected only once. The

patient developed AD at the age of 36 and died seven years later [348]. I45T was found

to even further increase Aβ42/Aβ40 ratios. The impairment of ε-cleavage at T48 (V50F

mutation) did not significantly impact the Aβ42/Aβ40 ratio. Thus, the cleavage pathway

probably shifted after the initial ε-cleavage step [278, 347]. Xu et al. detected dramatically

higher amounts of Aβ42 compared to C99 WT, while Aβ40 levels were decreased for

I45T. However, overall processing was significantly reduced [347]. Another study had led

to similar results, as it was observed that AICD levels did not change compared to C99

WT, but Aβ40 decreased, while Aβ42 and more dramatically Aβ38 increased. This was

interpreted as a shift in cleavage line preference towards ε48-cleavage [349].

Besides FAD mutants, numerous designed constructs have been studied. In most cases, a

specific amino acid was exchanged for another, thereby specifically changing the properties

of the protein. This allows hypotheses to be verified or falsified. Glycines are a frequent

target, as they provide flexibility on the one hand and can be part of dimerization motifs

on the other. Exchange of G33 with all other 19 amino acids did not decrease Aβ levels

compared to WT (except for H, P, D and N). The exchange of G33L with isoleucine, valine,

methionine or phenylalanine promoted processing to shorter Aβ species like Aβ38 and

Aβ37, whereas hydrophilic amino acids at this position led to Aβ42 and Aβ40 production

[350]. Exchange of hydrophilic threonines with hydrophobic valines led to dramatically

increased Aβ42 levels and almost disappeared Aβ40 levels in the case of T43V, leading

to ε48-cleavage. Similar effects were observed for T43I [350–352], while T48V had the

opposite effect, as Aβ levels decreased while Aβ40 levels increased [350].

G38 was targeted in this work. Two G38 mutants of C99 were designed and analysed in

collaboration with the Langosch Lab (TUM, Munich), the Scharnagl Lab (TUM, Munich),

the Steiner Lab (DZNE & LMU, Munich) and the Huster Lab (Leipzig University). Our

collaborators showed that processing of G38L by γ-secretase resulted in extremely high

amounts of Aβ37 and no detectable levels of Aβ42. In contrast, G38P processing led to

very high Aβ40 levels and no Aβ42. Intriguingly, the overall ε-cleavage was apparently

impaired, as the total amount of the G38L AICD was reduced to about 38% and Aβ to

47% compared to C99 WT. In the case of G38P, AICD and Aβ were further reduced to 8%

and 16%, respectively [344]. These observations suggest that the overall processivity was

reduced for both G38 mutants, but once positioned in the catalytic cleft of γ-secretase,

they are processed more efficiently than C99 WT. ε-Cleavage preference cannot be easily

deducted from these findings, as Aβ38 can result from both pathways (see Figure 4.2).

Fernandez et al. exchanged I47 and T48 against GG (or GA). This resulted in almost

4-fold higher AICD levels due to helix destabilisation in this region, while replacement
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with LL reduced AICD levels by almost 4-fold compared to WT. Additionally, Vmax and kcat

were increased for the GG and GA mutants and decreased for the LL mutant. In the case

of the GG mutation, γ-secretase almost exclusively favoured ε49-cleavage. Mutations of

V44 and I45 to GG, GA and LL did not considerably affect ε-cleavage while the I41 and A42

with GG and GA led to the complete impairment of γ-secretase cleavage. The I41G/A42G

mutant was found to form a stable dimer, both mutations added another GxxxG or GxxxA

motif to the TMD. This suggests that too strong dimerization of the substrate prevents

γ-secretase cleavage. Besides, all V44I45 and I41A42 to LL mutations primarily led to AICD49

resulting from ε48-cleavage [353]. Thus, they showed that destabilisation of the helix

around the ε-cleavage site promotes processing by γ-secretase while stabilisation of the

helix impairs cleavage. Mutations in the middle of the C-terminal helix, in contrast, did

not exert dramatic effects. β-Branched amino acids near the ε-site (I47, T48) are known

to destabilise helices due to their bulky side chains [354]. Mutation of I47 and T48, the

residues close to the scissile bond, increased and sped up AICD production [353]. On the

other hand, the replacement of V46 with glycine or leucine decreased cleavage efficiency

[347].

The only FAD mutation known at the GlyGly-motif, G38S, was found to decrease Aβ40

and to increase Aβ39 levels and, to a lesser extent, Aβ37 [345].

Considering all these observations, it can be concluded that it is not clear in which

way mutations influence the interactions of enzyme and substrate and thus the cutting.

One possibility is that the movement of the flexible GlyGly-hinge could be affected. Local

effects do not necessarily cause this, as the flexibility of the TMD is based on an ensemble of

factors and a complex network of hydrogen bonds. Since it has been shown that mutations

of both threonines, which can form an additional hydrogen bond via their hydroxyl group,

are associated with FAD [355], the loss of this additional hydrogen bond could affect the

entire network of interactions and thus alter the mobility at the hinge [300].

4.2. Analysis of APP WT TMD in TFE/H2O

The best known and thus most intensively studied γ-secretase substrate is the C99 fragment

of the Amyloid Precursor Protein. A wide variety of mutations within APP TMD were

identified that have very different effects on processing by γ-secretase and thus on the

course of the progress of Alzheimer’s Disease in patients. Thus APP TMD is commonly

used as a model to access discriminating substrate properties.

APP TMD was studied in different environments and with a variety of liquid-state

NMR-based methods. Furthermore, four single point APP TMD mutants were investigated,

two associated with familial early-onset Alzheimer’s Disease and two designed to alter

the TMD structure in a predictable way. Special attention was paid to the GlyGly-hinge

within the TMD that is supposed to be required for substrate entry into γ-secretase, as

explained in the introduction to this chapter.

The peptides were analysed in a mixture of Trifluroethanol (TFE) and water, as special

interest was on the migration of the substrate from the membrane into the enzyme. As soon

as APP TMD, for example, migrates from the membrane to the active site of γ-secretase, its

environment changes. Its conformation and motions are no longer restricted by the lipids

49



4. Amyloid Precursor Protein

Figure 4.9. HSQC-spectra of synthetic APP26-55 WT in TFE/H2O at pH 7: In both

spectra, all peaks could be assigned. The broad signal dispersion observable in the
1
H-

15
N-

HSQC indicates a structured peptide, while the chemical shift range, in which the Hα-Cα

resonances in the
1
H-

13
C-HSQC are found implies an α-helical structure.

and thus cannot be sampled in membrane mimetics. TFE is a long established cosolvent

for peptides and proteins. It is widely approved as mimic of the interior of proteins in

general and in particular for the water filled cavity at the active site of γ-secretase, close

to the cytosolic border. Therefore, TFE/H2O can be considered a reasonable approach to

assess substrate dynamics and its conformation upon migration to and within the catalytic

cleft and as a good compromise to study hydrophobic peptides in solution. [300, 301, 344,

356–358] Furthermore, membrane mimetics, like micelles, bicelles, vesicles or nanodiscs,

in this case DPC micelles, were used to sample the substrate properties in the membrane.

The amyloid precursor protein transmembrane domain (APP26-55, see sequence below)

was measured in a mixture of TFE-d2 and H2O (80/20 V/V) at pH 7.0 and 300 K. The pH

value of 7.0 was chosen as it has been shown that γ-secretase activity is highest at pH 7.0

[359].

30 40 50
APP26-55 WT SNKGA IIGLMVGGVV IATVIVITLV MLKKK

4.2.1. Chemical Shift Information

The first indicators of proper protein folding and sample purity are usually obtained from

1
H-

15
N-HSQC spectra. Figure 4.9 shows the

1
H-

15
N- and

1
H-

13
C-HSQC spectra of the
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synthetic APP26-55 WT peptide. The number of cross peaks in the
1
H-

15
N-HSQC spectrum

coincides with the number of amino acids of APP26-55 WT. This and the rather sharp peaks

indicates that no by-products, like shorter fragments that might have been generated

during peptide synthesis, are present in significant amounts. Moreover, broad background

signals that would suggest larger aggregates are also not detectable.

Both backbone HN and Hα exhibit large chemical shift dispersion. HN resonances are

spread between 7.5 ppm and 8.5 ppmwhereas Hα resonances can be found between 3.6 ppm

and 4.3 ppm. This indicates a folded, α-helical structure as explained in Section 2.1 (p. 7).

Secondary chemical shifts, the difference between observed and random coil values, were

calculated for Hα, Cα and Cβ. The results are shown in Figure 4.10A. Average secondary

chemical shifts observed for α-helices are Δ𝛿 (1𝐻𝛼 ) ≈ 0.3 ppm and Δ𝛿 (13𝐶𝛼 ) ≈ 2.6 ppm that

are marked by a red line in the bar diagrams. To take into account effects of neighbouring

amino acids, nearest neighbour corrections were applied. Random coil chemical shift and

nearest neighbour correction values were taken from D. Wishart [360].

The secondary chemical shifts determined for all three types of nuclei show two ap-

parently helical regions separated by an unstructured motif. One, spanning from V39 to

M51 is hereafter referred to as the C-terminal helix, while the other, the N-terminal helix

ranges from G29 to V36. The N-terminal helix appears less α-helical than its C-terminal

counterpart because the secondary chemical shifts of (Hα and Cβ) are less negative, while

(Cα) values are less positive. At the double glycine motif, G37G38, the secondary chemical

shifts indicate a random-coil like structure. It must be pointed out that in contrast to the

other 19 amino acids, glycines do not exhibit such strong and consistent chemical shift

trends and their secondary chemical shifts need to be interpreted more carefully.

Besides the simple secondary chemical shift calculations, CSI (Chemical Shift Index) 3.0

was used. CSI 3.0 is the combination of four previously published programs. CSI 2.0 that

identifies the secondary structure type based on chemical shifts and sequence information,

TALOS-N that calculates torsion angles from the same input data, RCI (Random Coil Index)

that calculates order parameters to distinguish between ordered and disordered parts and

analogous side-chain RCI. The combination of the parameters obtained is used to identify

the secondary structure of a protein. [61, 361–364] The result of the calculation is shown in

Figure 4.10B. The grey bars with positive value from G38 to K54 confirm the strong α-helical

structure whereas the N-terminal domain is interpreted as unstructured. This is consistent

with the information obtained from the secondary chemical shift values alone, where the

values of the N-terminal helix were below the average values. Tthe CSI only distinguished

between clearly separated secondary structure categories like β-sheet or α-helices based

on a set of criteria. Regions, such as the N-terminal domain here that appear helical but do

not meet all the requirements such as a specific chemical shift difference are not considered

helical but unstructured. Nevertheless, the secondary chemical shift trends obtained for

the N-terminal region clearly indicate an α-helical structure, only slightly less pronounced

than the C-terminal part.

The observed i-(i+4) periodicity of the calculated secondary chemical shifts points

towards a periodic variation of the lengths of the hydrogen bonds along the TM helix. This

might indicate a moderately bent structure with longer H-bonds on one side of the helix.

Characteristic interresidual NOE patterns also report on secondary structure, since the

NOE intensity depends on the distance between the two respective protons, as described
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Figure 4.10. Secondary chemical shifts and NOE contacts of APPWTTMD in TFE/H2O:
A) Hα, Cα and Cβ secondary chemical shifts of APP26-55 WT in TFE/H2O at pH 7.0 indicate

an α-helical peptide consisting of two helix segments separated by the apparently less

structured G37G38-motif. The average secondary chemical shift values usually observed for

α-helices are shown by the red lines. B) CSI 3.0 output. The region identified as α-helical

is represented by the red bars and the wavy line. C) Characteristic interproton NOEs.

Strong NOE contacts are represented by black bars, weak NOEs by grey bars and white bars

represent signals that could not be unambiguously assigned due to peak overlap. Positions

marked with an asterisk indicate where the characteristic NOE or chemical shift cannot be

observed due to the chemical nature of the respective amino acid.
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4.2. Analysis of APP WT TMD in TFE/H2O

in Section 2.1 (p. 10) and these distances in turn depend on the protein conformation.

Relative NOESY cross peak intensities of APP WT TMD are shown in Figure 4.10C, they

largely confirm the picture gained from chemical shifts. The cross peak intensities were

categorised in strong NOEs (black bars) and weak NOEs (grey bars). Furthermore, white

bars indicate NOEs that could not be unambiguously assigned due to peak overlap. In

helices characteristic NOE contacts are Hα,i-HN,i+3, HN,i-HN,i+2 andHα,i-Hβ, i+3. Additionally,

Hα,i-HN,i+4 occur only in α-helices and Hα,i-HN,i+2 only in 310-helices. HN,i-HN,i+1 and

Hα,i-HN,i+1 can be expected in both helix types. [365, 366] All cross peaks typical for

α-helices could be observed over the entire TMD, but more pronounced in the C-terminal

helix. Especially within the C-terminal helix, the characteristic Hα,i-HN,i+3 and Hα,i-Hβ, i+3

signals were clearly pronounced. Due to peak overlaps, many cross peaks could not be

unambiguously assigned, hence conclusions drawn from NOE signals alone are limited.

However, the conclusion based on the secondary chemical shifts that both parts are helical

could be confirmed.

From chemical shift data alone, the structural framework can be deduced. APP26-55 TMD

is α-helical in TFE/H2O, composed of two helical domains separated by the less structured

G37G38-motif.

4.2.2. Three-Dimensional Structure of APP WT TMD in TFE/H2O

Three dimensional structures were calculated with ARIA2/CNS [118, 155] based on a

set of NOE restraints derived from
1
H-

1
H-2D-NOESY experiments at pH 7 and 300 K.

Additionally dihedral angle restraints, determined based on
1
H,

13
C and

15
N chemical

shifts with TALOS+ [72], were incorporated in the structure calculation.

In accordancewith secondary chemical shifts, the C-terminal helix appearedwell defined.

The N-terminal domain was α-helical as well. Interestingly, the more random coil-like

structure indicated by secondary chemical shifts at the G37G38-motif did not lead to a

break within the helix. Instead, the N-terminal domains fanned out at this motif and adopt

several conformations relative to the C-terminal part. Strikingly, the relative orientation

of N- and C-terminal helices were not fully arbitrary, but was restricted to a defined cone,

as shown in Figure 4.11A, which was defined by two angles, the kink θ and the swivel

angle ϕ. The kink angle was defined as the angle between the axis of the C-terminal

and the N-terminal helices. The swivel angle was calculated as the relative rotation of

the N-terminal helix around the C-terminal part. The axis through the C-terminal helix

was aligned along the z-axis and the x-axis was defined by the V46 Hα-Cα bond vector.

The swivel angle was then calculated as the projection of the N-terminal helix axis onto

the x-y-plane. These calculations were performed using a python script written by C.

Muhle-Goll. A graphical representation of the two angles is displayed in Figure 4.11B.

The swivel angle ϕ was determined on the basis of 14 of these 20 structures, as θ was

too small in the other cases to reliably determine ϕ. The kink angle θ of APP26-55 WT in

TFE/H2O is 38.2° ± 18.5°, thus an entirely straight conformation could not be observed.

Swivel angles are restricted to a cone with 29.7° ± 19.1°. A closer examination of backbone

and side-chain conformations showed that the N-terminal helix kinked into the cavity

formed by the missing glycine side chains, accompanied by presumably longer H-bonds at

the other side of the helix.
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Figure 4.11. The three-dimensional structure of APP WT TMD in TFE/H2O: A) Front
view, side view and top view of the APP26-55 WT structural bundle, the structures were

superimposed on their C-terminal helices. G37G38 are coloured cyan, V46, the reference for

the swivel angle determination is highlighted in grey. The structural bundle shows that

APP WT TMD consists of two α-helical regions which, emanating from the GlyGly-motif,

can adopt different relative orientations. However, these are not arbitrary but confined. B)

Graphic representation of kink, θ, and swivel angles,ϕ. θ is defined as the angle between N-

terminal and C-terminal helix axes. ϕ is the angle of the C-terminal helix axis aligned along

the z-axis and projection of the N-terminal helix onto the x-y-plane with the x-axis.The

direction of the V46 Hα-Cα bond vector was defined as the x-axis. C) The H-bond lengths

in Å derived from the calculated structures between the indicated amide proton and the

oxygen four residues earlier confirm the rigid appearance of the C-terminal helix, since

the H-bonds in this region are short and deviate only slightly. Around the helix centre,

there is a clear elongation of H-bonds, which corresponds to the kink observed in the

structures. The N-terminal helix has longer and more varied H-bonds than the C-terminal

helix, indicating a less tightly defined region.
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It must be emphasised here that these structures do not indicate dynamics, but represent

the possible conformations the constraints used. The "true" structure may be a single one

within the space defined by this bundle, but APP26-55 WT might just as well adopt several

conformations.

Distances of hypothetical H-bonds that were derived from the calculated structures

between HNi and C=Oi-4 are shown in Figure 4.11C. This calculation strengthened the

finding that the C-terminal helix was almost straight, because H-bond lengths from A42 to

M51 were between 2.4 and 3 Å. The H-bonds that span over the hinge, i.e. I41HN-G37HC=O,

V40HN-V36HC=O and V39HN-M35HC=O were considerably longer. The hydrogen bonds at

the N-terminal helix were slightly longer and exhibit broader ranges than those of the

C-terminal helix, again confirming the picture of a more rigid C-terminal and a slightly

less structured N-terminal region. Hydrogen bonds between the two threonines in the

C-terminal helix back to the peptide backbone are probable, as NOE signals between T48Hγ

and V44Hα and likewise between T43Hγ and V40Hα could be observed.

Transitions between α- and 310-helices are supposed to be essential for twisting motions.

NOE contacts between Hα,i and HN,i+4 are characteristic for α-helices and between Hα,i

and HN,i+2 for 310-helices. [365, 366] However, neither from the NOE pattern shown before

in Figure 4.10C nor from the calculated structures, was it possible to distinguish between

α- or 310-helical conformations.

4.2.3. Hydrogen-Deuterium Exchange

The exchange rates of HN against solvent deuterium allow to indirectly access the hydrogen

bond stability between a given amide proton and the carboxyl oxygen four (or three)

residues earlier. Fully protonated peptides were dissolved in deuterated solvent, in this

case TFE-d3/D2O (80/20 V/V). Due to the excess of
2
D over

1
H exchangeable protons will

be gradually replaced by deuterium. The principle is explained in Section 2.3 (pp. 23 ff.).

Hydrogen-deuterium exchange rates were measured at various pD values for APP26-55

WT and APP26-55,8lb WT. Fast
1
H-

1
H-TOCSY and

1
H-

1
H-CLIP-COSY [148] experiments

with an experimental time of approximately 3.5 h were acquired, and altogether a time

span of about 38 hours was sampled. The parameters of the
1
H-

1
H-TOCSY experiment

were chosen as the best compromise between experimental time, signal intensity and

resolution. Supplementary, using the partially isotope labelled APP26-55,8lb peptide, a series

of
1
H-

15
N-HSQC experiments could be acquired. By measuring at different pD values, it

was possible to exploit the fact that the exchange rate depends on the pH or pD value, in a

way that an increase in the pH value by one unit leads to an acceleration of exchange by

approximately a factor of ten [367].

The combination of data obtained at various pD values therefore allows to cover several

orders of magnitude in exchange rates. The peak volumes were integrated and the observed

intensity decaywas fitted to an exponential function (see Section 2.3, pp.23). In Figure 4.12A

the signal decay of four signals (I41, V44, M51 and L52) based on a series of twelve
1
H-

15
N-

HSQC experiments of APP26-55,8lb at pD 5 is shown. All other spectra were superimposed

on the spectrum of the first time point and shifted in such a way that the change in signal

intensity could be observed. No signal shifts were actually observed between the spectra.
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Figure 4.12. Hydrogen-deuterium exchange of APP WT TMD in TFE/H2O: A) 1
H-

15
N cross peak intensities decrease with time. All twelve spectra acquired at pD 5 are

superimposed, but the spectra other than the first time point were shifted to show the

changes in signal intensity. The comparison of the spectra already shows that V44HN

exchanges much more slowly than the other three HN shown. B) Hydrogen-deuterium

exchange rates of APP26-55 WTmeasured in TFE/H2O. The exchange rates were obtained at

various pD values and scaled to pD 5. The exchange rates at the very N-terminus could not

be determined as the respective rate constants were too fast. The other missing values are

due to signal overlap and, in the case of the C-terminal helix to slow exchange rates. The

residues at the N-terminal helix experience faster exchange, indicating longer or less stable

H-bonds, while the C-terminal helix appears more rigid, as suggested by slow exchange

rates. The exchange rates of G37HN and G38N are significantly faster than those of the

surrounding residues. These findings are consistent with the impression gained from

secondary chemical shifts and the calculated three-dimensional structures.

The measured HDX rates constants for APP26-55 WT at pD 5 are shown in Figure 4.12B.

Exchange rates span from more than one per minute to as slow as one per six weeks. G29,

G33, G37, G38, I41, V44, M51 and L52 were
15
N-labelled and therefore

1
H-

15
N-HSQC spectra

could be acquired using this peptide.

Remarkably, in accordance with the chemical shift data and the calculated three-

dimensional structures, the C-terminal residues exhibit very slow exchange whereas

N-terminal amide protons show a lot faster exchange. Strikingly, the amide protons of

G37 and especially G38 exchange faster than the neighbouring residues. As explained in

Section 2.3 (pp. 23 ff.), amide protons can only exchange when they are not part of a

hydrogen bond. Thus, transient unfolding enables an exchange, which in turn indicates

conformational flexibility at the respective amino acid. The C-terminal helix is stabilised

by H-bonds ranging from L52HN-T48 to V44HN-V40, those residues are apparently rigid

in their secondary structure. Going further to the N-terminus conformational flexibility

increases, as secondary chemical shifts already indicated. This profile is in accordance

with hydrogen bond lengths derived from the calculated structures (see Figure 4.11). The

slowly exchanging amide protons at the C-terminal domain are in concordance with short

hydrogen bonds and small ranges. Fast exchange within the N-terminal helix corresponds

to longer H-bonds and larger deviations.

Some imprecision of the method must be taken into account, although it has been shown

that TFE does not significantly alters the exchange rates (50% TFE compared to pure water)

[358, 368, 369]. However, not all exchange rate constants could be sampled for various
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reasons. Residues exchanging significantly faster or more slowly than those measured

could not be assessed because the correlation of exchange rate and pH is limited to a certain

pH range. In the TOCSY-spectra, the HN-Hα region was used, the disadvantage here is the

partial signal overlap which makes fitting more difficult. On the other hand, there was

still a remaining solvent signal that was within or close to the Hα frequency and which

had to be suppressed. This solvent suppression could lead to undefined signal loss of some

HN-Hα resonances. The latter can be avoided using
1
H-

15
N-HSQC experiments. Here, this

was only possible for the eight labelled amino acids of APP26-55,8lb, whose exchange rates

therefore were the most reliable.

Nevertheless, hydrogen-deuterium exchange confirmed the overall observation of a

stable C-terminal helix, stabilised by rigid H-bonds and a less stable N-terminal helix. The

G37G38-motif apparently forms comparably weak hydrogen bonds, which is in accordance

with secondary chemical shift date and the three-dimensional structures.

The exchange rate profiles were in good agreement with the values published by Cao

et al. They measured hydrogen-deuterium exchange of APP TMD in LMPG micelles

and observed, that especially G38HN exchanged considerably faster than the surrounding

amino acids [370]. This suggests that the apparent increased flexibility or destabilisation

of APP TMD at the GlyGly-motif is at least partially retained in LMPG micelles.

4.2.4. Is APP TMD in TFE/H2O a Monomer or a Dimer?

Figure 4.13. 1H-15N-HSQC spectra of APP WT TMD acquired at different peptide
concentrations: APP26-55,8lb was measure in TFE/H2O at two concentrations, the corre-

sponding spectra were superimposed. The concentrated sample, 500 µM, was measured

with 2 scans (dark blue) and the ten-fold diluted with 200 scans (light blue). The signals of

the diluted samples were shifted for sake of clarity. As the signal intensities are similar in

both spectra, APP TMD is most likely monomeric under the conditions used.

APP TMD most likely dimerises in membranes, although it is not clear under which

conditions and how exactly. This is described in more detail in the discussion.

To investigate whether APP26-55 WT forms a dimer or remains monomeric in TFE/H2O,

two concentrations were compared. First
1
H-

15
N-HSQC spectra of a 500 µM sample were

acquired, then the sample was diluted ten fold and was measured again. If a dimer were

present at high concentration it should, at least partially, dissociate upon dilution according

to Le Chatelier’s principle. As signal-to-noise ratio is proportional to the number of scans

squared [58], the number of scans was increased 100 fold when concentration was reduced
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to 10%. In Figure 4.13 the two spectra are shown. Neither peak shifts nor changes of Peak

intensities are visible, thus it can be assumed that APP is monomeric under the conditions

used.

4.3. APP TMD WT and Mutants in TFE/H2O

In addition to APP WT TMD, four single point mutants were investigated. The glycine at

position 38 was exchanged for proline or leucine (G38P and G38L) to restrict the movement

of the G37G38-hinge. Introducing leucine at the hinge was expected to straighten the

helix and to restrict movements whereas proline should induce a kink and limit domain

movement as well. The other two are Familial Alzheimer’s Disease (FAD) mutants (I45T

and V44M), that are known to impair and alter γ-secretase processivity. All mutations

were investigated under two main aspects: Whether they affect the GlyGly-hinge motif

and, whether they influence the ε-cleavage site in a way that could explain the product

line shifts.

30 40 50
APP WT TMD SNKGA IIGLMVGGVV IATVIVITLV MLKKK
G38L TMD SNKGA IIGLMVGLVV IATVIVITLV MLKKK
G38P TMD SNKGA IIGLMVGPVV IATVIVITLV MLKKK
V44M TMD SNKGA IIGLMVGGVV IATMIVITLV MLKKK
I45T TMD SNKGA IIGLMVGGVV IATVTVITLV MLKKK

4.3.1. Circular Dichroism Spectroscopy of APP WT and Mutants

CD spectra APP26-55 WT and the four APP mutant TMDs were acquired at 50 µM concen-

tration and pH 5. As shown in Figure 4.14A APP26-55 exhibits a high α-helical content. The

two minima at 222 nm and 208 nm and the maximum 193 nm clearly indicate a mostly

α-helical structure. The secondary structure fractions estimated with BeStSel [163, 164]

are shown in Figure 4.14. The apparently low α-helix content, however, corresponds to the

NMR results. These revealed the α-helix from G29 to M51, excluding the first and last three

residues. Furthermore, the N-terminal part was less helical than the C-terminal section.

Thus, probably about 50% overall helical content seem reasonable. According to the CD

results shown in Figure 4.14, G38L has the highest α-helical content, followed by I45T and

V44M, while G38P is less helical compared to the others. This gives a first glimpse on the

effects the mutations induce on secondary structure.

4.3.2. Chemical Shift Information

Again, initial information on structural changes can be derived from
1
H-

15
N-spectra. In

Figure 4.15 the
1
H-

15
N-spectra of the four mutants superimposed on the

1
H-

15
N-spectrum

of APP WT TMD, all acquired in TFE/H2O at pH 7.0 are shown. Combined chemical shift

perturbations (CSP) and the chemical shift differences of HN of the mutants compared

to the WT are depicted below the spectra to better visualise the effects induced by the

single point mutations. CSP were calculated as a combination of
1
HN and

15
N chemical

shift differences as explained in Section 2.1 (p. 9).
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Figure 4.14. CD spectroscopy of APP WT TMD and the four mutants in TFE/H2O: The
spectra were acquired at 50 µM concentration and pH 5.0. A) CD spectra of APP WT TMD

and the four mutants overlayed and B) the relative fractions of secondary structure motifs

as calculated with BestSel [163, 164]. All five peptides are α-helical, as the two minima at

222 nm and 208 nm indicate. G38P appears less helical compared to APP WT TMD, while

the other three mutants seem to be more helical. The secondary structure fractions confirm

this expression with the exception of G38P, which has a higher α-helical content than the

WT. However, these differences are marginal.

The largest chemical shift changes occur around the respective mutation sites, as

expected. V44M causes only very small alterations compared to the other three mutants,

mainly V40 to M44 and T48 are affected. As T48HN forms a hydrogen bond with residue

V44, this could indicate changes in the H-bond network there. As V44M was preferably

cleaved at T48 and not at L49 like the WT, weakening of the respective hydrogen bonds

could explain this shift in ε-cleavage. The other perturbations caused by V44M are located

within the C-terminal domain, but N-terminally from the mutation site. The other FAD

mutant, I45T, affects mainly the C-terminal half, as well, but considerably stronger than

V44M. In particular residues A42, V44 and, as expected, T45 are changed. G38L causes large

CSP at residue L38 by force of the large
15
N chemical shift difference between glycine

and leucine. Furthermore the regions from G33 to G37 as well as V39, V40 and A42 are

affected. Interestingly the effect on I41 is smaller than on the surrounding residues. The

largest deviation is around the mutation site but more towards the N-terminus than the

C-terminus. A42 is the only residue in the C-terminal helix that is strongly changed,

probably due to the H-bond between L38CO and A42HN. G38P causes different changes

even though the same residue was mutated. The largest effects, considerably larger than

in the case of G38L, are here at residues L34 to G37, V39 and I41. A42 does not change,

although A42CO cannot form a H-bond with P38 due to its lack of HN. The effect on I41

can be explained by the altered H-bond to G37.

Amide proton chemical shifts are among the most sensitive reporters of hydrogen

bond geometries, together with torsion angles between the observed and the preceding

residue, ring currents, local changes and others [371]. Thus changes of HN chemical shifts

between WT and mutants can be used as indicators of alterations of the hydrogen bonding
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Figure 4.15. 1H-15N-HSQC spectra of all four single point mutants compared with
APP26-55 WT: The spectra of APP WT TMD (black) and the respective mutant are superim-

posed and signals of the mutants significantly deviating from APPWT TMD chemical shifts

are labelled in the corresponding colour. Below, the CSP derived from
1
H-

15
N-HSQC spectra

(left) and ∆δHN of mutants compared to APP26-55 WT are shown. The effects of the mutants

are very diverse. All strongly affect the mutated residue, as could be expected. While V44M

and I45T mainly alter chemical shifts within the C-terminus, the largest changes caused by

G38L and G38P are N-terminal from the mutation site.
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network. While G38L and G38P mostly affect the region around the hinge in general, V44M

and I45T induce more pronounced effects at single residues. V44M influences hydrogen

bonds at residues N-terminally from the mutation site but not at M44 itself. And, most

interestingly, the chemical shift of T48HN changes. I45T has even larger effects at amino

acids N-terminally from the mutation site, A42, T43 and V44 while I47HN and L49HN are

influenced to a lesser extent.

1
Hα,

13
Cα and

13
Cβ secondary chemical shifts of all four mutants are widely similar but

not completely alike as visible in Figure 4.16. The finding that the C-terminal helix is

strongly α-helical holds true for all four mutants, there are slight deviations though. FAD

mutants V44M and I45T decrease helicity locally at the mutation site compared to WT

otherwise secondary chemical shifts are similar to the WT. The G38 mutants apparently

do not affect helicity of the C-terminal domain. G38L leads to increased helicity around

the mutation site (V36, L38, V39) whereas G38P has the largest effect on secondary chemical

shifts. This mutation apparently slightly increases helicity at P38 but reduces it very

strongly at V36, M35 and L34.

Chemical shift derived S
2
order parameters of APP26-55 WT and the four mutants are

shown in Figure 4.16. S
2
model free order parameters describe the degree of motion and

therefore the extent to which orientational information of the N-H bond vector is lost on

the ps to ns timescale [372]. For all five peptides the N-terminal helix exhibits slightly

smaller S
2
values than the C-terminal helix. This means there is more internal motion

of the N-H vectors of the N-terminal helix whereas the C-terminal domain appears rigid.

This is in accordance with secondary chemical shift data that suggested a less helical and

therefore less rigid N-terminal half. Only the proline mutant experiences a break in S
2
at

residues G33 to V36, suggesting more flexibility in this part of the molecule. For the same

residues secondary chemical shifts indicate a loss of helicity. The other three mutants do

not show significant deviations from APP WT TMD. The helix probability derived from

TALOS+ (Figure 4.16) suggests again a perfectly strong helix at the C-terminal domain and

is clearly reduced for residues G37 and G38 of APP TMDWT. G38L TMD in contrast almost

reaches a helix probability of 1 for all residues while G38P TMD shows a break again for

residues M35 to G37, as indicated by chemical shift data already. Both FAD mutants, V44M

and I45T, apparently stabilise the helix at the GlyGly-motif, although the mutation sites

are several residues apart.

The strong effects indicated by
1
HN and

15
N chemical shift perturbations are not reflected

in secondary chemical shift, S
2
order parameters or helix probability to the same extent.

Especially the large perturbations at the C-terminal helix induced by the two FAD mutants

are not reflected in the other chemical shifts. Neither of the mutations shows an effect on

the ε-cleavage sites at L49 or T48 in secondary chemical shifts, S
2
order parameters and

helix probability. Nevertheless, helix probability hints at alterations regarding the hinge

motif.

4.3.3. Three-Dimensional Structures

Analogue to APP26-55 WT three-dimensional structures of the four mutant peptides in

TFE/H2O were calculated. Figure 4.17 shows the 20 lowest energy structures of all five

peptides superimposed on their C-termini from V40 to V50.
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Figure 4.16. Secondary chemical shifts of the four mutants compared to APP TMD
WT in TFE/H2O: The bars represent the secondary chemical shift values, calculated as

difference between observed chemical shift and random coil values. The black lines indicate

the difference between secondary chemical shifts of the respective mutant and APP WT

TMD. For example, for Hα, a positive value of this difference indicates that the mutant is

more helical than the WT a negative difference indicates that the mutant is less helical.

Below the S
2
order parameters and the helical content, both estimated with TALOS+ are

shown. These data suggest that G38L is more helical than APP TMD WT and stabilises

especially the G37L38-motif. G38P decreases helicity, mainly at the residues N-terminally

from the mutation site and leads, according to S
2
order parameters to dynamics at the

respective residues. The two FAD mutants show only minor alterations of secondary

chemical shifts compared to APP WT TMD and only locally around the mutation site.

However, according to the estimated helix content, they appear to stabilise the GlyGly-

hinge.
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Aligned on the - in all cases well-defined - C-terminal domains and equally arranged,

commonalities and differences are revealed. TheN-terminal α-helical regions aremarginally

less consistent between the 20 conformations in each case. The difference in rigidity is less

pronounced than could be expected based on chemical shift data. This can be due to the

fact that this domain is less stable and the NOE contacts used for the structure calculation

overestimate the structured part. Similar to the WT all four mutants show variations of

the N-terminal helix that, emanating from residues G37 and G/L/P38, fans out. Notably the

cones in which the N-termini are found differ between the five peptides. Mean kink angles

as well as their ranges vary just as swivel angles. The values are given in Table 4.1.

Figure 4.17. Structural bundles of APP WT TMD and mutant TMDs: Structural bundles
are aligned on the C-termini from V40 to V50. Residues G37 and G/L/P38 are highlighted

in cyan, V46, the reference for swivel angle determination in grey. Mean kink and swivel

angles are given as well.

All mutants are more restricted in their kink angles than the WT. G38L, I45T and V44M

are straighter, whereas the mean kink angle of G38P is similar to WT, but comprises a

slightly narrower range. Swivel angles differ more significantly. Both G38 mutants swivel

in the same direction that is shifted by about 110° compared to APP TMDWT, but G38P

exhibits a slightly larger range. Both FAD mutants are less restricted than APP WT TMD,

but cover much broader ranges. Even though their mean swivel angles differ, their swivel
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Table 4.1. Kink and swivel angles of APP TMD WT and the four mutants. Additionally
kink and swivel angles of APP TMD structures available in the PDB were calculated by

the same procedure used for APP TMDs in TFE/H2O. The Nadezhdin monomer (2LLM)

and the Nadezhdin dimer (2LOH) were too straight to determine any swivel angle. The

structures in micelles are described in the Section 4.1.2 (pp. 39)

mean θ [deg] mean ϕ [deg]

WT 38.2 ± 18.5 29.7 ± 19.1

G38L 25.8 ± 12.5 −81.4 ± 35.3

G38P 35.7 ± 15.4 −80.0 ± 41.9

V44M 30.1 ± 13.8 −24.9 ± 82.8

I45T 28.5 ± 11.9 61.5 ± 89.7

WT LMPG monomer (2lpl) 75.2 ± 4.7 34.9 ± 10.0

WT DPC dimer right-handed (2LZ3) 24.9 ± 1.6 153.2 ± 9.8

WT DPC monomer (2LLM) 14.1 ± 0.7

WT DPC dimer left-handed (2LOH) 22.1 ± 3.7

V44M DPC dimer right-handed (2lz4) 23.7 ± 2.7 42.3 ± 6.5

angle ranges overlap in such a way, that both comprise the swivel angle range of the WT.

This means that both FAD mutants can adopt all possible swivel angles of APP TMD WT.

Kink and swivel angles were calculated for the published APP WT TMD and APP V44M

TMD structures that are described in Section 4.1.2 (pp. 4.1.2), as well. All these structures

were determined in detergent micelles, either DPC or LMPG under various conditions.

Two structures are monomers, the one determined in LMPG by Barett et al. (2LP1, [249])

is the only strongly kinked structure with a kink angle much larger than that observed for

APP WT TMD in TFE/H2O. Its swivel angle deviates significantly from that of APP WT

TMD determined in TFE/H2O. In contrast, the two structures determined by Nadezhdin

et al, a monomer (2LLM, [250]) and a dimer (2LOH, [251]), exhibit significantly smaller

kink angles, which are so small that the swivel angles could not be determined. The two

dimer structures of APP TMD WT (2LZ3, [253]) and V44M (2lz4, [253]), published by

Chen et al. in DPC micelles, are again straighter than both peptides in TFE/H2O. Their

kink and swivel angles are quite similar, the great discrepancy observed between APP WT

TMD and V44M in TFE/H2O cannot be observed. The restricted bend and swivel angles of

the dimeric structures are probably caused by dimerization, as this forces the individual

helices into a certain conformation and strongly restricts flexibility.

Helix flexibility, as bending and twisting motions, is not exclusively determined by a

flexible motif, such as GlyGly, but by the whole network of fluctuating hydrogen bonds

along the peptide backbone. Thus, mutations altering this network several residues distant

from the flexible motif, like V44M or, more importantly I45T, can have a huge impact on

helix conformation and dynamics. Upon bending hydrogen bonds on the opposite site

of the hinge are weakened and therefore longer. Twisting motions in contrast require

shifting between α- and 310-helices. Bending in a defined region has been proposed to be

essential for the enzyme-substrate-complex by various studies. [249, 289, 300, 336, 356,

357, 373–376]
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Figure 4.18. H-bond lengths of APP WT TMD and the four mutants derived from the
calculated structures: The H-bonds lengths of APP WT TMD are shown in black those

of the mutants in the respective colour. The H-bonds at the opposite site of the hinge motif

are significantly elongated in APP WT TMD structures. G38L leads to significantly shorter

distances between the respective residues. G38P also leads to shorter distances at the hinge

motif but shows slight fluctuations at its C-terminus that might indicate an overall bent

structure. Both FAD lead to shorter H-bonds at the hinge-motif, too.

In Figure 4.18 the theoretical H-bond lengths observed in the calculated structures of

APP WT TMD and the four mutants are shown. Measured were H-bonds emanating from

the given residues HN to the O’ atom four residues earlier. As shown before, H-bonds

across the G37G38-hinge are significantly elongated in APP WT TMD, between I41HN and

G37O’, between V40HN and V36O’ and between G37HN and G33O’. Otherwise the distances

are more or less uniform, especially for the C-terminal helix. G38L exhibits no significant

alteration of H-bond lengths over the hinge, again the H-bonds at the C-terminus are

slightly shorter and in a narrower range than at the N-terminus. H-bonds directly C-

terminally from the hinge are significantly shorter than observed for APP WT TMD, this

fits the chemical shift differences in HN as well as the smaller kink angle observed for this

mutant and underlines the impression of a straighter helix. G38P has no H-bond between

P38 and L34 due to the missing amide proton. The significant alterations of HN chemical

shifts of residues G37, V36 and M35 are not reflected in the H-bond lengths of the calculated

structures, though. Interestingly a pattern is visible at the C-terminus: T43HN-V39O’ is

very short, T44HN-V40O’ and T45HN-V41O’ are longer, T46HN-V42O’ is very short again and

T47HN-V43O’ is longer. This pattern matches the bent visible in the C-terminal domain of

G38P. Again, the deviations in H-bond length proposed from chemical shift data are not

reflected in the calculated structures for V44M. Only I41, V40 and V39 are shortened, but

lengthening at e.g. T48 cannot be observed. I45T shows dramatically shortened H-bond

at residue V40 and effects in the C-terminal helix that was, again, not directly reflected

in chemical shift deviations. As T45 can form an additional H-bond between its carbonyl

group and the carbonyl oxygen of I41, the beginning of the C-terminal helix is stabilised

and thus the hinge region.

In Figure 4.19 side chain packing is depicted. Bending is facilitated when, on the one

hand, residues with short side chains provide free space and, on the other hand, hydrogen

bonds at the opposite side of the helix are lengthened.

Residues G37 and G38 are coloured cyan. Dark blue coloured are the residues surround-

ing the hinge (V36 and V39), turquoise the first half of the C-terminal helix (I41, A42, T43,

65



4. Amyloid Precursor Protein

Figure 4.19. Side chain packing along the hinge region and the C-terminal helix of
APP WT TMD and the four mutants in TFE/H2O: Cyan: G37, G/P/L38; dark blue: V36,

V39, V40; turquoise: I41, A42, T43, V/M44, I/T45; light blue: V46-M51. APP WT TMD structure

shows that the N-terminal helix bends towards the hole created by the GlyGly-motif. The

bulky leucine side chain of G38L at this position prevents bending and enforces helix

straightening.

V44/M44, I45/T45), and light blue the second half of the C-terminal helix (V46, I47, T48, L49,

V50, M51). It is noticeable that the glycine to leucine mutation forces the N-terminal helix

to bend away from the bulkier leucine side-chain resulting in an overall straighter con-

formation. It was shown that a proline in an α-helix induces a kink in the helix and that

this kinking is always away from the side with the proline [377–379]. In the case of G

to P this can be observed as the N-terminal helix bends away from the proline. The V44

to M mutation introduces a longer side chain at position 44 that pushed away the side

chain of V40 , moving the N-terminal helix away. I45 to threonine has no obvious effect

on the side chain pattern but the additional H-bond between the T45 side chain hydroxyl

group and I41 (indicated by an NOE between I45 and A42Hα) stabilises the beginning of the

C-terminal helix and thus changes local interactions.

The atomic coordinates and experimental data have been deposited in the Protein Data

Bank (www.pdb.org) and BRMR (https://bmrb.io): WT: 6yhf,34506; G38L: 6yhi, 34570;

G38P: 6yhO, 34508; V44M: 6yhp, 34509; I45T: 6yhx, 34510.

4.3.4. Hydrogen-Deuterium Exchange of APP G38L and G38P

Hydrogen-deuterium exchange was measured for G38L TMD and G38P TMD as well. The

measured exchange rates are depicted in Figure 4.20 Even though not all amide protons

could be sampled, the general picture already obtained from chemical shift data is evident,

too. G38L exhibits slightly slower exchange around the mutation site while the exchange

rates of G38P increase. For V44M and I45T, not enough data was measured to calculate

exchange rates. As explained above, HDX had to be measured using only
1
H-

1
H-TOCSY

experiments because APP mutant peptides were not isotope labelled. Thus distances

between measured time points were relatively long. Additionally, water suppression had

to be used to eliminate residual solvent signals. This might have interfered with peak
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volumes. And, because exchange rates are strongly pH dependent, small deviations from

the measured pH value significantly alter the profile obtained. Nevertheless the observed

effects are in accordance with the other data.

Figure 4.20. HDX exchange rates of APP WT, G38L and G38P: HDX around the residues

37 and 38 is slower for G38L and for G38P.

4.3.5. Interactions of APP WT TMD and the Four Mutants with γ-Secretase

The obtained structures of APP26-55 WT and mutants were aligned on the substrate in

the model of Hitzenberger & Zacharias [380], that is described in detail in Section 4.1.3

(pp. 44). This structure depicts the state directly after the substrate entering γ-secretase

between TMDs 2 and 3. To reach its position in the catalytic cavity formed by TMD 2,

TMD 3 and TMD 5, they observed that the substrate needed to kink at the GlyGly-motif

to overcome the loop connecting TMD 2 and TMD 3.

Interestingly only APP WT TMD structures fitted the model, allowing the N-terminal

helix to kink in the direction required. As can be seen in Figure 4.21A APP WT TMD

structures can adopt the same kink as the modelled substrate. The three mutants that

showed overall straightening (G38L, V44M and I45T) are not able to bend as required and

collide with the PSEN TMD 5. G38P does not fit either due to its altered swivel angle,

although its kink angle allows the required bending. Hitzenberger & Zacharias found

that APP WT TMD kinked at the GlyGly-motif as it entered the active site through the

opening between TMD 2 and TMD 3. When the C-terminal helix was positioned within

the catalytic cleft, APP WT TMD adopted a straight conformation [325]. The RMSD values

obtained for the overlaid structures are shown in Figure 4.21B. They corroborate the visual

impression: APP WT TMD shows the smallest deviations from the structure obtained by

MD simulations while G38P TMD differs the most.
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Figure 4.21. Interaction of APP WT TMD and the four mutants with γ-secretase: A)
APP TMD structures calculated in TFE/H2O aligned on a snapshot the substrate entry

model provided byManuel Hitzenberger. WT (gray), G38L (blue), G38P (red), V44M (yellow)

and I45T (green) aligned on the theoretical model (orange). Only the WT model can adopt

the required kink direction of the theoretical substrate while all other substrates clash

with PSEN TMDS. B) Cα RMSD values of the WT and the four mutants compared to the

theoretical model. The WT shows the lowest RMSD values. [157] Reprinted with permission from "Altered

Hinge Conformations in APP Transmembrane Helix Mutants May Affect Enzyme–Substrate Interactions of γ-Secretase", Copyright 2020, American Chemical Society
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4.4. APP0-55 in DPC Micelles

APP0-55 WT (see sequence below) was produced via cell-free protein expression and anal-

ysed in DPC micelles.

0 10 20 30 40
APP0-55, cf M DAEFRHDSGY EVHHQKLVFF AEDVGSNKGA IIGLMVGGVV

50 60
IATVIVITLV MLKKKPGGGS HHHHHH

As other groups already published structures of APP TMD in micelles, that deviate

strongly (see Section 4.1.2 p. 39), the aim to produce and measure
13
C
15
N-labelled APP

TMD in DPC micelles was to understand what led to these discrepancies. Furthermore,

with regard to subsequent experiments, a fast and simple method of peptide expression

and sample preparation that can be easily adapted to APP mutants or other γ-secretase

substrates was to be established, as a prerequisite for the planned observation real-time of

APP cleavage in the NMR tube.

4.4.1. Cell-Free Protein Expression

Cell-free protein expression was newly established in collaboration with the Huster Lab

in Leipzig, Germany.

Cell-free protein production is an alternative to conventional protein expression tech-

niques in bacterial or eukaryotic cells. It is especially useful when the protein of interest is

toxic for the host cell. Difficult constructs like membrane proteins can be produced more

easily by this method as well. And, in the NMR-context, selective
15
N-,

13
C and

2
D-labelling

as well as the incorporation of unnatural amino acids is rather simple. The principle of

cell-free expression is to break down the complex processes in cellular protein production

to the essential actions. Besides, cell-free protein expression is usually considerably less

time consuming. And, dependent on the amino acids used, it is not necessarily more

expensive than recombinant protein production. [381–384]

Two principle expression modes were described: Continuous exchange cell-free expres-

sion (CECF) and batch mode (see 4.22). CECF usually leads to higher protein yields. Two

reaction compartments are separated by a semipermeable membrane. The feeding mix

(FM) in the larger container comprises low-molecular weight supplies like amino acids,

NTPs and energy supplies, that are consumed during the reaction. The smaller chamber

contains the cell-extract and other high molecular weight compounds like polymerase and

template DNA, the so-called reaction mix (RM). This setting has two great advantages.

First reaction can go on much longer than in batch mode as consumed educts are supplied

by the FM. Second, side products that might impair expression will diffuse out of the RM

into the FM. In batch mode consumed educts cannot be replenished and thus the reaction

usually stops after few hours. [385–387]

Three principle modes to produce membrane proteins via cell-free protein expression

are established, depicted in Figure 4.22. Precipitation based (P-CF) often leads to correctly

folded proteins that can afterwards be resolubilized with detergents or lipids. When

precipitation has to be prevented, addition of detergents to the RM (D-CF) allows proteins
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Figure 4.22. Cell-free protein expression modes: A) Continuous Exchange Cell-Free

protein expression (CECF): FM and RM are separated by a semipermeable membrane that

enables exchange of low molecular weight compounds. Transcription and translation take

place in the RM, while the FM provides substances consumed during the reaction. Batch

mode: No external FM, thus limited supply of reaction educts. The reaction will stop earlier

than in CECF mode. B) CF expression modes: Precipitation based (P-CF), detergent based

(D-CF), lipid based (L-CF). C) Membrane proteins are either expressed in P-CF mode and

subsequently resolubilised in detergents or micelles or directly inserted during expression

in D-CF or L-CF mode [387]. Reprinted from New Biotechnology, 28, F. Junge et al., Advances in cell-free protein synthesis for the functional

and structural analysis of membrane proteins, pp. 262-271 (2011),with permission from Elsevier.
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to be inserted into the micelles during expression. Especially in the context of NMR-based

studies direct insertion into lipids is appealing when bicelles, liposomes or nanodiscs are

provided in the RM. [388, 389]

APP0-55 WT was expressed in the continuous exchange cell-free expression mode, using

three different reaction containers, to optimise the protein yield. Furthermore, various

parameters like Mg
2+

concentrations, temperature and reaction time were adapted to the

protein that was expressed.

The three reaction containers that were used are shown in Table 4.2. Initially 650 µL

RM were put in the cap of a 5 mL Eppendorf-tube and covered with a dialysis membrane

that was fixed by the flange. The RM-container was then placed in a 50 mL centrifuge

tube containing the FM. This provided up to 1 mg protein per mL RM. For analytical

approaches the lid of a 2 ml Eppendorf-tube was used in a similar manner. To enhance

protein production a new device was developed, shown in Table 4.2. This disk shaped

container can be covered with membrane on both sides, dramatically increasing the surface

to volume ratio. As diffusion depends on the area through which substances can pass,

efficiency increases with the surface area. As anticipated, the highest protein yields were

achieved with the newly developed RM container.

Table 4.2. Containers used for analytical and preparative scale cell-free protein expression.

Analytical scale Preparative scale

Container 2 mL Lid 5 mL Lid custom

Volume 150 µL 650 µL 1 mL

Diameter 8 mm 12 mm 16 mm

Surface 0.5 cm
2

1.1 cm
2

4.0 cm
2

Surface/Volume 3.3 cm
2
/mL 1.7 cm

2
/mL 4.0 cm

2
/mL

Since APP0-55 could be produced and reconstituted easily, after all parameters were

adjusted, the system was attempted to be applied to more complicated proteins. For this

purpose, another γ-secretase substrate, TNR12, was produced by means of cell-free protein

expression. This was investigated under my direction in the thesis of Celine Moser (2020)

[158]. TNR12 was shown to be a γ-secretase substrate by G. Güner (Lichtenthaler Lab,

DZNE, Munich; unpublished observation). The TNR1228-129 construct was composed of

the TMD, flanked by parts of the extracellular and intracellular domains. This makes it

a challenging expression construct because, in addition to the transmembrane domain

there is also a soluble domain that forms four disulphide bridges. As TNR1228-129 could
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not be resolubilised after precipitation, even if it was additionally denatured under harsh

conditions, both detergent based and lipid based cell-free expression were applied. Brij-98,

a detergent that had been described as good supplement for CECF [159] led to rather

high TNR1228-129 yields of up to 1.7 mg/mL. However, the exchange of Brij-98 against

DPC for NMR measurements could not be achieved without a denaturation step that led

to the insoluble aggregates as P-CF expression. Furthermore expression into nanodiscs

was attempted as these are an interesting membrane mimetic for NMR measurements

and, when TNR1228-129 could be inserted directly. Nandodiscs were prepared following

the protocol by Hagn et al. [161]. Size exclusion chromatography suggested that some

peptides were indeed incorporated into nanodiscs but concentrations were too low to be

detected by NMR spectroscopy.

Thus, cell-free protein expression is a versatile tool to produce transmembrane proteins,

but is was shown that the parameters that led to high amounts of protein that could easily

be reconstituted in organic solvent or detergent micelles do not necessarily translate to

another protein.

4.4.2. Secondary Structure of APP0-55 in DPC Micelles

APP0-55 was expressed via cell-free protein expression and incorporated in DPC micelles.

A set of homonuclear and heteronuclear two-dimensional and three-dimensional NMR

spectra was acquired at 320 K.

Almost all
1
H-

15
N-resonances could be assigned as shown in the

1
H-

15
N-HSQC in

Figure 4.23A as well as Cα, Cβ, C’ and Hα chemical shifts (the full chemical shifts table can

be found in the appendix).

1
H-

15
N-HSQC spectra of APP0-55 WT in DPC were acquired at two pH values, pH 7.0

and pH 5.0. Interestingly, the residues buried in the detergent micelles (A30 to M51) do

not experience significant chemical shift differences between the two pH values, but the

hydrophilic N-terminal region seems to be affected dramatically. The amides of the first

twelve residues are affected by severe linebroadening and not visible. This could be due to

conformational changes or hydrogen exchange with an unfavourable exchange rate in the

intermediate exchange regime (see Section 2.3, pp. 22). Hence, the following experiments

were acquired at pH 5.0.

The secondary chemical shifts of APP0-55 WT TMD in DPC indicate a fully α-helical

peptide from I31 until V50, as shown in Figure 4.23B. As observed in TFE/H2O already, the

C-terminal domain is more helical than the N-terminal part and there is a loss in helicity

at G37G38, even though less pronounced. TALOS+ derived S
2
order parameters are similar

between APP0-55 in DPC micelles and APP26-55 in TFE/H2O at the C-terminal domain, but

differ at the N-terminal helix where APP0-55 in DPC is more structured than APP26-55 in

TFE/H2O.

4.4.3. Hydrogen-Deuterium Exchange in DPC

Hydrogen-deuterium exchange measured with a series of
1
H-

15
N-HSQC experiments at

pH 5 and 310 K showed that the majority of amide protons exchanged relatively fast. Thus

exchange rates could not be assessed quantitatively but only qualitatively. Figure 4.23C
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Figure 4.23. Chemical shift data and HDX of APP0-55 in DPC micelles at pH 5.0: A)
1
H-

15
N-HSQC of APP0-55 in DPC at pH 5 and 320 K. B) Hα and Cα secondary chemical

shifts of APP0-55, below S
2
order parameters of APP0-55 in DPC (dark blue) and APP26-55 in

TFE/H2O (green). The secondary chemical shifts indicate a fully α-helical structure that is

apparently marginally less helical at the G37G38-motif. C) Hydrogen-deuterium exchange:

1
H-

15
N-HSQC of APP0-55 in DPC and D2O, acquired at 310 K. 2 h (dark blue) and 17.5 h

(light blue) after resolubilisation. The light blue spectrum is shifted for better visibility. The

HN within the C-terminal helix exchange significantly more slowly than those within the

N-terminal region, as observed in TFE/H2O.
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shows in blue the protonated peptide and in red the remaining signals after 18 hours

of exchange. Obviously the slow exchanging residues are located in the C-terminal

transmembrane helix from I41 to V50 in which I45 and V46 experience the slowest exchange.

This is in accordance with the finding that the N-terminal domain is less helical and

probably less stable than the C-terminal helix. Chen et al. measured HD exchange rate

constants of APP in DPC micelles at pH 7.2 and 298 K. They found that exchange is very

fast for the N-terminal helix, medium for residues G37 to V40 and V50 and very slow for the

C-terminal helix from I41 to L49 [253]. MD simulations of APP in DPC micelles showed that

the number of water molecules close to each amino acid rapidly decreases when amino

acids are buried deeper in the membrane. Very low water content was reached for almost

the whole TM helix from residues G33 to V50 [373]. Therefore exchange rate deviations

observed in DPC micelles are not simply due to low water accessibility but do report on

conformational flexibility at the corresponding amino acids.

The results obtained in TFE/H2O are quite close to those in DPC micelles. Thus TFE

does not induce conformational or dynamic properties completely deviating from those in

DPC.

It could be shown here that APP0-55 can be expressed via cell-free protein expression

and incorporated in DPC micelles and the structural and dynamical information obtained

is in accordance with published data. Thus, further experiments to study the interaction

of APP or other γ-secretase substrate TMDs can be designed and executed on this basis.

Furthermore, cell-free protein expression was successfully implemented both precipitate-

based and with the use of detergents. Even though the reconstitution of the TNR12

construct was not successful, it could be produced in sufficient quantities in both modes.

Thus, for other constructs, such as other γ-secretase substrates, which have a similar

amino acid sequence, cell-free protein expression can probably be adapted relatively well.

In addition, attempts should be made to express the respective peptides directly into

DPC micelles, which can then be measured by NMR spectroscopy without denaturing

purification steps.

4.5. Discussion

γ-Secretase substrates such as APP TMD are challenging subjects for structural investiga-

tions as they relocate from hydrophobic membranes to the hydrophilic, water containing

catalytic cavity of the enzyme.

Transmembrane proteins in general are largely influenced by their environment. Once

inserted into the membrane, α-helical transmembrane domains are severely restricted con-

cerning their possible conformations and dynamic processes such as domain motions. In

structural biology membrane mimetics such as micelles, bicelles, vesicles or nanodiscs are

used to study transmembrane protein properties in their native-like environment. Upon

migration to the catalytic cleft, γ-secretase substrates leave the hydrophobic membrane and

translocate into the water-filled cavity where their surroundings change severely. While

strongly restricted by the lateral pressure of the lipids within the membrane, structural

alterations of the substrates may occur upon entry into the catalytic site. The conditions
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during this transition cannot be reproduced in membrane mimetics, but need to be investi-

gated in a solvent allowing conformational flexibility. Besides, helix dynamics are strongly

affected by solvent molecules, such as water in the catalytic cleft. Trifluoroethanol-water

mixtures that were used in this thesis are a good compromise to monitor conformational

and dynamic properties of the substrate in the catalytic cleft, as they do not strongly

influence conformations, even though TFE is known to stabilise distorted helix structures

[390].

For APP TMD it has been shown that at least the C-terminal domain, harbouring the

scissile bonds, migrates from the lipid bilayer into the water-filled cavity within γ-secretase,

but to date APP TMD has not been elaborately studied in TFE/H2O, but only in membrane

mimetics. For the reasons explained above, structural and dynamic information of APP

TMD in an environment resembling the catalytic cavity of γ-secretase can provide valuable

insights into substrate entry and processing.

APP26-55 WT in TFE/H2O adopts an entirely α-helical structure throughout its TMD as

generally favoured by single pass transmembrane proteins. Two straight helical segments

are connected by a flexible hinge at residues G37 and G38. Bending and twisting at this

hinge is restricted to a defined conformational space. APP TMD conformations observed

upon substrate entry into γ-secretase by MD simulations lie within the scope of structures

determined based on NMR derived restraints [325]. Apparently, the stabilising effect of

TFE did not bias the structures, as the peptides in TFE/H2O were less rigidly α-helical than

in DPC micelles according to secondary chemical shifts.

Structural Properties of APP WT TMD and the Four Single Point Mutants

Although more than a hundred different γ-secretase substrates are known, with a variety of

amino acid sequences in their transmembrane domains, γ-secretase is extremely sensitive

to single point mutations. Thus, it is still unclear which properties discriminate between

γ-secretase substrate and non-substrate or which feature leads to ε-cleavage at L49 or T48.

To address this question, five mutants were selected considering different aspects. The

GlyGly-motif, which was assumed earlier to be a central feature facilitating substrate entry

into the catalytic cleft [289, 373], was one starting point. However, it does not appear in all

substrate sequences by far. Notch1 TMD and APLP2 TMD, for example, have none while

ErbB4 TMD even contains one at approximately the same distance from the γ-secretase

cleavage site as APP TMD. TNR12 also harbours a GlyGly-motif, but very close to the

N-terminal end of its TMD. Therefore, the motif does not seem to be mandatory, but also

not peculiar to APP. In cooperation with our collaborators in Munich and Leipzig, two

single point mutants at this motif were designed. The glycine to leucine mutant was

intended to straighten the helix and impair bending at this motif, whereas proline was

expected to destabilise the helical structure. The other two variants, again single point

mutations, are Familial Alzheimer’s Disease (FAD) mutants, that were found in families

with an accumulation of AD at young age [346, 348]. These mutations are not located near

the ε-cleavage site but more in the middle of the very stable C-terminal helix. Nevertheless,

they were shown to impact γ-secretase cleavage.

The results obtained in this thesis revealed similarities, but also differences between

APP WT TMD, G38L, G38P, V44M and I45. As expected, the general structures of all five
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peptides analysed in TFE/H2O were similar. The four mutants altered kink and swivel

angles of the N-terminal domain relative to its C-terminal counterpart compared to APP

WT TMD. The proposed hinge at G37X38 was confirmed as bending occurred at this site.

It has to be emphasised here, that exchange of one single amino acid, even some residues

distant from the hinge motif, apparently led to drastic conformational alterations.

Both G38 mutations had the effect that was intended. Leucine with its large hydrophobic

side chain was observed to straighten the transmembrane helix and to slightly stabilise

the N-terminal part, reducing flexibility at the proposed hinge-motif. Proline in contrast,

lacking an amide proton, was found to destabilise the N-terminal helix, as it cannot form

the characteristic hydrogen bonds with carbonyl groups three or four residues towards

the N-terminus. Furthermore, proline prevented a straight conformation of the TMD. The

kink, usually not directly at the proline residue itself but located more N-terminally, is

introduced by the steric clash between the proline ring and backbone carbonyl groups

of preceding amino acids [377, 391–393]. Both G38 mutations mainly affected the swivel

direction, changing the relative rotation of N- and C-terminal helix parts by about 110°

compared to the WT. This corresponds to roughly one amino acid in an α-helix. Neither

mutation affected the ε-cleavage site.

My results fit to MD simulations of our collaborators that showed that the overall helical

conformation of G38L increased in POPC LUVs (large unilamellar vesicles) and decreased

in the case of G38P. Furthermore, they could show that the kink angle of G38L greatly

resembles values obtained for WT, whereas G38P structures simulated by MD resembled

conformations obtained by NMR data in this work. Kink angles of G38P determined from

MD simulations were considerably shifted towards more strongly bent conformations and

angles smaller than 15° were almost non-existent. The changes in swivel angles compared

to APP TMDWT observed in MD simulations were smaller than the ones derived from

NMR data, with about 10° for G38L and about 40° for G38P [344]. Such discrepancies

between MD simulations and NMR derived structures frequently occur as the two methods

are based on differing principles. On the one hand, it has to be emphasised once again, that

the structural bundle obtained from NOE restraints does not describe dynamic processes,

but rather represents all the structures that are in accordance with the restraints used.

Thus, the conformational space might be wider than the structures APP TMD can adopt

in its natural environment. On the other hand, MD simulation times might be simply too

short to observe energetically less favourable, more strongly kinked conformations.

The other two single point mutations investigated, V44M and I45T, impacted helicity as

well as bending and twisting motions, even though the mutation sides were located in the

middle of the very stable C-terminal helix. Götz et al. observed shifts in bend and swivel

angles as well, when comparing APP WT TMD with V44M and I45T [357, 394]. Since

calculations were not done concordantly (Götz et al. used G33 as origin, C. Muhle-Goll

used V46) the absolute values cannot be compared. Nevertheless, both mutations resulted

in a larger possible swivel angle range in the case of I45T compared to the WT and a

slightly shifted kink angle of I45T with respect to the WT observed by the NMR data

obtained here. This is in accordance with MD simulations by Scharnagl et al., that showed

that I45T facilitated bending at the GlyGly-hinge [300].

Lengthening of hydrogen bonds around the ε-cleavage site is discussed as determinant

of ε-cleavage site preference. Alterations of the hydrogen bond network were expected to
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be caused by the mutations that could explain shifted ε-cleavage sites. Both G38 mutants

did not impact the C-terminal helix but mainly the residues around the mutation site,

according to the NMR data obtained. Alterations of the hydrogen bond network observed

in MD simulations of our collaborators, the Scharnagl Lab, showed similar results. They

observed no dramatic impact on the C-terminal domain but G38P led to a dramatic loss of

H-bond occupancies at V39 and the surrounding residues [344]. Both C-terminal mutations,

V44M and I45T, led to chemical shift perturbations at the ε-cleavage site, in the case of

V44M at T48 and in the case of I45T at L49. In DPC micelles, Chen et al. observed the same

effect for V44M. The lengthening of H-bonds at residues T48 and L49 that they found in

DPC micelles, however, is not seen for structures in TFE/H2O. In contrary, NMR data even

suggested strengthening of the H-bond network in this region as hydrogen bond lengths

in the calculated structures were shortened compared to the WT. These findings were not

reflected in the three-dimensional structures derived from NMR restraints, which indicated

no weakening of H-bonds at this site. Likewise, the MD simulations by Scharnagl et al.

showed no local unfolding around the ε-cleavage site of I45T [300]. These observations

are in turn in accordance with cleavage assays done by two groups that clearly indicated

no shift of the ε-cleavage site, but assumed that the product line is changed after the

initial ε-cleavage [278, 347]. Again, MD simulations by Götz et al. showed lower H-bond

occupancies for V44M within the C-terminal helix while I45T apparently stabilised the

H-bond at T45 but destabilised H-bonds more towards the N-terminus [357].

Considering all these observations, it is very likely that more than one step of APP-γ-

secretase interactions is affected by the four mutations. Impairment of overall processing

may hint at disturbances upon initial substrate recognition while shift of ε-cleavage could

be due to altered substrate positioning in the enzyme and changed interactions there.

Shorter Aβ fragments may result from longer retention times within the enzyme and shift

of cleavage line during processing might again be due to disfavoured positioning within

the catalytic cleft.

Structural Properties of APP WT TMD in Membrane Mimetics

Even though already four APP TMD structures in micelles are published, summarized in

Table 4.3, they raise more questions than they answer. Thus, a longer APP TMD construct,

harbouring the entire N-terminal intracellular domain was analysed in DPC micelles in

this work as well. All four structures were determined under quite similar conditions. One,

the structure by Barett et al. (2LP1) was measured in LMPG micelles while the other three

were determined in DPC micelles, two by Nadezhdin et al. (2LLM and 2LOH) and one by

Chen et al. (2LZ3). Nevertheless, the structures differ in essential features.

The three structures determined in DPCmicelles resemble rather straight helices without

observable weakening of significant kink at the G37G38-motif. The structure of Barrett et al.

(2LP1), however, that was determined in LMPG micelles was strongly kinked. This might

be induced by the different detergent used, as Barrett et al. exchange G37 and G38 against

two leucine residues which only moderately straightened the helix [249]. And Dominguez

et al. compared the chemical shifts reported for the structure in LMPG with the α-helicity

of APP15-55 in DPC and POPC derived from MD simulations. They could show that the
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Table 4.3. Published structures of APP TMDWT determined under different condi-
tions. All structures were oriented alike. The GlyGly-motif is highlighted in cyan.

PDB code 2LP1 2LLM 2LOH 2LZ3

monomer monomer dimer dimer

left-handed right-handed

detergent LMPG, pH 6.5 DPC, pH 5.0 DPC, pH 6.2 DPC, pH 7.2

D:P 700:1 70:1 50:1 250:1

Reference [249] [250] [251] [253]

N-terminal domain in LPMG was less helical than in POPC and DPC. Thus, the kinked

conformation of the Barrett peptide probably was enforced by the LMPG micelles [373].

The three other structures, nevertheless, were obtained in DPC micelles. However, one

monomer (Nadezhdin, 2LLM, [250]), one left-handed dimer (Nadezhdin, 2LOH, [251]) and

one right-handed dimer (Chen, 2LZ3, [253]) were calculated. Furthermore, the dimers

exhibit different dimerization interfaces. The most obvious differences in sample prepa-

ration are the pH values and the detergent to peptide ratios used. In this thesis, APP0-55

was measured at pH 7.0 and pH 5.0. When comparing the two
1
H-

15
N-spectra the peaks

corresponding to the residues embedded in the membrane were apparently not affected by

pH values, as no chemical shift perturbations could be observed. Nadezhdin et al. observed

the monomeric structure at a detergent to peptide (D:P) ratio of 70:1 and the dimer at a

ratio of 50:1. They also reported two sets of signals in a 1H-15N-HSQC of the putative

dimeric peptide. From these observations, they concluded that dimerization is enforced at

a D:P ratio smaller than 70:1 because they claim that a micelle consists of about 70 DPC

molecules. Thus, statistically at a D:P ratio smaller than 70:1 two peptides should be at

least embedded in some of the micelles [251]. In literature, DPC aggregation numbers

are usually given as a range from 60 to 80 [395], which in turn would imply that even at

D:L 70:1 the monomer is not necessarily obtained. Accordingly, it is also possible that

the observed additional signals in the HSQC spectrum originate from oligomers. Further

contradicting their conclusions is the fact that Chen et al. observed their dimer at a D:P

ratio of 250:1 [253] what according to Nadezhdin should lead to monomeric structures.

The two groups observed different sets of interresidual NOE contacts. Nadezhdin et al.

observed two sets of cross peaks in the
1
H-

15
N-HSQC spectrum, which they claim, was
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due to the presence of monomeric and dimeric APP in the sample. Furthermore, they based

their dimeric structure on six intermonomeric NOEs obtained from
15
N- and

13
C-edited

and
13
C- and

15
N-filtered NOESY experiments: I32Hγ-M35Hε, L34Hδ-M35Hε, L34Hδ-V39Hγ,

I41Hγ-A42Hβ, I45Hδ-V46Hδ and T48Hγ-L49Hδ [251]. Chen et al. used chimera samples to

obtain 13 intermolecular NOEs by
13
C- and

15
N-filtered NOESY experiments, for example:

V39HN-V39Hγ, V46Hγ2-V46HN, V40H-V39Hγ1 and M35Hε-V36Hγ1. Furthermore they used

RDCs for structure refinement. [253] Thus, both groups observed completely different

inter-monomeric cross-peaks with basically the same experiments, resulting in diverging

dimer interfaces. Furthermore, both groups that determined a monomer simply presumed

that APP is present as monomer in their samples. They did not employ methods such as

analytical ultracentrifugation to test this presumption.

As the question whether membrane bound APP forms dimers within its TMD or not

is still under debate (APP TMD dimerization in general will be discussed later), APP0-55

was analysed in DPC at pH 5 in this work as well. The aim was to investigate under

which conditions the monomeric or dimeric form could be observed and whether the kink

observed by Barrett et al. in LMPG [249] could be reproduced in DPC micelles.

Figure 4.24. Chemical shift comparison of the published APP TMD structures and
the data obtained in this work: 15

N (left) and
1
HN (right) chemical shifts of the four

deposited structures compared with APP0-55 in DPC. The chemical shift profiles are almost

perfectly overlapping and the differences are most likely due to diverse chemical shift

referencing. For 2LLM and 2LOH deposited chemical shifts were identical.

Upon successful assignment of APP0-55 in DPC, the chemical shifts obtained were

compared with those of the four structures available at the PDB. Indeed, one would expect

1
HN shifts in particular, which are very sensitive to small deviations in their environment,

to be significantly perturbed. Instead, as shown in Figure 4.24 their profiles over the

APP TMD sequence almost perfectly overlap. Differences are most likely due to variable

reference frequencies.

The structural differences could be due to subtleties during sample preparation or, what

seems more likely, APP can adopt a variety of structures with its TMD when embedded

in the membrane or in micelles. All these studies may have sampled the same peptide

but observed diverse snapshots. The comparison of the structures and the data used does

not explain why different results were obtained by the three groups. APP TMD seems to

constantly change its appearance like a chameleon, probably undergoing conformational

exchange between most diverse structures.

Due to the large discrepancies the published structures do not clearly prove whether APP

TMD is flexible or kinked in the lipid bilayer or not. Compared to TFE/H2O, DPC induces

straightening of the helix and stabilises the N-terminal domain. However, as shown in
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this work based on chemical shifts, the transmembrane domain of APP0-55 is more rigid in

DPC micelles than APP TMD in TFE/H2O, even though the N-terminal helix part appears

less helical than the C-terminal part in both environments. Secondary chemical shifts hint

at lower helicity and therefore possibly enhanced flexibility at the G37G38-motif in DPC

and in TFE/H2O. The structural information obtained is in accordance with published data,

mainly from MD simulations. Calculations by Dominguez et al. had shown that APP TMD

experiences a loss in helicity at residues G37 and G38, both in POPC and DPC micelles and

a higher helicity of the C-terminal helix with respect to the N-terminal domain [373]. This

split structure was observed by MD in TFE/H2O, too. Our collaborators at TUM (Scharnagl

and co-workers and Langosch and co-workers) showed with MD simulations that H-bond

occupancy decreases at residues G38 to I41 in TFE/H2O and, less pronounced, in POPC [357].

Furthermore, the hydrogen-deuterium exchange profile observed in this work is in good

agreement with deuterium-hydrogen exchange rates sampled by MD simulations [344].

Bending and twisting motions were observed by others as well. In micelles Dominguez et

al. detected a kink of about 12° at the GlyGly-motif [373]. Furthermore, bend and swivel

angles were determined by Götz et al., both in TFE/H2O and POPC. They observed bending

up to 30° with 12° mean value and the larger share between 0° and 20°. In TFE/H2O this was

shifted slightly, increasing the ratio of stronger bent structures. They observed restricted

swivel angles as well, while APP WT TMD was limited to a range of about 60°. Due to

differences in axis definition the absolute directions are not comparable, though [344].

This leads to the conclusion that the TMD flexibility is at least partially restricted in the

lipid bilayer.

In the following sections, the specific interaction events and how they could possibly

be influenced by the alterations observed, will be discussed.

Substrate Entry into γ-Secretase

As already described above, it is still under debate how substrates enter into γ-secretase.

Cryo-EM structures of C83 bound to the enzyme’s catalytic cleft were determined [304] (see

Section 4.1.3 pp. 43) but initial binding or the entry event itself could not be investigated

on a structural basis so far. Three entry pathways are discussed: The substrate could use

an opening between TMD 2 and TMD 6, between TMD 2 and TMD 3 or, finally, between

TMD 6 and TMD 9 [325, 328–330], explained more thoroughly in Section 4.1.3 (pp. 44).

The substrate initially binds to the N-terminal domain of PSEN1, according to cross-

linking studies with C99 and CHAPSO-solubilized γ-secretase [321]. In collaboration

with Manuel Hitzenberger and Martin Zacharias, the structures determined by NMR

in this thesis were compared with their MD simulations. They assessed the entry of

C99 (without extracellular domain) into γ-secretase via the three pathways described, by

actively pulling residues L49 and V50 towards the catalytic centre. Entry through TMD 2

and TMD 3 was the most likely entry pathway according to their simulations. To reach

its final position in a cavity formed by TMD 2, TMD 3 and TMD 5 they observed that the

substrate needed to kink at the GlyGly-motif to overcome the loop connecting TMD 2

and 3 [325]. These observations were substantiated by the results obtained for APP TMD.

The structure of APP TMD WT in TFE/H2O permits the same kink angle and direction as

observed by Hizenberger & Zacharias. The structures of the four mutants in TFE/H2O, in
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contrast, did not fit easily but clashed with TMDs of PSEN1. Hence, substrate entry might

require specific bending and twisting motions of the TMD. When structures are too rigid

or wrongly oriented, substrate entry may be impeded or entirely impaired. This seems

to be the case for the two G38 mutants that were found to dramatically decrease AICD

production to 38% in the case of G38L and only 8% in the case of G38P TMD compared to

theWT [344]. These two mutants showed the greatest deviation in swivel angles compared

to WT and, in contrast to V44M TMD and I45T TMD, do not cover the swivel angle range

of APP WT TMD. As the swivel angles of the G38 mutants deviate from the WT by about

110°, they could be rotated by one amino acid. Then they would again fulfil the bending

motion needed for entry. Within the active site they would end up turned by one amino

acid, thus, not the bond between L49 and V50 but between T48 and L49 would be presented

to the catalytic aspartates. As currently no data on the exact length of the AICD generated

upon G38L TMD and G38P TMD cleavage is available, it is not known which ε-cleavage

site is preferred to verify this proposal.

V44M in contrast was shown not to reduce overall processivity, but ε-cleavage preference

was found to be shifted from L49 to T48 [278, 347]. What is speculated for G38P/L above

could happen in this case as well. Even though V44M allowed a much broader range of

swivel angles it is imaginable that, at least sometimes, the substrate entered the catalytic

cleft rotated by one amino acid, with the result that T48 instead of L49 was positioned at

the catalytic residues of γ-secretase. This fits to the finding that ε49-cleavage was not fully

impaired but ε48-cleavage occurred more often than for APP WT TMD, shifting the ratio

of the respective cleavage products.

I45T TMD on the other hand experiences much slower processivity. However, it was

shown by Bolduc et al. that initial cleavage takes place at L49 [278]. This supports the first

assumption, that substrate entry was impaired due to altered kink and swivel preferences.

Initial positioning in the enzyme does not seem to be altered by the mutation.

The shift of cleavage line preference could be explained by the altered swivel angles,

which could force the substrate to rotate by one residue to conduct the movement required

to enter. This could lead to alternative positioning within the catalytic cleft and thus

to altered processing. This theory could not be corroborated by MD simulations so far.

Hitzenberger & Zacharias pulled residues L49 and V50 to the catalytic residues which

corresponds to ε-cleavage at L49. Thus, conclusions about how the entry of the substrate

into the enzyme changes when ε-cleavage occurs at T48 cannot be drawn. Furthermore,

they did not investigate how the single-point mutation within APP TMD considered in

this work act in their simulation, but the structures determined in TFE/H2O were only

aligned to APP WT in the snapshot of their simulation.

Substrate Processing by γ-Secretase

After entering the active site, the scissile bond is presented to the catalytic residues and

cleavage commences. The first cleavage step of C99 or C83 within its TMD, takes place at

the ε-cleavage site. To make the scissile bond accessible to the catalytic residues the helix

must unwind locally [332]. Zhou et al. showed in their cryo-EM structures that C83 adopted

a β-sheet structure at its C-terminal domain in the catalytic cleft [304]. Hence, besides

substrate recognition and entry this unwinding process could determine the cleavage
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efficiency of γ-secretase. Helix unwinding after substrate entry might be impaired by the

shorter hydrogen bonds observed around the ε-cleavage sites of G38L, G38P and I45T (see

Figure 4.18) that promote structural rigidity. This could explain lowered processivity.

Val and Ile are considered helix destabilising residues in aqueous environment, Gly even

helix breaking. The introduction of these residues around the scissile bond was shown to

result in increased proteolysis [396]. In the membrane environment, however, β-branched

amino acids like valine and isoleucine are helix promoters and glycine supports helicity as

well [397] [398]. Val, Ile and Gly were indeed found to be below the five most abundant

amino acids in single-span TM helices [399, 400]. These residues probably stabilise the

cleavage sites when in the membrane but weaken the helix or even induce unfolding when

C99 (or any other substrate) reaches the water filled cavity at the active side. However,

these effects do not only depend on the naked amino acid sequence [380]. The introduction

of three leucines at the ε-cleavage site to impair unravelling within the enzyme was shown

not to be rate limiting for proteolysis. Nevertheless, cleavage line was shifted as Aβ42

generation was increased and Aβ40 decreased [293, 401]. Besides helical unwinding the

substrate has to straighten upon arrival in the catalytic cleft [304, 325]. As G38P could

not adopt an entirely straight structure according to the measurements in TFE/H2O, this

mutant might impair processing as it could not adopt an entirely straight conformation.

Thus cleavage might be slowed down, as observed for G38P by our collaborators, although

the substrate successfully reached the catalytic cleft [344].

After initial cleavage at the ε-cleavage site, γ-secretase substrate is processed further.

Mostly consecutive tripeptide fragments are removed, resulting in the most abundant

Aβ40 peptide or to a lesser extent Aβ42 and Aβ38 (see Section 4.1.2 pp. 36). As Aβ42 is the

most aggregation prone product whose aggregates are commonly found in the brains of

AD patients, most studies focus on substrate (or enzyme) properties that promote Aβ42

formation. It has been proposed that the time the substrate remains within the enzyme’s

catalytic cleft determines the number of γ-secretase cleavage steps [338]. This again could

depend on the interactions of the substrate’s N-terminal domain with γ-secretase [325].

This theory was substantiated by simulations detecting no conformational changes within

the substrate’s N-terminal helix inside the catalytic cleft [325, 338]. In the case of G38L the

main cleavage product was Aβ37, indicating one cleavage step more than for G38P, that

mainly led to Aβ40. In neither case Aβ42 was detected suggesting that only ε-49 cleavage

occurs [344]. Successive trimming leads to Aβ46, Aβ43, Aβ40 and in the case of G38L even

to Aβ37. Pathway shift of I45T could be due to the fact that helical instability facilitates

subsequent trimming.

The observed helix stabilisation of G38L, especially at its N-terminus, might enable

stronger interactions with γ-secretase that result in a longer retention time in the enzyme.

Monomer or Dimer?

Before its interaction with the enzyme, APP can either be present as dimer or as monomer

in the lipid bilayer. APP TMD dimers, at least at higher concentrations, were reported

by various groups [253, 282, 293, 373, 402–406]. However, it is disputed whether and

when the dimer dissociates. Different models were proposed: The substrate might interact

with γ-secretase as a dimer. Or, the dimer and the enzyme-substrate complex might be in
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dynamic equilibrium, leading to dissociation upon interaction with γ-secretase [332, 407].

In this case dimer structure might influence substrate recognition. It was even proposed

that APP TMD is processed as a dimer. However, the lately published cryo-EM structures

substantiated other results, which stated that γ-secretase processes monomeric substrates

[279, 304, 353, 408–410].

Presuming APP TMD dimerizes, various dimer interfaces are plausible. Three GXXXG

dimerization motifs, for example, G25XXXG29, G29XXXG33 and G33XXXG37 are located

within APP TMD. It is unknown which, if any, of these three motifs is relevant for dimer-

ization. Interestingly, the two NMR derived dimeric structures are based on neither of

these motifs but locate the dimer interface in the centre of the TMD. Nadezhdin observed a

left-handed parallel dimer via I31XXXM35XXG38XXXA42XXI45XXXL49XXL52, helices were

maximally close at the G38XXXA42 interface [251]. Chen et al. in contrary obtained a

right-handed dimer, and determined, consistent with Nadezhdin et al., the G38XXXA42 as

the interface [411]. The structures are described in Section 4.1.2 (pp. 39) and Section 4.5

(pp. 77).

In a recent study, Perrin et al. investigated dimers at these three GXXXG motifs and

showed that different dimer orientations determine the cleavage line preference. They

enforced the formation of dimers at different interfaces. To achieve this, they designed

fusion proteins of the left-handed leucine zipper coiled-coil of the transcription factor

Put3 from Saccharomyces cerevisiae coupled to the extracellular domain of C99. Put3 was

coupled at varying positions of APP, from residue 1 to residue 17. So they could create

every possible left-handed APP dimer. They identified two GXXXG dimers that were

processed differentially by γ-secretase. Dimerization via the G33XXXG37 motif promoted

Aβ42 generation while usage of the G25XXXG29 led to higher levels of Aβ43 and Aβ40. They

did not investigate possible dimerization via G29XXXG33. Additionally, they found the two

presenilins to prefer different dimerization motifs, as PSEN1, mostly located in the plasma

membrane, preferred G25XXXG29 while PSEN2 that is rather found in endosomes and

lysosomes favoured G33XXXG37 [309, 310, 410]. An earlier study had already shown that

G33A, diminishing G33XXXG37 dimerization, led to reduced Aβ42 but almost unchanged

Aβ40 levels [351]. Therefore dimerization at this motif might occur in the membrane.

Perrin et al., however, only investigated dimerization at the N-terminal motifs and not

within the TMD, especially not at the G33XXXG37 motif and neither the G38XXXA42-motif.

The latter was identified as the main dimerization interface in previous studies [251, 411].

In accordance with the dimer proposed by Nadezhdin et al., Yan et al. identified the

TVIV motif as essential for dimerization, especially the I45 side chain. They proposed a

dimer where helices cross at TVIT with I45 and V46 in direct contact [282]. As Perrin et

al. enforced dimerization, it is not clear whether the dimers they describe really occur

under physiological conditions, especially with the context that previous studies always

presumed dimerization motifs within APP TMD.

Based on all these observations, APP TMD seems to be able to form dimers in many

different ways. Which variant is the physiologically relevant one, if a wide variety of

conformations could not be present in exchange with each other anyway, still remains

unclear.

Clemente et al. performed cleavage assays with the presenilin homologue (PSH)

MCMJR1 and APP TMD. They monitored interactions of APP WT and PSH in DPC
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by a series of
1
H-

15
N-HSQC experiments and observed linebroadening of APP cross peaks

and appearance of new peaks over time. From chemical shift perturbations they concluded

that the initial contact between substrate and enzyme occurred at the N-terminal domain

of APP TMD. They presumed APP TMD to be dimeric in the membrane, based on observa-

tions made in the same group [253]. As they did not observe chemical shift perturbations

at the dimer interface they concluded, that APP TMD interacts with the enzyme as a dimer

[332]. However, as discussed above, four different APP TMD structures in micelles exist

that do not largely differ in their chemical shifts. Thus, presuming all these structures

show snapshots of several conformations adopted by APP TMD in lipids, the work by

Clemente et al. neither proves nor disproves that APP TMD interacts as a dimer with PSH.

Based on these observations, the results concerning the structures of APP TMD WT

and mutants in TFE/H2O must be put into the context of dimerization. Even though APP

TMD is most likely monomeric in TFE/H2O, the possible conformations found might hint

at dimer formation. Swivel angles of G38L and G38P deviate by about 110° from the WT,

this corresponds to approximately one amino acid turn of the α-helix. According to Perrin

et al. this makes the difference between the two dimerization motifs they investigated

[410]. Bend and swivel of the peptides certainly defines possible dimers and thus possible

dimerization motifs. This could explain worse processivity observed for the G38 mutants,

because dimerization occurs in a disadvantageous manner and recognition by γ-secretase

is thereby impaired. V44M has a wider range of possible swivel angles, including the

ones favoured by the WT but is more restricted regarding the kink angles. Thus this

might shift dimerization preferences again. According to Perrin et al. Aβ42 processing

occurs mainly upon G33XXXG37-dimerization. This seems possible when theoretical dimer

conformations of the average structures of all five peptides are investigated. I45T has a

as large range of possible swivel angles as V44M but its mean value is again shifted by

110°. From comparison of structures, G33XXXG37-dimerization seems sterically hindered

while G29XXXG33 looks possible. Dimerization as proposed by Yan et al. is only slightly

impaired by the I45T mutation, but significantly reduced for V44M [282].

Supposing APP adopts a dimeric structure, at least partially, under physiological condi-

tions and the exact conformation of the dimer influences γ-secretase processing, alterations

in bend and swivel angles can change the dimer formed. In accordance with Perrin et al.

this could explain the altered cleavage line preferences observed for the WT and the four

mutants.

Other γ-Secretase Substrate TMDs

Several other γ-secretase substrates were analysed in this thesis. APP WT and mutant

TMDs strongly suggest that, on the one hand, some degree of bending and swivelling is

required to allow substrate entry into γ-secretase. On the other hand, not only flexibility

but the exact bending direction with respect to the TMD part harbouring the scissile bond,

seems to affect processivity. Thus, the structures of APP TMD were compared to data

obtained for other γ-secretase substrates and to other substrate structures deposited in the

PDB.

Besides APP five other γ-secretase substrate TMDs were measured in the group: Tumor

necrosis factor receptor superfamily member 12A (TNR12 or Fn14), Amyloid-like protein
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2 (APLP2), Receptor tyrosine-protein kinase erbB-4 (ErbB4), N-Cadherin (or Cadherin-2)

and Neurogenic locus notch homolog protein 1 (Notch1). Amino acid sequences are given

in Table 4.4. All peptides were analysed in TFE/H2O (80/20 V/V) at pH 7.

Figure 4.25 shows secondary chemical shifts, S
2
order parameters and helical content

for APP WT and the five other γ-secretase substrates. Furthermore, the three-dimensional

structures of APLP2 TMD, determined by Celine Moser, compared to APP WT TMD are

shown. Three-dimensional structures were calculated and hydrogen-deuterium exchange

rates were measured for TNR12 TMD, which was investigated under my direction in the

thesis of Celine Moser (2020) [158].

Table 4.4. Sequences of the other γ-secretase substrate TMDs. TMDs are underlined,

italic K are non-native amino acids added for MS analysis. γ-secretase cleavage sites are

indicated by an asterisk. Lab members in sample preparation, NMR measurement and data

analysis were Mara Silber (MS), Claudia Muhle-Goll (CMG), Celine Moser (CM) and Nadja

Guschtschin-Schmidt (NGS)

Substrate Sequence Involved

APP
26SNKGAIIGLMVGGVVIATVIVITL*VMLKKK

55
MS

TNR12
76RLLWPILGGALSLTFVLGLLSGFLVWRRCRRR107 CM, MS

APLP2
689SLSSSALIGLLVIAVAIATVIVISL*VMLRKR

719
CM, CMG, NGS

ErbB4 KKK652LIAAGVIGGLFILVIVGLTFA*VYVRRK
678

CMG, NGS

N-Cadherin K723GAIIAILLCIIILLILVLMFVVWMK747KK CMG, NGS

Notch1 KKK1734LHFMYVAAAAFVLLFFVGCG*VLLS
1757KKK CMG, NGS

Based on observations made for APP TMD, a hinge or at least a slightly flexible motif was

expected, separating N-terminal and C-terminal domains, about ten residues N-terminally

with regard to the γ-secretase cleavage site. The results obtained are summarized in

Figure 4.25.

APLP2 TMD is highly homologous within its TMD to APP. Unlike APP TMD, neither

secondary chemical shifts nor the three-dimensional structures or S
2
order parameters

indicate two domains separated by a less structured motif. In contrast, H-bond lengths are

fluctuating over the entire TMD. Thus, APLP2 TMD rather resembles the straighter and

more constrained APPG38Lmutant than APPWTTMD. As APLP2 harbours isoleucine and

alanine at the positions corresponding to G37 and G38 of APP WT TMD, it is consequential

that the long hydrophobic isoleucine has the same effect as L38 on APP TMD and leads to

straightening.

TNR12 TMD on the other hand exhibits no obvious homology with APP TMD, except

for a GlyGly-motif within its TMD. However, with regard to the residues spanning the

TMD, it is located further N-terminally than found in APP TMD. As it is not clear where

γ-secretase cleaves TNR12 TMD, it cannot be deduced whether this probable hinge could

fulfil the same function as in APP TMD. TNR12 TMD deviates in its structure from APP

TMD, too. It does not exhibit two distinct motifs, but shows more or less equal helicity

over its entire TMD. HDX rates revealed a W-shaped profile of fast and slow exchange

rates in its C-terminal domain that is reflected in hydrogen bond lengths derived from the
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Figure 4.25. Comparison of APP, TNR12, APLP2, Notch1, ErbB4 and N-Cadherin
TMDs in TFE/H2O: Secondary chemical shifts, S

2
order parameters, estimated helical

content and, when available three-dimensional structures and HDX rates are shown. The

red lines mark γ-secretase cleavage sites.86
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calculated structures. These observations suggest that TNR12 might form a dimer even in

TFE/H2O as the fluctuating H-bond lengths are in accordance with its GLLSG motif.

The other three substrates, N-Cadherin TMD, Notch1 TMD and ErbB4 TMD were

not completely analysed in TFE/H2O yet but only chemical shift data was available so

far. ErbB4 contains a double glycine motif within the C-terminal part of its TMD and a

GlyLeu motif further C-terminally. Interestingly, TALOS+ derived S
2
order parameters

and helical content only advert a loss of structure at the GlyGly site. N-Cadherin TMD in

TFE/H2O apparently has no possible hinge locations. It has to be mentioned here, that
13
C

chemical shifts were not fully assigned, thus the dip indicated by S
2
order parameter and

helical content is most likely due to little chemical shift information. And, finally, Notch1,

the apart from APP most thoroughly studied γ-secretase substrate, is the only substrate

investigated here that shows no evidence for a flexible domain within its TMD. Instead

the TMD appears well structured and α-helical.

Besides the peptides analysed in TFE/H2O, three other γ-secretase substrate structures

were obtained from the PDB: ErbB4 (PDB: 2LT2, [412]), CD4 (PDB: 2KLU, [413]) and

Notch1 (PDB: 5KZO, [414]), were compared. The experimental details are given in Table

4.5. All these structures were determined in membrane mimetics, two in DMPC/DHPC

bicelles and one in DPC micelles.

Table 4.5. Sequences of the γ-secretase substrates deposited in the PDB. γ-Secretase
cleavage sites are indicated by an asterisk. Only the TMDs were analysed even though

some of the published constructs comprised longer protein structures.

substrate solvent pH Monomer/Dimer

APP DPC 5.0 MS

26SNKGAIIGLMVGGVV*IATVIVITL*VMLKKK
55

Notch1 DMPC/DHPC 5.5 Monomer PDB: 5KZO [245, 414, 415]

1731PAQLHFMYVAA*AAFVLLFFVGCG*VLLSRKR
1760

CD4 DPC 6.2 Monomer PDB: 2KLU [413]

391 STPVQPMALI VLGGVAGLLL FIGLGIFFCV 420

ErbB4 DMPC/DHPC 5.0 Dimer PDB: 2LT2 [412, 416]

649 RTPLIAAGVIGGLFILVIVGLTFA*VYVRRKS
679

As could be shown in this thesis, APP TMD is straightened when inserted into the

membrane, but the weakening at the hinge motif could still be observed. Thus, secondary

chemical shifts of these three TMDs were calculated based on the chemical shift val-

ues deposited in the PDB. Furthermore, S
2
order parameters and α-helical content were

calculated with TALOS+ [72].

In Figure 4.26 secondary chemical shifts, S
2
order parameters and α-helical content

of APP TM and the three other substrate TMDs are depicted. The corresponding three-

dimensional structures are shown below.

ErbB4 TMD shows in both solvents similar secondary chemical shift patterns as APP

TMD. As in TFE/H2O, ErbB4 exhibits a considerable drop in S
2
order parameters and

secondary chemical shifts at the GlyGly-motif. Thus, ErbB4 resembles APP TMD in both
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Figure 4.26. Comparison of APP ErbB4, CD4 and Notch1 structures in membrane
mimetics: Secondary chemical shifts, S

2
order parameters (green) and helical content

(blue) of APP, CD4, ErbB4, p75 and Notch1 TMDs in different membrane mimetics are

shown (see Table 4.5). The blue vertical lines indicate the γ-secretase cleavage sites.
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solvents, at least for the parameters analysed here. The structure derived from this data,

however, is a dimer consisting of two very straight helices. As dimerization interface of

ErbB4 TMD G656XXGG660 was proposed [412].

CD4 TMD again harbours a GlyGly-motif within its N-terminal domain. As observed

for APP TMD and ErbB4 TMD S
2
order parameters drop at this site. In contrast to ErbB4

TMD, the structure of CD4 TMD was determined as monomeric (PDB: 5klu) and, very

interestingly, appears kinked at the GlyGly-motif as observed for APP TMD in TFE/H2O.

As the γ-secretase cleavage site of CD4 TMD is not known, it cannot be deduced whether

the distance to the GlyGly-motif is similar as for APP TMD. Nevertheless, it is probably

within the C-terminal domain, close to the cytosolic border. Relating to the other substrates

CD4 is probably cleaved around F392.

Notch1 TMD, as already observed in TFE/H2O, harbours a very straight helix according

to chemical shift derived data. S
2
order parameters do only show slight deviations at the

GlyGly-motif close to the C-terminal end. The corresponding structure in DMPC/DHP

bicelles (PDB: 5kzo) shows a straight helix as well.

Notch1 cleavage by γ-secretase was studied in cell-based assays [247, 417, 418]. Similar

to APP TMD, Notch TMD is cleaved at various sites within its TMD, experiencing initial

cleavage close to the cyctosolic border at the so-called ε-like site. Subsequently one or

two tripeptide fragments are removed until the remaining NECD is released. As neither

AICD and NICD concentrations nor cleavage rate constants of γ-secretase processing of

Notch1 TMD and APP TMD have been studied in comparative assays so far, it cannot be

proven that Notch1 is cleaved more like APP G38L TMD, thus slower but probably more

efficiently. The structure of the Notch1 TMD could also be bent like observed for APP

G38P TMD. This conclusion seems likely based on the results obtained here for APP WT

TMD and the four mutants.

The γ-secretase substrates compared resemble the findings for APP WT TMD and the

four mutants. All peptides are known to be cleaved by γ-secretase despite their structural

discrepancies. ErbB4 TMD and CD4 TMD seemingly resemble APP WT TMD regarding

the flexible GlyGly-hinge. Others, APLP2 and N-Cadherin, are rather like APP G38L TMD,

adopting straighter structures over the entire TMD in botstudio an membrane mimetics

and TFE/H2O. Strictly speaking this neither confirms nor contradicts assumptions drawn

based on APP TMD structures but it still matches observations made for APP WT TMD

and the four single point mutants.
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5.1. Introduction

5.1.1. Rhomboid Proteases and PARL, the Mitochondrial Rhomboid

Rhomboid proteases are polytopic membrane proteins that are found in all kingdoms of

life. The name rhomboid originates from studies on Drosophila with rhomboid shaped

heads. The gene identified as responsible for this malformation was named "rhomboid"

[419]. This class of intramembrane proteases comprise proteases and pseudoproteases:

First, serine proteases that cleave transmembrane proteins within the lipid bilayer and

second, catalytically inactive homologues that alter their substrates without cleaving them.

Rhomboids regulate a wide range of biological processes and pathways, such as signal

attenuation, proteolytic ligand activation [420, 421] or degradation of unstable membrane

proteins [15]. Thus, they play an important role in quality control and trafficking of

membrane proteins.

Figure 5.1. Three-dimensional structure of GlpG determined byX-ray crystallography:
The front view of GlpG is shown on the left, the top view on the right. The catalytic residues,

S201 on TM 4 andH254 on TM 6 are highlighted in red. The proposed substrate entry pathway

through the opening between TMD 5 and TMD 2 ist indicated by the red arrow. (PDB:

4NJN [422]).

Moreover, they cover a wide range of functions and are not restricted to the release

of a specific fragment, such as a signal peptide. In mammalian cells, for example, they
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are found in all major cell organelles [419, 423, 424] and it is even possible that the same

rhomboid is located in two different cellular compartments [420]. The basic structure

of all rhomboids is similar. They consist of six transmembrane domains that are often

complemented by additional TM segments and extended tails, either N- or C-terminally

[9]. But while bacterial rhomboids contain only these six TMDs, a second form, usually

found in eukaryotic cells, harbours an additional TM segment at the C-terminus, and a

third variation accommodates the additional TM domain at the N-terminus [9]. This last

variant is typically found in mitochondrial rhomboids [425]. The catalytic mechanism is

conserved between rhomboids. A histidine-serine dyad has been identified by various

mutagenesis studies and the catalytic centre is buried in the membrane [426–429].

The most widely studied rhomboid protease is the E. coli protease GlpG and its substrate

LacY [430]. In addition, Rhomboid-1 of D. melanogaster and its substrates Gurken and

Spitz have been extensively investigated [427, 429]. The three-dimensional structure of

E. coli GlpG determined by X-ray crystallography is shown in Figure 5.1 [422]. The six

TMDs are clearly distinguishable as is the catalytic dyad, serine S201 on TM 4 and histidine

H254 on TM 6, that are highlighted in red. Both termini extend into the cytosol [8].

Currently, two models are being discussed to understand substrate entry into GlpG from

the second binding site, the so-called exosite. The first proposes the gap between TMD 2

and TMD 5 as the entry pathway, as indicated by the red arrow in Figure 5.1, where TMD

5 acts as a lateral gate. To permit access to the catalytic core, TMD 5 and L5 would need

to move [31]. The second model suggests that the flexible loop L5 may itself act as the

gate and that the space between TMD 2 and TMD 5 opens only marginally [431, 432]. The

latter model requires a more complex ensemble of actions, as the substrate TMD must

unfold locally outside the membrane and subsequently the amino acid stretch harbouring

the scissile bond migrates into the catalytic cleft [33, 433].

This theory was elaborated in more detail by the Urban lab. They proposed a model

based on ecGlpG (E. coli GlpG) that covers the single steps from substrate recognition,

through migration to the enzyme, to the final cut, based on a series of snapshots from

time-resolved crystallography. The eight principal steps are shown in Figure 5.2. Their

most astonishing finding was that L5 is apparently involved in all steps, seemingly guiding

the substrate from stage to stage. As soon as L5 opens the gate, the substrate can dock

to the recognition motif and the "interrogation complex" forms. The step prior to the

actual transition to the active site had been proposed earlier by Strisovsky et al [33]. This

"interrogation complex" represents the critical point at which substrate is distinguished

from non-substrate, as only stretches of amino acids prone to unwinding can extend further

into the enzyme to the catalytic dyad, while stable peptides are rejected. The substrate is

fixed within the enzyme again by interactions between its N-terminus and L5, this leads

to the formation of the so called "scission complex". Then the actual cleavage takes place,

based on series of small structural rearrangements within the active site. Subsequently

the C-terminal part of the cleaved substrate is released at which point L5 reopens the gate

and liberates the N-terminal product [434, 435]. These findings confirmed what had been

discussed as discriminatory substrate feature for more than a decade: helix destabilising

residues around the scissile bond are essential to facilitate substrate unwinding and thus

migration to the active site [32, 35].
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Figure 5.2. Model of the rhomboid proteolysis steps from gate opening to cleavage:
Proteolysis by rhomboids was found to comprise a preceding step, the so-called "interroga-

tion complex" at which the actual selection of substrates takes place. [434]

Reprinted by permission from Springer Nature: Nat Struct Mol Biol, Ten catalytic snapshots of rhomboid intramembrane proteolysis from gate opening to peptide

release., Cho, S., Baker, R.P., Ji, M. et al. (2019)

Although differences between the structures of hiGlpG (Haemophilus influenza), of

which a crystal structure was determined as well, and ecGlpG (E. coli) were found, the

cleavage mechanism of rhomboids seems to be strongly conserved. Especially TMD 5 and

L5 seemed less structured in the HiGlpG compared to ecGLpG [436, 437].

Unlike other intramembrane proteases, γ-secretase for instance, rhomboids do not

require a shedding step prior to intramembrane cleavage but can process full-length

membrane proteins. Besides, they are not restricted to type I membrane proteins, but

cleave type II and polytopic membrane proteins as well [15, 438, 439]. And, as observed for

γ-secretase, rhomboid proteolysis is a quite slow process and can take minutes to hours

[334, 422, 440].

One rhomboid protease is present in mitochondria of all eukaryotic cells, maintaining

cellular integrity: PARL [22]. PARL is linked to mitochondrial dysfunction and this in turn

is thought to play a role in diabetes, and in Parkinson’s disease (PD) in association with

mitochondrial dysfunction. Both of its two main substrates, PINK1 and PGAM5, may also

be involved in PD due to their involvement in mitophagy [441–443].

Initially, the acronym PARL stood for Presenilin-Associated Rhomboid-Like protease

[3, 21], but was recently renamed to PINK1/PGAM5 Associated Rhomboid-Like protease

[22]. PARL is located at the inner mitochondrial membrane (IMM) [20]. In accordance

with the general model of rhomboid topology, PARL was predicted to consist of six TM

segments with a seventh TM segment at its N-terminus. The C-terminus was supposed

to be located in the inner membrane space and the N-terminus in the mitochondrial

matrix. The catalytic centre, buried in the membrane, consists of a serine (S277) and a
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histidine (H335). The active site might face the mitochondrial matrix, shown in Figure 5.3,

as suggested by topology predictions, but the orientation of PARL in the IMM has not

yet been fully unravelled [9, 444, 445]. Since the mitochondrial matrix resembles the

procarytoic cytosol, the predicted topology would be inverted compared to GlpG. Based

on different processing in various tissues, several forms of PARL have been identified that

differ in the length of the mitochondrial targeting sequence (MTS) that extends into the

matrix. Besides full-length MTS two truncated forms are known: PARL∆53, in which the

MTS is almost completely removed that is considered the mature form that was found in

spleen, kidney and lung [444]. The other variant, PARL∆77, was shown to cleave substrates

more efficiently than PARL harbouring full-length MTS [446]. PARL∆77 and PARL∆53

might have different functions, but all three variants are catalytically active [20, 446]. It

has also been suggested that PARL is part of a larger multi-protein complex, which is not

uncommon in the IMM. This protein hub might consist of PARL, YME1L and SLP2 [447].

It is not clear, however, to what extent PARL needs these possible partners and in which

way they might interact and influence each other.

Figure 5.3. Schematic representation of GlpG and PARL: Both consist of six TMDs

but PARL harbours an additional TMD at the N-terminus. The mitochondrial targeting

sequence (MTS) extends into the mitochondrial matrix and can be removed partially or

fully depending on the specific function and location of PARL [9, 20, 444].

Rhomboid substrate requirements are also still under debate. Bacterial rhomboids were

shown to prefer small amino acids, like alanine, in the P1 position and bulky residues with

hydrophobic side chains in the P4 position [33, 448]. These findings were questioned by two

studies of the Urban lab, however, that showed substrate and rhomboid dynamics to be the

main determinant of cleavage efficiency over specific recognition motifs as explained above

[422, 435]. They could show in several studies that GlpG activity depends on substrate

dynamics, more precisely on its instability. The introduction of helix-destabilising motifs

as GlyGly-hinges that is a central feature of the APP TMD (see Chapter 4, pp. 35 ff.) or

prolines induced the processing of former non-substrates such as APP TMD, whereas the

insertion of helix-stabilising residues such as leucine had the opposite effect. When the

substrate was already destabilised by its environment, for example in micelles, cleavage

was also facilitated. Furthermore, shifts of the cleavage sites were observed depending

on the substrate stability, as the introduction of prolines at specific positions could guide

the cleavage site. Rhomboid proteolysis was a very slow process in their essays and they

assumed that the "interrogation complex" might be the rate limiting step as it determines

whether a substrate can be cleaved or not [37, 422, 435].
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Lysyk at al. showed very recently, that PARL appears to prefer bulky amino acids in

the P1 position, especially phenylalanine. Furthermore, they observed a preference for

helix destabilising residues C-terminally from the cleavage site. Apart from that, they

could show that PARL cleaves a quite broad range of substrates as they used a library

of 228 peptides, many of which had been shown to be cleaved by bacterial rhomboids

before [449]. 70 of these substrates were processed by PARL [446]. This is an interesting

commonality between the two intramembrane proteases PARL and γ-secretase, as the

latter is known to also process a variety of substrates as described in Chapter 4.1 (pp. 40

ff.)

5.1.2. PARL Substrates: PINK1 and PGAM5

Various PARL substrates have been identified so far, for example PGAM5 [450], PINK1

[451, 452], Smac [453], TTC19 [454] and STARD7 [455].

PGAM5 is one of the two best known PARL substrates. It is an atypical Ser/Thr phos-

phatase and regulates oxidative stress response [456], necroptosis in cancer cells [457,

458], apoptosis [459, 460], and probably mitophagy [303, 459, 461]. Furthermore PGAM5

was linked to immune responses and inflammatory diseases [462]. It is not fully clear yet

whether PGAM5 is located at the outer and inner mitochondrial membrane or exclusively

at the IMM [463]. PARL mediated PGAM5 cleavage is thought to serve as pro-apoptotic

signal as cleaved PGAM5 in the cytosol is a substrate of apoptosis proteins [458]. Two

mechanisms are known to be linked to PGAM5. First, it interacts with a mitophagy recep-

tor [252, 459] and second it interacts with PINK1. Contrary to PINK1, PGAM5 processing

increases when the inner membrane potential collapses [450]. PARL was found to prefer-

entially cleave pink in healthy ("normal" membrane potential) mitochondria and to rather

prefer PGAM5 as a substrate in damaged (low membrane potential) mitochondria (see

Figure 5.4). Thus PINK1 and PGAM5 could be inversely correlated [303, 447, 464–466].

Loss of PGAM5 therefore leads to an accumulation of damaged mitochondria.

PINK1, a serine-threonine kinase, is the counterpart of PGAM5. It was found upon

detection of a gene for early-onset Parkinson disease [467]. In healthy mitochondria

with normal membrane potential PINK1 is imported by TOM (translocase of the outer

membrane) and TIM (translocase of the inner membrane) complexes and inserted in the

inner mitochondrial membrane with its transmembrane domain as depicted in Figure 5.4.

Because themitochondrial targeting sequence (MTS) is positively charged in its N-terminus,

translocation through the TIM complex is energetically driven by the membrane potential

across the IMM [468]. When inserted in the inner mitochondrial membrane the MTS

is removed and PINK1 is cleaved by PARL at A103 in its transmembrane domain [469].

Then it is transported to the OMM and degraded in the cytosol (Figure 5.4) [470]. Upon

mitochondrial damage the membrane potential drops and PINK1 accumulates at the

outer mitochondrial membrane because transport through the TOM/TIM complex is no

longer possible [471–474]. There it attracts parkin by phosphorylating ubiquitin, and

parkin in turn ubiquitinates several mitochondrial proteins at the OMM [475–478]. PINK1

phosphorylates these polyubiquitin chains, inducing a positive feedback cycle that leads

to mitochondria degradation [479–481]. Hence PINK1 cleavage by PARL functions as
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5. PGAM5

Figure 5.4. Substrate preferences of PARL depend on the mitochondrial membrane
potential: A) At normal membrane potential PARL, located at the IMM, preferentially

cleaves PINK1 and not PGAM5. PINK1 is transported to the IMM by the TOM/TIM complex

and cleaved within its TMD by PARL. Then the PINK1 fragments are returned to the cytosol

and degraded. B) At low membrane potential PINK1 is not imported to the IMM any more

but remains in the OMM. Thus, PARKIN is recruited from the cytosol, this in turn triggers

mitophagy. PARL then mostly cleaves PGAM5, the functions of both fragments are not

known yet [22].

Reprinted from Seminars in Cell & Developmental Biology, 60, Marco Spinazzi & Bart De Strooper, PARL: The mitochondrial rhomboid protease, 19-28, Copyright

(2016), with permission from Elsevier.
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reporter of mitochondrial integrity [482]. PINK1 is to be analysed as part of a master’s

thesis by M. Himmelsbach , but this project failed due to experimental difficulties.
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5.2. PGAM5 WT TMD in TFE/H2O

The transmembrane domain of the PARL substrate PGAM5 was analysed by liquid-state

NMR and CD spectroscopy. The synthetic peptide was dissolved in TFE-d2/H2O (80/20

V/V) at pH 5.0 and a final concentration of 500 µM. A set of homo- and heteronuclear

liquid-state NMR spectra, for resonance assignment and calculation of three-dimensional

structures, was acquired at 300 K.

The peptide sequence analysed was

10 20 30
PGAM52-36 WT TMD: AFRQALQLA ACGLAGGSAA VLFS/AVAVGK PRAGGD

5.2.1. Chemical Shifts Evaluation

Figure 5.5. 1H-15N-HSQC and 1H-13C-HSQC spectra of PGAM5WT TMD: The ranges
of

1
HN-

15
N and

1
Hα-

13
Cα resonances are shown. The large resonance dispersion observed

in the
1
H-

15
N-HSQC indicates a structured conformation while the range of Hα resonances

from 3.6 to 4.6 ppm in the
1
H-

13
C-HSQC is characteristic for α-helices. All signals could be

assigned, thus there seem to be no major side conformations.

All PGAM5 WT TMD backbone and side chain resonance could be assigned based on

1
H-

15
N-HSQC,

1
H-

13
C-HSQC,

1
H-

1
H-TOCSY and

1
H-

1
H-NOESY experiments. Figure 5.5

shows sections of both HSQC spectra. Amide proton resonances are spread between 7.2

and 8.3 ppm while Hα signals cover a range from 3.6 to 4.6 ppm. This indicates an α-helical,

structured peptide. Since all
1
H-

15
N and

1
H-

13
C cross peaks could be assigned, there is no

evidence of major side conformations or slow conformational exchange.
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The secondary chemical shifts shown in Figure 5.6A also clearly indicate a predomi-

nantly α-helical structure. ∆δ(Hα) are mostly negative, just like ∆δ(Cβ), while ∆δ(Cα) are

positive. The transmembrane helix apparently ranges from R4 to A27. However, there is a

considerable break in helicity from G13 to G17, indicated by both Hα and Cα secondary

chemical shifts. The S
2
order parameter calculated with TALOS+ indicates to which degree

information on the orientation of the H-N bond vector is lost and thus indicates dynamic

processes at the respective position. This parameter does not show dramatic changes

across the α-helical region, but a small reduction is observed at the central amino acid

stretch, which is unstructured according to secondary chemical shifts. The α-helical con-

tent, again estimated with TALOS+ based on chemical shift data, resembles the probability

to observe an α-helical structure at the respective residue. This also confirms the impres-

sion gained from the secondary chemical shifts, as it shows a severely reduced α-helical

content in the central part of the peptide. In contrast to APP TMD, where the C-terminal

part was more stable (see Section 4.2, pp. 50), both segments of PGAM5 WT TMD show

a comparable degree of helicity. The PARL cleavage site between F23 and S24 is located

within the C-terminal helix and is not marked by increased or decreased helicity. This in

turn resembles the finding for APP TMD, where the cleavage site is also located within

the very stable C-terminal helix. The very C-terminal end after G29 is unstructured, as

could be expected due to the proline residue at position 31.

Figure 5.6. Structural and dynamic parameters obtained fo PGAM5 WT TMD: The
peptide comprises two α-helical domains separated by a less structured region between

G13 and G17. A) Hα, Cα and Cβ secondary chemical shifts of PGAM5 WT TMD. Random

coil values were taken from Wishart 2011 [360]. Helical content (dark blue) and S2 order

parameters (light blue) were obtained from TALOS+ [61, 72]. B) Characteristic interproton

NOEs of PGAM5 WT TMD. Black boxes indicate strong NOEs, grey weak. White boxes

show peak overlap hence NOE signals that could not be unambiguously assigned. Positions

marked with an asterisk refer to missing NOE signals due to the chemical nature of the

respective amino acid.

Characteristic NOE contacts between backbone and side chain protons are shown in

Figure 5.6B. Both helix segments show comparable NOE contacts, whereas a fewmore cross
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peaks could be observed in the C-terminal helix. The central less structured motif is not

reflected in the NOE pattern. Admittedly, many NOE contacts could not be unambiguously

assigned, as illustrated by white bars. The overall picture of an α-helix ranging from R4

to A27 is largely reflected by the strong (black bars) and weak (grey bars) NOE contacts

that could be identified. Even non-existent cross peaks would contain information, as this

means that the respective protons were not sufficiently close for most of the time that

magnetization could be transferred. However, such non-contacts could not be identified in

the spectrum due to the severe peak overlap.

5.2.2. Hydrogen-Deuterium Exchange of PGAM5 WT TMD

Figure 5.7. Hydrogen deuterium exchange of PGAM5WT TMD: Black dots indicate slow
exchange, grey intermediate. Asterisks denote peak overlap that did not allow to estimate

exchange rates.

Hydrogen-deuterium exchange was measured at pD 4.0 and pD 5.0. PGAM5 WT TMD

showed slow exchange rates of the C-terminal helical domain and faster exchange rates at

the N-terminal domain. Due to severe peak overlap some residues could not be assigned

unambiguously and exchange rates could not be fitted but were estimated qualitatively. In

contrast to APP TMD (see Section 4.2, pp. 55) exchange rates were much faster. The APP

C-terminal domain was quite stable even at pD 7.0, while similar exchange rates of PGAM5

TMD at residues V21 to A27 were already observed at pD 5.0. Thus, the hydrogen-deuterium

exchange of PGAM5 WT TMD is about 100 fold faster than observed for APP WT TMD.

Furthermore, while APP TMD HDX clearly confirmed that the C-terminal helix is more

stable than its N-terminal counterpart, PGAM5 TMD exchange rates within the N-terminal

domain were only slightly faster compared to the C-terminal part. Unfortunately, G13, G16

and G17 exchange rates were not accessible due to peak overlap in the TOCSY-spectrum

used. Therefore, the presumably less stable region from G13 to G17 could not be confirmed

by HDX.

5.2.3. CD Spectroscopy of PGAM5 WT TMD

The samples analysed by NMR were diluted tenfold and analysed by CD spectroscopy.

The data obtained was evaluated with BestSel [163]. PGAM5 WT TMD shows the typical

features of α-helices in the CD spectrum, shown in Figure 5.8. There is a maximum

at 193 nm and two minima at 222 nm and 208 nm. However, the shape of the curve

already indicates that the peptide is not fully helical, as the residual ellipticity at 222 nm is

higher than at 208 nm. Estimation of the secondary structure content gives 47% helix, 9%

antiparallel β-sheet, 6% turn and 38% other structural motifs. This confirms the information

obtained from NMR chemical shifts, as the two separated helical domains identified by

NMR comprise about half of the total sequence.
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Figure 5.8. The CD spectrum of PGAM5 WT TMD indicates only a partially α-helical
structure: This is in accordance with NMR data as about half of the sequence is suggested

to be α-helical according to the secondary chemical shifts.

5.3. Comparison of PGAM5 WT TMD and Four Single Point

Mutants

Four single point mutants were designed in collaboration with the Lemberg group (ZMBH,

Heidelberg). Residues within the TMD that are conserved between different organisms

were exchanged for leucine or serine (indicated in bold below). These residues were

expected to alter the TMD structure in ways that might indicate PARL substrate specificity

or its cleavage mechanism.

All PGAM5 TMD peptides were measured at 500 µM concentration, pH 5 and 300 K.

10 20 30
PGAM5 WT TMD AFRQALQLAACGLAGGSAAVLFSAVAVGKPRAGGD
PGAM5 C12S TMD AFRQALQLAASGLAGGSAAVLFSAVAVGKPRAGGD
PGAM5 C12L TMD AFRQALQLAALGLAGGSAAVLFSAVAVGKPRAGGD
PGAM5 G17L TMD AFRQALQLAACGLAGLSAAVLFSAVAVGKPRAGGD
PGAM5 S18L TMD AFRQALQLAACGLAGGLAAVLFSAVAVGKPRAGGD

5.3.1. Chemical Shift Data of PGAM5 WT TMD and the Four Mutants

All four mutants exhibit only minor differences with regard to secondary chemical shifts

compared to the PGAM5 WT TMD, mostly around the respective mutation sites. Both

C12 mutants show only subtle effects, the greatest change is observed at residue L12 or

S12, which is expected. Smaller alterations occur N-terminally from the mutation site. The

effect of C12L in this region is slightly more pronounced, as the estimated α-helical content

suggests higher helicity at L9 and A10. C12S TMD, though, basically resembles the WT

TMD. The greatest changes are observable for G17L TMD, where the central region from

G13 to A15, which appears disordered in the WT TMD, is clearly stabilised. The α-helical

content is also estimated to be significantly higher than in all other four peptides. S18L

TMD seems somewhat contradictory as its secondary chemical shifts show little difference

from the WT TMD except for a small stabilisation around the mutated amino acid, while

the calculated α-helical content is increased at residues G13, L14 and A15. The S
2
order

parameter, however, shows a larger unstructured stretch.
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Figure 5.9. 1Hα and 13Cα secondary chemical shifts of all four PGAM5 TMD mutants
compared to the WT: The bar charts show the absolute values determined for the re-

spective PGAM5 mutant, while the black line indicates the difference between PGAM5

mutant and WT. Negative absolute values of
1
Hα and positive of

13
Cα indicate α-helical

structure. Positive values of
1
Hα compared to WT mean that the WT is less helical and vice

versa for
13
Cα. S2 order parameters and helix probability are depicted in the bottom panel.

Secondary chemical shifts, S
2
order parameter and α-helical content indicate only minor

deviations for both C12 mutants, whereas G17L is considerably stabilised at the central

amino acid stretch, while S18L seems to be destabilised.
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5.3.2. CD Spectroscopy of PGAM5 WT TMD and the Four Mutants

CDmeasurements confirmed the impression gained fromNMR data as shown in Figure 5.10.

The helical content of the mutants is smaller than that of PGAM5 WT TMD, except for

G17L TMD that was significantly more α-helical. The differences between C12L TMD,

C12S TMD and S18L TMD are quite small, as expected. It is remarkable, though, that

the exchange of one single amino causes that pronounced alterations of the secondary

structure.

Figure 5.10. Results of CD spectroscopy of PGAM5WT TMD and the four single point
mutants: A) CD spectra of PGAM5 WT TMD and the four single point mutants and B)

secondary structure content as estimated with BestSel [163]. Both graphs show that three

mutants are less α-helical than PGAM5 WT TMD while G17L as the only variant appears

more helical.

5.3.3. Structures of PGAM5 WT TMD and the Four Mutants

Three dimensional structures were calculated by ARIA2 based on distance restraints

derived from NOESY spectra and dihedral angles derived from TALOS+ [72, 118]. The

structural bundles depicted in Figure 5.11A confirm the overall impression gained from

chemical shift data and CD spectroscopy. All five peptides comprise of two α-helical

segments that are separated by an apparently short but quite flexible stretch of amino

acids. In Figure 5.11A all structural bundles are shown superimposed on their C-terminal

domains to visualize the relative orientations of both helical stretches. In contrast to APP

TMD where the possible orientations were limited, PGAM5 TMD seems to be much less

restricted. The histograms next to the structures show the abundances of all possible swivel

angles summarised in 30° sections, while the mean bend angle and its standard deviation

are given in the caption of the respective diagram. PGAM5 WT is seemingly not limited in

its possible swivel angles, but exhibits the smallest kink angle with approximately 40°. The

C12 mutants are more restricted in terms of swivel directions and do not allow as wide

a range as the PGAM5 WT TMD, while their bend angles are generally larger and cover

wider ranges. G17L TMD allows the largest bend angle and also does not show a clear

preference for the swivel direction. Hydrogen bonds lengths derived from the structures,

shown in Figure 5.11, confirm that H-bonds from A15 to C12 are elongated compared to

the very uniform distances at the N-terminal and C-terminal domains. Interestingly, C12L
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Figure 5.11. Comparison of NMR derived structures of PGAM5 WT TMD and the
four single point mutants: A) Structural bundles of PGAM5 WT TMD and mutants,

superimposed on residues A20 to A25. Their C-termini are pointing downwards. Front view,

side view and top view are shown. The histograms beside the structures show observed

swivel angle ranges, grouped in 30° fractions. B) H-bond lengths derived from calculated

structures between the amide proton given and the carbonyl oxygen four residues earlier.
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TMD and S18L TMD significantly lengthen distances between C12 and A15, indicating a

more random coil-like structure in this region. The other two leucine mutants are close to

the WT.

5.4. Discussion

Rhomboids and their substrates have not been investigated as extensively as other in-

tramembrane proteases like γ-secretase. So far, GlpG is the only member of this enzyme

family whose structure has been solved [8, 31], while the only structures of full-length

substrate that were determined were that of E.coli TatA [483, 484]. However, neither PINK1

nor PGAM5 have been analysed on a structural basis, up to now. In this work PGAM5

TMD, a substrate of the human mitochondrial rhomboid PARL, was analysed by liquid

state NMR spectroscopy. It is assumed that the active site of PARL is water-filled, as has

been observed for GlpG, the E. coli rhomboid and other intramembrane proteases, such

as γ-secretase [433]. Thus TFE/H2O was chosen as solvent, as it is a good approximation

of the conditions in the active site of the enzyme and provides unique insights into the

substrate properties within the catalytic cavity.

The transmembrane domain of PGAM5 is generally presumed to be from L9 to G29

[450]. The results obtained in this thesis contradict this assumption, as the two observed

α-helical domains of PGAM5 WT span from R4 to C12 and from S18 to A27, connected

by a flexible stretch of five amino acids. Structures of E.coli TatA, determined in DPC

micelles, interestingly reflect this finding. Zhang et al. observed two α-helical domains, the

N-terminal transmembrane domain, comprising 15 residues, and a second, amphipathic

helix, 21 residues long, that is located at the cytosolic side of the E.coli cell membrane

[484]. It seems unlikely that PGAM5 follows the same scheme and incorporates only one

TMD in the membrane, as both peptides segments are significantly shorter than the TMD

of TatA and do not show an amphiphilic pattern.

Analogous to the project of APP TMD, four single point mutants of PGAM5 TMD were

designed in this thesis. Within the PGAM5 transmembrane domain three residues are

conserved between different organisms: C12, G17 and S18. Based on this observation, the

mutants were constructed in cooperation with Verena Siebert & Marius Lemberg (Lemberg

Lab, ZMBH, Heidelberg). Leucine was introduced as helix stabilising residue at all three

positions (C12L, G17L, S18L) complemented by a serine mutant (C12S). Cell-based assays

showed that the C12 mutants (C12S, C12L) were cleaved more efficiently by PARL than the

PGAM5 WT, whereas both mutations within the C-terminal helix (G17L, S18L) resulted in

reduced processivity (Siebert & Lemberg, ZMBH Heidelberg, unpublished observation).

The most obvious structural alteration to affect cleavage would be expected around

the scissile bond. The PARL cleavage site was assumed between S24 and A25 [450], while

recent results strongly support the scissile bond one amino acid earlier, between F23 and

S24, though [446]. The structural differences induced by the four single point mutations

were quite small, as NMR data revealed. G17L TMD was the only mutant that significantly

increased the helicity at the flexible motif, while the other three induced only minor effects

around their respective mutation sites and led to overall reduced helical content. However,

the structures of both C12 mutants indicated longer hydrogen bonds between A25 and
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V21. This could be due to a slightly bent structure or general weakening of the helix in

this region. It should be noted that the apparent weakening around the cleavage bond of

C12S TMD and C12L TMD is not reflected in the chemical shift data, but appears only

in theoretical H-bond lengths derived from the calculated structures. None of the five

peptides showed any sign of helix destabilisation at the PARL cleavage site in terms of

secondary chemical shifts and no obvious correlation between helix rigidity and cleavage

efficiency can be deduced from the structural data obtained. Hence, no simple conclusion

can be drawn here, but the four mutations apparently influence various aspects of substrate

recognition and cleavage.

The three-dimensional structures should be regarded with some caution in this case, on

the one hand. The absolute number of NOE contacts that would be theoretically possible

is comparatively low due to the many glycines and alanines in the amino acid sequence.

Since, naturally, amino acids with longer side chains can experience accordingly more NOE

contacts with their neighbours, even if the side chains in helices are directed outwards

and are therefore further apart, the PGAM5 sequence with its many glycines and alanines

is not particularly favourable for structure determination. On the other hand, the signal

overlap in the PGAM5 TMD NOESY spectra was significantly larger than in the APP TMD

spectra. This resulted in a large number of ambiguously assigned peaks, in which the

contributions of the involved contacts were possibly incorrectly weighted. Altogether,

the lack of unambiguous NOEs could have led to an overestimation of conformational

flexibility in the central GLAGG motif. However, as CD spectra confirmed the overall

tendency and reflected the α-helical content of the calculated structure, the structures

nevertheless seem to approximate the actual situation.

The question that arises from the cleavage assays of Verena Siebert & Marius Lemberg

(Lemberg Lab, ZMBH, Heidelberg) is effect the mutations might have in the context of

cleavage. The mutations could affect the structural stability around the cleavage site, even

if it is not observed in the structures determined in TFE/H2O. As helices are unfavourable

protease substrates, generally destabilisation up to complete unwinding is required to

permit processing [36, 291, 292]. For GlpG, it was shown that cleavage efficiency increased

when the transmembrane helix of the substrate was already destabilised in the membrane

[36, 37, 422]. Again similar to γ-secretase, small peptide-like inhibitors were observed to

form an antiparallel β-sheet with loop 3 of GlpG that is stabilised by hydrogen bonds [448].

Thus, PGAM5 TMD in PARL most likely unwinds prior to cleavage. Helix-destabilising

residues around the scissile bond facilitate this process. It is known that the preferences of

amino acids to form an α-helix differ between non-polar (n-butanol) and aqueous media

[485], so it is debated whether certain amino acids stabilise the helix in the hydrophobic

membrane environments and destabilise it in aqueous media. The peptide would then

retain the favourable α-helical structure in lipids but would unfold more easily in the

catalytic cleft. The four mutants investigated are quite distant from the cleavage site,

where unwinding must occur. However, the closest one, S18L, could impair unwinding as

leucine has a much higher helix propensity than serine in both environments [485], which

in turn could lead to the observed poor processivity. The other three mutants are unlikely

to have a significant impact on α-helix stability within the C-terminal helix.

The second point of action could be substrate entry into the enzyme. APP TMD has been

proposed to kink within its TMD upon entry to the catalytic cleft [325]. This finding is
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strongly supported by the NMR derived structures of APP TMD in TFE/H2O, as explained

in Section 4.3.3 (pp. 61 ff.). In GlpG, a multi-step process was proposed, which has been

explained in more detail in the introduction (pp. 93). In this model, it is suggested that the

substrate first binds to the exosite of the enzyme and the so called "interrogation complex"

is formed. At this point it is decided whether a possible substrate is processed. If the

structure around the cleavage site is sufficiently unstable and unwinds, it can migrate

further into the enzyme towards the catalytic cleft. If the peptide is too rigid it is released

from the "interrogation complex" to the membrane [422, 434, 435]. It has been proposed

earlier that the substrate might not enter the enzyme completely, but remains bound to

the exosite, and only the stretch around the scissile bond migrates into the protease [10,

432]. This would mean that substrates that are cleaved more efficiently, such as C12S

TMD and C12L TMD in this case, form a more stable or more favourable "interrogation

complex" with the exosite of PARL. This could be related to smallest changes in the N-

terminal helix, as it binds to the exosite and most likely remains bound during cleavage.

Furthermore, the reduced swivel angle range of C12S TMD, similar to the observations in

the case of APP TMD and γ-secretase, could lead to an improvement of the migration of the

C-terminal substrate moiety into the catalytic centre by enforcing the "correct" direction.

The increased helicity of G17L TMD at the centre could accordingly impede formation

of the "interrogation complex" or substrate migration into the catalytic cleft. S18L TMD

remains obscure. According to both, NMR and CD data, S18L TMD is less helical and

more flexible at is centre. This could mean either that the "interrogation complex" is too

unstable or that, as described above, the additional leucine leads to an increased stability

of the C-terminal helix. However, the major drawback of these considerations is that,

according to published models, PARL is inversely oriented in the membrane as shown in

Figure 5.3 (Section 5.1, p. 94) [9, 444, 445]. This means that its catalytic residues are located

close to the matrix border. PGAM5 migrates through the outer mitochondrial membrane

in the inner mitochondrial membrane, so that its very N-terminal end reaches into the

matrix. Consequently, the cleavage site within its C-terminal α-helical part is located on

the other side of the membrane, close to the inter membrane space. This orientation of

PARL, though, has been determined only based on topological comparisons and, at least to

my knowledge, has not been confirmed with experimental data. If, however, the topology

of the PARL was assumed wrong and it was actually oriented the other way around in the

membrane, these considerations would make sense.

Thirdly, substrate dimerization within the membrane might play a role, as discussed

for APP TMD. Full length PGAM5 is known to form dimers through its C-terminal tail

that in turn form dodecameric rings, and PGAM5 phosphatase activity was shown to

be dependent on dimerization [486, 487]. TatA TMD, in turn, could be detected as both

monomer and dimer in DPC micelles, as the structures determined by Zhang et al. show.

They demonstrated that TatA TMDwas monomeric at a peptide to lipid ratio of larger than

1:200 and dimeric when P:L ratio was only 1:50 [484]. Dimerization of PGAM5 at its TMD

has not been investigated yet. The observation that replacement of the cysteine residue

within the TMD enhances processing may suggests that homodimers within the membrane

could be stabilised by disulphide bonds. This suggests that PGAM5 forms dimers not

only outside but within the membrane as well. For γ-secretase it was shown that even if

substrates dimerize in the membrane, they are most likely cleaved as monomers [304, 305].
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Transferred to PGAM5 and PARL this would mean that too stable dimers impair substrate

processing. Thus, WT TMD, G17L TMD and S18L TMD are cleaved less efficiently than

C12S TMD and C12L TMD since the former still harbour the cysteine. In the samples

used for structure determination in this work, the cysteines were reduced, as their Cα and

Cβ chemical shifts indicate: Cα (26 ± 1.1 in α-helices) was at 61 ppm (62.6 ± 1.7 ppm in

α-helices) and Cβ at 26 ppm [488]. Thus, dimerization via the disulphide bond could not

be observed.

All these considerations illustrate that very little is known about PARL and its sub-

strate preferences. Observations made for other rhomboids like GlpG cannot be simply

transferred to PARL as long as its topology is not elucidated. The determination of the

orientation, and even better the exact structure of PARL within the membrane, is the

imperative first step to be able to investigate whether the model described for GlpG can

also be applied to PARL. The substrate properties determined by liquid-state NMR in this

work may contribute to the discussion, but require a much broader biological context to

address in detail the observed differences and their influences on substrate processing by

PARL.
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In this work, representative substrates of two intramembrane proteases were studied in

terms of structure and dynamics by mainly liquid-state NMR-based methods. Intramem-

brane proteolysis is an unusual process in that the corresponding enzymes cut within

the plane of the membrane. It has been the subject of intensive research, especially in

the last decade. Intramembrane proteases are of particular interest because they are di-

rectly or indirectly associated with various diseases, some of them serious. While much

has been understood at the biological level, the mechanism that distinguishes between

substrates and non-substrates remains obscure. This is particularly surprising because, for

example, γ-secretase cuts an enormous number of different substrates, but is extremely

sensitive to small changes, such as single point mutations, within the amino acid sequence

of its substrate. The only commonality in terms of substrates between the different en-

zymes is that, unlike many soluble proteases, intramembrane proteases do not recognise

a given consensus sequence. Unfortunately, this complicates the understanding of their

substrate processing, as structural and dynamic properties of the substrate itself must be

the determining factors.

To investigate this discrepancy, two intramembrane proteases and their corresponding

substrates were selected: γ-Secretase and the transmembrane domain of the amyloid

precursor protein, which are directly linked to Alzheimer’s disease. Second, PARL, a

rhomboid protease found in the mitochondria of human cells, and its substrate, the trans-

membrane domain of PGAM5, that are associated with Parkinson’s disease. The underlying

assumption was that certain structural properties of the substrate transmembrane domain

fundamentally influence whether a potential substrate is processed, and if so, how it is

processed. Particularly in the case of γ-secretase, various processing pathways are known.

The products of these pathways can, in the worst case, lead to the formation of plaques

associated with Alzheimer’s disease.

With this in mind, four point mutations in addition to the corresponding wild types

were investigated. These mutants were selected primarily for their presumed effect on

the stability of the substrate transmembrane domain. By comparing different properties

derived from NMR measurements, a hypothesis could be phrased that represents a first

approach to illuminate the relationship between substrate structure and processing. For

this purpose, the peptides were studied in a TFE/H2O mixture that approximates the

conditions inside the enzyme, i.e. when the substrate has left the membrane plane and

migrates into the active site of the enzyme.

The transmembrane domain of the amyloid precursor protein, probably the most inten-

sively studied γ-secretase substrate, was found to be a continuous α-helix, but consisting

of two stable regions separated by a GlyGly motif. Two interesting features emerge from

three-dimensional structures derived from NMR data. First, the region around the first

γ-secretase cleavage site is strikingly stable and second, perhaps the more interesting
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detail, they revealed a structural bundle that, when superimposed on the C-terminus fans

out starting from the GlyGly-hinge. However, the relative arrangement of the N-terminal

and C-terminal helix is not completely free, but is restricted to a specific cone. Compara-

tive analysis of four mutants, two associated with familial AD and two designed, showed

that although only a single amino acid was exchanged, the relative arrangement of both

helix segments changed significantly. With respect to the differential processing of the

mutants by γ-secretase, the following hypothesis can be phrased: For the transition from

the membrane into the enzyme, the substrate must briefly adopt a kinked conformation.

This was also observed by MD simulations. However, to ensure correct positioning within

the catalytic cleft, the kink direction must be restricted to a certain range so that the scissile

bond is directed to the catalytic residues. The four mutations investigated influence the

kink angle and the relative rotation of both helix segments, and thus the entry into the

enzyme and the correct positioning within it. This could mean that a certain flexibility in

the transmembrane domain is required.

The comparative analysis of other substrate transmembrane domains has so far only

partially confirmed this model, as three-dimensional structures have not yet been deter-

mined from all of these peptides. The next step, on the basis of this work would be the

comparative analysis of further substrate TMDs in TFE/H2O, in order to be able to narrow

down the structural conditions even better. Furthermore, although structures in lipid

mimetics have already been published for some substrates, the APP TMD, for which four

fundamentally different conformations have been published, shows that further analyses

are also necessary here [249–251, 253]. Since the basic question concerning these APP

TMD structures is first whether it is present in the membrane as a monomer or dimer or

possibly in an equilibrium of different conformations, the analysis of a covalently bridged

dimer could help. In this work, in addition to the transmembrane domains in TFE/H2O, a

longer APP TMD variant was also analysed in DPC micelles, so the basis has already been

laid.

The second unresolved question regarding the APP TMD dimer is the actual dimerisation

motif. Although APP contains several GXXXG motifs within its TMD that are generally

considered dimerisation prone, the two published dimer structures are based on other

interfaces in the centre of the TM region. Recent cleavage-essay-based studies have also

shown that dimerisation at the N-terminal border of the transmembrane domain may have

a crucial influence on substrate processing [410]. Thus, the elucidation of a possible dimer

structure would be an important contribution to the understanding of this system.

First attempts to understand the processing of the APP TMDby the presenilin homologue

(PSH), both incorporated in DPC micelles, with NMR spectroscopy have already been

published [332]. The archaeal MCMJR1 (Methanoculleus marisnigri JR1) is established as

a simpler system to study properties of γ-secretase, as it does not require complexation

with other cofactor proteins. Even though its sequence homology with PSEN, the catalytic

subunit of γ-secretase is quite low, cryo-EM structures resulted in quite similar structures,

and PSH was shown to process APP TMD comparable to γ-secretase [30, 312, 332, 489,

490]. Possible further experiments in analogy to the ones of Clemente et al. could comprise

studies of PSH with APP WT TMD and the four mutants investigated in TFE/H2O in this

thesis to examine whether the differences in kink and swivel angles affect interactions

with PSH. The respective substrates could be produced via cell-free protein expression.
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In the future, other substrates need to be compared. First, their structures should be

determined in TFE/H2O, detergents or lipids and subsequently their interaction with PSH

should be investigated. Complementary, the only known non-substrate, ITGB1 [257],

needs to be investigates. This could add valuable information on the substrate properties

required by PSEN or PSH. Based on these results, the interactions of the APP WT TMD

as well as those of the four mutants with the PSH should be investigated. Hopefully, this

will allow the results from cell-based and in vitro cleavage assays to be directly replicated.

Furthermore, as the substrate is known to unwind around the initial cleavage site it might

even be possible to gain insights into this process.

APP TMD dimerisation could be investigated with a covalently linked dimer structure.

Introduction of a cysteine residue into the N-terminal juxtamembrane region of APP allows

crosslinking of two monomers via a disulphide bridge. This might enforce dimerisation.

Other structural parameters that could reveal more information about the GlyGly joint

movement are RDCs. Possibly, the preferred direction could then be further defined.

As already shown by T. Gloge, RDCs of APP could be obtained in PEG-DA gels and

TFE/H2O [82]. At the time of these experiments, no fully
15
N-

13
C labelled APP TMD

peptide was available. Now, however, it could easily be produced by cell-free protein

expression. Accordingly, RDCs should be measurable. The most extensively studied

γ-secretase substrate besides APP is Notch1. Initial results of the analysis of its TMD

in TFE/H2O showed, not quite fitting the model derived here from the APP TMD WT

and mutant TMD structures, no evidence of a flexible region within its TMD. However,

one of the analysed APP TMD mutants also showed a rather straight and less flexible

structure, which led to a significantly reduced processing in cleavage assays. Since no

comparative, neither in-vivo nor in-vitro, cleavage assays of Notch1 and APP have been

done so far, it is not clear whether the cleavage efficiency of Notch1 is not as low as

for the APP mutant, which would again support the model presented here. Accordingly,

the corresponding experiments are essential for a further understanding of γ-secretase

cleavage. Both, cleavage essays and the corresponding NMR interaction studies with PSH

should be done urgently.

Another important subject would be the investigation of the only known non-substrate

of γ-secretase: Integrin β1 (ITGB1) [257]. It should be analysed in TFE/H2O that might

already give further insights into substrate properties. Its interaction with PSH is highly

interesting, as well, as this can be expected to be impaired in someway, probably preventing

ITGB1 to enter the catalytic cleft at all.

To add another experiment to the long list of experiments to be executed upon successful

interaction studies of APP TMD and PSH in the NMR tube, the short, generally three

amino acids long, bi-products of γ-secretase cleavage are proposed to act as inhibitors of

further processing steps, enforcing the release of the resulting Aβ fragment. Interactions

with these tripeptides with PSH should be studied by NMR as well. However, this would

not contribute to the understanding of substrate enzyme interactions directly but rather

illuminate the basis of diverse substrate processing.

The second system investigated was the transmembrane domain of PGAM5, a substrate

of the rhomboid PARL. In contrast to γ-secretase, much less is known about PARL, not

even its topology within the membrane could be determined unambiguously. Accordingly,

the results obtained in this work do not provide a clear picture. Nevertheless, principal
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properties of the PGAM5 TMD could be elucidated: PGAM5 TMD comprises, similar to

APP TMD, two α-helical segments. In contrast to APP TMD, however, they are separated by

an unstructured five amino acid stretch. Thus, the relative arrangement of the N-terminal

and C-terminal helices could not be narrowed down as well as for APP TMD. The PARL

cleavage site, again similar to APP, lies within the strongly α-helical C-terminal domain.

Accordingly, comparative analysis of the four single point mutants with PGAM5WT TMD

led to a less clear picture. Even though cell-based cleavage assays of our collaborators

suggest that exchange of a cysteine within the N-terminal helix increases processivity,

NMR derived structures only resulted in a local destabilization of the surrounding region.

The other two mutants, located at the beginning of the C-terminal helix, were shown to

decrease processivity. The results obtained by NMR analysis diverged, as one mutant was

shown to destabilize the TMD around the central stretch of amino acids even more while

the other increased helicity. The cystein within the N-terminal helix was reduced for the

NMR analyses done so far, although it cannot be ruled out, that it might induce disulphide

bridges and thus enforce a dimer under natural conditions. A comparative analysis of a

dimer stabilized by a disulphide bond could be rather easily achieved by NMR analysis. If

and how this adds to the general picture cannot be foreseen, though.

As explained before, the topology of PARL is predicted to be inverted compared to GlpG.

Thus, the catalytic residues of PARL and the cleavage site of the substrate apparently reside

at opposite sides of the membrane. Therefore, it is imperative that the topology of PARL is

clarified. However, PARL has been shown to process its substrates when incorporated into

micelles [446]. This sets the basis for interaction studies as described above for APP and

PSH that might clarify this confusing fact. Thus, a lot more data is required to construct a

satisfying picture of PARL and its substrates.
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A. Appendix

A.1. List of buffers, media and primers

Plasmid and primers

Figure A.1. Pivex 2.3d with APP0-55 insert. Empty vector was supplied by Ulrike Krug, Prof.

Daniel Huster, Leipzig

Table A.1. Primers used for Pivex2.3d + APP0-55

sequence enzyme Tm
FW APP0-55 5’ TTTCCATGGATGCAGAATTCCGACATGACTCAGGATATG 3’ NcoI 68 °C

RV with His-Tag 5’ TTTCCCGGGTTTCTTCTTCAGCATCACCAAGGTGATGACGATC 3’ SmaI 68 °C
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A. Appendix

Standard procedures, buffers and media

Standard PCR mix

5 µL 10x Polymerase Buffer

1 µL dNTP-Mix

5 µL Primer forward (10 pmol/µL)

5 µL Primer reverse (10 pmol/µL)

0.5 µL DNA-Template

32.5 µL ddH2O

0.5 µL Pfu-Polymerase

Colony PCR mix

5 µL 10x Polymerase Buffer

1 µL dNTP-Mix

5 µL Primer forward (10 pmol/µL)

5 µL Primer reverse (10 pmol/µL)

cells picked from agar plate

32.5 µL ddH2O

0.5 µL Pfu-Polymerase

Standard PCR protocol

Step T [°C] t [s]

Initial Denat. 95 60

Denaturation 95 45

Annealing 58 30 30

Extension 72 60 cycles

Final Extension 72 600

Soak 4

Colony PCR protocol
Step T [°C] t [s]

Initial Denat. 95 600

Denaturation 95 45

Annealing 58 30 20

Extension 72 60 cycles

Final Extension 72 600

Soak 4

Standard digest
Vector PCR product

H2O 2 µL 13 µL

CutSmart Buff. 1 µL 5 µL

NcoI 1 µL 1 µL

SmaI 1 µL 1 µL

DNA 5 µL 30 µL

Standard ligation mix
3 µL Ligase Buffer

10 µL Vector

17.5 µL Insert

1 µL T4 DNA-Ligase

Standard transformation mix
50 µL competent cells

1 µL vector

800 µL SOC
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A.1. List of buffers, media and primers

LB medium, 1L

10 g Tryptone

5 g Yeast extract

10 g NaCl

SOC medium, 1L

20 g Tryptone

5 g Yeast extract

0.5 g NaCl

2.5 mL KOH 1 M

50x TAE-buffer

50 mM EDTA

2 M Tris

1 M Acetic acid

S30 extract buffer, pH 8.2

10 mM Tris-acetate

14 mM magnesium acetate

60 mM potassium acetate

adjust pH with KOH

Tris-buffer, pH 8

50 mM Tris-HCl

100 mM NaCl

NMR-buffer pH 5

1 mM Acetic acid-d4

10% D2O

90% H2O

CF wash buffer, pH 8

20 mM Tris

100 mM NaCl

MSP-buffer, pH 7.5

20 mM Tris

100 mM NaCl

0.5 mM EDTA

MSP-cholate buffer, pH 7.5

20 mM Tris

100 mM NaCl

0.5 mM EDTA

100 mM Cholat
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A. Appendix

Cell-free solutions

CF stock solutions

Hepes buffer (pH 8.4) 2.5 M Hepes in H2O

Mg(OAc)2 2 M Mg(OAc)2 in H2O

KOAc 4 M

PEG 8000 40 % m/V

NaN3 10 % m/V

Folinic acid 20 mg/mL Folinic acid calcium salt hydrate

DTT 500 mM

NTP 75 x 0.36 M ATP, 0.24 M GTP, 0.24 M UTP, 0.24 CTP

Complete 50 x 1 tablet in 1 ml H2O

Phosphoenolpyruvate (PEP) 1 M

Acetyl Phosphate (AcP) 1 M

amino acid-mix 4 mM

S30C buffer 1 x S30 buffer + 0.5 mM DTT

Pyruvate kinase (PK) 2.4 mg/mL

tRNA 40 mg/mL

T7RNA-Polymerase 200 U/µL

RiboLock 40 U/µL Thermo Scientifi™RiboLock RNase Inhibitor

vector xxx µg/mL Pivex2.3d carrying the respective gene sequence

S30-extract 100 % P- or R-extract
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A.1. List of buffers, media and primers

NTP mix

0.36 M ATP

0.24 M GTP

0.24 M UTP

0.24 CTP

Amino acid stock solutions

concentration solvent

Ala 100 mM H2O

Cys 100 mM Hepes buffer, 100 mM

Asp 100 mM Hepes buffer, 100 mM

Phe 100 mM Hepes buffer, 100 mM

Gly 100 mM H2O

His 100 mM H2O

Ile 100 mM H2O

Lys 100 mM H2O

Leu 100 mM H2O

Met 100 mM H2O

Asn 100 mM Hepes buffer, 100 mM

Pro 100 mM H2O

Gln 100 mM Hepes buffer, 100 mM

Arg 100 mM H2O

Ser 100 mM H2O

Thr 100 mM H2O

Val 100 mM H2O

Trp 50 mM Hepes buffer, 100 mM

Tyr 20 mM Hepes buffer, 100 mM
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Cell-free protocols
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0.5 mL

AA AA µL Für alle 3

ddH2O Ala 8.0 mM 2.00 mM 39 117

HEPES (pH 8.4) 2510 mM 100.00 mM 78 78 78 233 Arg 12.0 mM 3.00 mM 59 176

Mg(OAc)2 2021 mM 5.63 mM 7.628 9.628 5 7 9 - Asn 0.0 mM 0.00 mM 0 0

KOAc 4002 mM 94.78 mM 94.78 94.78 46 46 46 139 Asp 6.0 mM 1.50 mM 29 88

PEG 8000 40.03 % m/V 2.00 % m/V 97 97 97 292 Cys 8.0 mM 2.00 mM 39 117

NaN3 10.25 % m/V 0.05 % m/V 10 10 10 29 Gln 1.0 mM 0.25 mM 5 15

Folinic acid 20.00 mg/mL 0.10 mg/mL 10 10 10 29 Glu 6.0 mM 1.50 mM 29 88

DTT 515 mM 2.00 mM 8 8 8 23 Gly 8.0 mM 2.00 mM 39 117

NTP 75.00 x 1.00 x 26 26 26 78 His 4.0 mM 1.00 mM 20 59

Complete 50.00 x 1.00 x 39 39 39 117 Ile 2.0 mM 0.50 mM 10 29

PEP 1016 mM 20.00 mM 38 38 38 115 Leu 8.0 mM 2.00 mM 39 117

AcP 1000 mM 20.00 mM 39 39 39 117 Lys 1.0 mM 0.25 mM 5 15

aa-Mix 4.00 mM 1.00 mM 244 244 244 244 244 244 731 731 Met 2.0 mM 0.50 mM 10 29

Brij-95 2.00 % m/V 0.20 % m/V 195 195 195 - Phe 3.0 mM 0.75 mM 15 44

Mastermix 788 36 790 36 792 36 1797 106 Pro 6.0 mM 1.50 mM 29 88

S30 C buffer 1.00 x 0.35 x 630 630 630 1890 Ser 6.0 mM 1.50 mM 29 88

PK 2.40 mg/mL 0.04 mg/mL 3 3 3 8 Thr 3.0 mM 0.75 mM 15 44

tRNA 40.00 mg/mL 0.50 mg/mL 1.9 1.9 1.9 6 Trp 4.0 mM 1.00 mM 39 117

T7RNAP 200.00 U/µL 6.00 U/µL 5 5 5 14 Tyr 0.0 mM 0.00 mM 0 0

RiboLock 40.00 U/µL 0.30 U/µL 1.1 1.1 1.1 3 Val 2.0 mM 0.50 mM 10 29

DNA 1305.00 µg/mL 26.00 µg/mL 3 3 3 9 H2O 29 88

S30-Extract 100.00 mM 40.00 mM 60 60 60 180 Total (µL) 488 1463

ND (MSP-buffer) 100.00 mM 0.80 mM 0

ddH2O 138 41 136 41 134 41 408 124

Mg2+ 14 mM MW: 12,233 Da

K+ 280 mM Monoisotop: 12,226 Da

Plasmid 1305 µg/mL Start Ext: 17,000 M-1cm-1

End

16 mM

18 mM

Mastermische

MM (µL) FM (µL) RM (µL)

1903839 1800 150

30°C 100 

rpm

Pivex+TNR12 31.10.19

Cond.

14:00

Stock 

Concentration

Total (µL) 1501800835

P-Extrakt, Nov 18

Final Concentration

TNR12  D-CF 10.02.20  12:1 14 mM

Compound MM (µL) FM (µL) RM (µL)

AA Mix ges

Stock c. Final c.

10:00

30°C 100 

rpm

16 mM

MM (µL) FM (µL) RM (µL)

837 1800 150

18 mM

MM (µL) FM (µL) RM (µL)

10:00

30°C 100 

rpm

14:00

10:00

14:00



0.7 mL

AA AA µL Für alle 3

ddH2O Ala 8.0 mM 2.00 mM 54 162

HEPES (pH 8.4) 2510 mM 100.00 mM 108 108 108 323 Arg 12.0 mM 3.00 mM 81 243

Mg(OAc)2 2021 mM 5.63 mM 7.628 9.628 8 10 13 31 Asn 0.0 mM 0.00 mM 0 0

KOAc 4002 mM 94.78 mM 94.78 94.78 64 64 64 192 Asp 6.0 mM 1.50 mM 41 122

PEG 8000 40.03 % m/V 2.00 % m/V 135 135 135 405 Cys 8.0 mM 2.00 mM 54 162

NaN3 10.25 % m/V 0.05 % m/V 13 13 13 40 Gln 1.0 mM 0.25 mM 7 20

Folinic acid 20.00 mg/mL 0.10 mg/mL 14 14 14 41 Glu 6.0 mM 1.50 mM 41 122

DTT 515 mM 2.00 mM 10 10 10 31 Gly 8.0 mM 2.00 mM 54 162

NTP 75.00 x 1.00 x 36 36 36 108 His 4.0 mM 1.00 mM 27 81

Complete 50.00 x 1.00 x 54 54 54 162 Ile 2.0 mM 0.50 mM 14 41

PEP 1016 mM 20.00 mM 53 53 53 159 Leu 8.0 mM 2.00 mM 54 162

AcP 1000 mM 20.00 mM 54 54 54 162 Lys 1.0 mM 0.25 mM 7 20

aa-Mix 4.00 mM 1.00 mM 338 338 338 338 338 338 1013 1013 Met 2.0 mM 0.50 mM 14 41

Brij-98 2.00 % m/V 0.20 % m/V / / / - Phe 3.0 mM 0.75 mM 20 61

Mastermix 837 49 839 49 842 50 2517 148 Pro 6.0 mM 1.50 mM 41 122

S30 C buffer 1.00 x 0.35 x 893 893 893 2678 Ser 6.0 mM 1.50 mM 41 122

PK 2.40 mg/mL 0.04 mg/mL 3 3 3 8 Thr 3.0 mM 0.75 mM 20 61

tRNA 40.00 mg/mL 0.50 mg/mL 1.9 1.9 1.9 6 Trp 4.0 mM 1.00 mM 54 162

T7RNAP 200.00 U/µL 6.00 U/µL 5 5 5 14 Tyr 0.0 mM 0.00 mM 0 0

RiboLock 40.00 U/µL 0.30 U/µL 1.1 1.1 1.1 3 Val 2.0 mM 0.50 mM 14 41

DNA 1305.00 µg/mL 26.00 µg/mL 3 3 3 9 H2O 40 122

S30-Extract 100.00 mM 40.00 mM 60 60 60 180 Total (µL) 675 2025

ND (MSP-buffer) mM mM

ddH2O 483 28 481 28 478 28 1443 83

Mg2+ 14 mM MW: 12,233 Da

K+ 280 mM Monoisotop: 12,226 Da

Plasmid 1305 µg/mL Start Ext: 17,000 M-1cm-1

End

16 mM

18 mM

Mastermische

MM (µL) FM (µL) RM (µL)

2665891 2550 150

110 rpm, 

34 °C

Pivex+TNR12 31.10.19

Cond.

14:40

Stock 

Concentration

Total (µL) 1502550886

P-Extrakt, Nov 18

Final Concentration

TNR12  P-CF 24.02.20  17:1 14 mM

Compound MM (µL) FM (µL) RM (µL)

AA Mix ges

Stock c. Final c.

10:40

110 rpm, 

34 °C

16 mM

MM (µL) FM (µL) RM (µL)

888 2550 150

18 mM

MM (µL) FM (µL) RM (µL)

10:40

110 rpm, 

34 °C

14:40

10:40

14:40



ddH2O Ala 8.0 mM 2.00 mM 176 µL

HEPES (pH 8.4) 2510 mM 100.00 mM 337 Arg 12.0 mM 3.00 mM 264 µL

Mg(OAc)2 2021 mM 5.63 mM 24 Asn 0.0 mM 0.00 mM 0 µL

KOAc 4002 mM 94.78 mM 200 Asp 6.0 mM 1.50 mM 132 µL

PEG 8000 40.03 % m/V 2.00 % m/V 422 Cys 8.0 mM 2.00 mM 176 µL

NaN3 10.25 % m/V 0.05 % m/V 41 Gln 1.0 mM 0.25 mM 22 µL

Folinic acid 20.00 mg/mL 0.10 mg/mL 42 Glu 6.0 mM 1.50 mM 132 µL

DTT 515 mM 2.00 mM 33 Gly 8.0 mM 2.00 mM 176 µL

NTP 75.00 x 1.00 x 113 His 4.0 mM 1.00 mM 88 µL

Complete 50.00 x 1.00 x 169 Ile 2.0 mM 0.50 mM 44 µL

PEP 1016 mM 20.00 mM 166 Leu 8.0 mM 2.00 mM 176 µL

AcP 1000 mM 20.00 mM 169 Lys 1.0 mM 0.25 mM 22 µL

aa-Mix 4.00 mM 1.00 mM 1056 1056 Met 2.0 mM 0.50 mM 44 µL

Mastermix 2618 154 Phe 3.0 mM 0.75 mM 66 µL

S30 C buffer 1.00 x 0.35 x 2730 Pro 6.0 mM 1.50 mM 132 µL

PK 2.40 mg/mL 0.04 mg/mL 11 Ser 6.0 mM 1.50 mM 132 µL

tRNA 40.00 mg/mL 0.50 mg/mL 8.1 Thr 3.0 mM 0.75 mM 66 µL

T7RNAP 200.00 U/µL 6.00 U/µL 20 Trp 4.0 mM 1.00 mM 176 µL

RiboLock 40.00 U/µL 0.30 U/µL 4.9 Tyr 0.0 mM 0.00 mM 0 µL

DNA 1305.00 µg/mL 26.00 µg/mL 13 Val 2.0 mM 0.50 mM 44 µL

S30-Extract 100.00 % 40.00 % 260 H2O 132 µL

ND (MSP-buffer) 0.35 mM 0.05 mM 93 Total (µL) 2200 µL

ddH2O 1396 87

Mg2+ 14 mM

K+ 280 mM

Plasmid 1305 µg/mL Start

End

Stock Conc. Final Conc.AA

AA Mix ges 2.2 mL

AA Mix V

Cond.

Stock 

Concentration

TNR12 in ND(DMPC) 25.11.19 FM:RM 12:1

Compound MM (µL) FM (µL) RM (µL)

Total (µL) 65078002772

Final 

Concentration

P-Extrakt, Nov 

18

Pivex+TNR12, 

31.10.19



A. Appendix

A.2. Resonance Assignments

APP WT in TFE/H2O

Table A.2. APP WT TMD in TFE/H2O, pH 7

H N HA HB CA CB

26 Ser 7.8 119.26 4.42 3.97,3.83 57.94 63.2

27 Asn 8.2 119.29 4.8 2.92,2.92 52.55 37.26

28 Lys 8.08 120.65 4.11 1.89,1.89 58.25 31.53

29 Gly 8.26 105.18 3.85,3.85 - 45.88 -

30 Ala 7.66 122.92 4.22 1.5 53.76 17.22

31 Ile 7.51 116.95 3.91 2.03 63.22 37.28

32 Ile 7.9 119.89 3.84 1.94 64.09 36.96

33 Gly 7.94 105.26 3.84,3.82 - 46.4 -

34 Leu 7.88 121.99 4.24 2.01,1.64 57.01 41.4

35 Met 8.24 119.67 4.27 2.36,2.18 57.96 31.9

36 Val 8.63 118.84 3.81 2.17 65.34 31.31

37 Gly 8.15 106.44 3.90,3.90 - 46.35 -

38 Gly 7.9 106.01 3.93,3.94 - 46.3 -

39 Val 7.74 121.7 3.85 2.37 65.39 31.04

40 Val 8.2 123.56 3.6 2.33 66.87 30.88

41 Ile 8.15 118.64 3.75 1.93 64.18 36.96

42 Ala 7.89 119.89 4.05 1.54 54.96 16.99

43 Thr 7.94 112.49 3.9 4.56 66.74 68.33

44 Val 8.27 121.19 3.64 2.35 67.38 31.04

45 Ile 8.48 123.52 3.64 2.11 65.71 36.87

46 Val 8.22 119.71 3.64 2.28 66.47 30.88

47 Ile 8.56 117.96 3.7 1.98 64.78 36.95

48 Thr 8.16 116.1 3.84 4.55 67.29 68.02

49 Leu 8.49 121.71 4.11 1.52,2.12 57.97 41.03

50 Val 8.62 120.04 3.61 2.33 66.58 30.88

51 Met 8.55 118.76 4.2 2.43,2.11 58.03 31.05

52 Leu 8.53 119.68 4.14 1.57,2.01 57.13 41.39

53 Lys 8.2 119.29 4.13 2.00,2.07 57.66 31.38

54 Lys 8.24 118.61 4.19 1.95,2.00 57.21 31.73

55 Lys 8.02 119.19 4.24 1.95,1.95 56.12 32.03
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A.2. Resonance Assignments

APP G38L TMD in TFE/H2O

Table A.3. APP G38L TMD in TFE/H2O, pH 7

H N HA HB CA CB

26 Ser 7.79 119.15 4.4 3.83,3.96 58 63.14

27 Asn - - 4.79 2.92,2.92 - 37.16

28 Lys 8.04 119.08 4.12 - 58.15 -

29 Gly 8.24 105.04 3.85,3.85 - 45.82 -

30 Ala 7.65 122.86 4.23 1.5 53.68 17.26

31 Ile 7.5 117.16 3.95 2.03 63.02 37.36

32 Ile 7.84 120.13 3.84 1.93 63.98 37.02

33 Gly 7.9 104.6 3.82,3.82 - 46.29 -

34 Leu 7.77 122.71 4.27 1.89,1.81 57.12 41.37

35 Met 8.12 118.2 4.25 2.17,2.33 58.02 31.58

36 Val 8.45 118.12 3.72 2.14 65.83 31.11

37 Gly 7.86 105.6 3.81,3.89 - 46.53 -

38 Leu 7.94 119.93 4.22 2.02,1.64 57.42 41.09

39 Val 7.86 119.4 3.75 2.38 65.8 30.91

40 Val 8.39 123.61 3.61 2.34 67.08 30.86

41 Ile 8.21 119.28 3.74 1.98 64.51 37.05

42 Ala 8.24 120.2 4.05 1.55 54.94 16.95

43 Thr 8 112.8 3.9 4.58 66.76 68.3

44 Val 8.34 121.44 3.64 2.36 67.38 30.86

45 Ile 8.53 123.63 3.64 2.12 65.77 36.87

46 Val 8.22 119.77 3.64 2.28 66.49 30.84

47 Ile 8.58 118.07 3.7 1.98 64.8 37.05

48 Thr 8.18 116.13 3.84 4.55 67.27 68.02

49 Leu 8.5 121.73 4.11 1.52,2.12 57.95 41.02

50 Val 8.63 120.12 3.61 2.34 66.56 30.86

51 Met - - - - - -

51 Met 8.56 118.8 4.2 2.11,2.43 58.04 31

52 Leu 8.54 119.72 4.14 2.01,1.57 57.18 41.35

53 Lys 8.2 119.28 4.13 2.00,2.07 57.65 -

54 Lys 8.25 118.57 4.18 1.96,1.99 57.25 -

55 Lys 8.01 119.08 4.22 1.95,1.95 56.19 32.02
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APP G38P TMD in TFE/H2O

Table A.4. APP G38P TMD in TFE/H2O, pH 7

H N HA HB CA CB

26 Ser 7.77 119.08 4.39 3.83,3.96 58.02 63.14

27 Asn - - 4.79 2.91,2.91 52.41 37.12

28 Lys 8.02 119.04 4.12 1.86,1.89 58 31.57

29 Gly 8.21 105.06 3.85,3.85 - 45.74 -

30 Ala 7.63 122.75 4.23 1.49 53.53 17.31

31 Ile 7.48 116.81 3.94 2.02 62.95 37.41

32 Ile 7.81 119.73 3.86 1.93 63.79 37.1

33 Gly 7.93 105.65 3.84,3.84 - 46.21 -

34 Leu 7.77 120.24 4.29 1.97,1.64 56.38 41.61

35 Met 7.96 116.56 4.44 2.30,2.16 56.72 32.45

36 Val 8.11 118.59 4.25 2.27 62.61 32.04

37 Gly 7.92 108.51 3.94,4.19 - 47.22 -

38 Pro - - 4.27 2.40,1.87 65.05 31.24

39 Val 7.42 116.05 3.8 2.31 64.95 31.19

40 Val 8.02 123.77 3.61 2.3 66.57 30.9

41 Ile 8.13 114.28 3.7 1.87 64.15 36.93

42 Ala 7.87 119.47 4.05 1.54 54.96 16.97

43 Thr 7.86 112.37 3.89 4.55 66.78 68.35

44 Val 8.25 121.11 3.63 - 67.38 30.88

44 Val - - - 2.34 - -

45 Ile 8.45 123.61 3.63 2.11 65.71 36.88

46 Val 8.25 119.79 3.64 2.27 66.44 30.89

47 Ile 8.56 118.02 3.7 1.98 64.79 36.99

48 Thr 8.16 116.13 3.84 4.55 67.3 68.04

49 Leu 8.5 121.71 4.11 2.12,1.52 58 41.05

50 Val 8.63 120.11 3.61 2.33 66.57 30.88

51 Met 8.56 118.74 4.2 2.11,2.43 58.06 31.04

52 Leu 8.54 119.7 4.14 2.02,1.57 57.19 41.37

53 Lys 8.21 119.34 4.12 1.99,2.07 57.71 31.34

54 Lys 8.25 118.53 4.18 2.00,1.96 57.24 31.74

55 Lys 8 - 4.22 1.95,1.95 56.21 32.03
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A.2. Resonance Assignments

APP V44M TMD in TFE/H2O

Table A.5. APP V44M TMD in TFE/H2O, pH 7

H N HA HB CA CB

26 Ser 7.76 119.05 4.4 3.84,3.97 58.02 63.15

27 Asn 8.16 - 4.8 2.92,2.92 52.48 37.1

28 Lys 8.03 120.61 4.11 1.89,1.89 58.27 31.56

29 Gly 8.23 104.92 3.85,3.85 - 45.88 -

30 Ala 7.64 122.88 4.23 1.5 53.75 17.19

31 Ile 7.49 116.9 3.91 2.03 63.22 37.28

32 Ile 7.88 119.98 3.85 1.94 64.11 36.98

33 Gly 7.93 105.18 3.85,3.82 - 46.42 -

34 Leu 7.88 122.11 4.25 2.01,1.65 57.02 41.38

35 Met 8.24 119.76 4.26 2.37,2.19 58.02 31.89

36 Val 8.64 119 3.8 2.17 65.45 31.27

37 Gly 8.16 106.41 3.84,3.89 - 46.39 -

38 Gly 7.9 105.97 3.94,3.94 - 46.37 -

39 Val 7.76 121.86 3.85 2.38 65.51 31.13

40 Val 8.27 124.15 3.59 2.35 66.89 30.91

41 Ile 8.21 119.31 3.8 1.96 64.39 36.99

42 Ala 8.03 120.23 4.06 1.55 55.09 16.95

43 Thr 8.08 112.42 3.89 4.51 66.71 68.32

44 Met 8.27 119.94 4.21 2.15,2.41 58.26 31.14

45 Ile 8.51 123.35 3.66 2.15 65.57 37.04

46 Val 8.17 120.17 3.63 2.29 67.35 30.89

47 Ile 8.56 117.67 3.7 1.97 64.84 36.99

48 Thr 7.98 116.1 3.85 4.56 67.28 68.05

49 Leu 8.48 121.65 4.11 2.13,1.52 57.98 41

50 Val 8.63 120.04 3.61 2.33 66.56 30.91

51 Met 8.54 118.79 4.21 2.43,2.11 58.05 31.05

52 Leu 8.54 119.68 4.14 1.56,2.01 57.16 41.37

53 Lys 8.2 119.31 4.13 1.99,2.08 57.65 31.32

54 Lys 8.24 118.59 4.18 1.96,2.00 57.22 31.72

55 Lys 8 119.08 4.23 1.95,1.95 56.18 32.02
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APP I45T TMD in TFE/H2O

Table A.6. APP I45T TMD in TFE/H2O, pH 7

H N HA HB CA CB

26 Ser 7.78 119.06 4.4 3.97,3.84 58.03 63.13

27 Asn 8.16 - 4.8 2.92,2.92 52.46 37.11

28 Lys 8.03 - 4.11 1.88,1.88 58.25 31.54

29 Gly 8.24 104.92 3.85,3.85 - 45.88 -

30 Ala 7.64 122.88 4.23 1.5 53.74 17.2

31 Ile 7.49 116.96 3.91 2.03 63.22 37.28

32 Ile 7.88 120 3.85 1.94 64.09 36.98

33 Gly 7.93 105.18 3.85,3.85 - 46.42 -

34 Leu 7.88 122.17 4.25 1.64,2.01 57.03 41.37

35 Met 8.24 119.83 4.26 2.19,2.37 58.04 31.87

36 Val 8.65 119.12 3.78 2.17 65.57 31.24

37 Gly 8.17 106.34 3.83,3.90 - 46.44 -

38 Gly 7.92 106.22 3.96,3.92 - 46.43 -

39 Val 7.79 122.22 3.83 2.41 65.74 31.02

40 Val 8.37 124.6 3.6 2.36 67.18 30.87

41 Ile 8.38 118.5 3.76 1.95 64.29 36.98

42 Ala 8.38 124.85 4.09 1.58 55.36 16.97

43 Thr 8.17 114.25 3.9 4.52 67.1 68.18

44 Val 8.74 119.52 3.68 2.18 66.1 31.07

45 Thr 8.29 119.47 3.86 4.55 67.59 67.92

46 Val 8.2 121.72 3.67 2.28 67.24 30.93

47 Ile 8.4 118.11 3.67 1.94 64.97 37.11

48 Thr 8.11 115.43 3.85 4.51 67.26 68.33

49 Leu 8.29 121.64 4.11 1.56,2.08 58.01 41.11

50 Val 8.59 119.75 3.61 2.33 66.59 30.85

51 Met 8.52 118.67 4.2 2.43,2.11 58.05 31.02

52 Leu 8.54 119.66 4.14 2.02,1.57 57.16 41.36

53 Lys 8.22 119.26 4.13 1.99,2.08 57.64 31.29

54 Lys 8.25 118.51 4.19 1.96,2.00 57.24 31.7

55 Lys 8 119.04 4.23 1.95,1.95 56.21 32.02
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APP WT in DPC
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Table A.7. APP WT in DPC, pH 5, 320 K

H N HA HB C CA CB

1 Asp - - - - - 54.61 38.9

2 Ala 8.35 138.41 4.3 1.38 116.4 52.74 19.39

3 Glu 8.25 137.9 4.24 2.25,1.96 118.33 56.69 30.04

4 Phe 8.09 139.14 4.73 3.08 117.05 57.75 39.24

5 Arg 7.97 135.1 4.29 1.71,1.82 116.56 56.22 31.01

6 His - - - 3.28,3.18 - 55.49 29.2

7 Asp 8.37 135.26 4.7 2.74 115.14 54.33 41.29

8 Ser 8.32 130.22 4.44 3.92 117.1 59.04 64.11

9 Gly 8.46 124.3 3.96,3.96 - 116.01 45.68 -

10 Tyr 8.09 134.13 4.69 3.05 - 58.8 39.04

11 Glu 8.32 135.65 4.33 1.96,2.12 - 56.9 30.28

12 Val 8 131.05 4.02 2 - 62.94 32.68

13 His

14 His

15 Gln 8.17 136.94 4.33 1.95 - 56.98 29.42

16 Lys 8.31 139.23 4.29 1.88 117.36 57.67 33.03

17 Leu 8.17 139.63 4.31 1.64 118.02 56.59 42.32

18 Val 7.8 132.12 3.92 2.07 118.15 64.17 32.27

19 Phe 7.97 138.87 4.49 3.08 117.34 58.97 39.24

20 Phe 7.92 137.08 4.47 3.18 117.32 59.07 39.39

21 Ala 8.14 135.52 4.11 1.47 116.84 53.94 19.14

22 Glu 8.14 135.31 4.21 2.11 119.09 57.57 29.46

23 Asp 8.13 132.99 4.66 2.76 117.8 54.92 40.33

24 Val 7.89 131.81 4.02 2.16 117.69 63.71 32.18

25 Gly 8.22 126.7 3.96,3.96 - 117.44 46.12 -

26 Ser 7.98 128.27 4.5 3.99 115.25 58.8 64.06

27 Asn 8.27 134.34 4.87 2.87 115.47 53.76 39.22

28 Lys 8.46 140.02 4.25 1.91 116.41 59.06 32.64

29 Gly 8.57 125.6 4.05,3.89 - 118.51 47.33 -

30 Ala 8.03 141.39 4.21 1.52 116.02 54.96 18.8

31 Ile 7.81 134.97 3.86 2.07 119.74 64.38 37.76

32 Ile 8.14 138.14 3.79 2.04 118.4 65.2 37.38

33 Gly 8.44 125.33 3.83,3.83 - 118.84 47.93 -

34 Leu 8.21 134.89 4.08 1.64 115.74 58.38 42.32

35 Met 8.18 131.25 4.1 1.94,2.22 119.39 59.61 33.1

36 Val 8.6 131.8 3.54 2.32 118.62 67.2 31.24

37 Gly 8.69 124.83 3.70,3.70 - 118.91 47.67 -

38 Gly 8.72 126.94 3.78,3.78 - 115.92 47.64 -

39 Val 8.21 139.48 3.64 2.29 115.39 67.19 31.4

40 Val 8.5 141.02 3.51 2.41 119.9 68.05 28.51
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Table A.8. APP WT in DPC, pH 5, 320 K , part 2

41 Ile 8.45 137.38 3.6 1.98 118.21 65.47 37.32

42 Ala 8.57 134.6 3.91 1.45 118.33 55.97 18.1

43 Thr 8.16 132.73 3.7 4.16 119.59 68.57 71.27

44 Val 8.25 138.99 3.56 2.31 117.22 67.39 31.41

45 Ile 8.44 140.7 3.6 2.13 119.96 66.51 37.4

46 Val 8.46 137.84 3.58 2.22 117.99 68.19 31.45

47 Ile 8.61 136.5 3.62 1.98 118.62 65.93 37.76

48 Thr 8.19 135.43 3.74 4.35 118.58 68.72 67.82

49 Leu 8.36 138.92 4.05 1.56,2.07 117.12 58.59 41.99

50 Val 8.4 136.53 3.66 2.33 120.17 66.84 31.66

51 Met 8.42 136.34 4.28 2.34,2.19 119.31 58.28 32.16

52 Leu 8.3 136.62 4.24 1.64,1.96 119.57 56.9 42.3

53 Lys 7.85 135.99 4.28 2 119.31 57.01 32.68

54 Lys 7.94 138.17 4.37 - 117.98 56.3 30.55

55 Lys 8.05 136.05 4.71 1.85 117.02 54.65 32.58

56 Pro - - - - - 63.52 29.6

57 Gly 8.51 123.13 4.04,4.04 - 118.47 45.45 -

58 Gly 8.33 127.32 4.04,4.04 - 115.85 45.49 -
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PGAM5 WT TMD in TFE/H2O

Table A.9. PGAM5 WT TMD in TFE/H2O, pH 5

H N HA HB CA CB

2 Ala 7.81 128.87 4.17 1.38 53.41 16.93

3 Phe 7.31 113.92 4.45 3.13,3.19 58.08 37.67

4 Arg 7.41 118.89 3.98 1.79,1.84 58.33 28.93

5 Gln 7.89 117.74 4.13 2.16 58.12 27.66

6 Ala 7.76 121.41 4.12 1.53 53.46 16.73

7 Leu 7.86 117.37 4.14 1.64,1.82 57.27 41.07

8 Gln 7.83 117.62 4.07 2.22 58.23 27.77

9 Leu 8.03 119.46 4.15 1.63,1.91 57.26 41

10 Ala 8.16 122.21 4.14 1.55 54.29 16.96

11 Ala 8.29 120.1 4.14 1.57 54.29 16.94

12 Cys 8.09 115.01 4.29 3.14,2.99 61.35 26.05

13 Gly 8.2 108.11 3.95 - 45.51 -

14 Leu 8.09 122.19 4.29 1.84,1.65 56.27 41.35

15 Ala 8.14 122.11 4.22 1.51 53.44 17.05

16 Gly 8.19 105.19 3.95 - 45.51 -

17 Gly 8.17 108.18 4.01 - 45.46 -

18 Ser 8 115.26 4.28 3.96,4.02 60.2 62.47

19 Ala 7.89 123.96 4.11 1.49 54.35 16.88

20 Ala 7.69 118.33 4.16 1.55 54.22 16.96

21 Val 7.73 118.66 3.7 2.24 65.53 31.15

22 Leu 7.83 120.67 4.13 1.66,1.71 57.37 40.99

23 Phe 8.46 116.66 4.35 3.22,3.21 59.79 37.91

24 Ser 8.02 113.96 4.19 4.03,4.12 61.02 62.43

25 Ala 8.03 123.95 4.18 1.55 54.04 16.96

26 Val 7.9 116.04 3.83 2.17 64.02 31.44

27 Ala 7.94 121.78 4.12 1.34 54.35 17.74

28 Val 7.66 114.8 3.98 2.21 63.07 31.45

29 Gly 7.97 108.89 3.92,3.92 - 44.67 -

30 Lys 7.66 120.06 4.61 1.86 53.79 31.59

31 Pro - - 4.4 1.91,2.29 62.86 30.93

32 Arg 7.82 119.02 4.39 1.92,1.79 54.93 30.31

33 Ala 7.84 123.68 4.34 1.41 51.84 17.95

34 Gly 7.99 106.64 3.87,4.03 - 44.46 -

35 Gly 8 107.21 3.95,3.95 - 44.64 -

36 Asp 7.95 117.81 6.89 2.88 52.84 -
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A.2. Resonance Assignments

PGAM5 C12L TMD in TFE/H2O

Table A.10. PGAM5 C12L TMD in TFE/H2O, pH 5

H HA HB CA CB

2 Ala - 4.07 1.63 51.88 18.18

3 Phe 7.66 4.51 3.22,3.22 59.57 38.32

4 Arg 8.33 3.98 1.91,1.84 58.59 29.12

5 Gln 7.95 4.11 2.20,2.07 58.64 27.48

6 Ala 7.65 4.09 1.48 54.46 16.91

7 Leu 7.83 4.07 1.57,1.68 57.03 41.09

8 Gln 7.8 4.04 2.15,2.23 58.32 27.94

9 Leu 7.97 4.15 1.58,1.88 57.22 41.04

10 Ala 8.11 4.12 1.53 53.55 16.63

11 Ala 8.15 4.09 1.53 54.46 16.94

12 Leu 8.06 4.29 1.86,1.65 56.37 41.44

13 Gly 8.17 3.91,3.91 - 45.85 -

14 Leu 8 4.18 1.65,1.91 56.84 41.42

15 Ala 8.17 4.22 1.51 53.6 17.2

16 Gly 8.25 3.96 - 45.54 -

17 Gly 8.17 3.97 - 45.54 -

18 Ser 8.01 4.29 4.03,3.96 60.28 62.54

19 Ala 7.93 4.09 1.47 54.46 16.91

20 Ala 7.69 4.14 1.53 54.45 16.94

21 Val 7.68 3.7 2.22 65.6 31.25

22 Leu 7.79 4.12 1.63,1.68 57.48 41.09

23 Phe 8.41 4.35 3.2 59.84 37.98

24 Ser 7.99 4.19 4.12,4.02 61.04 62.54

25 Ala 8 4.19 1.53 54.09 17.34

26 Val 7.87 3.84 2.16 64.06 31.56

27 Ala 7.94 4.1 1.33 54.42 17.8

28 Val 7.63 4 2.21 63.05 31.57

29 Gly 7.94 3.93,3.93 - 44.75 -

30 Lys 7.69 4.62 1.84,1.86 53.9 31.75

31 Pro - 4.42 1.91,2.29 62.95 30.98

32 Arg 7.92 4.41 1.79,1.92 55.08 30.4

33 Ala 7.98 4.35 1.41 51.99 18.05

34 Gly 8.06 4.03,3.89 - 44.57 -

35 Gly 8 3.96,3.96 - 44.51 -

36 Asp 7.78 4.51 2.72,2.68 54.21 40.89
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PGAM5 C12S TMD in TFE/H2O

Table A.11. PGAM5 C12S TMD in TFE/H2O, pH 5

H N HA HB CA CB

2 Ala 7.84 128.94 4.17 1.37 53.33 16.86

3 Phe 7.39 114.36 4.44 3.13,3.18 58.08 37.55

4 Arg 7.47 118.87 3.96 1.82,1.82 58.31 28.84

5 Gln 7.89 117.61 4.12 2.15,2.15 58.07 27.55

6 Ala 7.77 121.56 4.11 1.51 53.39 16.63

7 Leu 7.9 117.76 4.12 1.79,1.63 57.09 40.97

8 Gln 7.85 117.3 4.02 2.24 58.23 27.57

9 Leu 8.11 120.82 4.11 1.91,1.64 57.09 40.91

10 Ala 8.29 122.97 4.13 1.54 54.35 16.64

11 Ala 8.52 119.82 4.14 1.52 54.31 16.88

12 Ser 7.98 112.28 4.28 4.07 60.32 62.59

13 Gly 7.98 109.48 3.99 - 45.33 -

14 Leu 7.98 121.92 4.28 1.63,1.82 56.15 41.26

15 Ala 8.1 121.68 4.22 1.47 53.29 17.05

16 Gly 8.1 105.2 3.95 - 45.32 -

17 Gly 8.12 108.01 3.95,4.00 - 45.33 -

18 Ser 7.98 115.12 4.28 3.95,4.02 60.08 62.37

19 Ala 7.91 124 4.09 1.47 54.47 16.8

20 Ala 7.68 118.3 4.14 1.52 53.87 16.88

21 Val 7.68 118.3 3.69 2.22 65.42 31.08

22 Leu 7.77 120.57 4.11 1.69,1.63 57.3 40.92

23 Phe 8.4 116.61 4.34 3.2 59.7 37.83

24 Ser 7.99 113.86 4.19 4.02,4.11 60.91 62.34

25 Ala 7.99 123.84 4.18 1.53 53.93 17.15

26 Val 7.86 115.93 3.83 2.16 63.93 31.38

27 Ala 7.92 121.85 4.11 1.33 54.37 17.67

28 Val 7.62 114.67 3.98 2.2 62.97 31.37

29 Gly 7.96 109 3.92,3.92 - 44.57 -

30 Lys 7.65 120.22 4.62 1.84,1.84 53.69 31.52

31 Pro - - 4.41 1.90,2.28 62.77 30.84

32 Arg 7.9 119.33 4.39 1.91,1.78 54.84 30.24

33 Ala 7.94 124 4.34 1.4 51.76 17.89

34 Gly 8.07 106.74 4.03,3.87 - 44.37 -

35 Gly 8.05 107.6 3.94,3.94 - 44.56 -

36 Asp 8.1 119.26 4.64 2.69,2.69 52.85 40.09
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PGAM5 G17L TMD in TFE/H2O

Table A.12. PGAM5 G17L TMD in TFE/H2O, pH 5

H N HA HB CA CB

2 Ala 7.83 128.94 4.16 1.37 53.35 16.85

3 Phe 7.35 114.17 4.45 3.18,3.13 58 37.57

4 Arg 7.43 118.88 3.97 1.83,1.78 58.26 28.85

5 Gln 7.89 117.78 4.12 2.15 58.06 27.58

6 Ala 7.77 121.46 4.1 1.52 53.45 16.7

7 Leu 7.87 117.5 4.14 1.63,1.80 57.04 41.05

8 Gln 7.83 117.71 4.07 2.2 58.17 27.69

9 Leu 8.04 119.54 4.14 1.62,1.91 57.25 40.95

10 Ala 8.16 122.31 4.13 1.54 54.32 17.18

11 Ala 8.3 120.21 4.14 1.57 54.32 16.81

12 Cys 8.12 115.27 4.28 2.99,3.14 61.51 25.91

13 Gly 8.23 108.61 3.95,3.95 - 45.75 -

14 Leu 8.18 122.31 4.27 1.68,1.82 56.74 41.04

15 Ala 8.22 122.94 4.14 1.53 54.32 16.7

16 Gly 8.07 105.06 3.91,3.91 - 45.83 -

17 Leu 8.05 122.88 4.27 1.77,1.81 56.9 41.38

18 Ser 8.16 113.02 4.13 3.95,4.08 61.21 62.17

19 Ala 7.79 123.23 4.11 1.52 54.39 16.7

20 Ala 7.79 119.89 4.17 1.59 54.01 16.72

21 Val 8.27 119.88 3.66 2.23 65.95 31.06

22 Leu 8.03 120.96 4.12 1.74,1.67 57.53 40.97

23 Phe 8.55 117.04 4.32 3.23 60.03 37.91

24 Ser 8.11 114.01 4.17 4.13,4.03 61.09 62.28

25 Ala 8.06 124 4.17 1.54 54.46 17.18

26 Val 7.93 116.18 3.82 2.16 64.03 31.14

27 Ala 7.97 121.83 4.1 1.3 54.38 17.65

28 Val 7.62 114.65 3.98 2.2 63.01 31.37

29 Gly 7.96 109 3.91,3.91 - 44.57 -

30 Lys 7.66 120.21 4.62 1.85 53.73 31.51

31 Pro - - 4.4 2.28,1.90 62.8 30.86

32 Arg 7.89 119.33 4.39 1.78,1.92 54.84 30.23

33 Ala 7.93 124.02 4.34 1.4 51.76 17.9

34 Gly 8.06 106.73 3.88,4.03 - 44.4 -

35 Gly 8.05 107.62 3.94,3.94 - 44.57 -

36 Asp 8.11 119.36 4.64 2.68 52.86 40.16
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PGAM5 S18L TMD in TFE/H2O

Table A.13. PGAM5 S18L TMD in TFE/H2O, pH 5

H HA HB CA CB

2 Ala 7.83 4.11 1.67 51.81 18.06

3 Phe 7.64 4.52 3.22 59.61 38.11

4 Arg 8.32 3.97 1.92,1.84 58.53 29.13

5 Gln 7.92 4.11 2.07,2.20 58.62 27.48

6 Ala 7.64 4.08 1.47 54.49 16.84

7 Leu 7.83 4.07 1.64,1.58 57.01 41.1

8 Gln 7.79 4.04 2.22,2.16 58.3 27.86

9 Leu 7.98 4.14 1.59,1.87 57.32 41.09

10 Ala 8.11 4.13 1.52 54.27 16.77

11 Ala 8.29 4.13 1.54 54.27 17.06

12 Cys 8.02 4.31 2.98,3.12 61.15 26.22

13 Gly 8.14 3.95,3.95 - 45.61 -

14 Leu 8.03 4.28 1.67,1.80 56.41 41.49

15 Ala 8.01 4.19 1.49 54.43 17.22

16 Gly 8.02 3.94 - 45.53 -

17 Gly 8.01 3.94 - 45.53 -

18 Leu 7.96 4.18 1.71 56.89 41.26

19 Ala 7.96 3.99 1.48 54.81 16.84

20 Ala 7.54 4.17 1.55 54.07 17.06

21 Val 7.75 3.69 2.32 65.77 31.26

22 Leu 8.2 4.1 1.74,1.51 57.5 40.96

23 Phe 8.49 4.34 3.22 60 38.34

24 Ser 7.98 4.17 4.12,4.04 61.15 62.49

25 Ala 8.01 4.19 1.53 53.55 17.34

26 Val 7.83 3.84 2.15 63.99 31.5

27 Ala 7.93 4.11 1.3 53.52 17.8

28 Val 7.64 4 2.2 63 31.59

29 Gly 7.92 3.93,3.93 - 44.69 -

30 Lys 7.7 4.62 1.84 53.94 31.75

31 Pro - 4.42 1.92,2.28 62.95 31.01

32 Arg 7.94 4.4 1.92,1.79 55.12 30.37

33 Ala 7.99 4.34 1.41 52.02 18.07

34 Gly 8.08 3.90,4.03 - 44.57 -

35 Gly 8.01 3.96,3.96 - 44.51 -

36 Asp 7.79 4.51 2.71 54.14 40.79

A.3. Structure Statistics
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Structure statistics of APP WT TMD and four single point mutants.  

All values refer to the ensemble of 20 structures with the lowest energy from 400 calculated structures.  

  

 WT G38L G38P V44M I45T 

Total restraints used 416 406 452 378 356 
unambigous NOE restraints 371 376 395 352 324 

Intraresidue 161 168 210 153 134 
Sequential (|i-j|=1) 108 100 103 94 97 
Medium range (1 < |i-j|< 4) 88 89 66 86 73 
Long range (|i-j|≥ 4) 14 19 16 19 20 

Ambiguous NOE restraints 45 30 57 26 27 
Backbone dihedral angle restraints 52 52 52 54 50 

Statistics for structure calculations      
RMSD of bonds (A) 0.001 +/- 0.00007 0.001 +/- 0.00008 0.001 +/- 0.00006 0.001 +/- 0.00015 0.001 +/- 0.00005 
RMSD of bond angles (°) 0.257 +/- 0.005 0.290 +/- 0.009 0.279 +/- 0.007 0.259 +/- 0.006 0.260 +/- 0.003 
RMSD of improper torsions (°) 0.140 +/- 0.012 0.170 +/- 0.018 0.174 +/- 0.013 0.133 +/- 0.007 0.139 +/- 0.009 

Final Energies (kcal mol-1)      
Etotal -1001 +/- 42 -1048 +/- 28 -1011 +/- 28 -1041 +/- 22 -1028 +/- 32 
Ebonds 0.448 +/- 0.064 0.747 +/- 0.092 0.633 +/- 0.063 0.546 +/- 0.158 0.450 +/- 0.048 
Eangles 8.85 +/- 0.35 11.56 +/- 0.711 10.6 +/- 0.5 8.98 +/- 0.247 8.88 +/- 0.24 
Eimpropers 0.616 +/- 0.107 0.936 +/- 0.200 0.973 +/- 0.146 0.555 +/- 0.062 0.598 +/- 0.074 
Edihed 121.5 +/- 1.2 134.5 +/- 2.4 124.0 +/- 1.0 122.9 +/- 2.0 122.5 +/- 1.50 
EvdW -229.6 +/- 3.2 -232.8 +/- 2.9 -235.4 +/- 2.8 -227.8 +/- 3.5 -226.3 +/- 3.0 
ENOE -902.8 +/- 42.3 -962.9 +/- 26.8 -912.2 +/- 28.2 -945.9 +/- 22.0 -934.4 +/- 32.5 

Coordinate precision (A)      
RMSD of backbone (N,CA,C,O) of all residues 2.10 +/- 0.69 1.84 +/- 0.54 1.76 +/- 0.62 2.23 +/- 0.65 2.09 +/- 0.76 
RMSD of all heavy atoms of all residues 2.53 +/- 0.66 2.16 +/- 0.56 2.12 +/- 0.70 2.57 +/- 0.72 2.40 +/- 0.74 
RMSD of backbone (N,CA,C,O) of ordered residues 
(29:54) 

1.43 +/- 0.48 1.31 +/- 0.39 1.44 +/- 0.55 1.77 +/- 0.59 1.40 +/- 0.54 

RMSD of all heavy atoms of ordered residues 
(29:54) 

1.65 +/- 0.47 1.53 +/- 0.39 1.79 +/- 0.64 2.09 +/- 0.61 1.61 +/- 0.47 



Structure statistics of PGAM5  WT TMD and four single point mutants.  

All values refer to the ensemble of 20 structures with the lowest energy from 400 calculated structures.  

 

 WT C12L C12S G17L S18L 

Total restraints used 269 279 261 274 229 
unambigous NOE restraints 269 279 261 274 229 

Intraresidue 106 107 124 127 89 
Sequential (|i-j|=1) 85 87 87 93 81 
Medium range (1 < |i-j|< 4) 61 66 47 40 50 
Long range (|i-j|≥ 4) 17 19 3 17 9 

Ambiguous NOE restraints 0 0 0 0 0 
Backbone dihedral angle restraints      

Statistics for structure calculations      
RMSD of bonds (A) 0.001+/- 0.00007 0.001 +/- 0.00007 0.001 +/- 0.00006 0.001 +/- 0.0001 0.001 +/- 0.00005 
RMSD of bond angles (°) 0.253 +/- 0.005 0.260 +/- 0.005 0.252 +/- 0.004 0.285 +/- 0.011 0.260 +/- 0.003 
RMSD of improper torsions (°) 0.108 +/- 0.007 0.098 +/- 0.007 0.102 +/- 0.007 0.146 +/- 0.02 0.98 +/- 0.006 

Final Energies (kcal mol-1)      
Etotal -1044 +/- 30 1057 +/- 24 -1034 +/- 30 -1058 +/- 22 -1039 +/- 27 
Ebonds 0.369 +/- 0.064 0.360 +/- 0.059 0.403 +/- 0.056 0.566 +/- 0.121 0.340 +/- 0.040 
Eangles 8.35 +/- 0.33 8.98 +/- 0.32 8.24 +/- 0.26 10.90 +/- 0.89 8.95 +/- 0.24 
Eimpropers 0.432 +/- 0.057 0.362 +/- 0.055 0.387 +/- 0.053 0.823 +/- 0.287 0.367 +/- 0.047 
Edihed 134.0 +/- 0.98 134.2 +/- 0.81 133.3 +/- 0.82 140.2 +/- 1.78 134.0 +/- 0.89 
EvdW -207.6 +/- 4.3 -203.22 +/- 4.28 -195.96 +/- 3.2 -210.1 +/- 2.7 -199.2 +/- 3.26 
ENOE -980.1 +/- 28.7 -988.25 +/- 25.5 -981.0 +/- 29.5 -1001 +/- 22 -983.69 +/- 27.9 

Coordinate precision (A)      
RMSD of backbone (N,CA,C,O) of all residues 3.06 4.47 4.20 4.35 3.07 
RMSD of all heavy atoms of all residues 3.56 5.11 5.05 5.05 3.56 
RMSD of backbone (N,CA,C,O) of ordered residues 
(3:28) 

2.18 2.30 2.95 3.42 2.67 

RMSD of all heavy atoms of ordered residues (3:28) 2.67 2.96 4.0 2.37 2.12 
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