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Zusammenfassung

Brückenkrane sind ein wichtiger Vertreter der Unstetigförderer und wer-
den vornehmlich im industriellen Umfeld eingesetzt. Sie ermöglichen
die Bewegung von hohen Transportlasten innerhalb eines definierten
Arbeitsbereichs. Neben der Laufkatze spielt die sogenannte Kranbrücke
eine zentrale Rolle in der Gesamtkonstruktion. Mit zunehmender Spann-
weite und Traglast nehmen auch die Abmessungen der Kranbrücke zu.
Damit trägt sie den größten Teil zum Gesamtgewicht des Krans bei, wor-
aus sich das Bestreben ergibt, im Rahmen von Optimierungsansätzen
weitere Gewichtseinsparungen zu erzielen. Es müssen definierte Rand-
bedingungen eingehalten werden, die weitgehend durch standardisierte
Regelwerke vorgegeben sind. Kern dieser Arbeit ist die Konstruktion
eines neuartigen Brückenkransystems, das aus einzelnen Segmenten be-
steht und durch ein Zugmittel exzentrisch vorgespannt wird. In diesem
Zusammenhang ist es notwendig, zusätzliche Randbedingungen zu er-
mitteln, die durch die bestehenden Regularien nicht abgedeckt sind.
Grundlage hierfür ist die Ableitung eines geeigneten mechanischen Er-
satzmodells, das die Eigenschaften des Systems mit hinreichender Ge-
nauigkeit beschreibt. Anschließend können die Randbedingungen in ein
Optimierungsproblem überführt werden. Dazu werden Lösungsverfah-
ren entwickelt, die dazu dienen, die neuartigen Kranbrückenträger vor
dem Hintergrund ihres Eigengewichts zu optimieren. Der Fokus dieser
Doktorarbeit liegt somit auf der Erarbeitung der theoretischen Grund-
lagen zur Beschreibung des mechanischen Verhaltens und der Optimie-
rung von vorgespannten, segmentierten Trägern für den zukünftigen
Einsatz in Brückenkrananlagen.
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Abstract

Bridge cranes are widely used as discontinuous material handling sys-
tems in industrial environments. They enable the movement of high
transport loads within a defined working area. In addition to the trav-
eling trolley, the so-called crane bridge plays a central role in the overall
construction. With increasing span widths and load capacities, the di-
mensions of the crane bridge also increase. Thus, it contributes the
major part to the total weight of the crane, which results in the effort
to achieve further weight savings within the scope of optimization ap-
proaches. Defined boundary conditions must be met, which are largely
determined by standardized regulations. The core of this work is the
design of a new type of bridge crane system, which consists of individ-
ual segments and is eccentrically pretensioned by a tensile member. In
this context, it is necessary to identify additional boundary conditions
which are not covered by the existing rules and regulations. The basis
for this is the establishment of a suitable mechanical substitute model,
which describes the properties of the system with sufficient accuracy.
Subsequently, the constraints can be transformed into an optimization
problem. For this purpose, a solution method is developed which serves
to optimize the novel crane bridge girders against the background of
their self-weights. Hence, the main focus of this doctoral thesis is the
development of the theoretical basis for the description of the mechani-
cal behavior and the optimization of prestressed, segmented girders for
future application in bridge crane systems.
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1 Introduction

Paths are made by walking.
- F. Kafka

In the course of increasing globalization, economic interdependencies be-
tween states are growing and with them the trade of goods. More and
more goods have to be transported, which requires the construction of
more intralogistic systems. These include production facilities, port fa-
cilities or distribution centers. In this context, intralogistics describes
not only the physical flow of materials and goods but also their organiza-
tion, execution and control within a defined company site [12, p. 6]. For
goods handling, elements must be provided that are capable of moving
them. In the field of material handling, these technical devices are pri-
marily divided into continuous and discontinuous conveyors. Whereas
continuous conveyors operate continuously over a longer period of time
(as is the case with bulk material transport), discontinuous conveyors
are characterized by discontinuous working cycles. This means that a
load cycle is usually followed by an empty cycle [13, p. 3].

Cranes, together with floor conveyors, form a significant group of repre-
sentatives of discontinuous conveyors, which can move goods in a limited
working area. They enable the transport of heavy loads and are assigned
to different groups depending on their design. The so-called bridge crane
is often used for handling unit loads in, for instance, assembly halls as
well as workshops and is one of the most widespread crane designs. It
plays a central role in this work. With the increasing span width, the
requirements in terms of manufacturing as well as transportation from
the production site to the desired place of operation increase. Suffi-
cient space must be available for the production, as the crane usually
passes through various stations during its manufacturing. In addition,
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the large dimensions and the resulting weight may require heavy-duty
transport [14, p. 228].

The analysis of the challenges mentioned above resulted in the idea
of developing a new type of bridge crane system at the Institute for
Materials Handling and Logistics (IFL) of the Karlsruhe Institute of
Technology (KIT), based on the approach of assembling the crane from
standardized individual parts and connect them by means of tension
and compression. The advantage of this is that the dimensions of the
individual parts on one hand reduce the manufacturing effort and that
they can be transported more easily (on EUR-pallets for example) on
the other hand. By applying the axial force, the initially loose joints
are pressed together. Only by this pretensioning the structure is able to
transfer bending moments and shear forces, which is essential for a safe
operation. Here, the crane bridge is designed as a truss with tie rods
running in the hollow profiles of the upper and lower chord, with which
the required pretensioning forces can be transmitted to the joints via
stop pieces. With the help of a prototype it could be shown that the use
of such a concept is conceivable. The system also offers the possibility
of being upgraded to a modular system, in order to extend the use of
the available components to a broad spectrum with regard to the span
widths and load capacities to be achieved [3].

In contrast to the concept mentioned previously, the use of an eccen-
trically prestressed beam structure is to be investigated in the present
work. The concept envisages for the beam to be composed of different
uniform segments, which are then pressed together by pretensioning a
tensile member that is eccentrically located with respect to the centroid
axis. In analogy to the truss construction method, the joints are thus
closed by means of form closure and the structure is capable of trans-
mitting bending moments. In this connection, several components come
into operation which fulfill different functions. Of particular interest is
the development and application of design regulations combined with
the desire of a construction of minimum weight.

2



1.1 Problem Description

1.1 Problem Description

The economic implementation of a new crane concept requires the exis-
tence of dimensioning regulations that provide recommendations for the
design and thus enable safe operation of the crane. In this context, the
system must be able to withstand the loads occurring during operation.
This includes, in particular, compliance with strength and temperature
limits as well as the avoidance of elastic instability of the components
involved. The external load effects lead in turn to loads on the structure
and thus to stresses on the used material. These can be roughly divided
into static and dynamic loads.

For conventional crane systems, the standard norm DIN EN 13001-3-1
provides the basics for dimensioning, but this does not cover, for in-
stance, the additional use of traction equipment in order to apply the
necessary pretensioning forces. Therefore, the problem arises that no in-
vestigations or findings regarding the mechanical dimensioning of such a
new type of system have been made so far. It also remains to be clarified
which failure mechanisms can occur and which additional constraints
must be considered within the design in comparison to conventional
bridge crane girders. Furthermore, questions regarding a simultaneous
weight optimization during the design of this new type of structure used
remain unanswered so far as well.

This leads to several central questions that are to be answered within
the framework of this doctoral thesis.

1. How can an eccentrically prestressed girder in segmented
construction be designed and what functions do the individual

components perform?

2. How can a suitable dimensioning procedure be designed that leads to
solutions which meet both the defined constraints and are of minimum

weight?

3. With what quality can a local minimum be approximated by the
developed methods?

3
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These risen questions form the basis for the doctoral thesis. On the one
hand, the answers to these should close current research gaps and on
the other hand lay the foundation for future research activities.

1.2 Scope and Structure of the Doctoral Thesis

Both the analysis and the subsequent answering of the questions men-
tioned in the previous section require a systematic approach. In addi-
tion, due to the prevailing complexity and the large scale of the problem,
the scope of action must be limited to a defined framework in order to
enable reliable statements.

1.2.1 Structure

The presented work is divided into seven chapters, which build on each
other chronologically and in terms of content. This ensures a targeted
and comprehensible treatment of the questions.

In the first chapter, the central problems are first formulated and the
framework of the doctoral thesis is defined. The following chapter 2
reviews the state of the art, with a focus on the use of segmented and
prestressed structures and the findings to date. In this connection,
basics of engineering mechanics and current design regulations in crane
construction are provided. The field of the structural optimization of
box girder profiles is also one of the relevant aspects in the literature
research. Here, the selected strategies and the underlying constraints
are to be mentioned in particular. Furthermore, the term optimization
used for the work is additionally specified in more detail.

The description of the reference structure to be investigated and the
components used forms the core of the third chapter and aims to an-
swer the first research question. The possible segmentation strategies
as well as the structure of the segmented girder are explained. The as-
sumptions made in this context are furthermore the starting point for
the subsequent modeling.
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In chapter 4, the development of constraints by means of analytical
models which are to be met by the segmented girder are described.
They are mandatory for the mathematical formulation of the underly-
ing optimization problem. The solution approach is then developed in
the subsequent chapter 5 and provides answers to the second research
question. In addition, appropriate parameter settings can be identi-
fied which lead to most suitable solutions in terms of approximation of
the local minimum. Then, the third research guiding question can be
answered as well.

Chapter 6 additionally deals with the concrete application of the de-
veloped methods, focusing on the investigation of their suitability for
practical implementation. The calculated profiles are validated in FE
analyses using the Abaqus© code and verified for compliance with the
previously defined constraints. In addition, design notes can be derived
by means of detailed studies of the structural behavior under the defined
loads.

In the seventh and final chapter of the doctoral thesis, the major findings
of the work are summarized. In an outlook, future research topics and
related questions in the field of prestressed segmented support structures
are outlined, whereby the contents and results of this thesis form the
basis.

1.2.2 Scope of the Thesis

As the title of the thesis indicates, the main task of the doctoral thesis is
to develop the fundamentals that should be applied to design an eccen-
trically prestressed girder in segmented construction with simultaneous
weight optimization. Since the entire spectrum of this research field
is both of high complexity and extremely extensive, restrictions must
be made so that the work and the associated answers to the research
questions remain manageable.

For this reason, the mechanical problems mentioned are restricted to
the field of elastostatics, which focuses on elastic deformation on the one
hand and on the mechanical stresses occurring on the other. Accord-
ingly, only elastostatic problems are considered and those of dynamics
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are neglected. Furthermore, contact problems that rise are marginally
taken into account in order to include them in the procedures. This
also covers the consideration of possible stability problems and the phe-
nomena of local load application. The main focus is the global behavior
of the structure, especially the avoidance of excessive deflections and
material yielding.

For the construction of a prestressed girder in segmented design, the
use of only one eccentrically mounted tensile member running inside the
segments is taken into account. It can be assumed, that the extension
of the structure to several parallel arranged tensile members with the
same bases can be carried out. However, further constraints must be
defined, such as the consideration of the additional space requirement.

The prestressed structure is also limited to a single-girder design, i.e.
the trolley travels on only one girder, although double-girder designs
are generally also conceivable. Furthermore, it is assumed that the
structure is used in a covered system (e.g. in an assembly hall), i.e.
additional influences such as weather conditions or stochastically dis-
tributed loads caused by the occurrence of wind loads in outdoor oper-
ation are neglected and therefore not considered in the design. This is
also accompanied by the fact that a constant room temperature level is
assumed and thus changes in the axial force due to temperature-related
expansions are ignored.
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One never notices what has been
done, one can only see what remains

to be done.
- M. Curie

In the course of the investigation of the state of research, section 2.1
first introduces the bridge crane as well as its involved components and
the currently applied dimensioning regulations. In this context, a short
aggregation of the fundamentals of engineering mechanics relevant for
the work serves to introduce important concepts and principles (section
2.2).

On this basis it is necessary to clarify whether applications already exist
where a crane girder composed of different segments is used. The focus
here is on the use of a traction device mounted eccentrically to the
centroid axis of the main beam and the possibility of non-destructive
dismantling of the crane bridge.

Based on these findings, the current research results regarding the gen-
eral use of eccentrically prestressed beams will be discussed in more
detail in the following section 2.3.1 to identify possible interfaces to the
topic of the thesis. In this connection, it is of particular interest, which
types of tension means are selected and which modeling strategies are
applied. Here, it also will be examined whether structural optimization
approaches have already been undertaken and which constraints have
been defined in these cases.

The subject of structural optimization plays an important role in the
present work and is to be defined terminologically first. Subsequently,
it is mandatory to analyze the field of optimization of geometric cross-
sectional quantities in crane construction, see section 2.4. Here, the

7



2 Basics and State of Research

selected optimization strategies and the corresponding constraints are
in the foreground as well.

A short summary at the end of chapter 2 gives an overview of the
collected findings. The prevailing research gap can be identified and a
delimitation to the current state of research can be made.

2.1 Bridge Crane Systems

The bridge crane is a classic material handling system for moving heavy
loads. Despite the large number of possible applications, these usually
have the same basic structure. The single elements that play a central
role within a bridge crane system are explained in section 2.1.1. In
order to be able to guarantee a safe operation, dimensioning regulations
are used in this context, which provide assistance in the design of the
individual components. Those are discussed more in detail in section
2.1.2.

2.1.1 Configurations and Components

The essential components of a bridge crane system include the crane
bridge (main girder), the endcarriages, in which the wheels of the crane
trolley are mounted and run on the crane runways, and the traveling
trolley that can travel along the girder. By moving the trolley, the posi-
tion of the hoisting cable is changeable and thus loads can be attached
within the defined working range of the crane. In general, there are two
dominating bridge crane types available:

• single beam bridge cranes and

• double beam bridge cranes.

These are depicted in figure 2.1 together with the involved elements.
Usually, the girders of single beam bridge cranes are designed as rolled-
steel joists, such as I-shaped beams, for working loads up to 12.50 t
and span widths up to 12.00 m or welded box girders while these are
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Single beam bridge crane

Double beam bridge crane Main girder(s)

Traveling trolley

Endcarriage

Crane runway

Hoisting
cable

Figure 2.1: Common configurations of bridge crane systems [1, p. 8]

especially applied for high working loads and large span widths. In
addition, they offer the advantage of comparatively simple manufactur-
ing and lightweight construction [13, p. 131–132]. The main differences
in geometry of the geometric properties between the mentioned girder
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2 Basics and State of Research

types are shown in figure 2.2. Owing to the closed form, box sections

Upper chord

Bottom chord

Web

I-shaped girder Box section girder

Weld
joint

Figure 2.2: Dominating cross-sections in bridge crane systems

possess a high torsional stiffness and are more resistant to torsional
flexural buckling1 compared to open profiles, such as I-shaped girders.
Nevertheless, they are vulnerable to plate buckling due to the relatively
thin web plates, see figure 2.3. In this context, failure modes of elastic
stability can be divided into global and local failures where global means
that the entire structure deflects while local failures only lead to deflec-
tions of the respective failed regions or components. Here, especially
thin axially loaded plates are at risk of local buckling. This important
aspect must be taken into account and for this reason the profiles are
usually reinforced in the boxes with both welded-in bulkhead plates and
buckling stiffeners [13, p. 131]. The phenomena of elastic behavior and
stability are discussed more in detail in section 2.2.

2.1.2 Applied Dimensioning Regulations

In the previous section 2.1.1 it was already pointed out that failures in
terms of elastic stability might occur during operation. Besides elastic

1 Variant of elastic stability failure.
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Local deflection of the
web plate due to high axial load

(buckling of plates)

Global deflection of the beam
(torsional lateral buckling)

Figure 2.3: Failures of elastic stability of the considered cross-sections

stability further failure types must be considered. This includes espe-
cially a possible exceeding of specified strength values of the materials
used as well as the proof of fatigue strength, i.e. that no material fa-
tigue due to dynamic loads occurs. Thus, knowledge of the loads to be
expected during operation is significant for dimensioning the crane sys-
tem. It is the task of the design engineer to identify these and calculate
them accordingly.

In the field of bridge crane construction at the present time three main
dimensioning regulations regarding the crane bridge are used for its
design. These are in particular:

• DIN EN 13001-3-1: Cranes – General design – Part 3.1 – Limit
states and proof competence of steel structure [15]

• DIN EN 13001-3-3: Cranes – General design – Part 3.3 – Limit
states and proof of wheel / rail contacts [16]

• DIN EN 1993-6: Eurocode 3: Design of steel structures – Part 6:
Crane supporting structures [9]
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Within DIN EN 13001-3-1 requirements as well as procedures are in-
cluded which are to be applied in order to avoid mechanical hazards
caused by the crane. These hazards, which are considered, cover in
general a possible exceeding of material strengths (such as yielding, de-
struction and material fatique), an exceeding of limits with respect to
temperature induced loads and the elastic stability of the crane and its
components. Besides the global loads, the handling of local influences
due to the wheel-flange contact of the traveling trolley running on the
girder are described in the annex of DIN EN 13001-3-1 but only in case
that the trolley runs on the upper chord of the main girder [15]. Once
a traveling trolley is designed to run on the lower chord DIN EN 1993-6
offers amongst others procedures in order to assess the local stresses
acting in the flanges [9] of an I-shaped girder due to the wheel contact.
Moreover DIN EN 13001-3-3 gives instructions regarding the design of
the wheel-flange contact where the dimensions of both the rails and
wheels are considered [16].

Basically, the references included in DIN EN 13001-3-1 and DIN EN
1993-6 are important for the following work.

2.2 Basics of Engineering Mechanics

In order to apply the before mentioned standards, an in-depth knowl-
edge of engineering mechanics is indispensable. For this purpose, in the
following section, the basics are summarized in a condensed form and
essential terms are defined. For further information, reference is made
to the relevant technical literature.

As the oldest and most developed discipline of physics, the task of engi-
neering mechanics is to predict both the movement and the deformation
of bodies while hereby the force F is of great importance. It is a phys-
ical quantity based on the observations of daily experience [17, p. 7]
and is interpreted as a vectorial quantity. The force F possesses the
unit Newton [N], named after the English natural scientist Sir Isaac
Newton. With the introduction of the concept of force, other types of
loads can be introduced, such as distributed loads and moments.
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If forces act on a body in different points and if they are of opposite
direction they form a pair. The resulting physical effect is called moment
M and possesses the unit [Nm]. Choosing a reference point "A", the
moment is obtained as follows.

M (A) = r × F (2.1)

Here, r describes the vector from the reference point "A" to any point
on the line of action of F [17, p. 90].

In case that forces act continuously distributed along a line, they are
referred to as distributed loads q0 [N/m]. For two-dimensional problems,
external influences such as wind loads can be interpreted as distributed
loads. Further information regarding the definition of loads can be found
in the relevant specialized literature such as [17], [18] or [19].

The field of engineering mechanics is of large scope, for this reason the
knowledge necessary for the work is to be recorded compactly hereinafter
and mainly reduced to elastostatic problems, i.e. theory and description
of deformable bodies.

2.2.1 Mechanical Stresses

Once a body gets loaded by external loads, such as single forces F i or
distributed loads q0 and moments M i, the outer loads lead to inner
forces. By means of a theoretical cut through the body (s-s) they can
be visualized and are distributed over the entire cut surface A. These
inner forces are called stresses and possess the unit [N/mm2]. Here,
point P is included in the surface element ∆A and in turn, the force
∆F i acts on the surface element. The quotient ∆F i/∆A defines the
mean stress relating to the surface element ∆A. We postulate that this
quotient reaches a finite limit for ∆A → 0 and we find the following
expression.

t = lim
∆A→0

∆F
∆A = dF

dA (2.2)
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A

s

s

F2

F i

F1

q0

M i

F2

F i

q0

∆F
n

t

∆A
σ

τ
P

x3

x1 x2

Figure 2.4: Loaded body, based on [2, p. 43]

The limit of the quotient t is called stress vector which can be further
divided into two separate components. The first component σ is related
to the part acting in normal direction n corresponding to the cutting
area and will be called normal stress, while the other component τ re-
lates to the parts acting inside in the cutting area in tangential direction
t and will be called shear stress (see figure 2.4). Both components are
perpendicular to each other and form the stress vector t. It can be eas-
ily seen, that the vectorial components of t depend on the direction of
the cut s-s. By application of three cutting planes, which are orientated
orthogonally to each other, all possible components can be identified
with respect to the axes x1, x2 and x3. These are summarized in the
symmetric stress tensor (eq. 2.3) which fully defines the stress state at
a certain point P in a body [2, p. 43–46].

σ =

σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33

 (2.3)
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Knowledge of the mechanical stresses is essential in technical applica-
tions. They provide information on the extent to which the material of
a body is loaded.

In steel construction, the so-called Mises yield criterion is of particular
importance [20, p. 11]. Since in reality mostly multi-axial stress states
occur, the basic idea is to trace them back to a uniaxial stress state that
results in the same load. With the components of the stress tensor (eq.
2.3), the equivalent stress σM then follows to

σM =
√
σ2

11 + σ2
22 + σ2

33 − σ11σ22 − σ11σ33 − σ22σ33 + 3(τ2
12 + τ2

13 + τ2
23)

(2.4)

and applies to a certain point of the body [21, p. 118–129].

2.2.2 Deformation of Elastic Bodies

In the previous section, it was stated that external loads lead to inner
stresses of the body. Experience shows that the body then reacts in the
form of a deformation and changes its shape. It can be further observed
that the extent of the resulting deformation depends on the properties
of the considered material. By means of a constitutive equation, the
relation between the external influences and the response of the material
can be described. In this context, Hooke’s Law is important due to
the fact that it describes the relation between mechanical stresses and
strains for steel closely. If a steel rod is loaded uniaxially and the stress
is plotted over the dimensionless strain2 ε [−], a linear relationship can
be established experimentally. The gradient of the straight line is called
Young’s Modulus E [N/mm2] and depends on the material, see figure
2.5. For a uniaxial tensile load in x1-direction, the relationship between
mechanical stress and strain is

σ11 = Eε11. (2.5)

2 Relation between initial length and length change.
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If Poisson’s ratio3 ν

ν = −ε22

ε11
(2.6)

and the coefficient of thermal expansion αT [1/K] (relevant for changes
in temperatures denoted by ∆T ) are also introduced, Hooke’s law for
the three-dimensional case results in

Eε11 = σ11 − ν(σ22 + σ33) + EαT∆T. (2.7)

It is a special case of the law of elasticity and is valid in the so-called
linear-elastic range which means that after removal of the load no per-
manent elongation remains [2, p. 76–79]. As soon as a significant value
of stress is exceeded, the material begins yielding, i.e. that the ma-
terial will be permanently deformed and changes its properties. Once
the load is still increased the material will be destructed. It is the
task of experimental investigation to determine these specific material
characteristics. Usually the stresses are plotted against the strains in a
stress-strain curve, qualitatively depicted in figure 2.5. Here, the stress
value refers to the dimensions of the initial cross-section of the speci-
men. For a purely uniaxial load, the stress is given by σ = N/A. As
the load increases, the steel bar becomes increasingly constricted, which
means that the cross-sectional area also changes and the real stress in-
creases. For most applications this specific value of stress is relevant and
marks the possible range of operation. It is denoted by Re [N/mm2]. By
adding a dimensionless safety factor γM1 we obtain

fy = Re

γM1
(2.8)

which is usually used in crane construction [15, p. 15]. It should be men-
tioned at this point that the theory of elasticity is a field in its own right
and is reduced to its essential contents in the course of the thesis. The
theory of elasticity and behavior of materials are discussed in detail for
instance in [22]. During its service life, a crane is exposed to loads that

3 Describes the behavior of a body loaded by axial forces and the relation between
the strains ε11 and ε22 in x1-, respectively x2-direction.
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ε [-]

σ [N/mm2]
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∆σ A: Linear
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σ = N/A

A B C

Figure 2.5: Stress-strain curve of a loaded axial rod [2, p. 15]

are largely determined by the movement of goods being transported.
Every lifting movement causes deformations in the main girder which,
although hardly visible to the naked eye, have a major impact on the
entire structural performance due to the already described circumstance
of internal material stresses. For example, the international standard
ISO 22986 defines the limit values for maximum permissible deflections
of crane girders [23]. In order to be able to describe the deformation of
the crane bridge, an appropriate mechanical substitute model must be
developed that is capable of describing the observed phenomena with
sufficient accuracy.

A suitable way of describing a crane bridge is to reduce it to a beam. As
a fundamental mechanical element the beam is capable of transmitting
forces and moments transverse to its centroid axis. Another character-
istic of a beam is that its cross-sectional dimensions are much smaller
compared to its length [2, p. 89]. In this context, we introduce the
following right-handed coordinate system with its axes x1, x2 and x3
to describe the spatial extent of a beam. This type of designation is
common in the theory of strength of materials [24, p. 5] and can also
be found in simulation software, such as Abaqus©. By means of a the-
oretical cut, both the resulting forces and moments can be identified
at the cutting point in analogy to section 2.2.1. Splitting these into
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Centroid
axis

Centroid

x1

x3

x2

Figure 2.6: Coordinate system and defined beam axes

individual components results in a component that is directed along
the centroid axis, another component transverse to and a moment that
acts at this point. In this connection, the beam theory deals with the

x1

x3

x2

N1(x1)

M1(x1)

Q2(x1)

Q3(x1)

M3(x1)

M2(x1)

Figure 2.7: Visualization of inner forces and moments at x1
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description and calculation of the deformations and the corresponding
stresses of beams. With the aid of the equations provided, conclusions
can be drawn in advance about the behavior of loaded beams. Hereby,
the geometry of the considered cross-section, the stresses and the law of
elasticity play an important role. The relevant relations can be identified
by combining them [2, p. 108].

Characteristics of Bending Problems

Within the framework of bending problems, a total of six different char-
acteristics can be taken into account as a basis under which the problem
is considered [25, p. 96–98]. These are briefly summarized below.

Shear force In principle, a distinction is made in bending between
pure bending and bending under transverse force. In case of pure bend-
ing, only external moments occur at the ends of the beam, which lead
to constant moments about the beam axes x2 and x3 while the shear
forces do not appear. In contrast, bending under shear forces leads to
transverse forces in addition to bending moments.

Normal force In case that the beam is additionally loaded by an ex-
ternal normal force an additional inner normal force occurs. Depending
on the resulting deformations, the normal force may have to be taken
into account within the frame of higher order theories (see paragraph
Deformation due to bending below).

External loads The orientation of the plane in which the loads act in
and the plane regarding the deflection depends on the direction of the
loads. If the loads act in one plane, the deformations take place in the
same plane. Then the planes are parallel to each other. Otherwise the
so-called oblique bending is present.

Geometry In terms of geometric features, beams are divided into three
different categories:
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• straight beams,

• slightly curved beams and

• curved beams.

They vary in the amount of the radius of curvature ρc, see figure 2.8.

Straight beam

Slightly curved beam

Curved beam

H

ρc →∞

ρc � H

ρc ≈ H

Figure 2.8: Classification of beams with respect to geometry

Deformation due to bending In general, there are three different the-
ories with which the deflection of a beam can be described. They differ
mainly in the state of the beam which is used to establish the equilib-
rium conditions.

• Theory of first order: The equilibrium conditions are established
on the undeformed system.

• Theory of second order: The equilibrium conditions are estab-
lished on the slightly deformed system.
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• Theory of third order: The equilibrium conditions are established
on the strongly deformed system.

For most problems where small deformations are expected, theory of
first order is used. If high axial forces prevail, theory of second order
can be used in order to identify critical loads in the context of stability
considerations. In special cases, the third-order theory is applied to
describe large deformations.

Deformation due to shear stresses In reality, it can be observed that
the beam cross-section is distorted due to the shear stresses. If this effect
is taken into account, the beam is referred to as a shear-soft beam. If
this effect is neglected, the beam is referred to as a shear-resistant beam.

Based on the mentioned characteristics, both the beam and the prevail-
ing bending problem can be classified.

General Assumptions in Beam Theory

When setting up a physical model, assumptions are often made which
may differ from the actual circumstances, but which facilitate the model-
ing process. Within the field of technical beam theory, the prerequisites
necessary for its application are formulated by [25, p. 98] as follows.

• In unloaded condition, the beam axis is straight or only slightly
curved.

• Only slender beams are considered, i.e. the beam length is at least
five times greater than its height or width.

• The cross-sectional shape is retained in the unloaded state, i.e.
the cross-section is true to form.

• The occurring deflections are small (maximum deflection to be
less than 1/500 of the beam length).

• The applied material is homogeneous within the cross-section,
isotropic and linear-elastic.
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• The cross-sectional area is constant or only slightly changing along
the beam axis.

• External loads as well as supporting reactions do not lead to ro-
tations of the cross-section about the beam axis.

Fundamental Equations of Technical Bending Theory

Considering an infinitesimal beam element (see figure 2.9 (b)), possess-
ing a specific Young’s Modulus E and subjected to a line load q3(x1),
the fundamental equation (eq. 2.9) of bending theory can be derived.
With this it is possible to establish a relation between the applied loads

x1

x3

dx1

M2(x1) + dM2

M2(x1)

N1(x1)
Q3(x1)

Q3(x1) + dQ3

N1(x1) + dN1

q3(x1)

w(x1)

x1

x3

q3(x1)
(a)

(b) Infinitesimal beam element

Overall deflection of the beam

(EI)22, κGA1

Figure 2.9: Basic deflection of a beam

and the deflection w(x1) of the beam in x3-direction at x1 (see figure 2.9
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(a)) described by eq. (2.9). For a detailed description of the derivation,
reference is made to technical literature such as [2].

(EI)22
d4w

dx4
1

= q3(x1)− (EI)22

κGA1

d2q3(x1)
dx2

1
(2.9)

In this context, other quantities arise which will be briefly explained.
The so-called moment of inertia I [mm4] is an area moment of second
order in the physical sense and is used as a geometric quantity to de-
scribe the deformation behavior of a beam4. It depends essentially on
the shape of the cross-section and on the orientation of the reference
axes [2, p. 92]. For any cross-section of area A in the x2x3-plane, the
second moments of area are calculated as follows

I22 =
∫
x2

3dA+ x̄2
3A (2.10)

I33 =
∫
x2

2dA+ x̄2
2A (2.11)

where x̄2 and x̄3 represent the orthogonal distance from the centroid to
the considered bending axes by means of the parallel axes theorem (see
for detailed description [25, p. 75]). Furthermore, the following second
moments of area can be found

I23 = I32 = −
∫
x2x3dA− x̄2x̄3A (2.12)

which are called moments of deviations. They are of importance for
cross-sections that are not axisymmetrical. For axisymmetric cross-
sections, however, they vanish if the axes run through the center of
area.

Equation (2.9) considers the additional tilting of the cross-section due
to the shear stresses. In this context, the Shear Modulus G [N/mm2]

4 The product (EI) is briefly denoted by the flexural stiffness of the beam.
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occurs, which is a material parameter similar to Young’s Modulus and
can be related to it with the aid of Poisson’s ratio ν.

G = E

2(1 + ν) (2.13)

In the course of modeling, it is assumed that the shear stress is con-
stantly distributed over the cross-section, however this does not corre-
spond to reality. In order to correct this mistake, a dimensionless shear
correction factor κ is introduced which can be used to calculate an av-
erage shear stress distribution. The factor κ also depends on the shape
of the cross-section under consideration.

With the assumptions made, eq. (2.9) can be used to describe the
behavior of shear-soft beams. A beam with these properties is also
called Timoshenko beam, it is especially discussed in [26] and [27]. In
case that a shear-resistant beam is considered, the denominator κGA1
strives against infinity and the second term vanishes. The equation then
simplifies to

(EI)22
d4w

dx4
1

= q3(x1). (2.14)

The differential equation is allocated to classical bending theory, de-
veloped by L. Euler and J. I. Bernoulli and can be interpreted
as a special case of the Timoshenko beam. The theory according to
Timoshenko is particularly suitable for describing the deformation be-
havior of compact beams, since the shear influence on the deformation
increases here. However, for many technical applications it can be shown
that the application of the Euler-Bernoulli equation (2.14) provides
sufficiently accurate results. Since the main girder of a bridge crane can
usually be traced back to a sufficiently slender beam, the application of
eq. (2.14) is justified.

2.2.3 Elastic Stability

If a slender component is axially loaded in tension, it is possible to es-
tablish a clear relationship between the load and the deformation. It is
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assumed, that the occurring deformations are small so that an establish-
ment of the equilibrium conditions considering the undeformed system
is still permissible. Once the component is loaded in compression, this
is not always possible. It turns out that other states of equilibrium
exist into which the component can switch. These states can be inves-
tigated using a stability analysis of the system. Here, knowledge about
the load at which deflections occur in adjacent equilibrium positions is
of great importance. Against the background of technical applications,
it provides information about the condition at which the elastic stabil-
ity starts to fail. In such a case, the elastic structure usually responds
with an abrupt and large deflection, as it can be observed, for example,
when a beam buckles [2, p. 263]. In the course of the investigation of
equilibrium conditions in elastostatics, only time-invariant mechanical
systems are considered, which further means that the applied loads do
not depend on time [28, p. 271].

Buckling of Beams

Previously it was shown that different theories are available to describe
the deformations of an elastic system. In order to interpret the deflection
of a shear-resistant beam under axial load, the second order theory can
be used. It is assumed, that the beam is ideally straight and that

(EI)22

x1

x3

N1

Figure 2.10: Buckling of a (slender) beam

the normal force is applied directly in the centroid of the cross-section.
Then, the equilibrium conditions are established at the slightly deformed
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system, which in turn leads to a homogeneous differential equation of
fourth order, see eq. (2.15).

(EI)22
d4w

dx4
1

+N1
d2w

dx2
1

= 0 (2.15)

With the factor α2 = N1/(EI)22 and using an exponential ansatz, the
solution of the differential equation can be determined. This results in
the common expression

w = C1cos(αx1) + C2sin(αx1) + C3αx1 + C4. (2.16)

An adjustment to the prevailing boundary conditions results in a linear,
homogeneous system of equations. To obtain nontrivial solutions, the
determinant of the coefficient matrix must be zero. This is then the sub-
ject of a so-called eigenvalue problem. The solutions correspond to the
critical loads, also known as buckling loads [29, p. 296]. Due to the char-
acteristic of an eigenvalue problem, the direction of the deflection is not
determined. This circumstance is depicted in figure 2.10 by the upper
dashed line which indicates that both directions are possible. It can be
stated in this context that buckling is a purely mathematical problem,
since in reality there are no ideally straight components. Furthermore,
these are always additionally loaded by their self-weight. Nevertheless,
the real critical loads can be sufficiently estimated by application of the
mathematical basics presented.

Buckling of Plates

A plate describes a flat load-bearing component whose lateral dimen-
sions are much greater than its thickness (clearly visible in figure 2.11)
and is, by definition, loaded transversely to its plane. However, if forces
occur in the plane alone, a stability problem can occur in analogy to
buckling of beams where the elastic structure fails. This phenomenon
is called plate buckling and must be taken into account for example in
lightweight constructions. In contrast to a beam, on an infinitesimal
plate element the equilibria of forces and moments are set up in two
spatial directions. Assuming sufficiently small deformations, the buck-
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x3

x1

x2

t

w(x1, x2)

Figure 2.11: Exemplary buckling of a plate

ling equation can be identified by means of several simplifications, such
as the neglect of terms of higher order. Due to the two spatial direc-
tions under consideration, the equation is a partial differential equation
of the fourth order, which can only be solved analytically in certain
cases. The solutions mark the critical loads at which the plate begins
to buckle. Here as well, the boundary conditions in terms of supporting
of the plate must be taken into account accordingly [29, p. 310–314]. In
analogy to the beam, the plate stiffness K is introduced as a parame-
ter, which includes both the geometry (thickness of the plate t) and the
material properties. It is defined as

K = Et3

12(1− ν2) (2.17)

and shows that the stiffness of the plate increases significantly as its
thickness increases. The field of the stability of elastic structures is
intensively discussed in [26] and [30].
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2.2.4 Transfer of the Basics to Crane Construction

The fundamentals presented in the previous section are widely used,
since they can be applied to describe the real circumstances with suf-
ficient accuracy and thus also predict them. For this reason, they are
used in the design and dimensioning of components and systems, in-
cluding crane construction. In the following, it will be clarified to what
extent the components of a conventional bridge crane can be modeled
on the basis of engineering mechanics.

Due to the geometrical conditions and the orientation of the load action,
the main girders of a bridge crane are usually modeled as straight beams.
In section 2.1.1 two major cross-sections of the main girder applied
in crane construction were introduced. In terms of the influence of
shear stresses on the deflection it is assumed, that their impact on the
deflection of thin-walled hollow cross-sections are minor in comparison
to compact cross-sections. In [2, p. 155] it is indicated that the deflection
caused by shear stresses can be neglected for compact beams with a
length five times higher than their height. For crane constructions this
approach is applicable as well.

Here, the load is transmitted almost point-like via the wheels of the
traveling trolley to the crane bridge. In this context, a main feature
of conventional bridge cranes is the fact, that they are not loaded by a
normal force but only by the load of the goods to be transported and
their self-weight. All loads then act orthogonally to the beam axis.

The ends of the crane bridge (respectively of the beam) are in turn fixed
to the endcarriages, which move on the crane runway with a certain
amount of clearance. This clearance allows the beam to rotate about
this support point under load. For this reason, the supporting condition
of the beam can be traced back to a simple support which prevents its
vertical lowering. Furthermore, excessive bending of the structure does
not occur due to its stiffness, that means that in general the equilibrium
conditions are established on the undeformed system.

Cranes are generally steel-based structures. For this reason, the previ-
ously illustrated basics of strength theory are applied in order to deter-
mine the stress states caused by external loads. To describe the defor-
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mation behavior, the beam theory according to Euler-Bernoulli is
used [1, p. 145].

2.3 Application of Segmented Supporting
Structures in Crane Construction

A specific literature review revealed, that the use of segmented overhead
cranes is largely unexplored. So far, current research refers to continu-
ous beam systems that are not subject to prestressing and are therefore
structural passive. In this context, we define the attribute passive in
such a way that the structure is only designed to withstand nominal ex-
ternal loads that stress the material. Conversely, active (or reinforced)
means that additional external loads are applied to the structure, which
have a positive influence on the material stresses and deformations re-
sulting from the nominal loads by reducing them, see figure 2.12. Here,
the aim is to achieve the most efficient utilization of the material. The

a) structural passive beam

b) structural active beam

Figure 2.12: Structural passive and active beam

only comparable concept is the one according to S. Bolender et al.
that was developed as a modular system. It is motivated by the usage
of standardized individual parts and the associated reduction of produc-
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tion costs. The modular bridge crane is designed as a two-dimensional
truss consisting of an upper and a lower chord. The trolley travels on
the outer edges of the hollow sections of the lower chord. Additional
connecting elements at the junctions of the truss facilitate assembly and
guarantee a form fit connection at the joints. A total amount of eight
tension rods run in pairs in the hollow profiles of the upper and lower
chord and transmit the prestressing force to the individual segments via
stop pieces when tensioning. This closes the contact surfaces and the
structure is able to transmit bending moments. Only then it is load-
bearing. The tension rods, consisting of steel bars bolted together by
means of threaded rods, run inside the hollow profiles, they are shown
as red dashed lines in figure 2.13. When designing the modular bridge

Cross braceHollow profile

Connecting elements located at connection joints

Tension rods

Prestressing

Figure 2.13: Detailed view of the scalable, modular, segmented crane [3]

crane, the so-called limit state method was used for the verification of
the static strength. In this method, all occurring loads are multiplied
by an individual partial safety factor and a dynamic coefficient. The
verification of the elastic stability was also carried out according to the
common rules.

In order to validate the concept, FE analyses were carried out with
the Abaqus© code using a crane (total span width 6.10 m, load capac-
ity 3.20 t, total weight without endcarriages approx. 520.00 kg) as an
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example. The analysis showed, that both the deformations and the me-
chanical stresses did not exceed the defined limits and thus the concept
was classified as suitable [3].

2.3.1 Prestressed Girders

The analysis of the state of research in the previous section showed that,
with the exception of [3], no prestressed crane girders have been investi-
gated so far. Nevertheless, the technique of prestressing has been known
for a long time and is mainly used in bridge construction and further
applications related to civil engineering. The application of prestressed
concrete is mentioned here as an essential representative. In the follow-
ing, the current research results in the field of eccentrically prestressed
steel beams will be examined in more detail.

Already in the year 1950, G. Magnel demonstrated with a prestressed
beam made of mild steel that weight savings could be achieved by pre-
stressing the beam compared to a conventional beam. Although the ar-
gumentation is based on simplified assumptions (e.g. stability problems
are neglected), it could be shown that costs and weight of the considered
structure can be reduced. At that time, for example, an economic ben-
efit was already predicted by G. Magnel for the prestressing of steel
structures. In his publication, areas of civil engineering are listed as
application cases, such as airplane hangars as a practical example [31].
His research results are also motivation for the transfer of prestressing
techniques into crane construction.

Based on this, B. M. Ayyub et al. (1990) investigated the influence
of prestressing on the structural properties of a composite beam (beam
consisting of I-shaped steel beam and concrete slab). Special attention
was paid to the choice and arrangement of the tensile members. Table
2.1 gives an overview of the tensile members investigated in [4]. The
arrangements of the single configurations are depicted in figure 2.14. It
should be mentioned in this context, that in the configurations shown,
the tendons undergoe an increase in axial force, taking the self-weight
into account, since they are in contact with the beam and are subject
to additional elongation due to the deformation of the girder. The
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Table 2.1: Considered configurations in [4]

Characteristics Beam A Beam B Beam C

Straight tendon • •
Draped tendon •
Strand • •
Bar •

Tendon

Beam A and B

Beam C

Saddle

Concrete

Figure 2.14: Considered configurations of tensile members according to [4], beam
type specified in table 2.1

authors use the strain energy equation approach according to P. G.
Hoadley [32] in order to determine the normal force increase.

A final evaluation of the different concepts lead to the conclusion that
the use of straight tendons is recommended due to the fact that they
result in higher yield loads and lower construction cost. In addition,
the authors recommend the use of strands instead of bars due to their
higher strength-to-weight-ratio [4].
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A similar investigation was performed by B. Belletti and A. Gasperi
(2010). The subject of the research work here was an I-shaped steel
beam of medium span width (from 35.00 m up to 45.00 m) as a load-
bearing element in a roof construction. Steel cables eccentrically ar-
ranged to the centroid axis were also used as tensile members with
special focus on the arrangement of deviators [33].

The coupling between the tensile member and the steel beam was fur-
ther investigated in detail over several years by J. Gosaye et al. A
thin-walled cold-formed steel beam with an enclosed steel cable was
considered as a reference structure. Particularly noteworthy are the
analytical approaches to describe the mechanical behavior, which were
also validated numerically and experimentally. Here, a key feature was
also that the steel cable was connected to the beam via collars. In [34]
and [35], for example, the authors aptly stated, that due to the addi-
tional obstruction in lateral direction, the underlying buckling load was
increased. The reason for this is that the effective buckling length is
reduced and the beam therefore only buckles in its second eigenmode.
For the mathematical description of the shortening or compression, the
authors use the compatibility condition that a resultant elongation oc-
curs due to the bracing of the member. In that case, the elongation
is the same for both components. By considering the respective stiff-
ness, the deformation behavior and thus possible operating states can
be described. The possible states considered are listed below.

• Case 1: The beam fails first

• Case 2: The tensile member fails first

• Case 3: Beam and tensile member fail simultaneously

Accordingly, it has already been established that the failure of the over-
all structure depends on the strength properties of all components in-
volved, further both the steel beam and the tensile member.

N. Hadjipantelis et. al. (2018) showed against this background that
the prestressing of an open thin-walled profile made of cold-formed steel
with a steel cable can delay instability phenomena (such as local buck-
ling) and thus increase the overall load-bearing capacity. The prestress-
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ing induces initial stresses in the material, which counteract those of
the actual load and thus reduce them [36]. In their following paper [37]
the authors also formulate criteria regarding the serviceability of the
structure. These mainly cover the limitation of excessive deflections of
the beam and compliance with material strength values.

2.4 Structural Optimization of Box Section
Girders

The dimensioning regulations presented in the previous section 2.1.2
serve to evaluate a designed crane bridge in terms of the extent to which
it meets the defined criteria. Limit values are defined which must be
complied with in order to exclude the possibility of structural failure.
If we now assume that for given boundary conditions, such as a defined
span width and / or a defined load, there are several possibilities for
the construction of the crane bridge, then these possibilities can be
examined against the background of certain aspects. For instance, if
two different crane bridges are taken into account, which both meet
all defined constraints, they may differ in their resulting weight. In the
context of an optimization procedure, the best solution can be identified
from the set of all possible solutions that fulfill all constraints [38, p. 2].
This particular solution is then called the optimum, which means that
no better solution exists besides it. The quantity that is to be optimized
is mathematically formulated as the objective function f and subject to
defined constraints. These constraints may be formulated as functions
or as fixed values. In this context, a fundamental distinction is made
between linear and nonlinear optimization: while in linear optimization
all involved functions are linear, in nonlinear optimization some or even
all underlying functions are nonlinear. Another difference is the number
of existing objective functions. If the underlying problem is reduced to
only one objective function, it is called a single-criterion optimization
problem. If several objective functions occur, they are combined in
a vector and are subject to a multi-criteria optimization problem [39,
p. 99].

34



2.4 Structural Optimization of Box Section Girders

As M. Golder has already revealed in his work [1], the crane bridge
contributes the largest share to the total weight of the entire structure.
Against the background of material and manufacturing costs, a reduc-
tion in its weight has a positive effect on the overall costs. As a result,
efforts are being made in current research in order to reduce the weight
of the crane bridge.

2.4.1 Basics of Nonlinear Optimization

In the section on the fundamentals of engineering mechanics (see sec-
tion 2.2), it has already been shown that most of the relationships in
strength theory and beam theory are nonlinear in their nature. Opti-
mization tasks, which have to consider these properties in the context
of constraints, are therefore also to be classified as nonlinear. For this
reason, the essential basics of nonlinear optimization are summarized
in the following. For the short notation of a nonlinear optimization
problem, we introduce the acronym NLP (nonlinear program).

Definitions and Characteristics

In literature, there are different notations for optimization problems. In
the further course of the work, we introduce the following notation to
represent the form of a single-criterion NLP with constraints. According
to this notation, the function f : Rn → R is to be minimized regarding
a set of given constraints determined by the functions gγ (inequality
constraints) and hψ (equality constraints) with gγ , hψ : Rn → R.

min
x ∈ Rn

f(x)

s.t. gγ (x) ≤ 0, γ ∈ Γ,
hψ (x) = 0, ψ ∈ Ψ

(2.18)

Here, the corresponding index sets are defined as

Γ = {1, . . . , p} Ψ = {1, . . . , q}
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while p, q ∈ N ∪ {0} applies. The vector x summarizes all parameters
x1, . . . , xn on which the objective function f depends.

x = [x1, . . . , xn]T (2.19)

Moreover, it is obvious that due to the presence of the constraints gγ
and hψ, the set M of admissible points is limited. Rather, the set is
then described as follows [38, p. 112].

M = {x ∈ Rn | gγ(x) ≤ 0, γ ∈ Γ, hψ(x) = 0, ψ ∈ Ψ} (2.20)

Convexity The solvability of an optimization problem, the properties
of the solutions as well as the applicable methods are strongly related
to the properties of the underlying functions and sets. In this context,
the term of the so-called convexity is of particular importance. A set
C ⊆ Rn is called convex if

∀x,y ∈ C, λ ∈ (0, 1) : (1− λ)x + λy ∈ C (2.21)

applies. Figuratively speaking, this means that the connecting line be-
tween the two points x and y must always lie in the set C, see figure
2.15. If this is not the case, we speak of a concave set. On the other

Concave setConvex set

C C

x

y
x

y
y

x
x

y

Figure 2.15: Illustration of a convex and a concave set in R2 [5, p. 39]
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hand, a function f : C → R is defined as convex on the convex set
C ⊆ Rn if the following condition is true.

∀x,y ∈ C, λ ∈ (0, 1) : f((1− λ)x + λy) ≤ (1− λ)f(x) + λf(y)
(2.22)

Graphically interpreted this means that the function graph always runs
under all its secants. On this basis, optimization problems can also be
classified with respect to their convexity. A special property relates to
the relationship between local and global minima. Furthermore, for a
convex optimization problem (i.e. both the set C and the objective
function f are convex), it applies that every local minimum point is
simultaneously a global minimum point [5, p. 38–41].

Selection of Solution Procedures

In comparison to linear optimization problems the solution of NLP is
much more complex and usually requires numerical methods. A large
number of procedures exists for this purpose. It is essential to formulate
the NLP correctly, identify its type and then to determine an appropri-
ate strategy in order to solve it. In the following a selection of suitable
solution methods relevant for the work are presented.

Gradient method The gradient method is a numerical method that
can be applied in order to approximate the solution of NLP with a
continuous objective function and without constraints. The basic idea
behind the method is that starting from an initial point the direction
of the strongest slope is determined. The target is then to identify a
(local) minimum of the function.

min
x ∈ Rn

f(x) (2.23)

In order to determine the slope, the gradient d is calculated at an initial
point x0.

d0 = −∇f(x0) (2.24)
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By application of an appropriate increment t0, the following point to be
evaluated is then determined by

x1 = x0 + t0 d0. (2.25)

In this connection, the increment is to be selected in such a way that
the following applies

f(x1) < f(x0). (2.26)

A major requirement for the condition 2.26 is that the gradient exists,
i.e.

‖d0‖ > 0. (2.27)

This method will be executed until the gradient is less than a defined
value at which the operation is to be terminated. The challenge here is
to select an increment t0 that allows to find satisfying solutions. How-
ever, this can be difficult to solve under certain circumstances. For
this reason, in literature such as [39] it is recommended to reduce the
increment iteratively as well.

An alternative to the gradient method is the Nelder-Mead method.
The main difference is that the gradient of the objective function does
not have to be determined explicitly. Furthermore, the procedure is
also suitable for functions which are not continuously differentiable and
therefore does not place any requirements on the objective function [39,
p. 120–123].

In this context, it should be noted once again that with the help of
numerical methods, optimal solutions can only be approximated, i.e.
the statement that the solution found by the algorithm is also the best
one does not apply.

Karush-Kuhn-Tucker Conditions In unconstrained nonlinear opti-
mization, the absence of a descent direction is the necessary optimality
condition for a point x̄ to be considered as a local minimum [38, p. 127].
In the constrained case, on the other hand, additional requirements
are imposed on the set M described by the constraints. These re-
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quirements are referred to as constraint qualifications, an important
representative is the so-called Mangasarian-Fromowitz constraint
qualification (MFCQ). In this context, a point x̄ ∈ M satisfies the
MFCQ provided the following conditions apply [38, p. 156]:

• the vectors ∇hψ(x̄), ψ ∈ Ψ are linearly independent and

• a vector s∗ ∈ Rn exists with 〈∇gγ(x̄), s∗〉 < 0, γ ∈ Γ0(x̄) and
〈∇hψ(x̄), s∗〉 = 0, ψ ∈ Ψ.

Here, Γ0(x̄) describes the active index set (see [38, p. 113]) and is defined
by

Γ0(x̄) = {γ ∈ Γ | gγ(x̄) = 0}. (2.28)

On this basis, the basic theorem of Karush-Kuhn-Tucker can be for-
mulated. This states that if x̄ is a local minimum point of the underlying
optimization problem, the functions f , gγ , γ ∈ Γ0(x̄) and hψ, ψ ∈ Ψ
are continuously differentiable, and the MFCQ holds, then multipliers
λγ ≥ 0, γ ∈ Γ0(x̄) and µψ ∈ R, ψ ∈ Ψ exist with

∇f(x̄) +
∑

γ∈Γ0(x̄)

λγ∇gγ(x̄) +
∑
ψ∈Ψ

µψ∇hψ(x̄) = 0. (2.29)

These multipliers λγ are called KKT multipliers (in the literature also
called Lagrange multipliers) and can be chosen in such a way that
|{γ ∈ Γ0(x̄) |λγ > 0}| ≤ n − q applies. The corresponding point is
called KKT point and must comply with the following conditions.

∇f(x̄) +
∑

γ∈Γ0(x̄)

λγ∇gγ(x̄) +
∑
ψ∈Ψ

µψ∇hψ(x̄) = 0

gγ(x̄) ≤ 0, γ ∈ Γ
hψ(x̄) = 0, ψ ∈ Ψ

λγ ≥ 0, γ ∈ Γ0(x̄)

Often, however, the active index set is not known. To overcome this cir-
cumstance, artificial multipliers λγ , γ ∈ Γ\Γ0(x̄) are introduced, which
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disappear again by adding another constraint. Then, one obtains the
new system of equations [38, p. 160–161].

∇f(x̄) +
∑
γ∈Γ

λγ∇gγ(x̄) +
∑
ψ∈Ψ

µψ∇hψ(x̄) = 0

gγ(x̄) ≤ 0, γ ∈ Γ
hψ(x̄) = 0, ψ ∈ Ψ

λγ ≥ 0, γ ∈ Γ
λγ · gγ(x̄) = 0, γ ∈ Γ

Thus, the calculation of a KKT point offers the possibility to obtain
an analytical solution of the problem. However, the constraint qualifi-
cations described at the beginning must be fulfilled so that this point
is also a minimum point. A detailed discussion of this method can be
found in specific literature such as [5] or [40].

It remains to be said that the calculation of such a point is largely de-
termined by the complexity of the optimization problem. This includes
the number of equations, the number of variables and the general (an-
alytical) solvability of the equation system. Thus, the calculation of a
KKT point can often only be performed for simplified problems.

Branch and Bound The calculation of optimization problems can be
extremely computationally intensive, especially if the number of pa-
rameters to be considered increases and thus the number of possible
combinations. In such a case, the so-called Branch and Bound method
can be used to exclude combinations on the basis of case distinctions
and thus limit the solution space. An essential prerequisite for the ap-
plication of this technique is the understanding of the problem under
consideration.

The Branch and Bound method aims to divide the problem to be solved
into subproblems and hence identify irrelevant solutions at an early
stage. Usually this technique is used for integer linear programs. These
are especially discussed in [5].
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2.4.2 Current Optimization Approaches in Crane
Construction

After the basics of nonlinear optimization have been highlighted, the fol-
lowing section discusses the current optimization strategies in research
to reduce the weight of the main girder of overhead cranes. Special at-
tention is paid to the algorithms used, the considered structure and the
defined constraints.

To calculate the optimum cross-section of a crane bridge, G. Pavlovic
et al. (2013) provide an analytical optimization approach based on
the method of Lagrange multipliers [6]. Thereby, a box section is
considered under the assumption that the rail, the trolley travels on,
is placed above the web plate. The general setup is depicted in figure
2.16. Furthermore, a fixed mounted crane cab is taken into account,

b

b1

h
h2

h1

a

t1

t2

Point of force application

Figure 2.16: Considered box section in [6] and [7]

see figure 2.17. Its weight acts as an additional transverse force Fg. As
already mentioned before, the application of Lagrange multipliers is
only suitable for a certain amount of functions of moderate complexity.
This is achieved by considering only one constraint and two parameters
to be optimized. These are in particular the external width and the
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Figure 2.17: Considered crane configuration in [6] and [7]

external height of the box section, all other occurring parameters are
set as constants. While the objective function is established with regard
to the resulting cross-section, the underlying constraint function refers
to the compliance with the specified strength values, i.e. that the Mises
stress must not be exceeded. To determine the Mises stress, for the sake
of simplicity, only the normal stresses occurring in oblique bending are
considered. The aspect of limited deflection of the beam is not taken
into account.

Starting from the approach in [6], M. Savkovic et al. (2013) extend the
problem by the constraints of dynamic stiffness and maximum allowable
deflection of the crane bridge. The prevention of local plate buckling is
added as another constraint. Again, the Lagrange multiplier method
is used as a solution procedure and leads to an analytical expression.
With the help of the optimization process, material savings between
4.90 % and 29.40 % can be achieved in comparison to the considered
real reference cranes [7].
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2.4 Structural Optimization of Box Section Girders

In addition to the classical analytical methods, efforts have recently
been made to use alternative approaches in order to optimize box sec-
tion profiles in crane construction. These include, in particular, bio-
logically inspired algorithms that have clear parallels to nature. The
advantage is that a large number of complex constraints can be taken
into account, but the underlying numerical procedure can only approx-
imate a solution. For the sake of completeness, some results regarding
the application of these types of algorithms are presented hereafter.

The Particle Swarm Optimization (PSO) is based on the idea of imi-
tating the behavior of swarm animals (such as fish or birds) when gen-
erating solutions. It is assumed that in a D-dimensional search space
S ⊆ RD a swarm consists of N particles. The particles themselves pos-
sess no volume and no weight, but they are characterized by a velocity
and carry a potential solution with them. Meanwhile the particles col-
lect experiences regarding suitable flight directions and exchange these
with each other. On this basis, the speed and direction of the swarm
are dynamically adjusted [41].

In their work, C. Sun et al. (2011) investigate a modified approach for
the implementation of a PSO (MPSO) with feasibility-based rules for
optimizing the self-weight of a box section girder. The feasibility-based
rules cover in particular the following aspects:

• A feasible solution is preferred to an infeasible solution.

• In case of two feasible solutions the one producing better results
regarding the objective function is preferred.

• In case of two infeasible solutions the one violating less the con-
straints is preferred.

As constraint functions, the authors define the compliance with the limit
values regarding the Mises stress, the dynamic stiffness, the maximum
allowed deflections in x3- and x2-direction as well as the local stresses
due to wheel load imposition. In this context, further constraints regard-
ing geometric parameters are defined. Comparing the results with an
enumeration algorithm, the authors conclude that the MPSO performs
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Figure 2.18: Box section and relevant design parameters considered in [8]

better in terms of weight reduction coming along with simultaneous
reduction of the computing time [8].

Beside the PSO, other algorithms exist, which are inspired by the behav-
ior of swarm animals. These include, for instance, the Firefly algorithm
(FA), the Bat algorithm (BA) and the Cuckoo Search algorithm (CSA).
The algorithms mentioned work basically on the same principle and are
similar to the PSO. Here, too, the behavior of swarm animals is taken
as a reference in order to be able to approximately determine the global
minimum of the given optimization problem.

These algorithms are compared in [10] by M. Savkovic et al. and
evaluated with respect to their performance. In contrast to most of the
work in the field, which deals with the optimization of double girder
bridge cranes, the focus here is on a single girder bridge crane, with a
bottom chord designed trolley. The constraint functions are determined
by the criteria of strength, the elastic stability of plates, the lateral
stability of the entire girder as well as the constraint regarding the
dynamic stiffness. In conclusion to their work, the authors summarize
that the application of the above-mentioned algorithms is justified and
that, compared to solutions made in practice, material savings between
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16 % and 39 % can be achieved. In this context, the FA gives the best
results in terms of material savings.

Further work in this field is included in [42]. The basic idea here is
mainly the combination or modification of existing algorithms in order
to increase the degree of material savings.

2.5 Summary of the State of Research

The regulations currently used in crane construction define various limit
values and provide methods to ensure safe operation of the crane system
and thus exclude any danger to people and the environment. By def-
inition, however, the regulations mentioned are limited to structurally
passive components only. Conversely, this means that there are no
design regulations for a segmented and eccentrically prestressed crane
girder and that this girder configuration has not been investigated so
far. The only comparable concept to be mentioned is the work done by
S. Bolender et al., which focuses on a prestressed, segmented crane
bridge. The general structure is based on a truss construction, whereby
the individual components are plugged and braced together. Hereby,
the tension members run in the hollow profiles of the upper and lower
chord.

The prestressing technique is mainly used in the field of civil engineer-
ing, for example in roof constructions or bridge building. Mainly com-
posite structures are investigated, whereas pure prestressed steel beams
are rarely considered. In the literature, the clear advantages are the
weight savings that can be achieved by using prestressed beams, but
the additional forces which are applied increase the complexity of the
system and the occurrence of additional failure mechanisms, such as
local plate buckling or buckling of the entire beam. Due to a high
strength-to-weight ratio, steel cables are recommended as the traction
element, in contrast to steel bars. In this context, the literature has
already pointed out that both the beam and the tension member must
be considered when analyzing the performance. From this follows, that
the possible failure mechanisms based on the traction element must also
be taken into account.
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Since the main girder of a bridge crane is the heaviest component, a
number of different approaches are currently being taken into account
to minimize its resulting total weight. Due to the characteristics of the
underlying equations, this task falls into the domain of nonlinear opti-
mization. In literature, the Lagrange multiplier method is often used
as an analytical approach. However, their possibilities for application
are limited. If the complexity as well as the number of constraint func-
tions increases, the resulting system of equations can only be solved with
great effort or not at all. This results in the application of alternative
optimization strategies, with the help of which the complexity remains
controllable and at the same time minima can be approximated. It turns
out, that for the optimization problems in crane construction mainly bi-
ologically inspired algorithms are used, which imitate the behavior of
swarm animals. Furthermore, it can be shown that these methods can
be used to approximately solve non-linear optimization problems with
a high degree of complexity. In this context, it must be noted that
the constraint functions selected in the literature vary greatly and that
there is no uniform understanding of the boundary conditions to be ob-
served. The reason for this is, on the one hand, the reference structure
under consideration (for example, constraints in the design of a double
girder bridge crane differ from those of a single girder bridge crane) and,
on the other hand, the selection of the optimization strategy. As men-
tioned above, some optimization methods are linked to a certain degree
of complexity.

By studying the current state of research, both the structure and the
understanding of the behavior of an eccentrically prestressed and seg-
mented girder for use in crane construction can be identified as a re-
search gap and as a mostly undiscovered field. Up to now, there is
no comparison construction, that can be used as a starting point for
the research work. This also means that no optimization methods for
reducing the total weight have been investigated so far. Hence, this
thesis aims to contribute to the design and optimization of prestressed,
segmented girders in crane construction.
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3 Constructive Implementation

You can tell a really good idea by the
fact that its realization seemed

impossible from the start.
- A. Einstein

The following chapter focuses on the description of the new kind of
bridge crane girder. First of all, basic requirements are formulated,
which are used as guidelines for the design. Based on this, the com-
ponents involved and their particular functions are explained in more
detail, whereby these can be divided into two categories. One category
includes all components that are assigned to the main girder, the other
category includes all components that are related to the traction mech-
anism. Subsequently, the preliminary planned manufacturing processes
for the production of the components and the materials used are intro-
duced. The chapter ends with the presentation of the entire construction
and the assembly sequences.

3.1 Requirements on the Construction

In the context of a new design, it is essential to formulate requirements
in advance that must be met against the background of a target-oriented
approach. These serve at the same time as guidelines for the construc-
tion. As mentioned at the beginning, the system is examined with
regard to static loads, therefore constraints relating to the dynamic be-
havior are neglected. The requirements are further divided into fixed
requirements (FR) and desired requirements (DR).
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FR1: Compliance with specified strength values of the materials being
applied

As in conventional crane construction, it is essential that the strength
values of the materials are maintained. This means that the mechanical
stresses that occur must not exceed the defined yield stress. The aim
is therefore to ensure that the loads always remain in the linear-elastic
range in order to exclude permanent damage.

FR2: Ensuring the elastic stability

Due to the preload, high axial pressure forces are applied to the struc-
ture. Thus, it must be ensured that no stability failure with regard to
the elastic stability occurs, such as global buckling of the entire girder
or local buckling of thin plates.

FR3: Maintaining maximum permissible deformations

Limit values for maximum permissible deflections have been established
in crane construction, which are specified in the current regulations.
These values are also taken into account for the design of the segmented,
prestressed girder.

FR4: Continuous component bonding

In contrast to a conventional beam, the segmented beam is character-
ized by the fact that it consists of individual segments that are pressed
together at the connection joints by pretensioning the tensile member.
Here, it must be ensured that sufficient compressive stress is always
present in the profiles and that no gaping occurs. This would disrupt
the component bonding and safe operation cannot be guaranteed any
longer.
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FR5: Possibility of dismantling all components

The segmentation concept offers the advantage that temporarily used
cranes can be again dismantled into their individual parts after the end
of their operation. The aim is therefore to design the structure in such
a way that dismantling is possible.

DR1: Transportability of all components on EUR-pallets

Following on from the earlier requirement, the construction method can
also be based on the dimensions of common transportation means, such
as EUR-pallets. For this reason, the components must not exceed the
dimensions of a standardized EUR-pallet.

DR2: Simple construction and only a small number of components
installed

The last requirement refers to a comparatively simple structure. This
includes, among other things, easy manufacturability of the components
as well as a small total number of parts.

At this point it should be mentioned that the defined requirements
do not claim to be complete. Rather, they represent the fundamental
aspects that the structure must fulfill against the background of static
loads and a safe operation.

3.2 Functional Design

In comparison to a conventional crane girder, the segmented girder can
only transmit shear forces and moments in case that the single segments
are sufficiently pressed together at their connection joints. Four differ-
ent types of components are used in this context, with each component
performing a different task. Figure 3.1 shows the conceptual design of
the segmented beam. The basic approach is to divide the crane bridge
into discrete segments of a certain length, the so-called main segments.
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Figure 3.1: Conceptual design of the segmented, prestressed crane bridge

In turn, connecting elements are used at the connection joints, which
mainly facilitate the assembly and ensure a form-fit component bonding.
Furthermore, preload segments are added at the ends of the girder. They
possess a local special design due to the application of the prestressing
force. The preload segments are further abutted by the stop pieces.
These are in direct contact with the traction mechanism and transmit
the prestressing force as a compressive force to the segments. The trac-
tion mechanism runs in the cavities of the main segments (respectively
preload segments) and is arranged eccentrically to the centroid axis of
the main girder. The pre-deformation can be achieved by the induced
initial bending moment due to the eccentrically acting prestressing force.

In this context, it is useful to parameterize the individual components
of the crane girder, whereby a certain number of primary parameters
are defined. These mainly comprise the geometrical dimensions of the
main segment. Here, all geometrical parameters possess the unit [mm],
unless otherwise specified.
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3.2.1 Segmentation Strategy

The crane bridge is geometrically decisively defined by its span width.
Due to the symmetry of the structure, we denote half the span width as
l0 and define it as the span width1 in the following course of the work. If
we first imagine a conventional crane bridge, whose span width can be
manufactured as desired, we are now faced with the challenge of defining
a general procedure for a segmented crane bridge, according to which
the individual components can be manufactured and assembled so that
their total length in the prestressed state matches the span width as
well.

The segmentation strategy is responsible for accomplishing this task.
Different approaches to segmentation exist, so it is reasonable to de-
fine a number of boundary conditions or key performance indicators in
advance to guide the strategy development.

Small Number of Individual Parts

Against the background of manufacturing and arising costs, it is prefer-
able to reduce the overall design to a small number of individual parts.
At the same time, the number of variants is reduced.

Small Number of Connection Joints

According to figure 3.1 the construction resembles the principle of a
braced sleeve. If contact surfaces are pressed together in a bolted con-
nection, the microscopic roughness of the materials will flatten out. This
results in a loss of prestressing force, which must be taken into account
when calculating the required prestressing force. As the number of
joints decreases, so does the influence of the loss of pretensioning force.
Therefore, the lowest possible number of joints should be preferred.

1 The real span width is then represented by 2l0.
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These two aspects form the core of the proposed segmentation strategies,
which are presented below. The basic objective is to set the length of
the main segments to a defined value and only adjust the length of
the adjacent preload segments. In principle, this means that only two
segment types occur, which already limits the number of variants. A
further advantage is that the dimensions of the associated steel bars
and threaded rods, which together form the traction mechanism, are
also limited to two variants each.

We define ls as the length of a main segment and l∗s as the length of the
according preload segments which may vary with respect to the under-
lying segmentation type. In this connection, lr represents the length of
a common steel rod and equals the length of the main segment. Addi-
tionally, l∗r denotes the lengths of the additional rods which penetrate
the through-holes of the stop pieces.

Segmentation Type 1: Integer and odd Number of Main Segments

In case that the length of the girder can be represented as the sum of
an odd multiple of the length of the main segments ls and the defined
maximum length of the preload segments, segmentation type 1 is given.
It can be seen as a standard case that does not require any further

lr

2l0

lsmax{l∗s }

Figure 3.2: Segmentation type 1

adjustments, see figure 3.2. Furthermore, no additional steel bars and
threaded rods are necessary.
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Segmentation Type 2: Integer and Even Number of Main Segments

Segmentation type 2 is present as soon as the entire length can be
expressed as the sum of an integer even multiple of the length of the main
segments and the defined maximum length of the preload segments. In

lr

2l0

lsmax{l∗s }

Figure 3.3: Segmentation type 2

figure 3.3 it can be seen that here, compared to segmentation type 1, the
crucial connection joint lies exactly in the symmetry axis of the girder.
With regard to the requirement that the beam must not gape, this type
of segmentation imposes increased restrictions on the calculation of the
necessary prestressing force.

Segmentation Type 3: Non-integer and Even Multiple of Main Segment
Length

If the entire length of the crane bridge cannot be represented in terms
of segmentation type 1 or 2, a further classification must be made.
Segmentation type 3 occurs as soon as the entire length can be expressed
as the sum of an odd multiple of ls with a remainder m̄ ∈ (0, 1) and the
defined maximum length of the preload segment, see figure 3.4. Here,
the lengths of the preload segments are to be adjusted. For this, at
first the remainder is divided into two parts and added to the preload
segments. Since they now exceed their defined maximum lengths, each
of them are to be shortened by the half length of a main segment ls/2.
This again gives a new main segment and in total an even number of
main segments. Due to the adjusted lengths of the preload segments,
additional steel bars are necessary as well.
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Figure 3.4: Segmentation type 3

Segmentation Type 4: Non-integer and odd Multiple of Main Segment
Length

Segmentation type 4 is similar to type 3, the only difference is that the
entire length can be expressed at first as an even multiple of the main
segment length with a remainder m̄ and the defined maximum lengths
of the preload segments. Again, the lengths of the preload segments
are to be adjusted while the same procedure is applied. In contrast
to segmentation type 3, we obtain in total an odd multiple of main
segments.
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Figure 3.5: Segmentation type 4

Finally, the calculation steps are summarized for the segmentation
strategies. For this purpose, we first introduce the dimensionless quan-
tity λ, which is used as a multiple of the length of a main segment to
determine the length of the stop piece lst.

lst = λls, λ ∈ (0, 1) (3.1)

The number of main segments ns is then to be determined as follows.

ns = 2
(
λ+ l0

ls
− max{l∗s }

ls

)
(3.2)
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Table 3.1: Corresponding quantities with respect to the segmentation type

Segmentation Type ns [−], k ∈ N\{0} n̂s [−] l∗s [mm]

Type 1 2k − 1 ns max{l∗s }
Type 2 2k ns max{l∗s }
Type 3 2k + m̄ bnsc+ 1 l0 − n̂sls/2 + λls

Type 4 2k − 1 + m̄ bnsc+ 1 l0 − n̂sls/2 + λls

By considering the according case distinctions, the characteristics of
each segmentation strategy can be defined, see table 3.1. Here, the
quantity n̂s describes the adjusted number of main segments.

3.2.2 Initial Estimation of the Underlying Global Load
Profile

Compared to conventional crane bridges, the segmented crane bridge
has a different load profile due to the additional axial compressive stress.
It makes sense to subject the girder to an initial theoretical analysis in
advance in order to predict heavily loaded areas. For this purpose, we
consider the global normal stress σ11 in x1-direction, since this will rep-
resent the essential part of the total load. Figure 3.6 shows qualitatively
the expected load profile of the beam being loaded at x1 = l0. It can
be seen that the normal stress is composed of a total of four compo-
nents. First, the profile is subjected to purely axial compression (a),
which we assume to be constantly distributed over the cross-sectional
area. The eccentrically arranged traction mechanism generates an ad-
ditional initial bending moment (b). This leads to a negative deflection,
i.e. a deformation of the beam in negative x3-direction. As a result
of this bending, the upper chord is then subjected to tensile stress and
the compressive stress prevailing there is first reduced. On the other
hand, the compressive stress in the bottom chord increases due to su-
perposition of the additional part of the bending. If the beam is now
subjected to the design load (c) in the next step, positive deflection oc-
curs, i.e. the beam then tends to deflect in the positive x3-direction.
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Figure 3.6: Expected load profile regarding a load application at x1 = l0

This causes the compressive stress in the upper chord to increase again,
while the compressive stress prevailing in the bottom chord is reduced.
The design load is additionally superimposed by the load due to the
self-weight (d). Although the magnitude of this load is smaller, it must
be taken into account, especially for beams with large span widths. If
all the components shown are superimposed, a resulting load profile (e)
is obtained. From this we can already derive the following findings in
advance:

• The compressive stresses in the bottom chord must not be com-
pletely relieved, otherwise the beam would start to gape since the
girder is not capable of absorbing tensile stresses due to the loose
component bond.
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• Considering that there is always a compressive stress and the
girder does not gape, the upper chord tends to be more heav-
ily loaded in the case of central application (i.e. in the middle of
the girder at x1 = l0) of the design load compared to the lower
chord. This is an important finding, especially in the context of
the strength values to be maintained and the local elastic stability.

• If the design load acts close to one of the supports, the profile is
subjected to greater shear stresses due to the increase in the shear
force.

x1

x3

x3

x1

Figure 3.7: Estimated highly loaded areas during operation

On this basis, we can now derive an initial estimation of the global heav-
ily stressed areas. These vary depending on the position of the trolley
and must therefore be considered collectively. The areas identified are
highlighted in red in figure 3.7.
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Figure 3.8: Girder components

3.3 Design of the Prestressed and Segmented
Bridge Crane Girder

This section deals with the description of the structural design of the
individual components, which together form the crane girder. These
can be roughly divided into components allocated to the girder and
components allocated to the traction mechanism. In this connection,
special attention is paid to their geometries and respective functions.

3.3.1 Girder Components

The crane girder itself consists of in total four separate components, see
figure 3.8. As soon as they are connected with each other, they form
the main girder of the bridge crane.

Main Segment

The main segment possessing a defined length ls is designed as a box
section with two web plates of width t arranged parallel to each other.
The upper and lower chords are welded to the web plates. The pa-
rameter c takes into account the resulting horizontal length of the weld
seam. Here, the length of the main segment equals, with regard to
the desired requirement DR1, the width of a standard EUR-pallet, i.e.
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ls = 800.00 mm. In addition, there are vertically arranged recesses at
the ends, which are intended as positioning aids for the connecting el-
ement (see figure 3.15) to be inserted. Figure 3.9 illustrates the major
dimensions to be taken into account. The outer geometry is completely
axisymmetrically designed and has a total external height of 2h and a
total external width of 2b. With the introduction of the dimensionless
ratios

η = h0

h
, η ∈ (0, 1) β = b0

b
, β ∈ (0, 1) (3.3)

the inner height h0 and the inner width b0 can be expressed by a multi-
ple of the external height, respectively the external width. A stabilizing
bulkhead plate is welded in the middle of the main segment. This pos-
sesses a recess through which the traction mechanism can travel. The
traction mechanism is in turn arranged with the eccentricity ε to the
centroid axis. Parameters s2 and s3 are placeholders to reserve a certain
amount of space for the traction mechanism. Recesses are also provided
at the outer edges of the bulkhead plate in order to avoid overlapping
of the adjacent weld seams with regard to a construction suitable for
welding [43, p. 151]. In addition, the main segment possesses an upper
as well as a bottom support which are planned for the establishment
of a connection between the main segment and the connecting element.
It should be emphasized in this connection that, strictly speaking, the
coordinate system drawn in, does not coincide with the centroid, since
it is shifted in the x3-direction due to the bulkhead plate being asym-
metrical to the x2-axis. However, this influence is negligible compared
to the remaining beam due to the small total volume of the bulkhead
plate. Therefore, it is assumed with respect to the further course that
the centroid is located in the origin of the drawn coordinate system.

The overall construction is designed for a trolley with a bottom chord
running gear. The wheels of the trolley travel on the plate of the bottom
chord, whereby an idealized concentrated force R3 is introduced via this
plate. Here, it is assumed that a completely symmetrically distributed
load is present. This means that the load attached to the trolley is
distributed evenly over its four wheels. It is further assumed that the
wheels of the trolley have a total width of 2bw and that the load is
introduced exactly in the middle of the wheel.
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Figure 3.9: Dimensions of the main segment (front view)

It can already be derived from the figures shown that the main segment
is described by a thin-walled, slender geometry. This circumstance is
especially noticeable in the case of larger dimensions. Since a contin-

61



3 Constructive Implementation

t/2

ls

b

A-A Detail A-A

x3

x1

Figure 3.10: Dimensions of the main segment (side view)

uous component bond is required, they must be pressed together by a
compressive force. Here, the web plates in particular, as well as the
top and bottom chord plates, are exposed to the risk of local failure of
elastic stability. For local reinforcement of the plates, different types of
stiffening ribs will be qualitatively investigated in the following. These
are shown in figure 3.11 and are welded to the plates. The areas high-
lighted in blue indicate the attached stiffening ribs. In order to be able
to make a qualitative comparison, the total additional area is kept con-
stant, i.e. each type has the same amount of additional area available.
This allows a statement to be made about which surface distribution
provides the greatest stiffening effect in principle. Of great interest here
is how much the value of the first eigenvalue can be increased in contrast
to that of the untreated profile which is denoted by N∗c in the following.
With the help of the Abaqus© code, stability analyses are carried out
for all profile types. Here, we assume steel as the underlying material
(E = 2.10 · 105 N/mm2, ν = 0.30). The inner edges of the segments are
simply and rotatably supported, which suitably represents the situation
in later use, see figure 3.12. The segment is then subjected to a sur-
face load which is assumed to be distributed uniformly over the entire
cross-section. The result of the stability analysis of the reference seg-
ment is shown in figure 3.13. It can be clearly seen that the lateral web
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Figure 3.11: Different shape designs of stiffening ribs in order to reinforce the plates
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Simply supported edges

Load application

Figure 3.12: Supporting conditions during stability analyses

Buckling of
web plate

Figure 3.13: Different approaches in order to reinforce critical plates

plates tend to buckle and are therefore also the vulnerable component
zones. Accordingly, it is advisable to reinforce the area in the form of
stiffening ribs. Stability analyses are also carried out for the individual
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Table 3.2: Resulting reinforcement factors with regard to the first buckling mode

Shape Type First eigenvalue Nc [kN] Nc/N
∗
c − 1

Reference shape 1.2786 · 103 0.0000
Shape A 2.6412 · 103 1.0657
Shape B 3.4057 · 103 1.6635
Shape C 2.9035 · 103 1.2708
Shape D 3.4165 · 103 1.6720

types; an evaluation is given in table 3.2. While type A provides the
smallest reinforcement effect, the largest increase in the first eigenvalue
can be achieved with the aid of type D. This is due in particular to the
fact that, among other things, the original buckling field is reduced by
the parallel webs. Furthermore, the greater extensions of the ribs to
the inside of the profile have a positive effect compared to type C, since
this increases the stiffness of the plate in x2-direction and thus hinders
the plate in its deflection in the preferred direction. This is also the
main reason for the strengthening effect of type B. Based on the results,

Figure 3.14: Final design of the main segment

65



3 Constructive Implementation

type D is selected to reinforce the side web plates and the upper chord
plate. For the bottom chord plate, the shape of type B is planned, as
this provides a greater effect in comparison to type D. Due to the space
required by the traction mechanism, the design of the shape of the ribs
is much more limited in this area. Figure 3.14 shows the final design
of the main segment. Here, the parameters depicted in figure 3.9 are
valid as well. However, the dimensions of the stiffening ribs are to be
designed individually.

Connecting Element

Connecting elements are used at the joints to ensure a form-fit connect-
ing between the segments and fulfill basically the function of a removable
bulkhead plate. Here, the alignment pins also serve to transmit shear
forces. One connecting element is plate-shaped and possesses a geomet-
rically identical recess as the one in the main segment, since here too,
it must be guaranteed that the tensile member can pass the connecting
element without being disturbed. The external dimensions correspond
exactly to the internal dimensions of the main segment, thus enabling
the connecting elements to be inserted, see figure 3.15. On the sides,
there are elongated plates in horizontal direction, on which again spig-
ots are attached. These engage with the according negatives in the web
plates of the main segments. The outer edges of a connecting element
are bevelled to provide again space for the adjacent welding seams of
the main segment. The assembly procedure is shown in figure 3.16.

Preload Segment

The preload segment is similar in shape to the main segment and also
possesses a bulkhead plate2 for additional stabilization. The internal
dimensions correspond to those of the main segment, see figure 3.17.
Basically, the preload segment consists of an upper and a lower chord,
which are connected by two vertically arranged web plates. It has a

2 The exact location of the bulkhead plate depends on the total length of the preload
segment and must be positioned individually.
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x3

x2

x3
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b/2 h0/2 h0

Figure 3.15: Major dimensions of the connecting element

total length of l∗s and can be divided into two sections by design. The
force application area requires a special local design due to the high
pretensioning forces. In this area, local stress increases take place. For
this reason, it is reasonable to extend the area in this region on which
the forces can be distributed. Saint-Venant’s principle states that an
increase in stress appears in the area where the load is applied, however,
these rapidly diminish with increasing distance from the point of force
application [44, p. 92]. This effect is preliminary taken into account by
the reinforcing plates shown in figure 3.18, which possess a length h
measured from the contact surface. In total, the resulting width for a
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Connecting element

Main segments

Figure 3.16: Insertion of the connecting element

web is increased to 3t. In the lower area of the reinforcement plates the
contact surface is bevelled by an estimated angle of 20◦ and is similar to
a relief notch in its function. Through preliminary FE analyses, it was
shown that under this angle, the local stresses can be largely reduced.
The aim here is to make the flow of force smoother (see figure 3.18,
detail A-A). In the upper area, the web plates are beveled by an angle of
45◦ to additionally stiffen the structure in this zone and approximately
align with the resulting pressure cone. In the force application area,
the connection to the endcarriages results in a high force development
due to the shear force. For this reason, an auxiliary web plate can be
optionally welded on at this point, offset by 90◦ to the x1-axis, in order
to be able to absorb the transverse forces accordingly. An additional
plate of the same thickness is welded to the bottom chord. According
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Figure 3.17: Dimensions of the preload segment (front view)

to DIN EN 1993-6 this is recommended to reduce the influence of the
local load introduction by the trolley wheels [9, p. 24]. The free end is
designed in the same way as the main segment. It also provides a recess
in the web plates for the insertion of a connecting element.

69



3 Constructive Implementation
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x3
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20◦
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Figure 3.18: Dimensions of the preload segment (side view)

Stop Piece

Compared to the other components, the stop piece is both compact and
robust, as the direct application of force occurs here due to the preload.
The total length is λls and corresponds to a multiple of the defined seg-
ment length, see figure 3.19. The flat contact surface is identical to that
of the preload segment and forms the contact surface for transmitting
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x3

x1

x3

x2

h3

ε h0

λls

t

d∗

2b0 + 3t
5t

Positioning aid

Figure 3.19: Major dimension of the stop piece

the compressive forces. As with the preload segment, the lower area is
bevelled to make the force flow at the transition zone smoother. This
results in a tapered shape of the stop piece, which serves to increase its
rigidity. A through-hole is provided eccentrically so that the threaded
rod of the traction mechanism can pass through the stop piece. The di-
ameter d∗ of the hole depends on the nominal diameter of the threaded
rod.

3.3.2 Traction Mechanism

The traction mechanism consists of a combination of steel bars and
threaded rods that are connected to each other to form a long bolt
and correspond to the concept presented in [3]. In addition, these are
further divided into additional and common threaded rods as well as
additional and common steel bars, see figure 3.20. The threaded rods
have a metric ISO thread and the material selected for the round steels
is 42CrMoS4 (material number 1.7227), as this has a comparatively
high yield strength of about 720 N/mm2 [45, p. 149]. According to VDI
2230, a minimum length of the engaged thread of approximately 0.7 dN
(dN as the nominal diameter) is recommended considering 42CrMoS4,
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Traction mechanism components

Common
steel bar

Common
threaded rod

Additional
steel bar

Additional
threaded rod

Figure 3.20: Components of the traction mechanism

however, 1.1 dN is selected for the connection in order to facilitate the
mounting [11, p. 101]. Basically there are common round steels with

Additonal
steel bar

Common
steel bar

Additional
threaded rod

Common
threaded

rod

Figure 3.21: Section view of the preload zone

a length lr and the matching common threaded rods with a length of
2.2 dN. This combination is used in the inner region of the structure.
At the outer areas additional steel bars and the according additional
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threaded rods are used, each with an individual length l∗r . The threaded
rods penetrate the stop pieces at the ends through their through-holes
and are fastened with a shim and nut, see figure 3.21.

By tightening the nuts, the desired prestressing force is applied, which
acts as a tensile force in the traction mechanism and in turn as a com-
pressive force in the segments through contact with the stop piece. Here,
figure 3.22 shows a qualitative course of the force flow. It can be seen
how the tensile force is transmitted to the preload segment via the nut
and the shim and then acts here as a compressive force. While the
upper part provides a comparatively large area to which the force can
be distributed, stress concentrations are to be expected in the lower
area. This is due on the one hand to the smaller area and on the other
hand to the transition from the web plate to the welded-on lower chord
plate. This area is additionally highlighted in the figure 3.22. Finally,

Area of stress concentration

Figure 3.22: Section view of the preload zone, expected stress concentrations
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3 Constructive Implementation

the traction mechanisms relevant for the work are summarized in table
A.1.

3.3.3 Entire Construction

In the previous section, all the components involved in the construction
of the segmented crane bridge were presented. These can be divided into
two groups: the girder components and the traction mechanism com-
ponents. For practical application, it is planned that first the traction
mechanism is assembled and then the girder components are threaded
onto it. Finally, the prestressing force is applied and the girder is ready
for use. The entire construction is shown as an example in figure 3.23.

. . .

Figure 3.23: Assembly sequence

It can be seen how the initially individual, loose components are assem-
bled into a plug-in construction and then braced together. Disassembly
after operation time then follows in reverse order.
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4 Dimensioning and Development of
Constraint Functions

Mathematics is the only perfect way
to fool yourself.
- A. Einstein

A general design proposal for the segmented and prestressed crane girder
is now available based on the work carried out in the previous chapter 3.
The involved components are given and their key dimensions are suit-
ably parameterized. It is now of particular interest to work out, which
boundary conditions the design must fulfill or which limit values must
be observed in order to consider a real application. Based on already
known design specifications in crane construction, the system has to
be examined in this context to determine which additional constraints
occur due to the novel type of design in contrast to conventional bridge
cranes. The basis for this is modeling, the focus of which is the ab-
straction of the predicted behavior and the underlying properties of the
system in the form of a mechanical substitute model. The correspond-
ing implementation in a mathematical model is carried out on the basis
of the fundamentals presented in chapter 2.

4.1 Initial Considerations and Basic Models

It is well known that physical models do not represent the true facts
of the situation, they rather describe the observations or experiences
made with sufficient accuracy. If they are of satisfying quality, they
can be used to make statements about the physical behavior of the
system under consideration. With regard to the segmented girder, a
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4 Dimensioning and Development of Constraint Functions

mechanical substitute model is worked out in the following, which forms
the foundation for the later dimensioning task.

4.1.1 Assumptions

Within the course of the modeling, it is basically assumed that the en-
tire segmented crane bridge can be represented as a continuous beam of
a total span width denoted by 2l0, in case it is always under compres-
sive stress in the upper and lower chord. This ensures the component
bonding and prevents any gaping according to requirement FR4. In
addition, the beam is simply supported.

Furthermore, it possesses cross-sectional quantities determined by its ge-
ometry. Local changes in geometry are neglected, including the specific
design of the preload segment, the connecting elements as well as the
welded-in bulkhead plates, however they possess a positive1 influence
on the stiffness. The tensile member is also modeled as a continuous
beam with a circular cross-sectional area, a disturbance of the stresses
at the connection joint is neglected as well.

Moreover, a homogeneously distributed material with isotropic and lin-
ear elastic behavior is assumed. The materials listed in DIN EN 13001-
3-1, which are used in crane construction, serve as guidelines [15, p. 13].

In contrast to the loads considered in literature, the modeling assumes
the self-weight of the crane bridge as a constantly distributed line load
µ. With the area of the cross-section A1 and a constant density ρ, we
then obtain

µ = ρA1g (4.1)

for the continuously distributed self-weight. Regarding to the achievable
pre-deformations caused by the eccentrically applied prestressing force,
the self-weight plays a significant role since its influence increases with
increasing dimensions of the crane bridge. With the aid of the pre-

1 In terms of providing additional stiffness.

76
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deformation the initially straight beam can be transformed to a slightly
curved beam, according to section 2.2.2.

In addition to its self-weight, the crane bridge is subjected to external
loads which are transmitted to the lower chord at points via the wheels
(total wheel base assumed to be 2lw) of the trolley. If there is no further
information available, it is assumed, that the self-weight mt of the trav-
eling trolley is a multiple αw of the nominal load m0, i.e. mw = αwm0
with αw ∈ (0, 1). This leads to the resulting force in x3-direction

F3 = (m0 +mw)g = (1 + αw)m0g (4.2)

whereby it is additionally postulated that the total load is distributed
evenly over all four wheels. Then, it follows for a force transmitted by
one wheel

R3 = F3

4 . (4.3)

The even distribution also leads to the circumstance that no torsional
moments occur about the x1-axis. In case of a (rigid) bumper impact
it is assumed, that the resulting force acting due to the acceleration in
x2-direction is determined by F2 = λ2 F3 with λ2 ∈ (0, 1). This force
is also assumed to be distributed equally over all four wheels of the
traveling trolley.

R2 = F2

4 (4.4)

It should be mentioned that the estimation of the forces acting on the
girder during a bumper impact strongly depend on the material of the
bumpers and the velocity of the traveling bridge crane. For this rea-
son, this general assumption is made to enable a consideration of the
additional load.

On this basis, the crane bridge can be modeled within the framework
of beam theory. As a modeling strategy the linear beam theory of first
order is applied in analogy to literature [37], since small deflections of
the main girder in comparison to its total span width are expected.
However, the beam theory of second order is applied to estimate the
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4 Dimensioning and Development of Constraint Functions

deflection of the tensile member running inside. Due to its low flexural
stiffness the impact of the tension forces increases.

4.1.2 Mechanical Model

With the aid of the elaborated assumptions it is now possible to graphi-
cally represent the corresponding mechanical substitute model, which is
shown in figure 4.1. Here, the schematically depicted traveling trolley is

2l0

(EI)22

x3

x1

µ

N0

2R3

N0

ε

a

ε

2R3

2lw

F3

N0 N0

µt

x1

x3

(EI)t

Figure 4.1: Basic mechanical model

separated from the beam by means of a theoretical cut to visualize the
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4.2 Geometric Quantities

acting forces. Since the situation can be referred to a two-dimensional
problem due to the symmetry, the forces induced via the wheels result
in 2R3. In order to allow the possibility of different trolley positions
represented by the model, it is positioned at an arbitrary position a
along the x1-axis. In this connection, the first wheel of the traveling
trolley is the reference point with respect to the underlying coordinate
system.

The beam has a total length of 2l0 according to the span width and a
flexural stiffness (EI)22 with respect to the x2-axis, respectively (EI)33
in terms of bending about the x3-axis. In addition to the loads in
x3-direction by the nominal load, the beam is also loaded along the x1-
axis by the prestressing force N0. The prestressing force is caused by
tightening of the tensile member, which is then loaded in x1-direction
on tension. The axial force thus acts as an internal force in the entire
system. The tensile member is considered to be a beam as well with
a flexural stiffness2 (EI)t, which is loaded in x3-direction purely by its
distributed self-weight µt. In this context, it is also required that the
tensile member is only connected to the beam at the supporting points
in the through-holes of the stop pieces. Since the contact area of the
shim is negligible compared to the span width, we additionally assume
that the transmittable moment at this point is also very small and has
no significant relevance for the deformations that occur. If we now
neglect this moment, the tensile member is rotatable mounted inside
the stop pieces and thus simply supported as well. This leads to the
circumstance that both components are not coupled with each other in
terms of a bending moment and that they can be considered separately
against the background of their deflections.

4.2 Geometric Quantities

Within the mechanical substitute system, geometrical quantities appear
which characterize the individual components regarding to their specific
shape. These are of particular importance with respect to the determi-

2 Independent from the axes due to its circular cross-section.
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nation of the deformation behavior and the mechanical stresses. In this
context, the dimensions of the weld seams are neglected.

Cross-sectional Area of the Main Girder

As shown in figure 3.9, the cross-section of the main girder can be in-
terpreted as a surface composed of individual discrete geometries. Ac-
cordingly, the following relationship results for the entire area.

A1 = 4(b− (b− t)η)h
A1 = θ1h, θ1 = f(η, b) (4.5)

Here, the factor θ1 is introduced in order to separate the external height
h from the other parameters and will be used in the further course of
the work.

Second Moments of Area

In case of bending about the x2- or x3-axis, the respective second mo-
ments of area must be known to determine both the deflections occurring
and the bending stresses associated with them. Due to the axial sym-
metry, the deviation moments disappear. In terms of bending about
the x2-axis, the corresponding second moment of area of the surface is
to be calculated according to eq. (4.6).

I22 = 4
3(b− (b− t)η3)h3

I22 = θ22h
3, θ22 = f(η, b) (4.6)

For bending about the x3-axis the moment of inertia follows to

I33 =
(

8
6(1− η)b3 + 4tηβ2b2 + 1

3ηt
3
)
h

I33 = θ33h, θ33 = f(η, b, β). (4.7)
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As with the determination of the cross-sectional area A1, we interpret
the cross-section in such a way that it is composed of individual areas.
Here, the auxiliary factors θ22 and θ33 are introduced as well to separate
the external height h.

First Moments of Area

During operation the girder is loaded by a force perpendicular to the
centroid axis. Although the normal stresses dominate in terms of mag-
nitude, the associated shear stresses due to bending must also be taken
into account for the sake of completeness. When calculating the cor-
responding shear stresses, the so-called first moments of area appear
in addition to the second moments of inertia. For bending about the
x2-axis, the maximum first moment of area is to be calculated as follows.

S2(x3) =
{
bh2 + (t− b)(ηh)2 − tx2

3 0 ≤ x3 ≤ ηh
b(h2 − x2

3) ηh ≤ x3 ≤ h
(4.8)

Similarly, the first moment of area in case of bending about the x3-axis
is given by the equations below.

S3(x2) =


(h− ηh)(b2 − x2

2) + 2ηhβbt 0 ≤ x2 ≤ βb− t/2

(h− ηh)b2 +
(
βb+ t

2

)
ηh− hx2

2 βb− t/2 ≤ x2 ≤ βb+ t/2

(h− ηh)(b2 − x2
2) βb+ t/2 ≤ x2 ≤ b

(4.9)

In contrast to the second moments of area, these depend on the indi-
vidual position within the x2x3-plane and are defined in sections due to
the abrupt changes in geometry.

4.3 Occurring Loads

The investigation of the occurring loads is of great importance for the
dimensioning. They decisively define which internal mechanical stresses
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act in the material. As is well known, the internal bending moments
must be determined for the normal stresses and the shear forces for
the assigned shear stresses. These are to be derived in the following
sections.

4.3.1 Bending Moments and Shear Forces

First of all, bending about the x2-axis is considered. Here, the free body
diagram of the girder with all occurring forces in figure 4.2 serves as the
baseline situation. In this context, we introduce another dimensionless

2l0

(EI)22

x3

x1

µ

N0

2R3

N0

ε

a

ε

2R3

2lw

j1 j2 j3

B3 C3

Figure 4.2: Free body diagram of the girder in terms of bending about the x2-axis

variable denoted by α1 that indicates the ratio between the wheelbase
of the traveling trolley and the span width.

α1 = lw
l0

(4.10)
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The concentrated forces applied due to the wheel contacts lead to a
load profile of the beam defined in sections. The sections "1", "2" and
"3" are determined accordingly by two theoretical cuts (represented in
figure 4.2 by vertical dashed lines). After the supporting forces B3 and
C3 have been calculated and the equilibria of forces and moments have
been established, we obtain the following expressions for the load curves
by performing several transformations. For the shear force we find:

Q31(x1) = 2R3

(
2− α1l0 + a

l0

)
+ µ(l0 − x1)

Q32(x1) = 2R3

(
1− α1l0 + a

l0

)
+ µ(l0 − x1)

Q33(x1) = −2R3
α1l0 + a

l0
+ µ(l0 − x1) (4.11)

while its single components are valid in the following sections.

Q3(x1) =


Q31(x1) 0 ≤ x1 ≤ a
Q32(x1) a ≤ x1 ≤ a+ 2α1l0

Q33(x1) a+ 2α1l0 ≤ x1 ≤ 2l0

In the context of the moment curve, we define the initial bending mo-
ment M0 induced by the eccentrically tightening of the traction mech-
anism.

M0 = N0ε (4.12)

Then the components of the moment curve are defined by eq. (4.13)

M21(x1) = −1
2µx

2
1 +

(
µl0 + 2R3

(
2− α1l0 + a

l0

))
x1 −M0

M22(x1) = −1
2µx

2
1 +

(
µl0 + 2R3

(
1− α1l0 + a

l0

))
x1 + 2R3a−M0

M23(x1) = −1
2µx

2
1 +

(
µl0 + 2R3

α1l0 + a

l0

)
x1 + 4R3(α1l0 + a)−M0

(4.13)
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and are analogously to the shear force valid in the same sections.

M2(x1) =


M21(x1) 0 ≤ x1 ≤ a
M22(x1) a ≤ x1 ≤ a+ 2α1l0

M23(x1) a+ 2α1l0 ≤ x1 ≤ 2l0

As soon as the girder undergoes a bending about the x3-axis due to a
bumper impact, the same procedure is executed according to figure 4.3
in order to identify the load profile. For the shear force we find:

2l0

(EI)33

x2

x1

λ2µ

2R2

a

2R2

2lw

j1 j2 j3
B2 C2

N0N0

Figure 4.3: Free body diagram of the girder in terms of bending about the x3-axis

Q21(x1) = 2R2

(
2− α1l0 + a

l0

)
+ λ2µ(l0 − x1)

Q22(x1) = 2R2

(
1− α1l0 + a

l0

)
+ λ2µ(l0 − x1)

Q23(x1) = −2R2
α1l0 + a

l0
+ λ2µ(l0 − x1) (4.14)
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and for the bending moment:

M31(x1) = −1
2λ2µx

2
1 +

(
λ2µl0 + 2R2

(
2− α1l0 + a

l0

))
x1

M32(x1) = −1
2λ2µx

2
1 +

(
λ2µl0 + 2R2

(
1− α1l0 + a

l0

))
x1 + 2R2a

M33(x1) = −1
2λ2µx

2
1 +

(
λ2µl0 + 2R2

α1l0 + a

l0

)
x1 + 4R2(α1l0 + a).

(4.15)

Both curves are valid in the same individual ranges as in case of bending
about the x2-axis. Thus, the load profiles are clearly determined and
can be used to calculate the internal mechanical stresses. Concluding,
figure 4.4 shows qualitatively the traveling trolley running on the lower
chord and the corresponding load curves for different positions ai in
terms of bending about the x2-axis.

4.3.2 Determination of the Initial Bending Moment

The previously introduced initial bending moment M0 is a key element
in the further course of the work. Different pre-deformations can be
achieved depending on the prestressing force. However, the challenge
is to provide a correspondence between the deformation and M0. An
approach to get this problem solved is the application of the beam the-
ory and the consideration of the resulting deflection during operation.
As already pointed out, the common regulations in crane construction
provide limit values for the maximum deflection of the crane girder [23].
The highest value will occur, once the traveling trolley is positioned
directly in the middle of the beam. In that case, we can utilize the
system symmetry. Here, figure 4.5 illustrates the situation as well as
the corresponding freebody diagram containing the involved forces and
moments.

By establishing the equilibria of forces and moments, the supporting re-
action B3 can be determined. Due to the concentrated force induced by
2R3, the beam deflections are again defined in certain areas. However,
only the second section at the position x3 = l0 is relevant, since the
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M2(x1, ai)

Q3(x1, ai)

x1l0

0

0

Figure 4.4: Qualitatively depicted load curves considering bending about the x2-axis

maximum deflection appears here. Considering the following boundary
conditions

w(0) != 0 w′(l0) != 0
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Figure 4.5: Maximum deflection during operation in x3-direction

the differential equations as well as the appearing integration constants
can be solved. Then, we obtain for the second section at x1 = l0 the
following relation.

(EI)22w(l0) = 5
24µl

4
0 +R3l0(1− α1)− 1

2M0l
2
0 −

1
3R3l

3
0(1− α1)3

(4.16)

87



4 Dimensioning and Development of Constraint Functions

We now require, that the occurring deflection is determined by

w(l0) = δl0 (4.17)

where δ ∈ [0, 1) describes the dimensionless ratio between the maximum
deflection w(l0) and the span width l0. Subsequently, eq. (4.16) can be
rearranged with respect to the initial bending moment M0 which leads
to the desired relation.

M0 = 5
12µl

2
0 + 2

3(α3
1 − 3α2

1 + 2)R3l0 − (EI)22
2δ
l0

(4.18)

With eq. (4.12) and eq. (4.18) a relation between the axial prestressing
force N0, the eccentricity ε and the occurring deformation determined
by δl0 is now available. It can be seen that the initial bending moment
decreases with an increasing flexural stiffness denoted by (EI)22. This
circumstance is discussed in chapter 5 in more detail. On the other
hand it takes greater values once the ratio δ decreases.

4.3.3 Investigation of the Maximum Bending Moment

Figure 4.6 shows the crane bridge under vertical load induced by the
traveling trolley and the corresponding, qualitatively represented course
of the bending moment, whereby a different load over the wheels is now
considered. The factor ρ3 ≥ 1 takes this circumstance into account.
Here, an alternative normal force N∗0 is also assumed, which leads to
the initial bending moment M∗0 . This differs due to the position of the
maximum deflection of the beam.

Based on the characteristics of the section-wise defined moment curve
M2(x1), it can be seen that the maximum bending moment will occur in
case of vertical load application at the edge of section "2" and depends
significantly on the reference position a of the left wheel. Since the
initial bending moment primarily determines the extent to which the
entire function graph is shifted in a negative direction, it is neglected at
first.
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Figure 4.6: Maximum bending moment during vertical load application

In the following, it is of interest at which a′ the bending moment be-
comes maximum and which value M ′22(a′) it takes. For this purpose,
the support reactions and the internal forces are determined again. For
the support force B3(a) at x1 = 0, we obtain the following expression
under consideration of the equilibrium conditions.

B3(a) =
(

2− a

l0
+
(

2− a

l0
− 2α1

)
ρ3

)
R3 + µl0 (4.19)
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Furthermore the corresponding bending moment at x1 = a + 2lw =
(a/l0 + 2α1)l0 follows to

M22(a) = −1
2µl

2
0

(
a

l0
+ 2α1

)2
+B3 ·

(
a

l0
+ 2α1

)
l0 − 4R3α1l0.

(4.20)

The determination of a′ leads to a non-restricted extreme value problem.
In this framework it is required that for a certain a′ the derivative of
the term of the moment curve becomes exactly zero, i.e.

dM22(a)
da

!= 0. (4.21)

By calculating of the derivative and some transformations one obtains

a′ = (2 + (2− α1)ρ3 − 2α1(1 + ρ3))R3l0 + µl20(1− 2α1)
2(1 + ρ3)R3 + µl0

(4.22)(
a′

l0

)
= (2 + (2− α1)ρ3 − 2α1(1 + ρ3))R3 + µl0(1− 2α1)

2(1 + ρ3)R3 + µl0
(4.23)

for the position of the left wheel of the traveling trolley at which the
bending moment becomes maximum3. The value for the corresponding
bending moment is given by

M ′22(a′) = (2(1 + ρ3 − α1)R3 + µl0)2

4(1 + ρ3)R3 + 2µl0
l0. (4.24)

With the help of the derived equations, it is then to be investigated
to what extent the maximum bending moment M ′22(a′) exceeds the
bending moment at x1 = (1−α1)l0 considering an exactly central trolley
position. For this purpose, we introduce the dimensionless factor φ,

3 Since it is already known that this is a maximum, an investigation of the extremum
using the second derivative can be dispensed with.
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Figure 4.7: Amplification factor for different ρ3

which is defined as follows.

φ = M ′22(a′)
M22((1− α1)l0) (4.25)

With eq. (4.20) one thus obtains the following expression.

φ = (2(1 + ρ3 − α1)R3 + µl0)2

(2(1 + ρ3)R3 + µl0) ((2R3 + µl0)(1− α2
1) + 2ρ3R3(1− α1)2)

(4.26)

Neglecting the self-weight of the girder leads to

φρ→0 = (1 + ρ3 − α1)2

(1 + ρ3)(1 + (1− α1)2ρ3 − α2
1) (4.27)
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which then only depends on ρ3 and α1. In the same course follows(
a′

l0

)
ρ→0

= 1− 1 + 2ρ3

1 + ρ3
α1 (4.28)

for the corresponding (dimensionless) position of the left wheel of the
traveling trolley.

The function plot of φρ→0 is shown in figure 4.7 for different values
of ρ3. By taking a limit value (ρ3 → ∞), it can be seen that the
amplification factor is limited. Furthermore, it turns out that φρ→0
provides small function values for small values of α1. Thus, it can be
shown that in the symmetrical load case (ρ3 = 1) for an α1 = 0.14,
the maximum moment is 1.0028 times higher than the bending moment
M22((1 − α1)l0) at central trolley position. This means an increase
of ≈ 0.3%, which reveals that due to the further consideration of the
safety factor γM1, the bending moment M22((1−α1)l0) can be assumed
in terms of dimensioning.

Further Findings

So far, the initial bending moment has been neglected and it has been
assumed that the maximum bending moment occurs at a′. This is valid
if

M ′22(a′) ≥M∗0 (4.29)

is fulfilled, otherwise the maximum bending moment occurs at x1 = 0.
Due to the complexity of the term and the large number of parameters,
no general statement can be made as to whether this condition always
applies. Only for special cases such statements are possible.

Against this background, the case ρ3 = 1 is considered at first, then
M∗0 = M0 is just valid and eq. (4.18) can be used. Furthermore ρ→ 0 is
again taken into account. By introducing the factor ω∗ = (EI)22/(R3l

2
0)

4 Based on empirical values for usual ratios of the wheelbase to the span width of
the crane bridge.
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and performing several transformations, this leads to the following con-
dition.

3ω∗δ ≥ α3
1 −

15
4 α

2
1 + 3α1 − 1 (4.30)

fδ(ω∗, δ) ≥ fα1(α1) (4.31)

In the context of a proof it is to be verified whether this condition is
always true.

Proof. Let δ ∈ [0, 1), α1 ∈ (0, 1) and ω∗ > 0, then applies

∀ δ ∈ [0, 1) ∧ ω∗ > 0 : fδ(ω∗, δ) ≥ 0.

An evaluation at the interval boundaries gives fα1(0) < 0 and fα1(1) <
0. To examine whether fα1(α1) provides positive function values for
α1 ∈ (0, 1), the extreme points are analyzed. Using the first derivative

dfα1(α1)
dα1

= 3α2
1 −

15
2 α1 + 3

one obtains by setting dfα1(α1)/dα1 = 0 the extreme points

α11 = 2 ∧ α12 = 1
2 .

Here, only α12 is decisive, since this point lies in the interval of α1. An
analysis of the second derivative

d2fα1(α1)
dα2

1
= 6α1 −

15
2

at α1 = 1/2 provides the following result.

d2fα1(α1)
dα2

1

∣∣∣∣
α1=1/2

= −9
2 < 0
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It concludes that the extreme point is a maximum of fα1(α1) on the
interval and that it is also negative. Consequently applies

∀α1 ∈ (0, 1) : fα1(α1) < 0.

Since zero is not a negative number, it can be shown that the following
condition is always satisfied.

fδ(ω∗, δ) > fα1(α1) (4.32)

The proof indicates that even the strict inequality holds, i.e. that
M ′22(a′) > M0 for ρ3 = 1 and ρ→ 0 is always true.

4.4 Identification of Relevant Constraint
Functions

In chapter 3 preliminary requirements were defined, which serve as
guidelines for the construction. Taking into account the design of the
segmented bridge crane girder, further constraints can be determined.
These mainly cover the following areas:

• geometry,

• mechanical stresses,

• occurring deformations,

• permissible prestressing,

• elastic stability of the structure,

• serviceability and

• contour accuracy.
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As part of the development of the constraint functions we will discover,
that the previously defined term for the initial bending moment plays
an essential role.

4.4.1 Constraint Functions Related to Geometry

Figure 4.8 shows the frontal section view of the main segment and all rel-
evant parameters to be taken into account. Here, the distances s2 [mm]
and s3 [mm] are introduced as additional quantities in terms of space
reservation. First of all, geometrical conditions must be maintained in
order to enable the depicted configuration. For instance, there is a min-
imum value for the inner width of the segment that must be achieved to
enable the traction equipment to fit inside. From figure 4.8 we obtain
the first geometric constraint defined by ineq. (4.34).

βb ≥ 1
2(d+ t) + s2 (4.33)

g1 = βb− 1
2(d+ t)− s2 ≥ 0 (4.34)

Thus, a lower limit for the inner width is already determined. However,
the wheel of the trolley must fit on the bottom flange. The weld seam is
geometrically considered as well. Assuming that it is set up at an angle
of about 45◦ with respect to the bottom chord, the horizontal length of
the weld seam according to [43, p. 169] is estimated at

c =
√

2 · 0.70 t =
√

0.98 t. (4.35)

This means that for a given half width b, the inner width is additionally
limited upwards. We obtain

b− 2bw −
(√

0.98 + 1
2

)
t ≥ βb (4.36)

g2 = b− 2bw −
(√

0.98 + 1
2

)
t− βb ≥ 0 (4.37)

from figure 4.8. In this context, first geometric constraints for the ver-
tical dimensions can be set up in addition to the width ratios. Against
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d

Figure 4.8: Section view of the main segment

the background of manufacturability, we require that the thickness of
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the bottom chord must at least correspond to the web thickness t. It
follows from this for the outer height

h ≥ ηh+ t. (4.38)

Furthermore, we limit the outer height h upwards in order to exclude
technically unfeasible solutions. The threshold value is set to λhl0 with
λh ∈ (0, 1) as a dimensionless constant. The upper limit then given by
the following inequation.

λhl0 ≥ h (4.39)
g3 = λhl0 − h ≥ 0 (4.40)

If we now postulate that this limit is reached (i.e. h = λhl0) we find
with the aid of ineq. (4.38) that the height ratio is also limited upwards.

1− t

λhl0
≥ η

g4 = 1− t

λhl0
− η ≥ 0 (4.41)

Furthermore, in chapter 3 it was explained, that the end of the preload
segment is chamfered, see figure 3.18. This must be considered as well,
since the bevelled web plates also limit the height upwards when the
preload segment is fixed in length. Against this background the corre-
sponding inequation must apply.

λls + ηh− h3 + xp ≤ l∗s (4.42)

In this context, we define the dimensionless ratio λ3

λ3 = h3

ηh
(4.43)
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and find by several transformations a further upper limit for the outer
height h.

l∗s − λls − xp

(1− λ3)η ≥ h (4.44)

g5 = l∗s − λls − xp

(1− λ3)η − h ≥ 0 (4.45)

In this way, the geometric constraints to be fulfilled are identified and
clearly defined.

4.4.2 Constraint Functions Related to Stresses

One of the most important aspects of dimensioning is the compliance
with specific strength values of the materials being used. For this rea-
son, it is necessary to develop suitable mathematical relations which
represent this requirement accordingly. The Mises yield criterion is of
great importance in this context. As is well known, the Mises stress is
applied in order to transform the individual components of the stress
tensor determined by eq. (2.3) at a certain point into a uniaxial stress
state. This allows the critical points in particular, which are subject to
the highest loads, to be evaluated with regard to exceeding the yield
strength. However, these points must be identified at first. Taking into
account the previously depicted load curves (see figure 4.4), figure 4.9
shows the girder and the two trolley positions A and B that lead to
the highest loads in each case. Since further local stresses are caused
by the load introduction of the wheels, these must be taken into ac-
count additionally. Here, reference is made to [9]. The outer edge of
the flange and the location of the point load are to be considered. The
identified points can be clearly described with the help of the underlying
coordinate system and the defined parameters. By application of the
convention

pξ = xξ1e1 + xξ2e2 + xξ3e3 (4.46)
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Figure 4.9: Operating conditions and identification of critical points in terms of me-
chanical stresses
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they are defined as follows.

p1 = + b e2 +h e3 (4.47)
p2 = + (b− bw) e2 +h e3 (4.48)
p3 = l0 e1 − b e2 +h e3 (4.49)
p4 = l0 e1 − (b− bw) e2 +h e3 (4.50)
p5 = l0 e1 −h e3 (4.51)
p6 = (βb+ t/2) e2 +h e3 (4.52)
p7 = l0 e1 − (βb+ t/2) e2 +h e3 (4.53)

Based on the critical points, the constraints taking into account the
Mises stresses are established. Against the background of the situation
described, the general Mises stress with respect to a certain point pξ
with ξ ∈ {1, . . . , 7} can be represented. Here, normal stresses in x3-
direction are neglected and we obtain

σM,ξ =
√
σ2

11 + σ2
22 − σ11σ22 + 3(τ2

13 + τ2
23).

In this connection, the individual components are defined by the follow-
ing expressions

σ11(pξ, ε) = −N0

A1
+ M2(xξ1, ε)

I22
xξ3 −

M3(xξ1)
I33

xξ2 + σ̂∗11(pξ)

σ̂∗11(pξ) = λ∗σσ̂11(xξ2) ∀ ξ ∈ {1, . . . , 7}\{5}
σ22(pξ) = λ∗σσ̂22(xξ2) ∀ ξ ∈ {1, . . . , 7}\{5}

τ13(pξ) = Q3(xξ1)S2(xξ3)
I22γ(xξ3)

τ23(pξ) = Q2(xξ1)S3(xξ2)
I33γ(xξ2)

with γ(xξ3) (respectively γ(xξ2)) representing the current width of the
profile. It should be mentioned, that the normal stresses in x1-direction
must also be superimposed on the compressive stress due to prestress-
ing and the local stress in x1-direction due to the wheel-flange contact
depicted in figure 4.10. The normal stress component in x2-direction
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R3 R3

2 1 0

Figure 4.10: Local stresses defined in [9], parallel flange considered

is caused purely by the local stress. The local stresses are determined
by [9] with respect to their location and are to be multiplied by an
additional factor λ∗σ according to [46]. By definition of

ϑ = bw
2(b− t) (4.54)

they result in

σ̂11,i = c11,i
R3

h2(1− η)2 (4.55)

σ̂22,i = c22,i
R3

h2(1− η)2 . (4.56)
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The coefficients c11,i and c22,i are to be set with respect to the considered
location i ∈ {0, 1, 2} on the x2-axis. For local stresses in x1-direction
they are defined by

c11,0 = 0.050− 0.580ϑ+ 0.148 e3.015ϑ

c11,1 = 2.230− 1.490ϑ+ 1.390 e−18.33ϑ

c11,2 = 0.730− 1.580ϑ+ 2.910 e−6.000ϑ

and in terms of local stresses in x2-direction by

c22,0 = −2.110 + 1.977ϑ+ 0.0076 e6.530ϑ

c22,1 = 10.108− 7.408ϑ+ 10.108e−1.364ϑ

c22,2 = 0

according to [9]. Here, position "0" represents the transition zone be-
tween the web plate and the bottom chord, "1" the location of the wheel-
flange contact and "2" the outer flange edge (see figure 4.10). We now
require that the resulting equivalent stress must not exceed the yield
strength fy. In this case, the subsequent inequation must apply.

f2
y ≥ σ2

11 + σ2
22 − σ11σ22 + 3(τ2

13 + τ2
23)

By introducing the parameter ψσ, defined as

ψσ = σ2
22 + 3(τ2

13 + τ2
23)− f2

y (4.57)

and several transformations, we finally obtain the new relation

σ2
11 − σ11σ22 + ψσ ≤ 0 (4.58)

which is a quadratic inequation that can be solved by conventional meth-
ods. It follows

σ11 ≤
σ22

2

(
1±

√
1− 4ψσ

σ2
22

)
.
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Once the expression for the normal stress in x1-direction is applied, we
find

−N0

A1
+ M2

I22
xξ3 −

M3

I33
xξ2 + λ∗σσ̂

2
11 ≤

σ22

2

(
1±

√
1− 4ψσ

σ2
22

)
.

With eq. (4.12) the term of the pure normal stress due to compression
can be extended accordingly with the eccentricity ε.

−N0ε

A1ε
+ M2

I22
xξ3 −

M3

I33
xξ2 + λ∗σσ̂

2
11 ≤

σ22

2

(
1±

√
1− 4ψσ

σ2
22

)

This leads to the fact that the eccentricity ε now occurs explicitly in the
inequality and can be solved accordingly. The solution of the quadratic
inequation produces two possible results. It can be shown that the
negative one only gives reasonable solutions. One obtains

εσ(pξ) = M0

A1

(
M2

I22
xξ3 −

M3

I33
xξ2 −

1
2

(
σ̂22 −

√
σ̂2

22 − 4ψσ
)

+ λ∗σσ̂11

)−1

(4.59)

which defines clearly the limit condition for compliance with the strength
values of the material. Moreover, the eccentricity must be of a minimum
value to prevent material failure by exceeding the yield stress. In this
context, the vector pξ designates the point under consideration with
its corresponding coordinates. Considering ineq. (4.59) and the crucial
points, we obtain the following set of constraint functions.

g6 = ε− εσ(p1) ≥ 0 (4.60)
g7 = ε− εσ(p2) ≥ 0 (4.61)
g8 = ε− εσ(p3) ≥ 0 (4.62)
g9 = ε− εσ(p4) ≥ 0 (4.63)
g10 = ε− εσ(p5) ≥ 0 (4.64)
g11 = ε− εσ(p6) ≥ 0 (4.65)
g12 = ε− εσ(p7) ≥ 0 (4.66)
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4.4.3 Constraint Functions Related to Occurring
Deformations

The common rules in crane construction limit the permissible deforma-
tions of a crane bridge during operation [23]. These primarily relate to
the total deflection of the girder. In terms of a segmented crane bridge
we additionally require that no contact between the traction equipment
and the main segment occurs in normal operation. Thus, we remain
consistent in our assumption that both components can be considered
independently of each other. Otherwise, a force would act between the
contact partners, coupling both system components. We consider the

x3

x2

w(l0, t0)

ε
ηh

wt(l0)

s3 d/2

b) deformed statea) undeformed state

Figure 4.11: Undeformed and deformed state of the girder and the traction mecha-
nism

104



4.4 Identification of Relevant Constraint Functions

case in which the beam and the traction mechanism come closest. This
is the situation with prestressing. The beam will deflect upwards in neg-
ative x3-direction due to the eccentrically acting axial force, while the
tensile member will deflect downwards due to gravity. Figure 4.11 illus-
trates the deformed state of the system. The deformation of the traction
mechanism is denoted by wt(l0), the deflection of the beam is denoted
by w(l0, t0). Both deformations are taken into account at x1 = l0. The
additional parameter t0 indicates that the state of prestressing is consid-
ered. As long as no contact appears, the dimensions and deformations
indicate that the inner height ηh must be of a minimum value. This
results in the following relation.

ηh ≥ ε+ d

2 + wt(l0) + |w(l0, t0)|+ s3 (4.67)

Here, the absolute deflection of the girder at prestressing is taken into
account since it takes negative values due to the pre-deformation. With
the aid of eq. (4.16), the deflection can be determined by neglecting the
nominal load represented by 2R3.

w(l0, t0) = 1
(EI)22

(
5
24µl

4
0 −

1
2M0l

2
0

)
(4.68)

On the other hand, the computation of wt(l0) is more complex due to
the influence of the axial force taken into consideration. Figure 4.12
depicts the freebody diagram of the traction mechanism supported in-
side the girder. After computation of the supporting reaction A3, the
equilibrium conditions can be established with respect to the beam the-
ory of second order, i.e. the slightly deformed system is subject to the
mathematical modeling. With µt = ρAtg we find for the bending mo-
ment

M2(x1) = −1
2µtx

2
1 + µtl0x1 −N0wt.
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Figure 4.12: Freebody diagram of the traction mechanism

The underlying equation is specified as an inhomogeneous differential
equation of second order.

(EI)t
d2wt

dx2
1

= 1
2µtx

2
1 − µtl0x1 +N0wt

By introduction of α2 = N0/(EI)t and several transformations, we
obtain the expression

d2wt

dx2
1
− α2wt = 1

2
µtα

2

N0
x2

1 −
µtl0α

2

N0
x1.

The entire solution consists of two individual parts: the homogeneous
and the particular solution. The homogeneous solution wt,h can be
found by application of an exponential ansatz and results in

wt,h = C1eαx1 + C2e−αx1 .
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However, the particular solution requires an individual approach which
takes the characteristic of the inhomogeneous term into account. Since
it is a quadratic function, we select a quadratic ansatz as well and find

wp = −1
2
µt

N0
x2

1 + µtl0
N0

x1 −
µt

α2N0

for the particular solution wp after comparison of the coefficients. Now
the entire solution is fully defined, the remaining coefficients C1 and C2
can be determined through the boundary conditions

wt(0) != 0 w′t(l0) != 0

and provide the term describing the deflection of the traction mechanism
at x1 = l0.

wt(N0, l0) = 2µteαl0
α2N0(1 + e2αl0) + 1

2
µtl

2
0

N0
− µt

α2N0
(4.69)

The normal force is still unknown but it is already obvious that the de-
flection of the traction mechanism becomes minimal with increasing pre-
stressing force. The lowest possible deflection of the traction mechanism
should be aimed for, since the required internal height also decreases
and thus the resulting total weight. For this reason, the maximum per-
missible prestressing force denoted by γM2N is selected5. Against this
background the relevant deflection follows to

wt(l0) = 2γM2µteαl0
α2N(1 + e2αl0) + γM2

2
µtl

2
0

N
− γM2µt

α2N
. (4.70)

With eq. (4.70) and (4.68) the constraint function with regard to the
deformation behavior can be formulated. Due to the fact that ε occurs

5 With N as the maximum assembly preload of the considered bolt.

107



4 Dimensioning and Development of Constraint Functions

explicitly here as well, the term can also be rearranged according to the
eccentricity. By additional application of eq. (4.18), we obtain

εη = ηh− d

2 − wt(l0)− R3l
3
0

3(EI)22
(α3

1 − 3α2
1 + 2) + δl0 − s3 (4.71)

for the limit of the eccentricity. A rearrangement gives the implicit form
of the constraint function.

g13 = εη − ε ≥ 0 (4.72)

The developed constraint function limits the eccentricity upwards.

In addition to the deformations in x3-direction, deflections of the system
in x2-direction occur as well during a bumper impact. However, since
this is an exceptional case, we neglect the requirement that there must
be no contact between the tensile member and the girder. Thus, the
problem is reduced to a bending problem considering only the girder.
Figure 4.13 shows the free body diagram in terms of bending about the
x3-axis. The maximum deflection will arise once the traveling trolley
is located in the middle of the beam. In that case the symmetry of
the system can be again utilized which leads to a beam divided into two
sections due to the concentrated force 2R2. With eq. (2.14) the differen-
tial equation can be established, taking into account the corresponding
boundary conditions

v(0) = 0 v′(l0) = 0

in order to determine the integration constants. Then we obtain for the
deflection v at x1 = l0:

(EI)33v(l0) = 5
24λ2µl

4
0 + 1

3R2(1− α1)
(
3− (1− α1)2) l30. (4.73)

In order to prevent the beam from excessive bending in case of a bumper
impact, a limit value is established which must not be exceeded.

v(l0) ≤ δ2l0 (4.74)
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Figure 4.13: Deflection due to bumper impact in x2-direction

Here, δ2 represents the ratio between the deflection v(l0) and the span
width l0. Subsequently, we obtain the following inequation.

(EI)33δ2l0 ≥
5
24λ2ρA1gl40 + 1

3R2(1− α1)
(
3− (1− α1)2) l30 (4.75)

It is now of interest to extract a constraint regarding the geometrical
properties of the beam. Here, the main quantities describing the stiffness
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of the beam are the second moment of inertia with respect to the x3-axis
I33 and the cross-sectional area A1. With the relations defined by eq.
(4.7) and eq. (4.5) it is now possible to restate ineq. (4.75) and the
constraint to be fulfilled by h can be identified.

hδ = 8R2(1− α1)(3− (1− α1)2)l30
24Eθ33δ2l0 − 5λ2ρgθ1l40

g14 = h− hδ ≥ 0 (4.76)

It limits the external height downwards, i.e. that a minimum outer
height must be available in order to prevent the girder from excessive
bending in case of a bumper impact.

4.4.4 Constraint Functions Related to Permissible
Prestressing

It is obvious that the tensile member cannot be loaded arbitrarily and
its strength values must not be exceeded either. For this purpose, we are
guided by the maximum permitted assembly forces according to VDI
2230 [11, p. 109]. In addition, a safety factor for the bolted joints is
introduced with respect to DIN EN 1993-6 and denoted by γM2 [9, p. 26].

Again, on the basis of eq. (4.12) the following constraint can be devel-
oped.

εN = γM2M0

N

g15 = ε− εN ≥ 0 (4.77)

Here, N describes the maximum permissible prestressing force acting in
the respective threaded rod.

4.4.5 Constraint Functions Related to Elastic Stability

Due to the axial forces resulting from prestressing, the girder is exposed
to high compressive forces and stresses. In this connection, it is manda-
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4.4 Identification of Relevant Constraint Functions

tory that no local buckling of thin plates or even a global buckling of the
structure occurs. Following the analytical approach given by eq. (2.16),
DIN EN 13001-3-1 provides a procedure to prove the elastic stability
of the components. At first, the global buckling in the x1x2-plane is
considered.

According to DIN EN 13001-3-1 it is required that an acting normal
force N1 along the x1-axis is smaller than a defined limit value [15].

N1 ≤
κfyA1

γM1
(4.78)

This allows to be extended again by the eccentricity ε and we obtain by
application of eq. (4.12) and consideration, that the prestressing force
N0 equals the maximum force N1, the corresponding inequation.

ε ≥ γM1

κfyA1
M0

In this context, κ appears as an additional factor, which must be deter-
mined depending on the slenderness ratio λs. Taking into account the
geometrical quantities eq. (4.7) and eq. (4.5), it is to be calculated by

λs = 2l0
π

√
fyθ1

Eθ33
(4.79)

The factor κ now depends on the slenderness ratio. For λs ≤ 0.20 mm
follows

κ = 1.00

while for a λs ≥ 0.20 mm

κ = 1
ξs +

√
ξ2
s − λ2

s

applies. Considering αs = 0.34, the factor ξs is to be determined by

ξs = 0.50(1 + αs(λs − 0.20) + λ2
s )
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4 Dimensioning and Development of Constraint Functions

Once these different cases are taken into account, we obtain the following
constraint function

εg = γM1M0

fyA1

{
1.0 λs ≤ 0.2 mm
ξs +

√
ξ2
s − λ2

s λs > 0.2 mm
g16 = ε− εg ≥ 0 (4.80)

which specifies the lower limit of the eccentricity in order to prevent the
girder from global buckling with respect to the x3-axis.

In addition to global buckling, local plate buckling is also a possible
stability failure of the structure, which must also be avoided. For this,
we assume that the vertically arranged web plates are the critical com-
ponents as already explained in section 3.3.1. Moreover, we require that
the uniformly distributed normal stress in x1-direction dominates. Fur-
thermore, it is assumed that the webs are simply supported and that
they are divided into two parts due to the bulkhead plates inside the
segments. According to DIN EN 13001-3-1 it is required that the normal
compressive stress is limited to a specific value.

σ11 ≤
κxfy

γM1
(4.81)

Taking into account that the normal stress is uniformly distributed,
ineq. (4.81) can be restated as follows.

N1

A1
≤ κxfy

γM1
. (4.82)

Again, we consider the limit state in which N0 = N1 applies and obtain
for the eccentricity

ε ≥ γM1M0

κxfyA1
. (4.83)

112



4.4 Identification of Relevant Constraint Functions

The parameter κx depends on the dimensionless slenderness ratio λx,
which is defined as

λx =
√

fy

κσ,xσe

with the buckling factor κσ,x (to be set as κσ,x = 4.0, see [15]) and the
related buckling stress

σe = π2E

12(1− ν2)

(
t

lc

)2
.

The dimensionless slenderness ratio is determined by

λx = lc
πt

√
3fy

E
(1− ν2). (4.84)

Hereby, the quantity lc describes the length of the crucial section and
is defined as

lc = 1
2 max{ls; (l∗s − λls)}. (4.85)

It mainly depends on the underlying type of segmentation and the re-
sulting lengths of the preload segment and the main segment. In this
context, figure 4.14 shows the difference between the individual web
plate lengths. In this connection, eq. (4.84) indicates that λx takes the
highest values with increasing lc. Based on DIN EN 13001-3-1 the limit
value for the eccentricity is then defined as follows

εl = γM1M0

fyA1


1.0 λx ≤ 0.7
(1.474− 0.677λx)−1 0.7 < λx < 1.291
λ2
x λx ≥ 1.291

g17 = ε− εl ≥ 0. (4.86)

Inequation (4.80) and ineq. (4.86) determine the limit values of the
eccentricity ε in order prevent failures in terms of elastic stability.
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(l∗s − λls)/2

Connecting
element

Bulkhead
plate

Bulkhead
plate

ls/2

Figure 4.14: Identification of the underlying crucial plate length

4.4.6 Constraint Functions Related to Serviceability

Against the background of a segmented and prestressed girder in crane
construction, we define serviceability to mean that the structure always
retains its shape. More precisely, this means that the prestressing forces
are high enough and provide sufficient surface pressure at the connection
joints to prevent relative movements between the individual components
due to excessive shear forces.

If we now consider, that a specific compressive force Nµ is required in
order to achieve a sufficient surface pressure, it must to be lower than the
maximum permissible preload N of the bolted connection. Previously,
it has already been defined that the prestressing force N0 must not be
greater than N , which in turn means

Nµ ≤ N0 ≤ N.

We now postulate that the prestressing force is already sufficient and
ensures the serviceability of the crane girder. Then applies the following
requirement.

N0 ≥ Nµ (4.87)
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Again, ineq. (4.87) is capable to be extended with the eccentricity and
we obtain the according inequation.

N0ε ≥ Nµε

εµ = M0

Nµ

g18 = εµ − ε ≥ 0 (4.88)

It is now necessary to quantify the required normal force Nµ while
VDI 2230 forms the basis for the calculation. The standard provides a
procedure consisting of several steps in order to estimate the required
assembly preload for the considered bolted connection [11, p. 29–38].
Usually, the following aspects below must be taken into account:

• required minimum assembly preload,

• axial working load,

• changes in preload and

• thermally induced stresses.

Changes in temperature are neglected, for this reason thermally induced
stresses acting on the bolted connection are neglected as well. The
same applies for the axial working load. This leads to the fact that
the required minimum assembly preload Nµ can be separated into two
components - NQ

µ and N s
µ.

Nµ = NQ
µ +N s

µ (4.89)

The first component NQ
µ describes the ability of transmitting bending

moments and shear forces without any relative movements occurring
between the contact partners (minimum clamp load). Due to the bolted
connection used, additional pretensioning force losses due to surfaces
roughness must be taken into account, which are designated with N s

µ.
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4 Dimensioning and Development of Constraint Functions

In order to determine NQ
µ , we at first identify the location of the highest

shear forces. These occur at x1 = 06 and equal position "A" in figure
4.9. Taking into account a friction coefficient of µT = 0.14 (considering
dry steel-steel contact according to [11]) and a number nc of connection
joints of the girder we obtain

NQ
µ =

√
Q2

3(0) +Q2
2(0)

ncµT
. (4.90)

In doing so, the number of connection joints depends on the considered
type of configuration (see section 3.2.1). Eq. (4.90) determines the
minimum clamp load, which must be applied.

In order to estimate the changes in preload due to embedding of the
contact surfaces, the amounts of embedding fZ (assumed to be 3µm for
all contacts [11, p. 73]) as well as the axial resiliences of the bolt δS and
the plates δP being pressed together must be taken into account. Then
for the preload loss

N s
µ = fZ

δS + δP
(4.91)

applies. The resiliences δS,i [mm/N] relevant for the bolted connection
can be divided into four groups. These comprise the resiliences relating
to the common rods δr, the additional rods δ∗r as well as the resiliences
of the connection areas δc and of the bolted areas δb. Here, figures 4.15
and 4.16 depict the considered lengths of the involved components. The
resiliences are to be calculated individually [11, p. 39–41], see table 4.1,
while the according values for the cross-section at the minor diameter
Ad3 are to be taken from [11, p. 125]. We obtain the overall resilience
of the bolted connection by summarizing all sub-resiliences since they
are connected to each other in series.

δS =
∑
i

δS,i (4.92)

6 To be seen as a conservative approach since the wheel of the traveling trolley
cannot reach this location in reality but it is limited by its specific start dimension.
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λls + 1.1dN l∗r − 2.2dN 2.2dN lr − 2.2dN

Figure 4.15: Corresponding lengths of the bolted area

lr − 2.2dN2.2dN

dN d

Figure 4.16: Corresponding lengths regarding the common rod connections

In addition to the bolted connection, the plates, represented by the
segments of the girder, also possess a resilience. Under the assumption
of a uniformly distributed pressure profile over the cross-section, it is
calculated by

δP = 2l0
EA1

. (4.93)
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Table 4.1: Calculation of resiliences

Resilience Calculation

δr (4lr − 8.8dN)/(Eπd2)
δ∗r (4l∗r − 8.8dN)/(Eπd2)
δc 2 (1.1dN/(EAd3) + 1.32/(EπdN))
δb 1.1dN/(EAd3) + 4λls/(Eπd2

N) + 1.32/(EπdN)

The entire amount of the single resiliences depends on the span width
and with it on the segmentation type.

With the definition of N s
µ and NQ

µ , the quantity Nµ is completely de-
termined and therefore also the constraint function eq. (4.88).

4.4.7 Constraint Functions Related to Contour Accuracy

A further aspect regarding the preliminary requirements defined in sec-
tion 3.1 covers the continuous component bonding. More precisely, this
means that no gaping between the single segments at their connection
joints occurs. For this purpose, it is necessary to define a constraint
function which must be met in order to prevent the structure from gap-
ing.

Here, the prestressing is a key element. It closes the contact surfaces
at the connection joints and, if the surface pressure is sufficient, allows
the structure to transmit shear forces and bending moments. In this
context, the necessary normal force is given by the minimum clamp
load NQ

µ (see eq. (4.90)). In order to avoid gaping, it is obligatory that
the girder is always under compressive stress. Due to the loose bond, it
is not able to absorb tensile stresses. For this reason, the critical point
that is most at risk with regard to the occurrence of tensile stresses
must be identified at first.

As is generally known, tensile stresses occur at a beam, which is subject
to bending about the x2-axis, in the lower chord. This is a normal state
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during operation of the crane. The girder might be loaded by bending
moments about the x3-axis as well in case of a bumper impact. Then
oblique bending arises which means that additional stress components
in x1-direction appear which are to be superimposed. In that case the
point p8 located at the edge of the lower chord is the most crucial. Its
coordinates are defined by

p8 = xc e1 + b e2 + h e3. (4.94)

Here, xc describes the location of the crucial connection joint in x1-
direction. Furthermore, it depends on the type of segmentation. We now
require that the dominating normal stress σ11 must be always negative
and define a minimum value denoted by λ∗γfy with the dimensionless
factor λ∗γ ∈ (0, 1). Then, the following inequation must apply.

σ11 ≤ −λ∗γfy (4.95)

By application of the definition regarding the normal stress follows

−N0

A1
+ M2

I22
x3 −

M3

I33
x2 + λ∗σ σ̂11 ≤ −λ∗γfy.

Again, the first term representing the additional compressive force in the
inequation allows to be extended with the eccentricity ε. Furthermore,
the local stress due to the wheel-flange contact is taken into account.
We obtain

−N0ε

A1ε
+ M2

I22
x3 −

M3

I33
x2 + λ∗σ σ̂11 ≤ −λ∗γfy

while further rearranging leads to the constraint function which must
be met.

εγ(p8) = M0

A1

(
M2

I22
x3 −

M3

I33
x2 − λσσ̂11 + λ∗γfy

)−1

g19 = εγ(p8)− ε ≥ 0 (4.96)
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Table 4.2: Summary of constraint functions

Constraint gγ According implicit function

g1 βb− (d+ t)/2− s2 ≥ 0
g2 b− 2bw − (

√
0.98 + 1/2)t− βb ≥ 0

g3 λhl0 − h ≥ 0
g4 1− t/(λhl0)− η ≥ 0
g5 (l∗s − λls − xp)/(η(1− λ3))− h ≥ 0
g6 ε− εσ(p1) ≥ 0
g7 ε− εσ(p2) ≥ 0
g8 ε− εσ(p3) ≥ 0
g9 ε− εσ(p4) ≥ 0
g10 ε− εσ(p5) ≥ 0
g11 ε− εσ(p6) ≥ 0
g12 ε− εσ(p7) ≥ 0
g13 εη − ε ≥ 0
g14 h− hδ ≥ 0
g15 ε− εN ≥ 0
g16 ε− εg ≥ 0
g17 ε− εl ≥ 0
g18 εµ − ε ≥ 0
g19 εγ(p8)− ε ≥ 0

4.5 Summary of Constraint Functions

In this chapter the underlying constraint functions were elaborated.
These define limit values which must be met by certain geometrical
quantities of the structure. In this context, a major result is that most
of the constraint functions can be expressed by a functional relation
between the eccentricity ε and the remaining quantities. This circum-
stance will be a key feature subsequently. In table 4.2 all constraint
functions are summarized.
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5 Structural Optimization

Dare to know. Have the courage to
use your own intelligence.

- I. Kant

In the previous chapter, the essential constraints that must be fulfilled
by the segmented, prestressed girder in order to be considered as a
suitable solution against the background of elastostatic behavior were
identified. Assuming that a finite number of possible solutions exists,
they can be distinguished by their characteristics. These include, for in-
stance, the deformations or the mechanical stresses, which give different
values depending on the solution. However, as often proven in litera-
ture, the solution, where the total weight of the crane bridge becomes
minimal, is mostly desired. This means that the task is to optimize the
crane bridge with respect to its self-weight while at the same time the
defined constraints are all met.

The following chapter deals with the treatment of the underlying opti-
mization problem and the development of a possible solution strategy
in order to identify solutions with minimum weight. This strategy is
implemented in a numerical algorithm, which is then to be evaluated
regarding its properties.

5.1 Analyses and Definitions

In the beginning, the developed functions and involved design variables
are interpreted and analyzed with regard to their mathematical charac-
teristics. This step forms the basis for the subsequent identification of
appropriate solution approaches.
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5.1.1 Establishment of the Optimization Program

To clearly define the optimization program it is necessary to specify
at first the objective function f that has to be optimized. In analogy
to the optimization approaches described in literature (see section 2.4),
we select the cross-sectional area of the main segment as the objective
function as well. A decisive difference in contrast to conventional beams

x3

x2

di

t

βb
b

ηhε h

Figure 5.1: Considered cross-section in terms of optimization

is that in addition to the segment dimensions, the cross-section of the
steel bar (determined by di) assigned to the tensile member is also in-
cluded in the resulting surface area. Especially with larger diameters of
the tensile member, its additional mass can no longer be neglected and
must therefore be taken into account. Here, the index i already indicates
that an individual steel bar from a set of available traction mechanisms
is considered. Figure 5.1 shows the cross-section which forms the ba-
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sis for the establishment of the objective function. In comparison to
figure 4.8, local peculiarities such as the dimensions of the weld seam
or the bulkhead plate are neglected. Taking into account the geometri-
cal quantities, the surface area can be determined. In this connection,
we further consider the web thickness t to be constant1. The objective
function is then defined as

f(b, η, h, di) = 4(b− (b− t)η)h+ π

4 d
2
i . (5.1)

We can already state that not all geometrical parameters, that define
the shape of the main girder, appear in the objective function. For
example, the width ratio β and the eccentricity ε also determine the
shape, but have no influence on the calculation of the surface area. The
same applies for the deflection ratio δ. Another special feature is, that
not all variables are distributed continuously. Due to given dimensions
of the threaded rods, the resulting diameter di of a steel bar is to be
considered as a discrete quantity. In this context, we define the set of
discrete traction mechanisms as {D} consisting of in total n elements.
In addition, {D} includes all corresponding quantities relating to a spe-
cific traction mechanism such as the nominal diameter dN,i of the bolt
or the maximum permissible assembly preload Ni, see table A.1. Fur-
thermore, we note the specific sets of the individual dimensioned design
variables

h ∈ Ωh, Ωh ..= {h ∈ R+ | 0 < h}
b ∈ Ωb, Ωb ..= {b ∈ R+ | 0 < b}
ε ∈ Ωε, Ωε ..= {ε ∈ R+ | 0 < ε}

and those of the dimensionless parameters

η ∈ Ωη, Ωη ..= {η ∈ R+ | 0 < η < 1}
β ∈ Ωβ , Ωβ ..= {β ∈ R+ | 0 < β < 1}
δ ∈ Ωδ, Ωδ ..= {δ ∈ R+ | 0 ≤ δ < 1}.

1 According to commercial available steel plates.
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The combinations of the subsets

Ω1 ..= Ωh ×Ωb ×Ωη, Ω1 ⊆ R3
+\{0}

Ω2 ..= Ωη ×Ωβ ×Ωδ, Ω2 ⊆ R3
+

leads to the entire set Ω.

Ω ..= Ω1 ×Ω2, Ω ⊆ R6
+ (5.2)

A vector y containing all continuously distributed design variables is
then defined as follows.

y ..= [h b ε η β δ]T (5.3)

By introducing the additional vector x

x ..= [h b η]T, x ⊆ y (5.4)

the underlying optimization program P(di) for a fixed di can be de-
scribed as follows

min
y ∈ Ω(di), di ∈ {D}

f(x, di)

s.t. gγ(y, di) ≥ 0, γ ∈ Γ
(5.5)

where Ω(di) represents the set of possible y determined by the constraint
functions gγ(y, di) and the index set Γ.

Ω(di) = {y ∈ R6
+, di ∈ {D} | gγ(y, di) ≥ 0, γ ∈ Γ} (5.6)

A point y′i ∈ Ω(di) is referred to as an optimal point in case that no
other point exists, which gives better results for the value of the objective
function. Taking into account the dedicated additional vector defined
by eq. (5.4) and its corresponding optimal point x′i ⊆ y′i, it applies

f(x, di) ≥ f(x′i, di), ∀x ⊆ y ∈ Ω(di). (5.7)
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The aggregation of all optimization programs with respect to the indi-
vidual traction mechanisms gives the new set

P = {P1(d1), . . . ,Pi(di), . . . ,Pn(dn)} (5.8)

with the sets containing the optimal points Y′ and the corresponding
values of the objective functions f .

Y′ = {y′1, . . . ,y′i, . . . ,y′n} (5.9)
f = {f(x′1, d1), . . . , f(x′i, di), . . . , f(x′n, dn)}, x′i ⊆ y′i (5.10)

Here, the overall desired solution is just that input combination con-
sisting of x′c and d′, which leads to the smallest value of the set f .
Moreover, in this case the following applies

[x′c d′]T 7−→ f(x′c, d′) =⇒ min{f}, x′c ⊆ y′c ∈ Y′, d′ ∈ {D} (5.11)

where y′c contains all required values in order to obtain the best solution.

In summary it can be stated, that the underlying problem is a multi-
dimensional, non-smooth (due to the appearance of the discrete and
not continuously differentiable quantity di) and nonlinear optimization
program, where both the objective function and the constraints are non-
linear. These are further characterized by the fact that only inequality
conditions occur.

5.1.2 Initial Investigations

In order to develop a suitable solution strategy, the key properties of
the optimization problem are to be investigated in advance. The first
subsection discusses the basic solvability of the problem. Subsequently,
the possible critical points and their properties are examined in more
detail.
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Solvability

To verify the solvability, we first consider the semi-constrained opti-
mization program, i.e. we already take into account the constraint that
x ⊆ y ∈ R6

+ applies. For a fixed b > 0 and 1 > η > 0, we obtain for
a selectable h > 0 the following illustration of the objective function
f(x, di), qualitatively shown in figure 5.2 (a). Forming the lower level

hα hα hh h0

α

π/4 · d2
i

f(h, di) f(h, di)
(a) (b)

[
levα≤

]
1

[
levα≤

]
2

Figure 5.2: Lower level sets

set of f on R+ to a level α > π/4 · d2
i , α ∈ R+ gives[

levα≤(f,R+)
]
1 = {h ∈ R+ | 0 < f(h) ≤ hα}. (5.12)

Although the interval is non-empty, it is not compact due to the lack
of closure, since its complement (−∞, 0] ∪ (hα,∞) is not open. With
respect to the extended theorem of Weierstrass, the statement that
the set S of all global minimal points, defined as

S ..= {x′ ⊆ y′, y′ ∈ Ω | ∀ [x ⊆ y], y ∈ Ω : f(x) ≥ f(x′)} (5.13)

is non-empty and compact cannot be satisfied [5, p. 23]. Thus the
sufficient condition for the solvability of the optimization problem is
violated.
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In turn, we now consider the optimization problem constrained by the
set Ω(di) and assume that a minimum height h0 must be guaranteed,
see figure 5.2 (b). Then, the lower level set is determined by[

levα≤(f,R+)
]
2 = {h ∈ R+ |h0 ≤ f(h) ≤ hα}. (5.14)

In contrast to eq. (5.12) it is closed and compact. Hence, we can
conclude that now the extended theorem of Weierstrass applies and
the optimization problem is solvable. Accordingly, the constraint of the
problem is essential for its solvability.

Properties of the Functions Involved

In addition to the necessary optimality criterion of first order in non-
constrained optimization, which requires that ∇f(xc) = 0 applies at a
critical point xc, the necessary second-order optimality criterion must
be satisfied as well. This just implies that in case of a local minimum
point the Hessian matrix Hf (xc) must be positive semi-definite. For
this purpose we verify the eigenvalues of Hf (xc) for non-negativity. In
this context, the Hessian matrix follows to

Hf (xc) =

 0 −4hc 4− 4ηc

−4hc 0 4t− 4bc
4− 4ηc 4t− 4bc 0

 . (5.15)

By application of the characteristic polynomial

χ(λ) ..= det (λI1 −Hf (xc))

we obtain

χ(λ) = λ3 − pλ− q (5.16)

with the coefficients

p = 16(h2
c + b2c + η2

c + t2 + 1− 2bct− 2ηc)
q = 128hc(1− ηc)(bc − t).
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Table 5.1: Possible conditions and corresponding characteristics of critical points

Condition Definiteness Critical point

p
√
p < cos(π/6)q Positive definite Strict local minimum

p
√
p ≥ cos(π/6)q Indefinite Saddle point

It is a polynomial of third degree where λ denotes the eigenvalues to
be calculated by establishing χ(λ) = 0. They represent the roots of the
function. As hc > t, bc > t and 1 > ηc > 0 applies, it can be stated that
the coefficients p and q are both > 0. Since q is negative in eq. (5.16),
we can already conclude that, due to the characteristics of the function,
there is a positive root (and thus a positive eigenvalue) in every case.
It is now to be examined whether also negative eigenvalues can occur.
In this specific case, the associated function value to the extremum at
λ = −

√
p/3 must be positive, i.e χ(−

√
p/3) > 0. According to the

intermediate value theorem of real analysis, there is then at least one
root in the interval [−

√
p/3, 0], see [47, p. 336]. This special case is also

called Bolzano’s theorem [48, p. 248]. Insertion of λ = −
√
p/3 into

eq. (5.16) leads to the following condition which must apply.

p
√
p

!
≥ cos

(π
6

)
q

Due to the complexity of the expression, it is not possible to determine
in general terms whether this condition is always satisfied. Moreover,
a critical point must be examined with regard to the case distinctions
listed in table 5.1. However, we can still rule out the possibility that a
strict local minimum occurs via the properties of the objective function.
In case of a strict local minimum, the objective function must be strictly
convex. Figure 5.2 shows that the underlying objective function is a
straight line and thus forms a special case, since the function is both
convex and concave. Accordingly, the requirement of strict convexity
can be excluded, which leads to the statement that each critical point
must be a saddle point for a fixed di.

128



5.1 Analyses and Definitions

Interpretation of the Solution Space

After the solvability of the optimization problem has been investigated
and the type of critical points has been determined, the permissible
solution space shall finally be interpreted in the last section. Since this

Ω(y∗, di)

εγ εη

0

ε

h

f(di)/l0

εµ

εN
εg

εl

f(di)/l0

f ′(di)/l0

ε′

h′

εσ(p1)

εσ(p2)

εσ(p5)

εσ(p3) εσ(p4)

εσ(p6) εσ(p7)

Absorbing point

A

B

C

D

hη > 0

g13 = 0 g19 = 0

g15 = 0

IP

Figure 5.3: Qualitative illustration of the solution space (assuming δ > 0)

extends over a six-dimensional space and therefore does not allow a
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complete graphical representation, we assume that a permissible point
combination exists denoted by

y∗ = [b∗ η∗ β∗ δ∗]T, y∗ ⊆ y ∈ Ω(di). (5.17)

Here, we benefit from the findings of the previous chapter 4. There it
was shown that almost all constraints can be represented as functional
relations between the eccentricity ε and the height h and do not neces-
sarily require an implicit representation. With the help of this property,
the constraint functions can now be visualized and are depicted in figure
5.3. At this point it should be mentioned that the illustration is valid
for a δ > 0 and describes the resulting set in a qualitative form. By
which constraints the set is limited cannot be defined in a general way,
rather this depends on the further parameters of the function (such as
nominal load m0 and span width l0 for instance). However, we will see
in the further course of the work that the knowledge of the shape of
the set will be of minor importance. Furthermore, figure 5.3 represents
a possible solution space on which the essential properties are to be
demonstrated.

The corresponding compact set of points Ω(y∗, di) ⊆ Ω(di) containing
all permissible combinations of ε and h is then to be identified by the
application of the developed inequality conditions. In particular, the
intersection points (IP) of the individual functions are analyzed. Here,
the set is constrained by three curves (AB, BC and CA), while all points
on these lines are active in their respective inequality constraints.

There are a number of further peculiarities in this context, which will be
discussed in more detail. From figure 5.3 it can be noticed that, except
for the function εη, all other constraint functions intersect the abscissa
at a designated point C. All these functions have in common that they
can be represented as the product of two functions, namely the initial
bending moment M0 and a respective individual term (see chapter 4).
Accordingly, point C just corresponds to the associated root of the term
of the initial bending moment. A key feature of this point is that due
to the root the eccentricity vanishes here. This circumstance can be
interpreted to mean that at this particular height the girder is just stiff
enough to maintain the required deflection ratio δ > 0 at nominal load.
Here, h reaches its maximum value. For this reason, point C will be
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referred to as the absorbing point in the following, which, however, can
only occur for deflection ratios δ > 0. Point B, in turn, represents the
point of maximum eccentricity which can be applied without violating
the boundary conditions.

Against the background of the actual optimization problem, point A
is of great importance. On the one hand, it limits the set as a vertex
and, on the other hand, it just corresponds to the minimum height h′
for y∗ which satisfies all constraints. With the according value for the
eccentricity ε′, the desired profile geometry of minimum weight is then
exactly described. The additional, qualitative course of the objective
function normalized to the span width f(di)/l0 clarifies this, since it
just reaches its permissible minimum value f(di)′/l0.

5.1.3 Key Findings

The investigation of the underlying optimization program performed in
the previous section revealed important information which are to be
summarized in brief below:

1. The optimization problem is solvable only in case that the problem
is constrained.

2. Every critical point of the semi-constrained optimization problem
is a saddle point.

3. The critical points, which provide minimal values for the objective
function, are located on the edge of the set determined by the
constraints.

5.2 Solution Approach

Due to the complexity and number of nonlinear constraint functions,
the optimization problem cannot be solved analytically in its entirety.
In case of the KKT conditions (see section 2.4), the resulting system of
equations could not be solved with a justified effort. Furthermore, the
method has to be executed for all (discrete) values di of {D}. Finally,
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these circumstances require the application of a numerical method for
the approximate solution of the optimization problem.

Since the segmented crane bridge is a new kind of structure, the primary
goal here is to gain a thorough understanding of the characteristics of the
system within the solution process. This also means that conclusions are
to be drawn as to which constraints dominate or which constraints are
responsible for the fact that no solution can be found. For this reason,
the attempt is made to use as much information as possible that is
already available in advance to develop a suitable solution method based
on it. An essential point is to identify paths or parameter combinations
in time, which do not lead to a solution and to separate them accordingly
to make the procedure efficient.

5.2.1 Discretization of Continuously Distributed Variables

In the previous section it was shown that if a point y∗ is assumed to
satisfy the boundary conditions and leads to a solution, the associated
solution set Ω(y∗, di) can be represented graphically. The main advan-
tage of this is that the functions then depend only on the variable h,
while the remaining parameters can be considered constant. A determi-
nation of the minimum height h′ (for the point y∗) is then comparatively
simple, since it is located on the edge of the set and can be identified via
the calculation of the intersection points of the functions. The accord-
ing eccentricity then corresponds to the function value at this point.
The handling of the problem is simplified by this approach consider-
ably. Nevertheless, no statement can yet be made as to whether there
are other points that lead to better results.

Furthermore, so far we do not have any information regarding the "deter-
mination" of such a possible point y∗. In addition, the design variables,
which the point y∗ contains, are continuously distributed, accordingly
also infinitely many combinations are possible. In order to summarize all
these points, we introduce in this context the new subset Λ∗(di), which
contains all possible combinations of the remaining variables. For this
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purpose, the new index set Γ̄ ⊆ Γ is first introduced, for whose elements
the following condition applies.

∀ γ̄ ∈ Γ̄ : gγ̄ 6= f(h, ε) (5.18)

Here, Γ̄ then takes into account only those constraint functions that do
not contain either h or ε. The set of all permissible point combinations
Λ∗(di) is then defined by

Λ∗(di) = {y∗ ∈ R4
+, di ∈ {D} | gγ̄(y∗, di) ≥ 0, γ̄ ∈ Γ̄}. (5.19)

Here, it is to be highlighted that this point is assigned to a fixed di ∈
{D} and thus all variables except h and ε are exactly defined.

It is easy to see that examining each point individually would not be
purposeful. For this reason, we apply the strategy of discretization to
break down the infinite, continuously distributed number of combina-
tions to a finite (discrete) number. In this process, we facilitate the
handling of the problem, but accept a loss of information, since not
all points will be considered, but rather a selection. In this context,
we define another subset L∗(di) ⊆ Λ∗(di) containing a finite amount
of points from Λ∗(di). Figure 5.4 represents the discretization qualita-
tively. Here, it can be seen that all points from L∗(di) are also contained
in Λ∗(di). However, the same statement does not apply vice versa. In
the further course of the work it is task to identify such a set L∗(di).

5.2.2 Verification of the Existence of Suitable Design
Variable Combinations

The idea of discretization now lays the foundation for the development
of a first procedure, with the help of which a suitable point combina-
tion can be identified, which allows the solvability of the optimization
problem in principle. Here, we again profit from the already defined
constraints.
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Λ∗(di)

L∗(di)

Figure 5.4: Discretization strategy

First, we decompose the intervals defined at the beginning for the height
ratio Ωη and the deflection ratio Ωδ (see section 5.1.1) into associated
discrete intervals

C̄δ
i (di) = [δi1, . . . , δij , . . . , δio], C̄δ

i (di) ⊆ Ωδ (5.20)
C̄η
i (di) = [ηi1, . . . , ηik, . . . , ηip], C̄η

i (di) ⊆ Ωη (5.21)

with 1 ≤ j ≤ o and 1 ≤ k ≤ p. The maximum value of C̄η
i (di) can be

determined by consideration of constraint g4.

max {C̄η
i (di)}

!= 1− t

λhl0
(5.22)

By combining them, we obtain a new two-dimensional interval.

C̄(1)
i (di) = C̄δ

i (di)× C̄η
i (di), C̄(1)

i (di) ⊆ R2
+ (5.23)
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At any point c̄(1)
ijk = [δij , ηik] of this interval under certain circumstances

another interval can be spanned, which is assigned to this point. Here,
we first also decompose the set Ωb into a discrete interval of considerable
values for the width b with 1 ≤ l ≤ q.

C̄b
ijk(di) = [bijk1, . . . , bijkl, . . . , bijkq], c̄bijk(di) ⊆ Ωb (5.24)

From the constraints g1 and g2 we can see that the width b and the width
ratio β are functionally related. For this reason, the outstanding interval
cannot be simply set up, rather this relationship must be taken into
account. Since we take the interval of the width as given, we rearrange
the constraint in order to identify the functional relationship. Thus
we obtain the (functionally) bounded and initially continuous interval
Cβ
ijkl(bijkl, di).

Cβ
ijkl(bijkl, di) =

[
di + t+ 2s2

2bijkl
, 1− 2 bw

bijkl
−
(√

0.98 + 1
2

)
t

bijkl

]
For this interval to be generated, the following inequality condition must
be satisfied.

di + t+ 2s2

2bijkl
!
≤ 1− 2 bw

bijkl
−
(√

0.98 + 1
2

)
t

bijkl
(5.25)

A further discretization then leads to the assigned interval for a specific
bijkl ∈ C̄b

ijk(di).

C̄β
ijkl(bijkl, di) = [βijkl1, . . . , βijklm, . . . , βijklr], C̄β

ijkl(bijkl, di) ⊆ Ωβ

(5.26)

The two new intervals can also be formed to a two-dimensional interval
as follows.

C̄(2)
ijk(di) = C̄b

ijk(di)× C̄β
ijkl(C̄

b
ijk, di), C̄(2)

ijk(di) ⊆ R2
+ (5.27)
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Table 5.2: Approaches to determine suitable parameter combinations

Name Description Characteristic

LOA Local optimization approach Separation of entire problem
into single problems Pi(di)

GOA Global optimization approach Consideration of entire problem

By combining the intervals C̄(1)
i (di) and C̄(2)

ijk(di) the entire space can
be represented now by a further combination. We obtain

C̄i(di) = C̄(1)
i (di)× C̄(2)

ijk(di), C̄i(di) ⊆ R4
+ (5.28)

while a point from this interval is then described by

c̄ijklm(di) = [δij , ηik, bijkl, βijklm(bijkl)], c̄ijklm(di) ∈ C̄i(di). (5.29)

The procedure is qualitatively illustrated in figure 5.5.

Global Approach for the Identification of Suitable Design Variable
Combinations

Up to now, the entire optimization problem was separated into subprob-
lems and considered locally in each case. A certain diameter di ∈ {D}
served as a reference point.

In the following, an alternative, global approach will be developed,
which basically follows the same procedure, but additionally includes
the set {D} in the determination of suitable parameter combinations.
In order to be able to distinguish between both approaches, we will use
the terms LOA and GOA in the further course of the work, see table
5.2. The optimization problem determined by eq. (5.5) in section 5.1.1
remains in its definition, only the introduced index i disappears, since
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C̄η
i (di)

C̄δ
i (di)

δi1

δij
δio

ηi1

ηik

ηip

C̄β
ijk(C̄b

ijk, di)

C̄b
ijk(di)

βijkl1

bijk1

bijkl

bijkq

βijklm

βijklr

C̄(1)
i (di)

c̄(1)
ijk

c̄ijklm

C̄(2)
ijk(di)

{D}

d1

dn

di

Figure 5.5: LOA - Identification of possible combinations of design variables
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we now no longer consider the problem at a fixed di. Moreover, we then
obtain the new expression

min
y ∈ Ω, d ∈ {D}

f(x, d)

s.t. gγ(y, d) ≥ 0, γ ∈ Γ
(5.30)

with the corresponding set

Ω = {y ∈ R6
+, d ∈ {D} | gγ(y, d) ≥ 0, γ ∈ Γ}. (5.31)

Accordingly, we consider d as an additional parameter to be varied.
We proceed analogously to the previous section and first address the
identification of suitable combinations of design variables. In contrast
to the LOA, we consider a different sequence in the first step and create a
discrete, three-dimensional space described by the intervals with respect
to the deflection ratio B̄δ, height ratio B̄η and width B̄b.

B̄δ = [δ1, . . . , δj , . . . , δo], B̄δ ⊆ Ωδ (5.32)
B̄η = [η1, . . . , ηk, . . . , ηp], B̄η ⊆ Ωη (5.33)
B̄b = [b1, . . . , bl, . . . , bq], B̄b ⊆ Ωb (5.34)

The maximum value of B̄η is to be calculated analogously to eq. (5.22).
Combining of the single intervals leads to the new three-dimensional
interval B̄(1).

B̄(1) = B̄δ × B̄η × B̄b, B̄(1) ⊆ R3
+ (5.35)

Again, under certain circumstances, a new interval can be created at a
point b̄(1)

jkl = [δj , ηk, bl] with b̄(1)
jkl ∈ B̄(1). Since we assume a fixed width

bl at this point, an essential prerequisite for the creation of a new interval
is, that minimum one traction mechanism (mainly determined by the
diameter d) of the given set {D} fits into the segment, respectively into
the connecting element. For this reason it is mandatory, that a subset
{D}∗jkl of {D} exists which contains all possible traction mechanisms
that are suitable to be inserted while {D}∗jkl must contain at least one
traction mechanism. Otherwise the restricted geometry does not allow
the insertion. Again, we use the constraint functions g1 and g2 with
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respect to geometry and establish the following condition, which must
be fulfilled2.

∃!{D}∗jkl ⊆ {D},∀djkli ∈ {D}∗jkl :
0 ≤ djkli ≤ 2bl − 4bw − (

√
3.92 + 2)t− 2s2 (5.36)

The resulting set {D}∗jkl at the point b̄(1)
jkl can be interpreted as an

interval as well while the total number of elements njkl depends on the
width bl, i.e. njkl = f(bl).

{D}∗jkl = [djkl1, . . . , djkli, . . . , djkln], {D}∗jkl ∈ {D} (5.37)

In addition, for each djkli ∈ {D}∗jkl a range of possible inner widths can
be determined. In comparison to the interval B(1), here the quantities
are functionally related. Taking into account g1 and g2 it can be deter-
mined that the minimum value of the possible width ratio depends on
the diameter of the respective steel bar. On the other hand, the maxi-
mum value of the range only depends on the outer width bl. Again, we
formulate the corresponding interval Bβ

jkli.

Bβ
jkli(bl, djkli) =

[
djkli + t+ 2s2

2bl
, 1− 2bw

bl
−
(√

0.98 + 1
2

)
t

bl

]
(5.38)

In analogy to the ineq. (5.25), the following condition must also be
fulfilled.

djkli + t+ 2s2

2bl
!
≤ 1− 2bw

bl
−
(√

0.98 + 1
2

)
t

bl
(5.39)

A discretization leads to the corresponding interval for the width ratio.

B̄β
jkli(bl, djkli) = [βjkli1, . . . , βjklim, . . . , βjklir], B̄β

jkli ⊆ Ωβ (5.40)

The generated intervals are further combined to

B̄(2)
jkl = {D}∗jkl × B̄β

jkli(bl, djkli), B̄(2)
jkl ⊆ R2

+ (5.41)

2 Here, the index i for the diameter d is kept.

139



5 Structural Optimization

which gives by a further combination the entire space.

B̄ = B̄(1) × B̄(2)
jkl, B̄ ⊆ R5

+ (5.42)

A point b̄jklim of B̄ is then described as follows,

b̄jklim = [δj , ηk, bl, djkli(bl), βjklim(bl, djklim)], b̄jklim ∈ B (5.43)

with figure 5.6 illustrating the approach.

It has been shown for both strategies that the discretization leads to
a space C̄i(di) ⊆ R4

+ (LOA), respectively B̄ ⊆ R5
+ (GOA), of discrete

combination possibilities, whose cardinality in turn depends on the fine-
ness of the discretization. We now generally refer to such a space as
X̄ ⊆ Rυ+ with υ ∈ {4, 5}. If there exists at least one point x̄∗ from X̄
that satisfies all constraints gγ̄ with according index set Γ̄ assigned to it,
then it is also an element of L∗ ⊆ Λ∗ ⊆ Rυ+ and the generation of the re-
maining space is possible. At this moment it should already be pointed
out that the existence of x̄∗ depends decisively on the initially chosen
intervals and the fineness of the discretization. Consequently, this is
a necessary condition for the numerical computation of a solution and
summarized in lemma 5.2.1.

Lemma 5.2.1. Let X̄ ⊆ Rυ+ be the set of discrete point combinations
and L∗ ⊆ Λ∗ ⊆ Rυ+ the discrete set of points, which fulfill all the corre-
sponding constraints gγ̄ . If X̄ ∩Λ∗ 6= ∅ then L∗ 6= ∅ and it applies:

∃x̄∗ ∈ X̄ ⊆ Rυ+ : gγ̄(x̄∗) ≥ 0, γ̄ ∈ Γ̄.

This condition is depicted in figure 5.7. Whether a solution of the
entire optimization problem can also be found at this point remains
unanswered for the moment. Moreover, this criterion implies that by
the existence of a suitable combination of variables x̄∗, the set L∗ can
be identified since it is not empty. This is an essential condition for the
further calculation of a solution.
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Figure 5.6: GOA - Identification of possible combinations of design variables
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Λ∗ Λ∗ Λ∗

X̄ ∩Λ∗ = ∅ X̄ ∩Λ∗ 6= ∅ X̄ ∩Λ∗ 6= ∅

|L∗| = 0 |L∗| = 1 |L∗| > 1

X̄
X̄

X̄L∗

x̄∗

Figure 5.7: Discretization and corresponding sets

5.2.3 Identification of Local Critical Points

After the first solvability condition has been formulated, the remaining
part of the optimization problem will be investigated in the following
section. In this context, we require that lemma (5.2.1) is true, i.e.
L∗ 6= ∅, and that at least one suitable variable combination x̄∗i...m exists
on which the further computation can be performed. Whether this com-
bination is determined by the LOA or GOA strategy is not important
at this point. The entire index (i...m) refers to the fact that, except for
the eccentricity ε and the height h, all other design variables are now
known. For the sake of completeness, we use this accordingly for the
occurring quantities. The task is now to determine εi...m and hi...m as-
sociated with the point x̄∗i...m while it is of particular interest for which
values ε′i...m and h′i...m the objective function value at the point becomes
minimum. For this purpose, it is reasonable to follow up the strategy of
using available information and successively limit the possible range of
hi...m with regard to the defined constraints (see summary table 4.2).
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In the following, we will formulate important relations and conditions
as lemmas and always assume their validity. On this basis, the entire
solution strategy can be developed.

Successive Interval Limitation

In order to prevent the girder from exceeding a maximum permissi-
ble deflection in x2-direction, the beam must possess a minimum outer
height. The corresponding constraint is determined by g14. The exter-
nal height is additionally limited downwards, which can be identified
by rearranging eq. (4.38). Here, only the maximum value given by the
constraints is of interest. Then, the interval Ii...m of possible external
heights hi...m follows to

Ii...m =
[
max

{
t

1− ηj
;hδi...m

}
,min

{
l∗s − λls − xp

ηj(1− λ3) ;λhl0

}]
(5.44)

while the smaller value given by g3 and g5 define the upper limit. In
figure 5.3 it was qualitatively shown that in the case of a deflection
ratio δ > 0 the maximum value of the height is limited by the absorbing
point. This point just corresponds to the root of the term of the initial
bending moment M0. In order to examine whether a root exists, the
following condition must apply with respect to the intermediate value
theorem.

Lemma 5.2.2. Let M0,i...m(min{Ii...m}) > 0, M0,i...m(max{Ii...m}) <
0, then applies: ∃!hMi...m ∈ Ii...m : M0,i...m(hMi...m) = 0 and hMi...m ..=
max{Ii...m}.

In case that lemma 5.2.2 applies, the upper limit of Ii...m is to be
adjusted and we obtain

Ii...m =
[
max

{
t

1− ηj
;hδi...m

}
, hMi...m

]
. (5.45)

The interval defined by eq. (5.44), respectively eq. (5.45), forms the
basis for the subsequent investigation of the remaining constraint func-
tions. From figure 5.3 we further see that the function εη intersects the

143



5 Structural Optimization

abscissa, denoted by point D. When this is the case, the intersection
point limits the interval downwards and the current lower limit is given
by the root. Unless there is an intersection point in the interval, we
require that only positive function values for εη exist on the interval,
i.e. only positive values for the eccentricity. This circumstance results
in the following requirements.

Lemma 5.2.3. Let εη(min {Ii...m}) > 0, εη(max {Ii...m}) > 0, then all
function values εηi...m on the interval are positive and constraint g13 is
fulfilled.

Lemma 5.2.4. Let εη(min {Ii...m}) < 0, εη(max {Ii...m}) > 0, then
both negative and positive function values occur and it applies: ∃!hηi...m ∈
Ii...m : εηi...m(hηi...m) = 0 and hηi...m ..= min{Ii...m} and constraint g13 is
fulfilled.

By graphical analysis of the constraint functions with regard to the
mechanical stresses it can be seen that they tend to form poles within
the interval, with positive values for the eccentricity only existing right
to the pole, see figure 5.8. Taking into account eq. (4.59), the according

Ii...m

Absorbing point

hpi...m hMi...m
0

εσi...m(pξ)

hi...m

Figure 5.8: Qualitative representation of the poles

equations Pσi...m,ξ describing the poles are determined by

Pσi...m,ξ = M2

I22
pξ3 −

M3

I33
pξ2 −

σ22

2 +
√
σ2

22
4 − ψσ + λ∗σσ̂11. (5.46)
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First and foremost, we require that only positive function values of
Pσi...m,ξ exist on the interval, then we can rule out the possibility that
the interval is bounded by a pole. If this is not the case, then the root
must be identified again via the intermediate value theorem. Moreover,
we formulate the following conditions.

Lemma 5.2.5. Let Pσi...m,ξ(min {Ii...m}) > 0, Pσi...m,ξ(max {Ii...m}) >
0, then all function values on the interval are positive.

Lemma 5.2.6. Let Pσi...m,ξ(min {Ii...m}) > 0, Pσi...m,ξ(min {Ii...m}) <
0, then both negative and positive function values occur and it applies:
∃!hpi...m,ξ ∈ Ii...m : Pσi...m,ξ(h

p
i...m,ξ) = 0.

Since lemma (5.2.5), respectively lemma (5.2.6), refers to a certain point
pξ we tighten it by introducing the set {P }σi...m containing all roots
hpi...m,ξ and obtain the condition

max {{P }σi...m} ..= min {Ii...m} (5.47)

in case that the set exists, i.e. {P }σi...m 6= ∅. In figure 5.8 the function
with the relevant pole is highlighted in blue while the gray areas mark
the non-permissible interval ranges.

At this stage the interval is adjusted where only positive values for the
eccentricity are given, determined by eq. (4.71). In the following, it is
to be verified whether the contained combinations of εi...m and hi...m
satisfy the remaining constraints. By rearranging the equations, we
find that the remaining functions limit the eccentricity either upwards
or downwards. For this reason, it makes sense to sort them accordingly.
At first we consider the constraints that limit εi...m downwards and
establish auxiliary functions which are defined as follows:

D
(1)
i...m(hi...m) ..= εηi...m − ε

l
i...m (5.48)

D
(2)
i...m(hi...m) ..= εηi...m − ε

g
i...m (5.49)

D
(3)
i...m,ξ(hi...m) ..= εηi...m − ε

σ
i...m,ξ(pξ), ξ ∈ {1, . . . , 7} (5.50)

D
(4)
i...m(hi...m) ..= εηi...m − ε

N
i...m (5.51)

145



5 Structural Optimization

In this connection, it is of particular interest, whether for the specific
auxiliary functions roots exist. These mark the significant points where
both boundary conditions are fulfilled, on which the auxiliary functions
are based on. Since the εηi...m limits the eccentricity upwards and the
remaining functions limit the eccentricity downwards, we can state as
a first requirement regarding solvability that all function values of the
auxiliary functions must be positive. Otherwise, the boundary condi-
tions would be violated. In case that a root of an auxiliary function
exists, both positive and negative function values occur. Again, the
root then marks the new lower boundary of the interval. On this basis,
we derive the corresponding lemmas in the following.

Lemma 5.2.7. Let ∀hi...m ∈ Ii...m : D(1)
i...m(hi...m) > 0, then the con-

straints g13 and g17 are fulfilled.

Lemma 5.2.8. Let D(1)
i...m(min {I}i...m) < 0, D(1)

i...m(max {I}i...m) > 0,
then applies: ∃!h(1)

i...m ∈ Ii...m : D(1)
i...m(h(2)

i...m) = 0 and the constraints
g13 and g17 are fulfilled.

As far as lemma (5.2.7) is not satisfied, a solution can still exist. For
this, however, lemma (5.2.8) must be fulfilled. For the other auxiliary
functions we proceed analogously and set up the respective conditions.
One of the conditions must be true for each function. Subsequently we
formulate the conditions regarding D(2)

i...m.

Lemma 5.2.9. Let ∀hi...m ∈ Ii...m : D(2)
i...m(hi...m) > 0, then the con-

straints g13 and g16 are fulfilled.

Lemma 5.2.10. Let D(2)
i...m(min {I}i...m) < 0, D(2)

i...m(max {I}i...m) >
0, then applies: ∃!h(2)

i...m ∈ Ii...m : D(2)
i...m(h(2)

i...m) = 0 and the constraints
g13 and g16 are fulfilled.

Furthermore, the conditions with regard to mechanical stresses result
as follows.

Lemma 5.2.11. Let ∀hi...m,ξ ∈ Ii...m, ξ ∈ {1, . . . , 7} : D(3)
i...m,ξ(hi...m,ξ)

> 0, then the constraints g13 and g6 to g12 are fulfilled.
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Lemma 5.2.12. Let D(3)
i...m,ξ(min {I}i...m) < 0, D(3)

i...m,ξ(max {I}i...m) >
0, then applies: ∃!h(3)

i...m,ξ ∈ Ii...m, ξ ∈ {1, . . . , 7} : D(3)
i...m,ξ(h

(3)
i...m,ξ) = 0

and the constraints g13 and g6 to g12 are fulfilled.

The remaining conditions comprise the constraint with regard to the
maximum assembly preload that can be applied to the traction mecha-
nism.

Lemma 5.2.13. Let ∀hi...m ∈ Ii...m : D
(4)
i...m(hi...m) > 0, then the

constraints g13 and g15 are fulfilled.

Lemma 5.2.14. Let D(4)
i...m(min {I}i...m) < 0, D(4)

i...m(max {I}i...m) >
0, then applies: ∃!h(4)

i...m ∈ Ii...m : D(4)
i...m(h(4)

i...m) = 0 and the constraints
g13 and g15 are fulfilled.

All occurring roots can be summarized into a new set denoted by
{R}i...m, whereby all of them limit the range of possible solutions down-
wards. Then, the current lower limit of the interval Ii...m is represented
by the maximum value of {R}i...m. We obtain

max {{R}i...m} ..= min {Ii...m} (5.52)

for the lower limit of the current interval. In case that no roots occur,
the respective alternative conditions must be fulfilled and the lower limit
of Ii...m remains unmodified.

The last step contains the investigation of the constraint functions lim-
iting the eccentricity upwards. Analogously to the previous section the
auxiliary functions

U
(5)
i...m(hi...m) ..= εηi...m − ε

µ
i...m (5.53)

U
(6)
i...m(hi...m) ..= εηi...m − ε

γ
i...m (5.54)

with respect to the constraints g18 and g19 are defined. Here, the same
conditions apply and we formulate the respective requirements.

Lemma 5.2.15. Let ∀hi...m ∈ Ii...m : U
(5)
i...m(hi...m) > 0, then the

constraints g13 and g18 are fulfilled.
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Lemma 5.2.16. Let U (5)
i...m(min {Ii...m}) < 0, U (5)

i...m(max {Ii...m}) > 0,
then applies: ∃!h(5)

i...m ∈ Ii...m : D(5)
i...m(h(5)

i...m) = 0 and the constraints
g13 and g18 are fulfilled.

The last conditions concerning the solvability include the constraints
concerning the contour accuracy. We define them according to the same
scheme.

Lemma 5.2.17. Let ∀hi...m ∈ Ii...m : U
(6)
i...m(hi...m) > 0, then the

constraints g13 and g19 are fulfilled.

Lemma 5.2.18. Let U (6)
i...m(min {Ii...m}) < 0, U (6)

i...m(max {Ii...m}) > 0,
then applies: ∃!h(6)

i...m ∈ Ii...m : D(6)
i...m(h(6)

i...m) = 0 and the constraints
g13 and g19 are fulfilled.

Exactly as executed before, the two possible occurring roots can be
grouped to a set {R}∗i...m while now its minimum value determines the
upper limit of the interval Ii...m. Then the following condition applies.

min{{R}∗i...m} ..= max{Ii...m} (5.55)

Determination of the Local Critical Point

With the help of the successive reduction of the interval Ii...m, the
current lower and upper limit of the external height hi...m and the cor-
responding eccentricity εi...m could be determined. As a last final con-
straint, it must be possible to establish an interval within the defined
limits. For this purpose we require

min{Ii...m}
!
≤ max{Ii...m}. (5.56)

In case of existing roots, i.e. {R}i...m 6= ∅ and {R}∗i...m 6= ∅, the con-
straint defined by eq. (5.56) above can be alternatively formulated as

max{{R}i...m}
!
≤ min{{R}∗i...m}. (5.57)
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If the interval does not exist, the set Ω′i...m(x̄∗i...m) ⊆ Ωi...m(x̄∗i...m) con-
taining εi...m and hi...m does not exist either and therefore no solu-
tion can be found. To determine the height that leads to a minimum
objective function value f ′(x̄∗i...m, h′i...m) at the point x̄∗i...m, we easily
recognize that it must now be at the edge of the interval due to the in-
equality constraints. This finding is also consistent with the properties
of the optimization problem investigated in section 5.1.3. Therefore, we
can now clearly identify the minimum h′i...m, since this just corresponds
to the lower limit of the interval Ii...m. With this background, we can
now establish the sufficient condition for numerical solvability, which
we will refer to as the second order criterion of numerical solvability in
the following.

Lemma 5.2.19. Let min {Ii...} ≤ max{Ii...m}, then Ω′i...m(x̄∗i...m) 6= ∅
and h′i...m = min {Ii...m} and ε′i...m = εηi...m(h′i...m).

Figure 5.9 shows the consistent interval reduction qualitatively. The ver-
tical dashed lines represent the intersection of the individual constraint
functions while the gray areas again mark the impermissible ranges. It
can be clearly seen that the minimum height sought lies on the edge of
the set Ω′i...m(x̄i...m). Furthermore, it should be noted that all values
[hi...m, εi...m] ∈ Ωi...m(x̄∗i...m) also represent possible solutions, but only
those are of interest that are elements of Ω′i...m(x̄∗i...m).

Summary of Numerical Solvability

Finally, we summarize that the numerical determination of a possible
solution requires two essential conditions. These include the First order
criterion of numerical solvability as a necessary condition, i.e. the exis-
tence of a permissible parameter combination x̄∗i...m (see lemma (5.2.1)),
and the Second order criterion of numerical solvability as a sufficient
condition, according to which the existence of the set Ω′i...m(x̄∗i...m) is
required (see lemma (5.2.19)). In this framework, the interval is suc-
cessively reduced against the background of the defined inequality con-
ditions, whereby it is then constantly verified by exclusion procedures
whether the interval can be established and thus the set Ω′i...m(x̄∗i...m)
exists. Since irrelevant areas or rather impermissible solutions are cut
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0

εi...m

hi...m

ε′i...m

h′i...m

Ωi...m(x̄∗i...m)

Ii...m

Ω′i...m(x̄∗i...m)

Figure 5.9: Interval limitation

off at the same time, this approach can be assigned to the method of
Branch and Bound. The contribution of all relevant sets is graphically
illustrated in figure 5.10. Here, the set Ω denotes the set of all solutions
y of the optimization problem, while X̄ represents the set of all discrete
parameter combinations. We recognize that a fraction of X̄ must be
a subset of Ω, otherwise no solutions exist. This subset is denoted by
L∗. At such a point x̄∗i...m ∈ L∗, the set Ωi...(x̄∗i...m) can be identi-
fied by application of the successive interval limitation, which in turn
leads to the set Ω′i...(x̄∗i...m) by an interval limitation. The desired point
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Ω

x̄∗i...m
Ωi...m(x̄∗i...m)

Ω′i...m(x̄∗i...m)

[h′i...m, ε′i...m]

L∗
X̄

y′i...m

Figure 5.10: Solution approach

[h′i...m, ε′i...m] is then located on the edge of the set and results altogether
in the overall point y′i...m, which is defined as follows.

y′i...m = [x̄∗i...m, h′i...m, ε′i...m], y′i...m ∈ Ω (5.58)

Furthermore, figure 5.10 highlights that the discretization has a signifi-
cant impact on finding a solution due to the accepted loss of information.
For example, if the discretization is not fine enough, it may not be pos-
sible to identify a point x̄∗i...m that is an element of L∗. Accordingly, in
this case L∗ does not exist either, i.e. L∗ = ∅, and a solution cannot be
found at all.

The calculation of roots is an essential part of the procedure. Due to the
high degree of complexity of the equations, it is not possible to formulate
analytically closed expressions. Furthermore, a numerical procedure for
the calculation of the roots is required. Since in the determination of a
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solution, among other things, the function values at the interval bound-
aries are considered, the bisection method is used as a numerical solution
procedure for the determination of roots. By a consistent interval nest-
ing, the roots can be approximated until a defined termination criterion
is reached. It is a very robust method and, compared to other meth-
ods (such as Newton’s method), only requires statements about the
function values at the interval boundaries [49, p. 185].

Analytical Examination

The numerical method provides solutions, but no statements about the
characteristics of the calculated solutions. Against the background of
the fundamentals of nonlinear optimization developed in chapter 2, the
problem is to be investigated analytically. Due to the underlying com-
plexity, however, assumptions and simplifications have to be made:

• The constants are selected in such a way that the problem is solv-
able and

• the decisive local critical point is always identified by the inter-
section of the functions εη and εN according to the numerical
procedure presented.

The determination of this intersection leads to a polynomial of sixth
degree, which is not elementary solvable. For this reason, this solution
is simplifying assumed as known and denoted by x̄ = [ε̄, h̄].

Within the graphical interpretation (see figure 5.3) it could already be
determined that this point is obviously a local minimum, which - in this
case - is active in the constraints g13 and g15. It is now to be investigated
whether this always holds for such an intersection. For this purpose the
gradients of the involved functions are formed and it is requested that
no vector s∗ ∈ R2 exists [38, p. 130] which solves the following system.

〈∇f(x̄), s∗〉 < 0, 〈∇gγ(x̄), s∗〉 < 0, γ ∈ {13, 15}
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If this is true, x̄ is a local minimum point. Here, the partial derivatives
are determined by

∂g13

∂h
= −η − R3l

3
0(α3

1 − 3α2
1 + 2)

Eθ22

1
h4

∂g13

∂ε
= −1

∂g15

∂ε
= γM2

N

(
6Eθ22δ

l0
h2 − 5

12ρgθ1l
2
0

)
∂g15

∂ε
= 1

∂f

∂h
= θ1

∂f

∂ε
= 0

which give the corresponding system of inequalities.

−
(
η + R3l

3
0

Eθ22
(α3

1 − 3α2
1 + 2) 1

h̄4

)
s∗1 + s∗2 < 0 (5.59)

γM2

N

(
5
12ρgθ1l

2
0 −

6Eθ22δ

l0
h̄2
)
s∗1 − s∗2 < 0 (5.60)

θ1s
∗
1 < 0 (5.61)

By ineq. (5.61), s∗1 must be negative for the inequality to be satisfied
while s∗2 is freely selectable. With s∗2/s∗1 = κ∗, this subsequently leads
to a new system of inequalities.

κ∗ > η + R3l
3
0

Eθ22
(α3

1 − 3α2
1 + 2) 1

h̄4
(5.62)

κ∗ >
γM2

N

(
− 5

12ρgθ1l
2
0 + 6Eθ22δ

l0
h̄2
)

(5.63)

Since the right term of ineq. (5.62) can only have positive values, κ∗
must also be positive for the inequality to be true. Now, if the term in
the parenthesis of ineq. (5.63) is ≤ 0, then the system of inequalities is
satisfied in any case. But for x̄ to be a minimum point, this condition
must be formulated in such a way that the system of inequalities cannot
be fulfilled. This results in

h̄ >
l0
6

√
5ρgθ1l0
2Eθ22δ

(5.64)

as a condition for the external height.
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With the help of the analytical consideration, the conclusions listed
below can be drawn with respect to the previously defined assumptions.

• The existence of a minimum point does not depend on the eccen-
tricity.

• If the self-weight is neglected (ρ → 0), every point x̄ is always
a minimum point, since ineq. (5.64) then reduces to the trivial
condition h̄ > 0.

• Furthermore, it can be demonstrated that under the condition
given by ineq. (5.64), the MFCQ is also satisfied.

• If ineq. (5.64) is fulfilled, every minimum point is also a KKT
point.

5.2.4 Global Solution Approximation

The strategy developed in the previous section is able to identify points
y′i...m ∈ Ω that satisfy all constraints and even provide the optimal
result for a fixed point x̄∗i...m. However, this optimum is only limited
to that local point x̄∗i...m and we cannot predict yet whether there are
any "better" points in Ω compared to the already determined point
y′i...m. Moreover, we would have to discretize the spaces infinitely fine
and compare all the points, thus obtaining the best among them. It
is obvious that this approach is not reasonable on one hand and not
feasible on the other hand.

Hence, we first hypothesize that a point y′0 with the property of satisfy-
ing all boundary conditions exists and that a better point y′1 is located
near this point. With the help of the definition of the so-called direction
of descent we are even able to prove this hypothesis [38, p. 30]. For this
purpose, we additionally first normalize all remaining continuously dif-
ferentiable and dimensioned quantities with respect to the span width
l0 and thus obtain the quantities that are decisive for the objective
function.

ψ = h

l0
, ψ ∈ (0, 1) ω = b

l0
, ω ∈ (0, 1) θ = t

l0
, θ ∈ (0, 1)

154



5.2 Solution Approach

These can again be combined into a vector

ξ ..= [ψ ω η]T (5.65)

which is a subset of the superior vector η, which contains all dimen-
sionless and continuously differentiable quantities (analogous to y). In
terms of completeness, we refer to the associated set determined by the
constraint functions as Ω̃. This set is now divided into two parts: one
subset Ω̃∗ refers to the equality conditions and the other subset Ω̃◦
refers to the strict inequality conditions. This allows a distinction to be
made as to whether a point is in the set or on the edge of the set.

Ω̃◦ = {η◦ ∈ R6
+, d ∈ {D} | g̃γ(η◦) > 0, γ ∈ Γ}

Ω̃∗ = {η∗ ∈ R6
+, d ∈ {D} | g̃γ(η∗) = 0, γ ∈ Γ}

In turn, the union of the sets results in the original set and

Ω̃◦ ∪ Ω̃∗ = Ω̃

applies. Accordingly, the new variables also lead to a new dimensionless
objective function ϕ, which forms the basis for the following proof.

Proof. Let ξ′0 ⊆ η′0 ∈ Ω̃◦ be a critical point and
ϕ(ξ) = 4(ω−(ω−θ)η)ψ+π/4 ·(d/l0)2 the associated objective function,
where d ∈ {D} is not continuously differentiable. We assume, that apart
from ξ′0 no better critical point ξ′1 ⊆ η′1 exists for which applies:

ϕ(ξ′1) < ϕ(ξ′0) (5.66)

Then also no descent direction s exists and it must apply:

@ s ∈ R3 : 〈∇ϕ(ξ′0), s〉 < 0

Here, the scalar product leads to the following expression:

[ω′0 − (ω′0 − θ)η′0]s1 + [1− η′0]ψ′0s2 + [θ − ω′0]ψ′0s3 < 0
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We select a vector s = [0 − 1 1]T and verify the above statement as
follows.

−[1− η′0]ψ′0 + [θ − ω′0]ψ′0 < 0
η′0 − 1 < ω′0 − θ

a1 < a2

By definition, b > 2t applies in any case. From this follows at the same
time that ω′0 > 2 θ and thus a2 > 0 due to θ ∈ (0, 1). Since η′0 is always
< 1, so is a1 < 0. Hence, it is true that a2 > a1 and that the following
statement applies

∃ s ∈ R3 : 〈∇ϕ(ξ′0), s〉 < 0

which proves that at least one descent direction s ∈ R3 exists. Ac-
cordingly, there exists also a better critical point ξ′1 which satisfies the
statement given by ineq. (5.66).

In the context of the proof the distinction of the sets is of relevance. Via
the numerical procedure, a better point can always be approximated,
provided that one is in the set. On the other hand, theoretically the
case can occur that due to the discretization the best point is calculated
by chance. Then there is still a descent direction, but then there is no
better point which also fulfills all constraints.

The statement of the proof is also valid for the dimensioned space, i.e.,
in the neighborhood of a critical point y′0 exists a point y′1 which leads
to a better value of the objective function. The knowledge gained by
the proof is of great importance for the approximation of a solution.
Since a descent direction exists, we can search for a better solution
in the neighborhood of a found critical point and extend the whole
procedure to a gradient based method. This also allows us to avoid the
circumstance of having to perform an infinitely large discretization of all
intervals. Rather, it can be argued that we identify first a point based
on an initially coarse discretization of the entire search range and then
search again for a better one in the neighborhood of this point.
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1

2

ζ

ζ − 1

B̄b
〈1〉

B̄η
〈1〉

B̄δ
〈1〉

B̄(1)
〈1〉[

δ′〈1〉, η
′
〈1〉, b

′
〈1〉

]

[
δ′〈2〉, η

′
〈2〉, b

′
〈2〉

]

[
δ′〈ζ−1〉, η

′
〈ζ−1〉, b

′
〈ζ−1〉

]

[
δ′〈ζ〉, η

′
〈ζ〉, b

′
〈ζ〉

]

B̄(1)
〈2〉

B̄(1)
〈ζ−1〉

B̄(1)
〈ζ〉

Figure 5.11: Recursive limitation of the initial search space

In the following, the procedure is developed using the GOA strategy. For
the LOA the procedure is analogous only with the difference that this
is done for each di ∈ {D} separately. In section 5.2.3 it was shown that
the set X̄ with an initial discretization fineness is essential for finding a
solution. After a point x′〈1〉 ⊆ y′〈1〉 with y′〈1〉 ∈ Ω has been identified by
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the execution of the developed calculation steps, this then leads to the
corresponding objective function value.

f
(
x′〈1〉

)
= 4

(
b′〈1〉 −

(
b′〈1〉 − t

)
η′〈1〉

)
h′〈1〉 + π

4

(
d′〈1〉

)2
(5.67)

The process of calculating a solution for a given discretization fineness is
called a recursion step in the following. Here, the square brackets in the
index indicate the current recursion step ζ. Now that we have identified
the first point, we generate a new initial search space formed around
the point as part of the subsequent recursion step. In particular, the
values δ′〈1〉, η′〈1〉 and b′〈1〉 are of great importance, since they are assigned
to the initial search space B̄(1)

〈1〉. In this connection, we introduce the

B̄b
〈ζ−1〉

B̄δ
〈ζ−1〉 B̄η

〈ζ−1〉

B̄b
〈ζ〉

B̄δ
〈ζ〉 B̄η

〈ζ〉

2λζ∆δ〈ζ−1〉

2λζ∆b〈ζ−1〉

2λζ∆η〈ζ−1〉

B̄(1)
〈ζ−1〉 B̄(1)

〈ζ〉

∆δ〈ζ−1〉∆η〈ζ−1〉

∆b〈ζ−1〉

Figure 5.12: Recursive interval limitation

dimensionless factor λζ called incremental multiplier, which is multiplied
by the increment widths ∆δ〈ζ−1〉, ∆η〈ζ−1〉 and ∆b〈ζ−1〉 of the previous
calculation step in order to set up the boundaries of the current search
space. Including also the traction means determined in the first step of
the calculation, the algorithm is extended by the additional restriction
of the possible traction means. Figure 5.13 schematically represents the
containment of the given set {D}. The position of the (local) optimum
traction mechanisms d′〈1〉,i′ in the first calculation step is marked with
i′. We then refer to this as GOA*, where in this context we introduce
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{D}

d′〈1〉,i′

di′−λd
di′+λd

1

2

Figure 5.13: Recursive interval limitation of the traction mechanisms considered

the additional integer and dimensionless quantity λd ∈ N\{0}. This
specifies the recursive restriction of the search space of the traction
means.

With the help of the corresponding intervals in the recursion step ζ ≥ 2

B̄δ
〈ζ〉 =

[
δ′〈ζ−1〉 − λζ∆δ〈ζ−1〉, . . . , δ

′
〈ζ−1〉 + λζ∆δ〈ζ−1〉

]
, B̄δ
〈ζ〉 ⊆ B̄δ

〈1〉

B̄η
〈ζ〉 =

[
η′〈ζ−1〉 − λζ∆η〈ζ−1〉, . . . , η

′
〈ζ−1〉 + λζ∆η〈ζ−1〉

]
, B̄η
〈ζ〉 ⊆ B̄η

〈1〉

B̄b
〈ζ〉 =

[
b′〈ζ−1〉 − λζ∆b〈ζ−1〉, . . . , b

′
〈ζ−1〉 + λζ∆b〈ζ−1〉

]
, B̄b
〈ζ〉 ⊆ B̄b

〈1〉

the current initial search space can be formed as follows.

B̄(1)
〈ζ〉 = B̄δ

〈ζ〉 × B̄η
〈ζ〉 × B̄b

〈ζ〉, B̄(1)
〈ζ〉 ⊆ B̄(1)

〈1〉 (5.68)
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Here, we further require that the current search spaces are always a true
subset of the search space in the first recursion step and thus obtain the
conditions listed below.

δ′〈ζ−1〉 − λζ∆δ〈ζ−1〉
!
≥ min

{
B̄δ
〈1〉

}
(5.69)

δ′〈ζ−1〉 + λζ∆δ〈ζ−1〉
!
≤ max

{
B̄δ
〈1〉

}
(5.70)

η′〈ζ−1〉 − λζ∆η〈ζ−1〉
!
≥ min

{
B̄η
〈1〉

}
(5.71)

η′〈ζ−1〉 + λζ∆η〈ζ−1〉
!
≤ max

{
B̄η
〈1〉

}
(5.72)

b′〈ζ−1〉 − λζ∆η〈ζ−1〉
!
≥ min

{
B̄b
〈1〉

}
(5.73)

b′〈ζ−1〉 + λζ∆η〈ζ−1〉
!
≤ max

{
B̄b
〈1〉

}
(5.74)

This prevents invalid parameter combinations from being taken into
account. If the limits of the current search space should exceed those of
the initial search space, the following adjustments are made.

δ′〈ζ−1〉 − λζ∆δ〈ζ−1〉 < min
{

B̄δ
〈1〉

}
−→ min

{
B̄δ
〈ζ〉

}
!= min

{
B̄δ
〈1〉

}
δ′〈ζ−1〉 + λζ∆δ〈ζ−1〉 > max

{
B̄δ
〈1〉

}
−→ max

{
B̄δ
〈ζ〉

}
!= max

{
B̄δ
〈1〉

}
η′〈ζ−1〉 − λζ∆η〈ζ−1〉 < min

{
B̄η
〈1〉

}
−→ min

{
B̄η
〈ζ〉

}
!= min

{
B̄η
〈1〉

}
η′〈ζ−1〉 + λζ∆η〈ζ−1〉 > max

{
B̄η
〈1〉

}
−→ max

{
B̄η
〈ζ〉

}
!= max

{
B̄η
〈1〉

}
b′〈ζ−1〉 + λζ∆b〈ζ−1〉 > max

{
B̄b
〈1〉

}
−→ max

{
B̄b
〈ζ〉

}
!= max

{
B̄b
〈1〉

}
b′〈ζ−1〉 + λζ∆η〈ζ−1〉 > max

{
B̄b
〈1〉

}
−→ max

{
B̄b
〈ζ〉

}
!= max

{
B̄b
〈1〉

}
Furthermore, each interval is described by the respective number of
elements it contains. In this context, we keep the discretization fineness
which leads to the same cardinalities in each interval with respect to
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the recursion step. The greater the values for n̄δ, n̄η and n̄b, the more
finely the search space is discretized.∣∣∣B̄δ

〈ζ〉

∣∣∣ =
∣∣∣B̄δ
〈1〉

∣∣∣ = n̄δ (5.75)∣∣∣B̄η
〈ζ〉

∣∣∣ =
∣∣∣B̄η
〈1〉

∣∣∣ = n̄η (5.76)∣∣∣B̄b
〈ζ〉

∣∣∣ =
∣∣∣B̄b
〈1〉

∣∣∣ = n̄b (5.77)

The same applies for the obtained interval of the width ratio.∣∣∣B̄β
jkli(bl, djkli)〈ζ〉

∣∣∣ =
∣∣∣B̄β

jkli(bl, djkli)〈1〉
∣∣∣ = n̄β (5.78)

while the cardinality of the set containing the applicable traction mech-
anisms depends on the current width within the framework of the GOA
strategy.

Finally, the entire procedure is then repeated recursively until the
change of the found minima becomes sufficiently small and reaches
the termination criterion (similar to the Gradient method), defined by
eq. (5.79) with 0 < ε̄� 1.∣∣∣∣∣∣

f
(
x′〈ζ〉

)
f
(
x′〈ζ−1〉

) − 1

∣∣∣∣∣∣ < ε̄ ∧ f
(
x′〈ζ〉

)
− f

(
x′〈ζ−1〉

)
> 0 (5.79)

Here, the meaning of approximation becomes clear once again. Although
we were able to show the general solvability of the optimization problem
in section 5.1.2, we cannot solve the global problem exactly due to
the discretization, but rather approximate the global solution until the
termination criterion defined is reached. Nevertheless, we are able to
determine the optimum for a fixed point (x̄∗i...m)〈ζ〉 in each recursion step
with respect to the determination criterion determined by the performed
bisection method.
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5.3 Algorithm Implementation and Settings

A total of three solution approaches are available, whereby the GOA*
is to be seen as a special case of the GOA. A gradient-based method
forms the basis for the approximation of a solution. In this context, the
introduced process parameters n̄δ, n̄η and n̄b as well as the incremental
multiplier λζ and λd (in case of GOA*) occur additionally. All of them
are freely selectable in each case. In the following section it is now to
be examined which quality the individual parameter settings have and
which approximate the solution best.

5.3.1 Design of Experiments

In addition to the geometric quantities mentioned, which are to be opti-
mized, a large number of other parameters have occurred in the course
so far, which were assumed to be constants, but which can also be
varied. This results in a large number of possible variations, whereby
the effort of investigating each individual combination would not be
justifiable. Here, the Design of Experiments (DoE) provides methods
to obtain significant results from comparatively few experiments to be
performed within the framework of a structured approach.

In the procedures for generating a suitable test field for computer ex-
periments, it is assumed that hardly any information is available in
advance. For this reason, the targeted test field is constructed in such
a way that as much information as possible can be obtained in each re-
gion of the factor space. This results in the construction of a uniformly
distributed test field that aims at minimizing the variance of the global
mean of the variables under consideration. In this context, the literature
offers different methods for constructing such a test field. We select the
Latin Hypercube method since it provides a significantly lower variance
of the global average compared to other methods, such as using a ran-
dom Monte Carlo field with the same number of test points [50, p. 205–
206]. In the so-called Latin Hypercube Design (LHD), an nr×nf matrix
Lnr×nf is formed whose columns consist of a random permutation of the
numbers {1, 2, 3, . . . nr}. In the application of Latin Hypercube Sampling
(LHS), a random number from the range [0, 1) is subtracted from each
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Table 5.3: Investigated ranges of continuously distributed variables

Quantity Lower limit Upper limit Unit

m0 4000 16000 [kg]
l0 2000 8000 [mm]
γM1 1.10 2.00 [−]
γM2 1.10 2.00 [−]

value of the LHD and then divided by the value nr. Accordingly, the
test field is normalized to a unit space. Commercial available software
solutions, such as the Matlab© code, provide predefined functions that
can be used to generate an LHS. For this purpose, the quantities to be
varied must first be determined, whereby we limit the number to a total
of five quantities. These include m0, l0, γM1, γM2 as well as the yield
strength Re, since these can be varied over a wide range compared to the
other variables. All parameters, with the exception of Re, can be con-
sidered to be continuously distributed in their respective ranges. The
variable Re, on the other hand, is varied discretely and is oriented to
the steels used in steel construction. We keep the remaining parameters
constant in the analysis. In general, the authors D. R. Jones et al. [51]
recommend that the required number of test points nT to be used can
be approximately calculated based on the number of dimensions nD as
follows.

nT ≈ 10 · nD (5.80)

According to J. Loeppky et al. [52] this approach is justifiable for
nD ≤ 5. The LHS then leads to the resulting test points (see table
A.2 and A.3). In the context of the investigation of the algorithms,
the discretization is performed in such a way that the search spaces
are built up as a Cartesian grid, i.e. the number of elements is equal
(n̄δ = n̄η = n̄b = n̄β = n̄) and have in each case the same distance
to each other. Here, the integer number n̄ is varied between 6 and
10, while the incremental factor λζ is varied in 0.25 steps from 0.50 to
1.50. This results in a total of 25 possible combinations p = [n̄, λζ ] of
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parameter settings (see appendix table A.5). Indeed, also larger values
are conceivable, but it must be noted that this also increases the required
computing time considerably. Therefore, a compromise between the
achievable approximation quality and the calculation time has to be
made. For each combination, the solution is then approximated and
the number of required iterations nI is determined. The individual
solutions are further compared with each other and the deviation of the
other results from the minimum solution found, which is assumed as the
respective benchmark, is calculated. The number of iterations in turn
provides information about the time required for the approximation of
the parameter combination. In case of the GOA*, λd is set to 2 so as
not to overly constrain the surrounding search space.

5.3.2 Parameter Settings

In the following section, appropriate parameter settings are identified
based on the previously constructed test points. In particular, the ap-
proximation quality and the required number of iterations are in the
foreground with respect to the single algorithm strategies and the pa-
rameter combinations.

Approximation Quality

First, it is to be determined which parameter combination provides the
best results on average for an algorithm strategy. For this purpose, all
parameter combinations are applied for each test point Ti in order to
calculate a minimum. We summarize the minima found for a test point
in the set f ′i , while

f ′i(p) ∈ f ′i (5.81)

applies. Of great interest is now, which parameter combination provides
the best result, which just corresponds to the smallest element of f ′i . If
we now put the remaining results in relation to the smallest element,
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we can determine the relative deviations ∆f ′i(p). This is then to be
calculated as follows for a certain parameter combination.

∆f ′i(p) = f ′i(p)
min{f ′i}

− 1 (5.82)

This procedure is then performed for all n test points, from which we
can determine the expected value µ̄ of the relative deviation ∆f ′(p) as
a function of the applied parameter combination p.

µ̄(∆f ′(p)) = 1
n

n∑
i=1

∆f ′i(p) (5.83)

By comparing all the expected values, it is then possible to identify
the parameter combination that, on average, provides the best solution
among all the combinations considered. Additionally, the correspond-
ing standard deviation of the sample with respect to the investigated
relative deviation determined by

σ̄(∆f ′(p)) =

√√√√ 1
n− 1

n∑
i=1

(∆f ′i(p)− µ̄(∆f ′(p)))2 (5.84)

gives information about the variation of ∆f ′i(p) [53, p. 132]. The course
of expected values of the relative deviations over the individual param-
eter combinations with respect to the single algorithms is illustrated in
figure 5.14. Here, GOA and GOA* provide identical results. It can be
seen that the relative deviation from the locally found minimum gen-
erally decreases as the number of elements increases. This is obvious,
since we have already demonstrated in the previous section that the
discrete space becomes more and more similar to the continuum if the
number of elements is increased accordingly. We can also notice that for
all investigated element numbers the best solution is found on average
for the largest λζ . Here also the standard deviation is the smallest.

For the applied sample size n, Chebyshev’s inequality, determined by

Pr(|∆f ′(p)− µ̄(∆f ′(p))| ≥ εx) ≤ σ̄2(∆f ′(p))
n ε2

x

(5.85)
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Figure 5.14: Expected values and according standard deviations in terms of relative
deviations

can now be used to estimate the probability that the random variable
under consideration deviates from its expected value by more than a cer-
tain threshold value εx [54, p. 201–202]. Based on the obtained results,
the threshold value can now be determined for each parameter combina-
tion. These indicate that the calculated expected values lie within the
respective ranges with a certain probability. This range is then defined
as follows

Pr = [µ̄(∆f ′(p)− εx, µ̄(∆f ′(p)) + εx] (5.86)

and depends significantly on the required probability. For this we select
95% and thus obtain the corresponding ranges for the parameter com-
binations considered. It should be noted that negative lower bounds are
set to zero, since zero already represents the best result and therefore
no negative deviations can exist. The results are summarized in tables
A.6, A.7 and A.8.
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Calculation Time

The calculation time is estimated by the number of iterations required
on average. Here, we proceed in the same way as in the previous sec-
tion. Their development is shown in figure 5.15 and it can be seen that
the expected values increase approximately linearly over the parameter
combinations considered. On the other hand, it can still be observed
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Figure 5.15: Expected values and according standard deviations in terms of necessary
iterations

that the standard deviation for small values of λζ are also low. This
increases significantly for larger λζ and thus also the possible variation.
Overall, both the expected values and the standard deviations of the
GOA* are the lowest, so this strategy is the fastest way to calculate a
solution. On this basis, the most appropriate parameter combinations
can be identified for each algorithm strategy. The essential criterion is
primarily the expected value of the relative deviation. The lower this
value, the more likely we can assume that this parameter combination
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Table 5.4: Suitable parameter combinations with respect to the selected strategy

Strategy n̄ [−] λζ [−] µ̄(nI) [−] µ̄(∆f ′) [%] Pr0.95(∆f ′) [%]

LOA 9 1.50 54369 1.5492 [0.00, 3.51]
GOA 9 1.50 72343 1.9456 [0.00, 4.36]
GOA* 9 1.50 25950 1.9456 [0.00, 4.36]

provides the best result compared to the other combinations. Never-
theless, it should be noted that a trade-off is required in terms of the
computational time involved. The most suitable parameter combina-
tions found in each case are summarized in 5.4. Subsequently, it is to
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Figure 5.16: Comparison of algorithm strategies
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be determined which algorithm strategy is capable of delivering the best
results depending on the parameter combinations considered. For this
purpose, the differences of the calculated minima are formed for each
test point and each parameter combination. The determinations of the
expected value of the differences and the associated standard deviation
are then carried out in analogy to the previous procedure. Figure 5.16
shows the results with f ′G(p) representing the results obtained by the
GOA algorithm and f ′L(p) the results with respect to the LOA algo-
rithm. Here, a negative expected value means that for the considered
parameter combination on average the GOA algorithm provides a bet-
ter result, for a positive expected value accordingly the LOA algorithm.
It can be seen that with an increasing number of elements, the results
become more and more similar. In this context, the value of the stan-
dard deviation also decreases. Until then, it can be observed that on
average the LOA delivers better results.

5.3.3 Summary of Parameter Settings

At the end of this section, the main findings will be summarized once
again in a condensed form. These concern in particular the implemen-
tation of the algorithms and the expected results.

• All in all, the GOA requires the most computation time, while the
GOA* is capable of computing a solution the fastest.

• Compared to the other strategies, the LOA delivers the best re-
sults. However, the quality of the results equalizes with increasing
discretization fineness, i.e. a higher number of elements n̄ and a
higher incremental multiplier λζ .

• To calculate a configuration it is recommended to use the GOA*
with n̄ = 9 and λζ = 1.50 as parameter settings. With an aver-
age number of 25950 iterations, it provides the fastest solution.
By examining the parameter settings, it was shown that p20 has
the lowest relative deviation on average. Using Chebyshev’s in-
equality, it is shown that with a probability of 95 %, the relative
deviation lies in a range between 0.00 % and 4.36 %.
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Practice should be the result of
thinking, not the other way around.

- H. Hesse

So far, the basic principles for the design and weight optimization of a
segmented, prestressed crane bridge girder have been worked out the-
oretically. Accordingly, at this point we have calculation rules at our
disposal with which we can calculate the geometric quantities and the
necessary prestressing force of the associated girder on the basis of given
values such as the nominal load or the span width. Particularly against
the background of neglecting geometrical peculiarities or idealizations
with regard to the loads, we are forced to recognize that up to now,
however, we have not been able to make any statements with regard to
the practical suitability of the constructions. Although configurations
are calculated that comply with the defined boundary conditions, these
are based on the simplified models developed, which are not capable of
describing reality in its entirety due to the high degree of complexity.
Instead, it is now necessary to verify whether the estimates and neglect
assumptions made are justified. This then provides the answer to the
question of the extent to which the calculation models and the opti-
mization procedure can be used to design and construct a segmented,
prestressed crane girder.

6.1 FE Analyses

The current state of the literature shows that FE analyses are widely
used as a common tool for validation in the field of crane design. This
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is especially due to the fact that cranes usually have large dimensions
and therefore real experiments can only be performed for selected ap-
plications.

The aim of this section is to demonstrate the suitability of the de-
veloped computation and optimization method using selected exam-
ples. The single girder bridge cranes studied by M. Savkovic et
al. [10], which were calculated using biologically inspired optimization
algorithms, serve as reference structures. Here, figure 6.1 illustrates the
considered cross-section with the specific parameters to be optimized.
They are summarized in a vector

x3

x1

x2

x5

x6

x4

Figure 6.1: Considered design by M. Savkovic et al. [10]

x = [x1 x2 x3 x4 x5 x6]T (6.1)

and lead to the corresponding objective function.

f(x) = 2x4x2 + x5x1 + x6x3 (6.2)

In contrast to the developed optimization problem of this thesis, the
consideration according to [10] leads to a six-dimensional optimization
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Table 6.1: Input parameters, based on [10]

Parameters Config. 1 Config. 2 Config. 3

m0 [kg] 5000.00 8000.00 10000.00
l0 [mm] 7600.00 7550.00 8400.00
mt [kg] 610.00 600.00 880.00
2lw [mm] 708.00 600.00 600.00
Re [N/mm2] 335 335 335
E [N/mm2] 2.11 · 105 2.11 · 105 2.11 · 105

γM1 [−] 1.50 1.50 1.50
γM2 [−] 1.25 1.25 1.25

problem in which all quantities are continuously distributed. Further-
more, additional quantities such as the maximum permissible deflection
ratio δ do not influence the objective function, since this is a purely pas-
sive structure whose deflection can only be affected by design. In total,
twenty constraint functions are taken into account by the authors.

Although there are differences in the cross-sectional profile considered
and in the constraints (for example, the common dynamic limits in crane
construction are taken into account), the configurations are neverthe-
less appropriate for making an initial comparison with regard to weight
optimization and performance of the developed algorithms.

6.1.1 Considered Reference Configurations

Based on [10], real crane systems are used as reference configurations,
whose resulting cross-sectional areas are specified. Furthermore, infor-
mation is available regarding the traveling trolley, i.e. the self-weight as
well as the wheelbase are known. Additional parameters, which are as-
sumed to be constant, can be taken from table 6.1. It should be noted
that the value γM2 is only used for the segmented prestressed bridge
girder, since it primarily refers to the bolted connection. The remain-
ing parameters necessary for the calculation are considered as constants
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and are to be taken from table A.4. As recommended in section 5.3.3,

Table 6.2: GOA* Algorithm results according to the considered configurations

Quantity Config. 1 Config. 2 Config. 3

Segmentation type [−] 4 2 4
ns [−] 17 16 19
l∗s [mm] 850.00 1200.00 850.00
l∗r [mm] 400.00 750.00 400.00

ζ ′ [−] 11 11 7
nI [−] 28998 28998 5868
λ′ζ [−] 1.50 1.50 1.25
n̄′ [−] 9 9 6

h′ [mm] 280.10 353.10 534.70
h′0 [mm] 272.10 344.20 528.80
b′ [mm] 186.50 194.70 200.90
b′0 [mm] 139.00 147.20 153.40
ε′ [mm] 202.70 269.50 440.20
d′ [mm] 60.00 70.00 80.00
N ′0 [kN] 413.90 486.00 583.90

η′ [−] 0.9714 0.9748 0.9890
β′ [−] 0.7453 0.7560 0.7636
ε′/h′ [−] 0.7237 0.7632 0.8233
δ′ [%] 0.2329 0.1704 0.0650

the GOA* algorithm is used for calculation. The entire spectrum of
possible parameter settings is examined in order to determine the best
solution. Here, the results are summarized in table 6.2 and show that,
as already predicted, the parameter combination p20 produces the best
results with the exception of configuration 3. Here, the best solution
is found with p4. Furthermore, figure 6.2 shows the convergence be-
havior of the algorithm with respect to the individual configurations.

174



6.1 FE Analyses

Table 6.3: Comparison of computational results

Results Config. 1 Config. 2 Config. 3

Real solution [cm2] 177.2000 248.8000 262.4000

Best result FA [cm2] 138.3252 160.6526 186.1351
Worst result FA [cm2] 216.2055 241.4631 286.6161
Mean FA [cm2] 149.6354 172.0198 198.9969
Standard deviation FA [cm2] 14.8068 15.1253 15.5601
Standard deviation FA [%] 9.8953 8.7928 7.8193

Best result BA [cm2] 142.3196 169.9500 194.6763
Worst result BA [cm2] 345.0764 513.6837 481.4968
Mean BA [cm2] 142.7343 170.4467 195.2616
Standard deviation BA [cm2] 7.2298 11.2392 10.7403
Standard deviation BA [%] 5.0652 6.5940 5.5005

Best result CSA [cm2] 140.3409 162.5000 190.6222
Worst result CSA [cm2] 194.8671 226.5248 241.0208
Mean CSA [cm2] 152.3099 174.4944 203.2311
Standard deviation CSA [cm2] 13.7967 6.9632 13.5137
Standard deviation CSA [%] 9.0583 3.9905 6.6494

Best result GOA* [cm2] 142.3473 176.6377 203.4379
Worst result GOA* [cm2] 151.1405 191.4117 228.3735
Mean GOA* [cm2] 145.8671 181.1306 215.6813
Standard deviation GOA* [cm2] 2.3228 4.3189 6.0699
Standard deviation GOA* [%] 1.5924 2.3844 2.8143

Max. weight savings FA [%] 21.94 35.43 29.06
Max. weight savings BA [%] 19.68 31.69 25.81
Max. weight savings CSA [%] 20.80 34.69 27.35
Max. weight savings GOA* [%] 19.65 29.00 22.47
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Table 6.4: Share of the tensile member on the total cross-sectional area

Quantity Config. 1 Config. 2 Config. 3

f ′s [cm2] 128.32 157.313 178.71
f ′d [cm2] 28.27 38.48 50.27
f ′d/f

′ [%] 19.84 21.80 24.66

Due to the implemented gradient-based method, the striving towards a
limit value can be clearly seen, which just represents the approximated
solution. Subsequently, the solutions found will be compared with the
real and the optimized solutions from [10]. First of all, it can be stated
that a weight reduction can be achieved by the developed concept of
the segmented, prestressed girder and the associated optimization algo-
rithm GOA*. For configuration 2, the largest overall weight saving can
be achieved with 29.00 % compared to the real solution. In contrast,
the algorithms for optimizing the conventional cross-section profile ac-
cording to figure 6.1 achieve a weight saving of up to 35.43 %. The
calculations for configuration 1 show that all percentage weight sav-
ings differ only slightly and lie in a range between 19.65 % and 21.94 %.
Here, the FA delivers the best result. For configuration 3, although
the GOA* also achieves a weight reduction of 22.47 %, this is below
the maximum weight savings achieved by the algorithms used in [10].
Against this background, the calculated cross-sectional areas are exam-
ined in detail in order to identify further lightweight design potential
of the segmented, prestressed beam. For this purpose, the value of the
objective function is divided into two parts: firstly, the part relating
to the segment cross-section f ′s and secondly, the part f ′d comprising
the tensile member. The results can be taken from table 6.4. We can
clearly see that the pure segment profile is smaller in cross-sectional area
than the profiles calculated by M. Savkovic et al. in table 6.3. The
tensile member, on the other hand, occupies up to 24.66 % of the total
cross-section and is accordingly responsible for the additional weight in-
crease. This suggests that the lightweight potential of the structure can
be further exploited by using alternative tensile means. For example,
steel cables offer a greater strength-to-weight-ratio as shown in [4] and
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Figure 6.2: Calculated minimum cross-sectional areas depending on the recursion
step
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are accordingly conceivable as an alternative. However, the design of
the force application requires additional design effort, as steel cables are
significantly more complex with regard to the attachment possibilities.

6.1.2 Simulation Setup

Through the calculations of the objective function values, the geometric
parameters of the best solutions found are also known, on the basis of
which the profiles can be designed. These then are to be taken for the
subsequent validation with the Abaqus© code.

Material Properties

As stated in the first chapter, the focus of the work is on the investi-
gation of the elastostatic behavior of the developed structure. Within
the framework of the FE analyses, the material properties of the com-
ponents must first be defined. In addition to the parameters given in
table 6.1, the common characteristic values of steel are used to define
Poisson’s ratio and the density (see table A.4). Furthermore, a coef-
ficient of friction of µf = 0.14 is assumed for all contact pairs except
for the tensile member. The contacts within the tensile member, on the
other hand, are connected as a tie constraint in order to simulate the
engagement of the threads. For additional information on the meshing
strategies, see tables A.9, A.10 and A.11.

Load Cases and Boundary Conditions

To imitate the real situation, a simple support of the crane bridge is
assumed. Here, analytical rigids1 serve as support points. As in reality,
the crane bridge is first prestressed by tightening the tensile member
to press the contact surfaces together and establish functionality. The
pretensioning force is simulated with the aid of the load type bolt load in

1 Extruded ideal rigid surfaces based on parameterized curves.
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order to simulate the prestressing as accurately as possible. The entire
load, consisting of the traveling trolley’s self-weight and the nominal
load, is then applied. In this context, the wheels of the trolley are
also represented as analytical rigids. Three positions of the trolley in
particular are examined:

Case 1 The trolley rests exactly in the middle of the crane bridge.
Here, the largest deflection of the girder occurs.

Case 2 The focus here is on examining the critical joint. If this is
exactly at x1 = l0, the load is applied so that the front wheel of the
trolley is at x1 = l0 as well. If the joint is at x1 = l0 − ls/2, the load is
applied via the rear wheel of the trolley. These arrangements of the load
applications are based on the moment curves from figure 4.4 in section
4.3.

Case 3 In the last case to be investigated, the traveling trolley is as
close as possible to one of the support points. A fixed value of 500.00 mm
is assumed as the start dimension.

Simulation Steps

The entire simulation is divided into a total of three steps, which are
chronologically structured. The steps are executed taking into account
geometric nonlinearities with an initial increment width of 0.10 and a
damping factor of 0.0002 (default value) for automatic stabilization of
the calculation. First, the prestressing force is applied, followed by the
application of the nominal load. In the last step, the structure is loaded
by the self-weight of the components involved.

6.1.3 Simulation Results

In the following section, the results of the FE analyses are presented and
discussed. In particular, the focus is on the investigation of the global
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stresses and the deformations that occur. Another aspect includes the
evaluation of the elastic stability of the structures. Here, figure 6.3

Configuration 1

Configuration 2

Figure 6.3: Calculated configurations 1 and 2

shows a comparison of the first two calculated configurations.

Reference Configuration 1

The results of the simulation for the first configuration show that no
global yielding of the material used occurs within the structure. This is
true for all load cases considered. The predicted stresses of the GOA*
algorithm are higher for the majority of the examined points and can
therefore be classified as comparatively conservative, see table 6.5. Point
7, which is located directly in the transition zone between the flange and
the web plate, is a special feature in this context. At this point, the
weld seam was geometrically considered and modeled as a chamfer. In
the context of the FE calculation, this sharp edge near the load appli-
cation is predestined for the occurrence of a numerical singularity. This
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Table 6.5: Configuration 1 - FEA results

Quantity Case 1 Case 2 Case 3 GOA*

σM(p1) [N/mm2] 33.5996 33.6539 56.5147 71.3500
σM(p2) [N/mm2] 38.3868 38.4459 64.3911 71.6063
σM(p3) [N/mm2] 17.5207 7.2601 34.3911 73.2939
σM(p4) [N/mm2] 47.6560 18.8571 34.5662 69.0044
σM(p5) [N/mm2] 57.2901 56.8118 31.6458 65.4196
σM(p6) [N/mm2] 38.9530 39.0181 69.1993 73.6556
σM(p7) [N/mm2] 117.6485 180.2482 34.5345 62.1294
σ11(p8) [N/mm2] −5.3714 −2.6247 −33.2297 −2.3132

w(t1, l0) [mm] 1.6371 1.6263 −2.1130 17.7019
wt(l0) [mm] 0.2413 0.2351 0.2350 14.8515

is characterized by the fact that the state variables to be determined
and their derivatives are no longer limited and therefore the stresses
in this area reach very large values [55, p. 276]. The deformations are
also smaller than the deflections calculated by GOA* algorithm. The
reason for this is in particular the neglect of the welded-in bulkhead
plates and the connecting elements in the course of the establishment
of the underlying mechanical substitute model. These components also
contribute an additional share to the stiffness of the structure. Here,
a further weight saving can be achieved by using an alternative, ana-
lytical model to predict the deflections which is based on taking into
account the influence of the bulkhead plates and connecting elements
on the lowering of the girder. The same applies to the deformation of
the tensile member. It turns out that here the calculated deformations
are higher than the results of the simulation as well. One approach is
to model the deflection taking into account other support conditions. A
simple support was assumed in advance; here, it must be investigated
to what extent a clamped-clamped support better describes the deflec-
tion of the tensile member. However, it should be noted that, strictly
speaking, both systems are then coupled with each other by the mo-
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ment occurring in the support. The extent to which this effect has an
influence is also the subject of the investigation.

With regard to elastic stability, it can be stated that no global or lo-
cal failure due to buckling or plate buckling occurs. An indicator for
this is that the calculation converges in every step and that no neg-
ative eigenvalues of the stiffness matrix appear. In this context, the
occurrence of negative eigenvalues signifies the reaching of a bifurcation
point, i.e., the structure leaves the primary path of the load-deformation
relationship and moves into an adjacent one. The structure is then in
the post-buckling state.

Stress concentration
at load application

Figure 6.4: Side view of config. 1 at case 3, fy = 223.00 N/mm2

Locally, it can be observed that the pressure cone formed on the preload
segment runs at an approximate angle of 60◦, see figure 6.4. Accordingly,
further material could be saved by adapting the chamfer of the preload
segment to this angle. However, it should be stated that the stiffness of
the structure in the x3-direction must still be ensured. This concerns
in particular the consideration of the approach dimension of the trolley
and thus how close the trolley can be to one of the support points.
Figure 6.5 shows an isometric view of the force application area. It can
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Local yielding
at load application

Figure 6.5: Isometric view of config. 1 at case 3, fy = 223.00 N/mm2

be seen that local yielding of the material starts in the area of axial load
application. In practice, it can also be expected that the shim also digs
into the material of the stop piece, but this effect is quite acceptable
and does not damage the stop piece to such an extent that it can no
longer perform its function.

Reference Configuration 2

The FE analysis for configuration 2 leads to similar results which are
summarized in table 6.6. Here, too, there is no global yielding of the
material, which means that it is capable of withstanding the external
loads. With regard to the area of axial load application, it can also be
observed that the material starts to yield locally, see figure 6.6. At the
joints, an increase in mechanical stress can still be noticed on the flanks
of the connecting element which is shown in figure 6.7. However, these
do not lead to fy being exceeded.
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Table 6.6: Configuration 2 - FEA results

Quantity Case 1 Case 2 Case 3 GOA*

σM(p1) [N/mm2] 38.8783 39.6090 68.6581 71.2977
σM(p2) [N/mm2] 46.0451 46.9403 84.1333 71.6195
σM(p3) [N/mm2] 15.2575 15.9199 36.1986 72.7173
σM(p4) [N/mm2] 25.5460 67.1511 36.3037 68.5660
σM(p5) [N/mm2] 61.3213 61.0693 30.3648 62.6766
σM(p6) [N/mm2] 53.7810 55.0570 108.1574 73.6454
σM(p7) [N/mm2] 113.4754 156.5457 36.1774 61.7099
σ11(p8) [N/mm2] −9.3599 −4.9086 −36.1965 −2.3015

w(t1, l0) [mm] 1.6843 2.0631 −2.8456 12.8628
wt(l0) [mm] 0.2301 0.2303 0.2302 16.7568

Stress concentration
at connection area

Figure 6.6: Side view of config. 2 at case 3, fy = 223.00 N/mm2
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Figure 6.7: Isometric view of config. 2 at case 3, fy = 223.00 N/mm2

Reference Configuration 3

The simulation of configuration 3 shows that the joints of the bottom
chord tend to undergo severe deformations at high prestressing forces
in the load application area. Furthermore, the occurrence of negative
eigenvalues of the stiffness matrix can be observed in the simulation,
which is a clear indication of the post-buckling condition. A schematic
representation of the deformation behavior is shown in figure 6.8. Thus,
the originally envisaged connection design does not provide sufficient
structural resistance for prestressing forces above 480 kN. The reason
for this is the comparatively high moment in combination with the com-
pressive stress acting in this area. Accordingly, an alternative arrange-
ment and design of the stiffening plates are required to ensure sufficient
stiffness against local deformation even at higher prestressing forces.
Against this background, an alternative design is developed. It turns
out that the structure must have greater stiffness in the x3-direction.
For this purpose, the bottom chord plate is provided with an additional
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x3

x1

a) Rigid model b) Deformed state

Deflection

Figure 6.8: Qualitative illustration of the deformation of the connecting areas

web plate on the underside as depicted in figure 6.9 where the new fea-
tures are highlighted in blue. The evaluation of the influence of the web
geometry in subsection 3.3.1 has already shown that significant stiffen-
ing effects can be achieved in this way. It should also be noted that
sufficient space has to be available for the traveling trolley, otherwise it
will be obstructed by the strut. The originally free-standing stiffening
struts are moved to the inner edges and attached to the web plates by
a material bond, thus forming two inner, small box sections. This ar-
rangement also enables us to enlarge the stiffening plates, since they do
not interfere with the space requirements of the tensile member. This
arrangement is also used for the preload segment, where the bottom
chord plate is reinforced over the entire length and width. In addition
to the stiffness issue of the segments, the connecting mechanism plays a
further central role. In this context, an alternative design of the connect-
ing element is developed as well. Figure 6.8 illustrates that the moment
is transmitted to the connecting element at the joint, which then also
tends to deform about the x2- axis if the stiffness is insufficient. To
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Recess

Figure 6.9: Structural improved main segment

counteract this, reinforcement in the x1-direction is required, i.e. it is
reasonable to also equip the connecting element with stiffening plates,
which at the same time provide alignment pins for the insert in the seg-
ments. These pins are tapered in order to generate a centering effect
for easier assembly. The corresponding recesses are located in the new
designed stiffening plates of the main segment. This technique simul-
taneously creates a form-fit connection and, through contact, hinders
the tendency of the bottom chord plate to deflect under the axial load.
Due to the high prestressing forces, it is necessary to also structurally
reinforce the stop piece. Its length is doubled by assuming λ = 1/8,
which allows better control of the local stresses in the load application
area. In addition, the stop piece is recessed to further reduce its weight,
see figure 6.12.

The subsequent simulation of the configuration shows that the issues
described at the beginning with regard to the local stability of the struc-
ture can be solved by the alternative design. No negative eigenvalues
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Stiffening
ribs

Alignment
pins

Figure 6.10: Structural improved connecting element

of the stiffness matrix appear in the calculation, consequently the beam
does not reach the state of post-buckling in the course of prestressing.
Furthermore, the reinforcement of the area of axial load application has
a positive effect on the local stresses. Both the stop piece and the con-
tact area are less stressed, which is illustrated in figure 6.13. However,
it can still be observed that the applied simulation strategy leads to a
local deformation of the bottom flange plate of the preload segment at
the point of support at high shear forces (especially in case 3). The rea-
son for this is the modeling of the support point as an analytical rigid,
i.e. an ideal stiff parameterized curve that stresses the beam by a line
load. This results in the bottom chord plate tending to wrap around
this support point due to shear forces, see figure 6.14. In reality, how-
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Detail A-A

A-A

Figure 6.11: Detailed view of the connecting zone

ever, such a condition is not to be expected, since the attachment zone
of the endcarriages distributes the shear force over a larger area, which
reduces the impact of the shear force. An evaluation of the mechanical
stresses shows that no global yielding occurs, so this calculated config-
uration is also able to withstand the acting loads. The same applies to
the deformations; here, the respective limit values are complied with as
well. The respective results are listed in table 6.7.

6.2 Derivation of Design Notes

The evaluation of the FE analyses carried out in the previous section
allow the derivation of several design recommendations, that can be
used for a future further development of the construction. These refer
to different components and sections within the segmented prestressed
girder.
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Adjusted design of
the stop piece

Recess

Figure 6.12: Isometric view of the improved reference configuration 3

6.2.1 Design of Connection Joints and the Connecting
Element

With the aid of the FE analyses, it was possible to determine that the
joining technique proposed at the beginning does not ensure sufficient
structural resistance at high prestressing forces. This applies in par-
ticular to the lower chord plate of the segments. In this context, the
alternative design demonstrated on reference configuration 3 achieves
higher stiffness due to the inner box sections and the additional web
attached to the underside of the bottom chord plate. The connecting
element is also structurally reinforced in this context. It is therefore
recommended to consider this alternative design for prestressing forces
above 480 kN.
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Figure 6.13: Stop piece of the improved reference configuration 3

6.2.2 Design of the Preload Segment

Due to the axial load application, the preload segment is subjected to
high mechanical stresses, which in turn require a special local design.
The proposed design is capable of withstanding the stresses globally.
Local stress concentrations occur especially close to the load applica-
tion area, but these can be eliminated by further improvements of the
design. The designed relief notch plays a central role. Here, the sim-
ulations have shown that stress concentrations can be reduced by a
smoother design of the force flow. Nevertheless, this zone is locally
highly stressed compared to the rest of the preload segment structure.
It is therefore recommended to further improve the notch geometry with
regard to stress reduction. However, the manufacturability must remain
guaranteed.

Reinforcing the bottom chord plate, as suggested in subsection 3.3.1,
benefits the structural resistance, but for higher preload forces it is
recommended to reinforce the bottom chord plate along its entire length
as demonstrated by reference configuration 3.
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Local deformation of
bottom chord plate

Figure 6.14: Local deformation of the bottom chord plate at the support

6.2.3 Design of the Stop Piece

In addition to the preload segment, the stop piece also has a key role to
perform, as it is directly responsible for transmitting the preload force
to the girder structure. It is recommended that the stop piece is also
subjected to an individual design procedure and that it is dimensioned
according to the axial force acting on it. It also makes sense to optimize
the geometry in order to reduce the local stress concentrations.

6.3 Answering the Research Guiding Questions

On the basis of the results and findings carried out, answers as well as
explanation approaches can be given to the research guiding questions
defined at the beginning of this thesis.
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Table 6.7: Configuration 3 - FEA results

Quantity Case 1 Case 2 Case 3 GOA*

σM(p1) [N/mm2] 16.4937 16.6883 36.4034 90.3507
σM(p2) [N/mm2] 42.2620 42.6138 53.2017 90.7879
σM(p3) [N/mm2] 32.1557 46.3286 57.8338 59.1903
σM(p4) [N/mm2] 39.0421 32.8190 57.6719 54.7441
σM(p5) [N/mm2] 47.0998 46.3377 3.4687 47.3376
σM(p6) [N/mm2] 79.3355 80.0270 147.4901 93.8574
σM(p7) [N/mm2] 71.3802 70.4254 57.4054 47.5779
σ11(p8) [N/mm2] −20.1425 −8.0183 −58.1233 −22.0697

w(t1, l0) [mm] 0.7226 0.7212 −3.2828 5.4580
wt(l0) [mm] 0.2348 0.2347 0.2350 3.5644

Question 1

The primary challenges in terms of design cover the enabling of a con-
tinuous component bonding and at the same time the possibility of
non-destructive dismantling in order to transport the single elements
on appropriate conveying aids, such as EUR-pallets. In addition, space
must be provided for the traction mechanism running inside the hollow
profiles.

To overcome these issues, a possible solution is to divide the bridge crane
into individual, discrete components and apply different segmentation
techniques (presented in section 3.2.1) which depend on the desired total
span width. The corresponding calculation bases are shown in table 3.1.
Here, two major types of segments are introduced, the main segment
and the preload segment. By considering a box section, the approach
differs significantly in terms of geometry as well as segmentation from
that demonstrated by S. Bolender et al. in [3].

In contrast to conventional bridge cranes, the segments of the novel
structure are exposed to high axial forces acting in the webs due to the
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prestressing. For this reason, bulkhead plates as well as stiffening plates
are to be additionally added in order to reduce the effective length of the
plates which are at risk of local buckling. On the other hand, the preload
segments must be designed individually since here high axial loads due
to the prestressing are applied. It is recommended to reinforce these
areas by additional plates and chamfer the web to enhance the stiffness.

The developed stop pieces are placed on a flat plate allocated to the
preload segment. It is necessary to design them compactly since they
must transmit the prestressing forces in a comparatively small area.

As a further key feature of the design, the novel connecting elements
are to be mentioned. These facilitate on the one hand the joining of
the segments due to their positive fit and on the other hand they con-
tribute to increasing the elastic stability by supporting the plates. In
this sense, they are a kind of removeable bulkhead plate. Therefore, the
connecting elements represent an important integral component which
take on several tasks.

Question 2

The implementation of a dimensioning and optimization procedure re-
quires at first both the identification and mathematical formulation of
constraint functions. Essential for this is the availability of an appro-
priate substitute mechanical model. Due to the novel type of structure,
also new constraints occur, which are to be taken into account. In this
context, the avoidance of gaping regarding to the initial loose compo-
nent bond as well as the appearance of the traction mechanism are to
be pointed out.

Using the beam theory of first order, it could be shown within this work,
that it is possible to express the eccentricity ε explicitly by using the
found relation 4.12. This circumstance plays a major role with respect to
the subsequently optimization procedure since it significantly influences
the treatment of the constraint functions. For this reason, the constraint
functions differ strongly from those of conventional girders against the
background of the mathematical characteristics which are considered
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for instance in [10], [42] and [7]. So far, the structure developed in this
thesis is not yet known in crane construction.

Against this background, the corresponding optimization problem can
be formulated whose objective function covers the minimization of the
resulting area of the cross-section geometry, see chapter 5. Due to the
large number of nonlinear relations, this is a nonlinear optimization
problem. In addition, the problem becomes non-smooth due to the vari-
able d which is not continuously differentiable. However, the complexity
and high number of constraints do not allow a purely analytical solu-
tion of the problem. For this reason, a numerical method is necessary
in order to approximate a solution.

In this thesis, a total of three solution methods are developed, whereby
the GOA* represents an extension of the GOA. These methods differ
in the respective treatment of the occurring variables, but they have
in common that the information known in advance is smartly utilized
to exclude already non-permissible parameter combinations according
to the Branch and Bound method. In addition, the individual steps of
the methods are based on manageable analytical relations. This also
allows an interpretation of the physical behavior of the structure (for
example, the identification of the absorbing point in section 5.1.1) and
thus stands out from pure search methods. The possibility of an explicit
representation of the constraint functions is of decisive importance here.

The basic idea of the solution methods is to subject the continuously
distributed variables (and thus also the solution space) to a rough dis-
cretization first and to identify a solution in an initial step. This can be
interpreted as a point in a multidimensional space. It can now be shown
on the basis of the existence of a descent direction that in the neighbor-
hood of such a point another point exists which leads to a better solution
(see section 5.2.4). This results in the motivation to re-span the initial
search domain around this point and to repeat the whole process until
a defined termination criterion is reached. Thus, the original solution
procedure is extended to a gradient-based procedure and made more
efficient. It should be noted, however, that this discretization leads to
a loss of information which indicates that an optimal solution can only
be approximated with the help of the methods.
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Question 3

The last research question refers to the approximation quality of the
developed algorithms. The basis for this are the computer experiments
carried out in chapter 5, which allow the following statements:

LOA Algorithm With an initial number of n̄ = 9 elements and an
incremental multiplier of λζ = 1.50, the LOA algorithm is able to calcu-
late the best result among all considered parameter combinations with
a relative deviation of 1.55 % and an expected value of 54369 iterations.
With a probability of 95 %, the relative deviation is between 0.00 % and
3.52 %.

GOA Algorithm With an initial number of n̄ = 9 elements and an
incremental multiplier of λζ = 1.50, the GOA algorithm is able to cal-
culate the best result among all considered parameter combinations with
a relative deviation of 1.95 % and an expected value of 72343 iterations.
With a probability of 95 %, the relative deviation is between 0.00 % and
4.36 %.

GOA* Algorithm With an initial number of n̄ = 9 elements and an
incremental multiplier of λζ = 1.50, the GOA algorithm is able to cal-
culate the best result among all parameter combinations with a relative
deviation of 1.95 % and an expected value of 25950 iterations. With a
probability of 95 %, the relative deviation is between 0.00 % and 4.36 %.

Finally in chapter 6, the developed method is demonstrated using three
reference configurations as examples. With the help of detailed FE
analyses, it can be shown that the method is capable of calculating
the necessary dimensions of the components involved in such a way
that no global yielding of the material occurs and elastic stability is
ensured. Possible local special designs have to be considered in case of
high prestressing forces. For this, an alternative design is additionally
proposed in the thesis. Further design notes are summarized in section
6.2.
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The journey is the reward.
- Confucius

The aim of the doctoral thesis is the development of a novel type of
segmented bridge crane and its optimization in terms of material sav-
ings. A detailed study of the current field of crane construction reveals
that segmented girders have not been investigated so far and that the
field is almost unexplored. The only comparable design is provided by
S. Bolender et al. which refers to a truss structure. On this basis,
a novel design for segmented crane girders is developed in chapter 3.
Here, the need of an appropriate segmentation strategy represents the
first key finding. Against the background of a planned implementa-
tion, the common design regulations must be extended considering new
constraints which are identified and developed in chapter 4. Hereby,
the establishment of a suitable mechanical substitute model is manda-
tory. The identified constraint functions form the major input for a
subsequently optimization problem in chapter 5. The problems nature
is characterized by a high degree of complexity. However, a detailed
investigation of the mathematical properties allows the development of
different solution approaches which are able to produce configurations
of minimum weight in moderate computation time. Subsequently, the
procedure is evaluated by means of FE analyses on three reference con-
figurations with the result that for all calculated configurations there is
no exceeding of the material’s strength values and no failure of elastic
stability.

The essential basics for the treatment of segmented bridge crane girders
for use in material flow systems were worked out in this thesis. In par-
ticular, mechanical issues were investigated in the context of a nonlinear
and non-smooth optimization problem and the mathematical character-
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istics were examined in comparison to conventional crane girders. The
results of this work thus serve as a foundation for a deeper investiga-
tion of this unexplored area. This includes especially the examination
of the constraints with regard to the local stability as well as a further
development of the design of the force application area. The complete
dimensioning requires in addition statements regarding the dynamical
behavior of the structure. A complete parameterization of the model as
well as the inclusion of production-related boundary conditions are to
be aimed at as a long-term goal.
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Table A.1: Considered traction mechanisms, property class 10.9 [11, p. 109–126]

Thread dN [mm] Ad3 [mm2] N(µT = 0.14) [kN] d [mm]

M8 8.00 32.84 26.60 16.00
M10 10.00 52.30 42.20 20.00
M12 12.00 84.30 61.50 25.00
M16 16.00 114.10 115.70 30.00
M18 18.00 175.10 141.00 35.00
M22 22.00 281.50 225.00 40.00
M24 24.00 324.30 260.00 45.00
M27 27.00 427.10 342.00 50.00
M33 33.00 647.20 517.00 60.00
M36 36.00 759.30 608.00 70.00
M39 39.00 913.00 729.00 80.00
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Table A.2: Test points, T1 - T25

Test point m0 [kg] l0 [mm] γM1 [−] γM2 [−] Re [N/mm2]

T1 14912.69 3819.12 1.19 1.33 355.00
T2 14542.22 6863.74 1.44 1.61 235.00
T3 5845.16 6974.57 1.76 1.67 275.00
T4 9305.16 6178.51 1.49 1.52 235.00
T5 5959.66 6178.51 1.85 1.81 235.00
T6 11199.44 7524.44 1.36 1.28 460.00
T7 15366.35 2775.92 1.23 1.20 235.00
T8 7407.24 5542.45 1.71 1.11 460.00
T9 15941.17 4664.76 1.30 1.23 355.00
T10 8304.61 2588.87 1.87 1.55 235.00
T11 7056.84 7294.30 1.80 1.55 355.00
T12 12855.35 4999.54 1.50 1.42 355.00
T13 15643.91 6738.62 1.11 1.38 235.00
T14 12299.47 2398.58 1.26 1.12 460.00
T15 4868.49 3132.11 1.32 1.73 420.00
T16 8827.18 5902.58 1.89 1.63 355.00
T17 6539.07 2921.54 1.66 1.45 460.00
T18 7291.88 5407.81 1.39 1.33 275.00
T19 4708.44 4050.42 1.35 1.70 460.00
T20 15227.40 6478.10 1.54 1.78 275.00
T21 13542.60 5966.39 1.93 1.82 460.00
T22 8792.98 4028.11 1.95 1.48 275.00
T23 14151.45 3258.68 1.61 1.95 460.00
T24 13118.17 3426.78 1.69 1.80 355.00
T25 12013.38 7454.57 1.78 1.18 355.00
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Table A.3: Test points, T26 - T50

Test point m0 [kg] l0 [mm] γM1 [−] γM2 [−] Re [N/mm2]

T26 9182.06 4557.35 1.15 1.30 460.00
T27 8500.25 4262.31 1.65 1.76 420.00
T28 5043.41 4426.69 1.16 1.44 275.00
T29 8003.13 7712.11 1.52 1.47 235.00
T30 10935.12 2972.20 1.57 1.88 235.00
T31 9871.46 7123.15 1.12 1.92 460.00
T32 12600.43 2232.67 1.17 1.68 355.00
T33 10507.97 3533.66 1.94 1.60 275.00
T34 13920.05 6670.06 1.63 1.86 355.00
T35 5236.54 3685.95 1.46 1.50 460.00
T36 10056.96 5358.04 1.44 1.25 355.00
T37 11486.32 4386.24 1.30 1.40 420.00
T38 6728.09 2118.51 1.27 1.37 235.00
T39 11749.50 5094.05 1.41 1.58 275.00
T40 4314.72 5238.63 1.40 1.14 235.00
T41 11749.50 5642.91 1.82 1.17 275.00
T42 14672.40 3617.96 1.60 1.27 275.00
T43 10270.43 4850.53 1.55 1.87 275.00
T44 9746.91 6296.75 1.22 1.72 275.00
T45 6279.90 7269.10 1.90 1.65 420.00
T46 4136.14 2315.79 1.74 1.95 420.00
T47 13142.97 2719.06 1.82 1.99 275.00
T48 13688.76 5767.68 1.71 1.97 460.00
T49 7604.07 6382.54 1.99 1.21 420.00
T50 5539.55 7963.03 1.98 1.89 355.00
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Table A.4: Constant values

Quantity Numerical value Unit Description

g 9.81 [m/s2] Gravity constant
E 2.10 · 105 [N/mm2] Youngs’s Modulus
ν 0.30 [−] Poisson’s ratio
ρ 7.85 · 10−6 [kg/mm3] Density (steel)
bw 20.00 [mm] Half width of a wheel
t 5.00 [mm] Web thickness
xp 100.00 [mm] Preload segment, upper chord
mt/m0 0.10 [−] Load of traveling trolley
lt/l0 0.05 [−] Wheel base of traveling trolley
F2/F3 0.05 [−] Force due to bumper impact
s2/t 2.00 [−] Space reservation in x2-direction
s3/t 2.00 [−] Space reservation in x3-direction
λ 1/16 [−] Stop piece, space reservation
λ∗σ 0.75 [−] Stress factor
λh 1/7 [−] Ratio of maximum height
λ3 0.20 [−] Chamfer ratio
λ∗γ 0.01 [−] Ratio to avoid gaping
δ2 1/300 [−] Deflection ratio in x2-direction
µf 0.14 [−] Friction coefficient (steel-steel)
b〈1〉,1 50.00 [mm] Lower initial interval limit
b〈1〉,m/l0 0.01 [−] Upper initial interval limit
η〈1〉,1 0.90 [−] Lower initial interval limit
δ〈1〉,1 0.00 [−] Lower initial interval limit
δ〈1〉,m 1/250 [−] Upper initial interval limit
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Table A.5: Parameter combinations

Parameter combination p Elements n̄ [−] Incr. multiplierλζ [−]

p1 6 0.50
p2 6 0.75
p3 6 1.00
p4 6 1.25
p5 6 1.50
p6 7 0.50
p7 7 0.75
p8 7 1.00
p9 7 1.25
p10 7 1.50
p11 8 0.50
p12 8 0.75
p13 8 1.00
p14 8 1.25
p15 8 1.50
p16 9 0.50
p17 9 0.75
p18 9 1.00
p19 9 1.25
p20 9 1.50
p21 10 0.50
p22 10 0.75
p23 10 1.00
p24 10 1.25
p25 10 1.50
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Table A.6: GOA - Algorithm performance

p µ̄(nI(p)) [−] σ̄(nI(p)) [−] µ̄(f ′(p)) [%] σ̄(f ′(p)) [%] Pr0.95(f ′(p)) [%]

p1 17874 2355 10.9959 9.1309 [5.2211, 16.7707]
p2 20525 4753 6.4313 8.5290 [1.0370, 11.8255]
p3 22071 7384 5.5815 7.5715 [0.7927, 10.3702]
p4 22071 7384 4.3760 6.6092 [0.5560, 8.9130]
p5 21131 11302 5.0419 6.3899 [1.0006, 9.0833]
p6 15472 10802 9.1921 7.9780 [4.1464, 14.2378]
p7 26748 2625 6.2786 6.7347 [2.0191, 10.5380]
p8 30265 5557 5.7790 6.6062 [1.6009, 9.9572]
p9 32009 9449 5.0000 6.5473 [0.8591, 9.1408]
p10 35126 11692 2.1804 3.7333 [0.0000, 4.5451]
p11 32965 14488 7.9576 7.6622 [3.1116, 12.8036]
p12 37650 2197 6.2546 7.0338 [1.8061, 10.7032]
p13 41733 6524 5.2817 6.5542 [1.1365, 9.4270]
p14 45521 11536 4.9478 6.2667 [0.9844, 8.9112]
p15 48512 14990 2.5093 3.9695 [0.0000, 5.0199]
p16 46249 18658 5.6034 5.7480 [1.9680, 9.2388]
p17 52880 4316 4.6830 5.8945 [0.9550, 8.4110]
p18 57878 10089 4.3073 5.7486 [0.6716, 7.9431]
p19 61767 15852 3.6778 5.3573 [0.2895, 7.0660]
p20 65445 19578 1.9456 3.8246 [0.0000, 4.3645]
p21 72343 22032 5.4562 5.4740 [1.9941, 8.9183]
p22 68678 8857 4.2072 5.5990 [0.6661, 7.7483]
p23 75790 13027 3.8425 5.6868 [0.2458, 7.4391]
p24 83170 14075 2.5077 4.3580 [0.0000, 5.2639]
p25 87000 21014 2.3983 4.5196 [0.0000, 5.2567]

204



A Appendix

Table A.7: LOA - Algorithm performance

p µ̄(nI(p)) [−] σ̄(nI(p)) [−] µ̄(f ′(p)) [%] σ̄(f ′(p)) [%] Pr0.95(f ′(p)) [%]

p1 9706 634 11.1025 8.2572 [5.8802, 16.3248]
p2 11168 2076 6.5329 7.2934 [1.9201, 11.1456]
p3 11572 3478 5.8118 6.3611 [1.7884, 9.8346]
p4 11108 5773 4.0124 5.2660 [0.6818, 7.3429]
p5 8038 5120 4.7667 5.9788 [0.9854, 8.5480]
p6 16597 1126 9.5054 8.1366 [4.3594, 14.6514]
p7 19460 2668 6.2544 6.5666 [2.1014, 10.4075]
p8 20160 5541 5.3431 5.9125 [1.6037, 9.0824]
p9 20902 7704 4.4439 5.9895 [0.6558, 8.2320]
p10 20251 8922 1.7697 3.2026 [0.0000, 3.7952]
p11 27525 1428 7.4713 6.7125 [3.2260, 11.7167]
p12 30700 3511 5.7198 6.2664 [1.7566, 9.6830]
p13 31590 7964 4.5888 5.2547 [1.2654, 7.9121]
p14 35635 8706 2.9525 4.4525 [0.1365, 5.7685]
p15 31642 14648 1.6425 2.7935 [0.0000, 3.4093]
p16 41786 4536 5.8845 5.7952 [2.2193, 9.5498]
p17 46058 8239 4.6696 5.7522 [1.0316, 8.3076]
p18 47502 14085 3.5905 4.7025 [0.6164, 6.5647]
p19 50840 16003 2.8127 4.2313 [0.1365, 5.4888]
p20 54369 19189 1.5492 3.5129 [0.0000, 3.7709]
p21 61360 5717 5.5273 5.3965 [2.1143, 8.9404]
p22 68900 9732 4.2360 5.5035 [0.7553, 7.7167]
p23 70560 14711 3.6873 5.5558 [0.1736, 7.2011]
p24 77780 17296 2.4129 4.3310 [0.0000, 5.1521]
p25 79060 24672 2.2595 4.3355 [0.0000, 5.0015]
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Table A.8: GOA* - Algorithm performance

p µ̄(nI(p)) [−] σ̄(nI(p)) [−] µ̄(f ′(p)) [%] σ̄(f ′(p)) [%] Pr0.95(f ′(p)) [%]

p1 17874 2355 10.9959 9.1309 [5.2211, 16.7707]
p2 20525 4753 6.4313 8.5290 [1.0370, 11.8255]
p3 22071 7384 5.5815 7.5715 [0.7927, 10.3702]
p4 22071 7384 4.3760 6.6092 [0.5560, 8.9130]
p5 21131 11302 5.0419 6.3899 [1.0006, 9.0833]
p6 15472 10802 9.1921 7.9780 [4.1464, 14.2378]
p7 26748 2625 6.2786 6.7347 [2.0191, 10.5380]
p8 30265 5557 5.7790 6.6062 [1.6009, 9.9572]
p9 32009 9449 5.0000 6.5473 [0.8591, 9.1408]
p10 35126 11692 2.1804 3.7333 [0.0000, 4.5451]
p11 32965 14488 7.9576 7.6622 [3.1116, 12.8036]
p12 37650 2197 6.2546 7.0338 [1.8061, 10.7032]
p13 41733 6524 5.2817 6.5542 [1.1365, 9.4270]
p14 45521 11536 4.9478 6.2667 [0.9844, 8.9112]
p15 48512 14990 2.5093 3.9695 [0.0000, 5.0199]
p16 46249 18658 5.6034 5.7480 [1.9680, 9.2388]
p17 52880 4316 4.6830 5.8945 [0.9550, 8.4110]
p18 57878 10089 4.3073 5.7486 [0.6716, 7.9431]
p19 61767 15852 3.6778 5.3573 [0.2895, 7.0660]
p20 65445 19578 1.9456 3.8246 [0.0000, 4.3645]
p21 72343 22032 5.4562 5.4740 [1.9941, 8.9183]
p22 68678 8857 4.2072 5.5990 [0.6661, 7.7483]
p23 75790 13027 3.8425 5.6868 [0.2458, 7.4391]
p24 83170 14075 2.5077 4.3580 [0.0000, 5.2639]
p25 87000 21014 2.3983 4.5196 [0.0000, 5.2567]
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Table A.9: Configuration 1 - FEA settings and element properties

Component Seed Element Technique Algorithm Shape

Nut (M33) 4 C3D8R Structured Hex
Shim (M33) 6 C3D8R Structured Hex
Additional bolt 6 C3D8R Medial axis Hex-dominated
Additional rod 8 C3D8R Medial axis Hex-dominated
Bolt 6 C3D8R Medial axis Hex-dominated
Common rod 8 C3D8R Medial axis Hex-dominated
Connecting element 12 C3D8R Advancing front Hex
Preload segment 12 C3D8R Structured Hex
Segment 15 C3D8R Structured Hex
Stop piece 10 C3D8R Structured Hex

Table A.10: Configuration 2 - FEA settings and element properties

Component Seed Element Technique Algorithm Shape

Nut (M33) 4 C3D8R Structured Hex
Shim (M33) 6 C3D8R Structured Hex
Additional bolt 6 C3D8R Medial axis Hex-dominated
Additional rod 8 C3D8R Medial axis Hex-dominated
Bolt 6 C3D8R Medial axis Hex-dominated
Common rod 8 C3D8R Medial axis Hex-dominated
Connecting element 12 C3D8R Structured Hex
Preload segment 12 C3D8R Structured Hex
Segment 15 C3D8R Structured Hex
Stop piece 10 C3D8R Structured Hex
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Table A.11: Configuration 3 - FEA settings and element properties

Component Seed Element Technique Algorithm Shape

Nut (M39) 4 C3D8R Structured Hex
Shim (M39) 6 C3D8R Structured Hex
Additional bolt 8 C3D8R Medial axis Hex-dominated
Additional rod 10 C3D8R Medial axis Hex-dominated
Bolt 8 C3D8R Medial axis Hex-dominated
Common rod 10 C3D8R Medial axis Hex-dominated
Connecting element 12 C3D8R Structured Hex
Preload segment 17 C3D8R Structured Hex
Segment 15 C3D8R Structured Hex
Stop piece 15 C3D8R Structured Hex
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