KIT | KIT-Bibliothek | Impressum | Datenschutz

The use of adaptive predictor filter as a trigger mechanism in simulated cosmic rays radio signals corrupted with Gaussian noise

Watanabe, Clara Keiko Oliveira 1; Diniz, Paulo Sergio Ramirez; De Mello Neto, João
1 Institut für Astroteilchenphysik (IAP), Karlsruher Institut für Technologie (KIT)


Adaptive filtering belongs to the realm of learning algorithms, widely used in our daily life in the context of machine learning, artificial intelligence, pattern recognition, etc. It is formally defined as a self-designing device with time-varying parameters that are adjusted recursively in accordance with the input data. The trigger mechanism is a central task in experiments using antennas to detect cosmic rays as it selects a cosmic- ray induced signal among all the voltages traces events that reach the antennas. This work presents the efficiency of a trigger mechanism developed using the adaptive predictor filter technique, whose capability is well known for time series prediction usage. This technique is independent of an external detector, using only the online temporal field recorded by the antennas in a simulated data set and Gaussian noise.

Verlagsausgabe §
DOI: 10.5445/IR/1000138488
Veröffentlicht am 06.10.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Astroteilchenphysik (IAP)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 18.03.2022
Sprache Englisch
Identifikator ISSN: 1824-8039
KITopen-ID: 1000138488
HGF-Programm 51.13.04 (POF IV, LK 01) Kosmische Strahlung Technologien
Erschienen in 37th International Cosmic Ray Conference (ICRC 2021): July 12th – 23rd, 2021, Online – Berlin, Germany
Veranstaltung 37th International Cosmic Ray Conference (ICRC 2021), Online, 12.07.2021 – 23.07.2021
Verlag Scuola Internazionale Superiore di Studi Avanzati (SISSA)
Seiten Art.-Nr.: 258
Serie Pos Proceedings of Science ; 395
Vorab online veröffentlicht am 08.07.2021
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page