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Abstract

In this thesis, we formalize and analyze how to preserve consistency between

multiple artifacts describing the same software system through the combination

of transformations between themand support it with appropriate methods.

During the development of a software system, the developers and further
stakeholders employ multiple languages or, in general, tools to describe dif-
ferent concerns. Code often represents the central artifact, which is, however,
implicitly or explicitly complemented by specifications of the architecture,
deployment, requirements and others. In addition to the programming lan-
guage, further languages are used to specify these artifacts, such as the UML
for object-oriented design or architecture models, the OpenAPI standard for
interface definitions, or Docker for deployment specifications. To achieve a
functional software system, all these artifacts must depict a uniform, non-
contradicting specification of the whole system. Interfaces of services must,
for example, be represented in all these artifacts uniformly. We say that the
artifacts have to be consistent.

In model-driven software development, such artifacts are denoted as models

and represent central units of the development process, from which also at
least parts of the program code can be derived. This is, for example, already
applied in automotive software development. A common means to preserve
consistency between models are transformations, which adapt the other
models after one of them was changed. Existing research is restricted to
transformations that preserve consistency between pairs of models or to
project-specific combinations of transformations to preserve consistency
of multiple models. A systematic development process that enables the
independent development of transformations and their modular reuse in
different contexts is, however, not yet supported.

In this thesis, we research how developers can combine multiple transforma-
tions to a network that is able to execute these transformations in an order
such that all resulting models are consistent. To this end, we assume that each
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Abstract

transformation between two languages is developed independently and that
the transformations cannot be aligned with each other. Our contributions
are separated into those concerning the correctness of such a combination
of transformations to a network and those concerning the optimization of
quality properties of such a network.

We first derive and precisely define an appropriate notion of correctness for
transformation networks. It induces three specific requirements, which are a
synchronization property of the single transformations, a compatibility prop-
erty of a network of transformations, and finding an appropriate orchestration,
i.e., an execution order of the transformations. We propose a construction
approach for transformations to fulfill the synchronization property with
existing transformation specification languages on a formally proven prop-
erty. For this approach, we show completeness and appropriateness with a
case-study-based empirical evaluation in the domain of component-based
software engineering. We formally define compatibility of transformations,
for which we propose a formal analysis, which is proven correct, and derive
a practical analysis, whose applicability we demonstrate with case studies.
Finally, we define the orchestration problem of finding an orchestration that
delivers consistent models whenever such an orchestration exists. We prove
undecidability of that problem and discuss that restrictions to achieve its de-
cidability will likely limit practical applicability. For that reason, we propose
an algorithm that conservatively approaches the problem. It guarantees to
deliver an orchestration under specific, well-defined conditions and other-
wise indicates an error. We prove correctness of the algorithm and a property
that supports finding the cause whenever the algorithm fails. Additionally,
we categorize errors that can occur if a transformation network does not
fulfill the defined correctness notion, from which we derive by means of
the mentioned case studies that most potential errors can be avoided by
construction with the approaches that we propose in this thesis.

The investigation of quality properties of transformation networks is based
on a classification of relevant properties and of the effects of different types
of network topologies on them. It reveals that especially correctness and
reusability are contradictory, thus the selection of a network topology induces
a trade-off between these properties. We derive a construction approach
for transformation networks that mitigates the necessary trade-off decision
and, under specific assumptions, guarantees correctness by construction.
We support the development process for this approach with a specialized
specification language. While trade-off mitigation is given by construction
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of the approach, we show achievability of the assumptions and benefits of
the proposed language in an empirical evaluation using the case study from
component-based software engineering.

The contributions of this thesis support researchers as well as transforma-
tion developers and users of transformations in analyzing and construct-
ing networks of transformations. They depict systematic knowledge about
correctness and further quality properties of transformation networks for
researchers and transformation developers. In particular, they show precisely
which parts of these properties can be achieved by construction, which can
be validated by analysis, and which errors must inevitably be expected dur-
ing execution. Along with these insights, we provide concrete, practically
applicable approaches for the construction, analysis and execution of correct
and modularly reusable transformation networks, from which developers
and users of transformation networks both benefit.
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Zusammenfassung

In dieser Dissertation formalisieren und analysieren wir die Konsistenzerhal-

tung verschiedener Artefakte zur Beschreibung eines Softwaresystems durch

die Kopplung von Transformationen zwischen diesen und unterstützen sie mit

geeigneten Methoden.

Für die Entwicklung eines Softwaresystems nutzen Entwickler:innen und
weitere Beteiligte verschiedene Sprachen, oder allgemein Werkzeuge, zur
Beschreibung unterschiedlicher Belange. Meist stellt Programmcode das zen-
trale Artefakt dar, welches jedoch, implizit oder explizit, durch Spezifikatio-
nen von Architektur, Deployment, Anforderungen und anderen ergänzt wird.
Neben der Programmiersprache verwenden die Beteiligten weitere Sprachen
zur Spezifikation dieser Artefakte, beispielsweise die UML für Modelle des
objektorientierten Entwurfs oder der Architektur, den OpenAPI-Standard für
Schnittstellen-Definitionen, oder Docker für Deployment-Spezifikationen.
Zur Erstellung eines funktionsfähigen Softwaresystems müssen diese Arte-
fakte das System einheitlich und widerspruchsfrei darstellen. Beispielsweise
müssen Dienst-Schnittstellen in allen Artefakten einheitlich repräsentiert
sein. Wir sagen, die Artefakte müssen konsistent sein.

In der modellgetriebenen Entwicklung werden solche verschiedenen Arte-
fakte allgemein Modelle genannt und bereits als wesentliche zentrale Ent-
wicklungsbestandteile genutzt, um auch Teile des Programmcodes aus ihnen
abzuleiten. Dies betrifft beispielsweise die Softwareentwicklung für Fahrzeu-
ge. Zur Konsistenzerhaltung der Modelle werden oftmals Transformationen
eingesetzt, die nach Änderungen eines Modells die anderen Modelle an-
passen. Die bisherige Forschung beschränkt sich auf Transformationen zur
Konsistenzerhaltung zweier Modelle und die projektspezifische Kombination
von Transformationen zur Konsistenzerhaltung mehrerer Modelle. Ein syste-
matischer Entwicklungsprozess, in dem einzelne Transformationen unabhän-
gig entwickelt und in verschiedenen Kontexten modular wiederverwendet
werden können, wird hierdurch jedoch nicht unterstützt.

v



Zusammenfassung

In dieser Dissertation erforschen wir, wie Entwickler:innen mehrere Transfor-
mationen zu einem Netzwerk kombinieren können, welches die Transforma-
tionen in einer geeigneten Reihenfolge ausführen kann, sodass abschließend
alle Modelle konsistent zueinander sind. Dies geschieht unter der Annahme,
dass einzelne Transformationen zwischen zwei Sprachen unabhängig vonein-
ander entwickelt werden und daher nicht aufeinander abgestimmt werden
können. Unsere Beiträge unterteilen sich in die Untersuchung der Korrekt-
heit einer solchen Kombination von Transformationen zu einem Netzwerk
und die Optimierung von Qualitätseigenschaften solcher Netzwerke.

Wir diskutieren und definieren zunächst einen adäquaten Korrektheitsbe-
griff, welcher drei Anforderungen impliziert. Diese umfassen eine Synchroni-

sations-Eigenschaft für die einzelnen Transformationen, eine Kompatibili-

täts-Eigenschaft für das Transformationsnetzwerk, sowie das Finden einer
geeigneten Ausführungsreihenfolge der Transformationen, einer Orchestrie-
rung. Wir stellen ein Konstruktionsverfahren für Transformationen vor, mit
welchem die Synchronisations-Eigenschaft basierend auf einer formal be-
wiesenen Eigenschaft erfüllt wird. Für dieses zeigen wir Vollständigkeit und
Angemessenheit mit einer fallstudienbasierten empirischen Evaluation in der
Domäne der komponentenbasierten Softwareentwicklung. Wir definieren
die Eigenschaft der Kompatibilität von Transformationen, für welche wir ein
formales und bewiesen korrektes Analyseverfahren vorschlagen und eine
praktische Realisierung ableiten, deren Anwendbarkeit wir in Fallstudien
nachweisen. Schlussendlich definieren wir das Orchestrierungsproblem zum
Finden einer Orchestrierung, die zu konsistenten Modelle führt wann immer
solch eine Orchestrierung existiert. Wir beweisen die Unentscheidbarkeit
dieses Problems und diskutieren, dass eine Einschränkung des Problems,
um Entscheidbarkeit zu erreichen, die Anwendbarkeit unpraktikabel be-
schränken würde. Daher schlagen wir einen Algorithmus vor, der das Pro-
blem konservativ behandelt. Er findet eine Orchestrierung unter bestimmten,
wohldefinierten Bedingungen und terminiert andernfalls mit einem Fehler.
Wir beweisen die Korrektheit des Algorithmus und eine Eigenschaft, die
das Finden der Ursache im Fehlerfall unterstützt. Zusätzlich kategorisieren
wir Fehler, die auftreten können falls ein Netzwerk den definierten Korrekt-
heitsbegriff nicht erfüllt. Daraus leiten wir mittels den bereits genannten
Fallstudien ab, dass die meisten potentiellen Fehler per Konstruktion mit den
in dieser Arbeit vorgeschlagenen Ansätzen vermieden werden können.

Zur Untersuchung von Qualitätseigenschaften eines Netzwerkes von Trans-
formationen klassifizieren wir zunächst relevante Eigenschaften, sowie den
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Effekt verschiedener Typen von Netzwerktopologien auf diese. Hierbei zeigt
sich, dass insbesondere Korrektheit und Wiederverwendbarkeit im Wider-
spruch stehen, sodass die Wahl der Netzwerktopologie ein Abwägen bei der
Optimierung dieser Eigenschaften erfordert. Wir leiten hieraus ein Konstruk-
tionsverfahren für Transformationsnetzwerke ab, welches die Notwendigkeit
einer Abwägung zwischen den Qualitätseigenschaften abmildert und, un-
ter gewissen Voraussetzungen, Korrektheit per Konstruktion gewährleistet.
Wir unterstützen den Entwicklungsprozess für diesen Ansatz mithilfe ei-
ner spezialisierten Spezifikationssprache. Während die Verminderung der
Notwendigkeit einer Abwägung zwischen Qualitätseigenschaften durch den
Ansatz per Konstruktion erreicht wird, zeigen wir die Erreichbarkeit der
Voraussetzungen und die Vorteile der vorgeschlagenen Sprache in einer em-
pirischen Evaluation mithilfe der Fallstudie aus der komponentenbasierten
Softwareentwicklung.

Die Beiträge dieser Dissertation unterstützen sowohl Forscher:innen als auch
Transformationsentwickler:innen und Transformationsanwender:innen bei
der Analyse und Konstruktion von Netzwerken von Transformationen. Sie
stellen für Forscher:innen und Transformationsentwickler:innen systemati-
sches Wissen über die Korrektheit und weitere Qualitätseigenschaften solcher
Netzwerke bereit. Sie zeigen insbesondere welche Teile dieser Eigenschaften
per Konstruktion erreicht werden können, welche per Analyse validiert wer-
den können, und welche Fehler unvermeidbar bei der Ausführung erwartet
werden müssen. Zusätzlich zu diesen Einsichten stellen wir konkrete, prak-
tisch nutzbare Verfahren bereit, mit denen Transformationsentwickler:innen
und Transformationsanwender:innen korrekte, modular wiederverwendbare
Netzwerke konstruieren, analysieren und ausführen können.
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1. Introduction

In this thesis, we discuss how multiple artifacts used to develop a software
or software-intensive system can be kept consistent by combining transfor-
mations between their specification languages. We research how multiple
transformations, which specify consistency and its preservation, can be de-
veloped independently, such that their combination operates correctly and
such that they can be reused modularly.

In the following sections, we first introduce the context of preserving consis-
tency between multiple artifacts and identify existing challenges. We then
derive two problem statements from these challenges and define a research
goal along with fine-grained questions, as well as according contributions
that counter these challenges. Finally, we give an overview of the structure
of this thesis and give guidelines how to read it.

1.1. Consistency of Multiple Models

Engineers develop software and software-intensive technical systems of ever
increasing scale. This leads to a continual increase in complexity of the
artifacts used to describe such systems [MBF11]. As a direct consequence
of the increasing system sizes, engineers inevitably have to deal with their
inherent essential complexity. Various tools support the development process
by reducing the accidental complexity to allow engineers to focus on handling
the essential complexity [Bro87; FM08].

1.1.1. Consistency in System Engineering

To better handle the essential complexity of a system, engineers usually
use multiple tools to describe and analyze different parts or properties of a
system under development in different artifacts [Fra+18]. In the following,
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1. Introduction

we denote all these artifacts as models, according to the notion of Bézivin
that “everything is a model” [Béz05], including source code, for example,
written in Java [Hei+09a]. This reduces the information to deal with to what
is relevant for the development task of each person’s role [Ste18]. In classical
engineering disciplines like construction, mechanical and electrical engi-
neering, this has been common practice for a long time and is often called
Model-Based Software Engineering (MBSE) [Est08]. For example, developers
of software for Electronic Control Units (ECUs) in automobiles use different
tools and standards for specifying the system and software architecture,
such as SysML [SysML] or AUTOSAR [Sch15], for defining the behavior,
such as MATLAB/Simulink [Simu] or ASCET [ASCET], and for defining
the deployment on multi-core architectures, such as Amalthea [Wol+15].
In software engineering, such a development methodology is also getting
growing attention. It is often referred to as Model-Driven Software Develop-

ment (MDSD) [Sta+06]. Such a development process considers other artifacts
beyond code as primary artifacts to describe the system under construction.
While code focuses on specifying the functionality of a system, other tools
can be used, for example, to explicitly define the software architecture and its
deployment, such as the UML [UML], analyzing and predicting the software
performance, such as the Palladio Simulator [Reu+16], and for specifying
requirements, like IBM Rational Doors [Lap13].

While this fragmentation of information across models developed with differ-
ent tools eases dealing with the essential complexity of a system, it increases
accidental complexity. Since all these models describe the same system, they
usually share an overlap of information in terms of implicit dependencies or
redundancies. If modifications in overlapping information are not propagated
correctly across all dependencies and redundancies, inconsistencies can oc-
cur. For example, requirements changes have to be reflected in the software
architecture and implementation, and modifications of the architecture must
be reflected in the code. Since systems are usually developed iteratively and
incrementally, dependencies are not directional but, in general, every model
can be changed and require updates of others.

The overlaps of information, for example in tools for ECU software devel-
opment [GHN10], are often not documented explicitly [Maz+17], but only
known by engineers. Performing the task of updating overlapping infor-
mation manually is, however, time-consuming and error-prone [Sax+17].
The automation of checking and of preserving consistency of information
is still poorly supported in current development processes for large sys-
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tems [Gui+18; PMR16; CCP19]. Automating that process is, however, neces-
sary to reduce the accidental complexity induced by information fragmenta-
tion across multiple models.

A common approach to automate the process of checking and preserving
consistency of models are incremental model transformations, which have
already been applied in industrial scenarios [GW09; GHN10]. Tools describe
their models in specific languages, for example denoted by XML schemes.
A transformation specifies how models of one or multiple such languages
have to be updated after engineers make changes to a model of another
language. The subclass of bidirectional model transformations [Ste10], which
specify the relations between two models and routines that restore consis-
tency of their instances after any of them was changed, is particularly well
researched [Cle+19; Kah+19]. System development usually involves more
than two tools, and thus models of more than two languages have to be kept
consistent. The use of transformations to check and preserve consistency
between more than two models is, however, less researched [Ste20b]. It
recently gained attention in a dedicated Dagstuhl seminar [Cle+19].

1.1.2. Distributed and Reusable Consistency Knowledge

Two general transformation-based approaches for preserving consistency of
multiple models are multidirectional transformations and combining multiple
bi- or multidirectional transformations to networks of them. In theory, a sin-
gle multidirectional transformation provides higher expressiveness [Ste20b]
and benefits from not being prone to contradictions between the transforma-
tions to be combined. For practical application, however, multidirectional
transformations suffer from missing modularity, as a single person or team
must define the overall relations between all languages. Additionally, it is
difficult to think about complex multiary relations between models of multi-
ple languages [Ste20b] and, even worse, the required knowledge to define
such a relation may not even exist [Kla18].

Domain experts deal with the tools and corresponding models they require for
their tasks in developing a system. Usually, each of them is only concerned
with a subset of all tools involved in the development of a system. For
example, a performance engineer may be concerned with an instance of the
Palladio Component Model (PCM), which represents a component-based
architecture description of the system for the Palladio Simulator, to perform
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Figure 1.1.: Different tools and roles involved in an exemplary software development process
and distributed knowledge about the relations between models of the different tools.

an architecture-based prediction of the system’s performance and know
how this description is reflected in the system implementation with Java. A
software architect may use UML models for the architecture specification
and know how they are related to the implementation as well as to the PCM
architecture models. Finally, a requirements engineer may use IBM Rational
Doors and know how requirements have to be reflected in the architecture
specification and implementation to consider the models consistent. These
exemplary relations are depicted in Figure 1.1. No matter whether this is how
knowledge is actually present at the different roles in a concrete scenario, it
emphasizes that knowledge about the relations between languages and their
models will usually be distributed across different experts whenever multiple
models are involved. In large software systems, a single developer cannot
know about all model dependencies [PRV08]. In consequence, a process for
specifying consistency by means of transformations has to support a kind of
modularity to foster independent specification of distributed knowledge.

Furthermore, an automation especially proposes benefits if it is used often. A
specification of consistency and its preservation between common languages,
such as the UML and a programming language like Java, can be reused across
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multiple projects. Not every project will, however, use exactly the same tools.
Considering the example in Figure 1.1, if the relation between PCM and
Java was, at least partly, expressed indirectly across the relations between
PCM and UML as well as UML and Java, it would not be possible to reuse
that specification in another project that only uses PCM and Java but omits
UML. Thus, parts of the consistency specifications, i.e., specifications for
subsets of the tools in a project, should be reusable, comparable to Ready
to Use Software Products (RUSPs) [I25051]. In consequence, a process for
specifying consistency by means of transformations has to support the inde-

pendent specification of modular transformations, which can be combined
with arbitrary other modular transformations in different contexts.

To support the context induced by the previous considerations, we focus on
combinations of transformations, be they bidirectional or multidirectional,
instead of having only a single multidirectional transformation. We call
such a combination a transformation network. To summarize the previous
considerations, we need to cover the following context assumptions to the
specification of the individual transformations of a network.

Modular: Transformations are defined in a modular way, i.e., each transfor-
mation does only specify consistency and its preservation for a subset of
the tools used in an actual development project.

Independent: Transformations are defined independently, i.e., each transfor-
mation can be developed without considering the contents of the other
transformations that it is to be combined with.

1.1.3. Orchestration of Transformation Networks

Combining several modular and independently developed transformations
requires their orchestration, i.e., the determination of an order in which they
are executed to restore consistency. Existing work proposes, for example, to
define an execution order explicitly [Pil+08; Van+07] or to derive a kind of
topological order [Ste20b]. Such approaches either require manual decisions
for the orchestration or restrict the execution to specific topologies, such
as directed acyclic graphs or trees. In each case, strong assumptions to the
individual transformations or the topology of the networks are made.

It is still unclear how arbitrary modular and independently developed trans-
formations can be combined in a universal way. It is neither known how a
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Figure 1.2.: The process of specifying and executing a transformation network. Project-specific
development artifacts (transformations) are marked orange and the universal application artifacts
(orchestration with a resulting transformation network) are marked green. Concrete systems
and changes represent runtime artifacts. The assumed and envisioned properties are denoted in
red and italics.

developer can achieve a correct transformation network specification, i.e.,
transformations and an orchestration of them that delivers consistent mod-
els when applied, nor how he or she can systematically improve quality
properties of the network such as comprehensibility.

Under the assumption of a modular and independent specification of the indi-
vidual transformations, we aim at an approach for executing transformation
networks that has the following properties.

Universal: The approach shall be able to process transformation networks of
arbitrary topology. In particular, specific topologies cannot be assumed
or prescribed if independent development shall be supported.

Non-Intrusive: The approach shall not modify the transformations. When
independently developed transformations are combined to a network,
they should be treated as black-boxes and there should be no need to
adapt them to be used together.

Correct: The approach shall produce correct results. When it applies trans-
formations, it must return consistent models or indicate an error. The
identification and definition of an appropriate notion of correctness is
part of the contributions of this thesis.
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Comprehensible: The approach shall improve comprehensibility. If the
transformations are not able to yield models that are actually consis-
tent, it should support the user in finding the reason for that.

The envisioned process with the involved roles, artifacts and required prop-
erties is depicted in Figure 1.2. Different domain experts specify transforma-
tions, which are combined to a network with an orchestration mechanism
that decides in which order transformations have to be executed. If an actual
system is developed and a system developer modifies models, the transfor-
mations of the network are applied to these models and changes to produce
a consistent system description again.

In this thesis, we contribute to support the process of building transformation
networks that have the defined properties by providing a formal foundation
for transformation networks of arbitrary topology and defining a formal
notion of correctness for them. We discuss how correctness of a universal
approach to orchestrate and apply the transformations of a network can be
achieved by construction or at least by analysis, and which properties the
different involved artifacts, such as transformations and their orchestration,
have to fulfill for that. The proposed strategy to orchestrate transforma-
tions improves comprehensibility in cases in which it is not able to execute
transformations in an order such that the resulting models are consistent.
Additionally, we classify which kinds of errors can occur when the transfor-
mations and their orchestration are not defined correctly. Finally, we analyze
how topologies of networks affect the desired properties and propose an
approach of defining transformations that resolves trade-offs between the
envisioned properties.

In the following, we first discuss the addressed challenges in more detail by
considering a specific scenario and generalizing some of the challenges to
give a first impression of the issues we have to address. We then derive two
general problem statements from the identified challenges. Afterwards, we
derive our central, general research goal and define several questions arising
from that, which address the problem statements. After more precisely
specifying the context and assumptions that we make, we give a detailed
overview of our contributions.

9



1. Introduction

1.2. Consistency Specification Challenges

To get an impression of problems arising from the combination of modular
transformations, we introduce an exemplary scenario from a software en-
gineering process. We motivate why we expect that multiple executions of
the same transformation can be necessary and discuss some of the issues
that can occur in that context. Afterwards, we generalize that scenario and
derive a more precise problem statement.

We consider an extract of a software engineering scenario, in which three
roles using three different tools are involved, according to Figure 1.1. A soft-
ware developer implements the system with an object-oriented programming
language such as Java. An architect manages the object-oriented architec-
ture of the system with the UML. Finally, a performance engineer uses a
component-based representation of the architecture with the PCM contain-
ing an abstract behavior description at the architecture level to predict the
system’s performance to evaluate different design options.

The basic entities in PCM models are components, interfaces and data types.
Components are units of reuse that define which interfaces they provide or
require and contain abstract service specifications for the operations of the
interfaces they provide. This allows to assemble a system of components by
connecting components through their interfaces, such that every required
interface of one component is provided by a defined other component. For
the consistency relations between the three languages PCM, UML and Java,
which specify when models of those languages are to be considered consistent,
we use the ones proposed by Langhammer [Lan17] between PCM and object-
oriented design, be it UML or Java, and the intuitive notion of consistency
between UML and Java.

Although there are several degrees of freedom when relating UML and Java
models, the extracts that we consider follow a simple one-to-one mapping.
The relevant relations between elements in PCM and object-oriented design
are depicted in Figure 1.3. This involves a one-to-one mapping between
interfaces, and the realization of PCM components as classes. Provided
interfaces in a PCM model are realized by interface implementations of the
class realizing the component. Required interfaces are realized by a field
with the type of the interface and constructor parameters that ensure that
the required interfaces are set on instantiation of the component.
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Component

Interface
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Classifier

Class Interface
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Figure 1.3.: Extract of consistency relations between component-based architectures in PCM
and object-oriented design in UML/Java according to Langhammer [Lan17]. (Blue) lines with
arrowheads indicate that the connected elements share a consistency relation. Properties, such
as names, are omitted.

1.2.1. Correctness of Transformation Networks

One central goal of (software) engineering, and thus the construction of
transformation networks as part of that process, is to achieve correctness, more
precisely functional correctness [I25010, p. 11], of the developed artifacts.

Orchestration Challenge

When we consider transformations between PCM and UML, as well as be-
tween UML and Java, they can transfer each modification to the other models.
For example, adding a PCM component creates a UML class, which in turn
creates a class in Java code. Although in many cases each transformation
only needs to be executed once, there can be situations that require transfor-
mations to be executed repeatedly.

In the process depicted in Figure 1.4, we assume a system description that
contains at least one component and class, respectively, and one interface. If
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Figure 1.4.: Duplicate transformation execution after adding a field representing a required
interface to a Java class. Arrows indicate changes performed by a user or a transformation.

a developer adds a field to the Java class having the type of the interface, the
transformation between UML and Java transfers this field to the correspond-
ing UML class. The transformation between UML and PCM detects that the
interface is also represented as an architectural interface in the PCM model,
thus the field is supposed to represent a required interface in the architectural
model. In consequence, the transformation adds a required interface to the
PCM component. Since the consistency relations prescribe each required
interface to be represented as a constructor parameter, the transformation
also adds a constructor parameter to the class in the UML model. This finally
requires the transformation between UML and Java to be executed again, be-
cause the constructor parameter introduced by the transformation between
PCM and UML must also be added to the Java code.

The example demonstrates that it is, in general, necessary to execute each
transformation in a network more than once to achieve a consistent state of
the models. This is always the case if at least two transformations modify the
same model, because the first executed transformation may need to react to
changes of second one again, like the transformation between UML and Java
needs to react to the one between PCM and UML, because both modify the
UML model. We consider the determination how often and in which order
transformations must be executed as the orchestration challenge.

Synchronization Challenge

Up to now, we have assumed a chain of two transformations, one between
PCM and UML and another between UML and Java. There may, however,
also be an overlap of information between PCM and Java models that cannot
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Figure 1.5.: Two transformations propagating the same information to Java code. Arrows indicate
changes performed by a user or a transformation.

be represented in the UML, which requires an additional transformation
between PCM and Java. This is especially the case for behavioral properties,
which cannot be expressed in UML class models, such as the functionality
defined by Java methods and the abstract service specifications in the PCM. In
consequence, the graph induced by those transformations contains a cycle.

Instead of only having a transformation for that overlapping information
of PCM and Java models that cannot be expressed across the UML, the
transformation may also contain the relations already expressed across the
UML. Reasons for that can be independent development and reusability.
Independent development leads to the situation that the developer of the
transformation between PCM and Java does not know what the transforma-
tions to UML already express. Even if the developer has this information, he
or she may want to express it again to foster reusability, i.e., to use the trans-
formation between PCM and Java in projects in which the UML is not used
or when the transformation is not supposed to be used in a specific network
of transformations, comparable to RUSPs. In consequence, we need to face
the situation that multiple transformations propagate the same information,
i.e., they contain redundancies.

Figure 1.5 depicts a scenario in which a user creates a PCM component. The
transformations, in consequence, create a UML class and, finally, both the
transformation between UML and Java as well as the one between PCM and
Java specify the creation of an appropriate Java class. These transformations
now have to consider that there may be another transformation that has
already created that class. Otherwise, there is the risk of creating a duplicate
of that class or of overwriting the already created one.

Such a problem can always occur if two sequences of transformations propa-
gate the same information to the same model. How to achieve that transfor-
mations deal with such cases constitutes the synchronization challenge.
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Figure 1.6.: Contradicting consistency relations between components in PCM, classes in UML,
and classes in Java. The equations are meant to express that for any existing element another
element must exist such that the condition is fulfilled.

Contradiction Challenge

We have seen that it may be necessary to redundantly define the same
consistency relations in different transformations. This, however, implicitly
assumes that they are true redundancies, i.e., that they equally express the
same relations. This, in turn, requires all developers to have the same notion

of consistency between the different tools.

The example in Figure 1.6 informally depicts exemplary consistency relations
between components and classes. They are supposed to express that for
each component or class appropriate elements in the other models have to
exist that fulfill the given name relation. The constraints for their names
can, however, obviously not be fulfilled at the same time. While the class
representations are supposed to have the same name, the PCM component is
supposed to have the same name as the UML class but the name of the Java
class with an “Impl” suffix, as proposed by Langhammer [Lan17].

Such a situation can occur if the developers of different transformations have
different notions of consistency. According to the scenario in Figure 1.1, a
performance engineer, who knows about the relation between PCM and Java,
and a software architect, who knows about the relation between PCM and
UML as well as between UML and Java, have different notions of how to
represent components in object-oriented design.

If the domain experts encode the defined relations in transformations that
preserve them and execute them after any of the elements is added to a model,
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the transformations will either terminate in an inconsistent state or never
terminate at all. Executing the transformation for a finite number of times
would always result in an inconsistent state, if not removing the element just
added by the user.

In consequence, it is important to avoid or detect situations in which trans-
formations with such contradicting constraints in their consistency relations
are combined to a network. We call this the contradiction challenge.

Problem Statement

We have discussed three kinds of issues, which can prohibit that a transfor-
mation network terminates consistently, and derived according challenges:
orchestration, synchronization and contradiction. These challenges only
exemplify the relevant correctness issues in transformation networks. In
fact, it is even not systematically known which issues can occur. Thus, we
derive the following general problem statement.

Problem Statement 1
It is unknown how to correctly combine modular and independently
developed transformations to networks to yield consistent models after
they were changed.

1.2.2. Quality of Transformation Networks

Like in ordinary (software) engineering, besides the primary goal of pro-
ducing correct artifacts, several quality properties shall or need to be im-
proved. They can range from properties that are relevant for developers,
such as reusability and modifiability, to properties relevant for users, such
as performance, usability and reliability [I25010, p. 4]. This also applies to
transformation networks as artifacts of the (software) engineering process.

Properties and Topologies Challenge

In this thesis, we focus on further properties regarding the development
of a transformation network, such as reusability and modifiability, rather
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Figure 1.7.: Different transformation network topologies between PCM, UML and Java.

than properties of its usage, such as performance. Reusability is of most
importance, because transformations may be used in different contexts within
different networks of other transformations.

Consider the two networks sketched in Figure 1.7. The networks contain
transformations between PCM and UML as well as between UML and Java.
One of them additionally contains a transformation between PCM and Java.
They can be considered as representatives of extremes of transformation
networks: the graph induced by transformations may on the one end be a
tree, and on the other be a complete graph.

It is easy to see that properties are directly affected by the network topology.
A complete graph has the benefit of high reusability, because any subset of
tools can be used for a development project without loosing consistency. In
the example, the tree network is not applicable in development projects not
using the UML, because then PCM and Java models cannot be kept consistent.
Additionally, a complete graph profits from universality, because arbitrary
relations can be expressed, whereas a tree requires that of three languages
there is always one that can express the overlap of the two others. If there are
overlaps between PCM and Java that cannot be expressed across the UML,
like discussed for behavioral specifications, a tree cannot be defined. On the
other hand, a tree has the benefit of inherent correctness guarantees. There
are no two paths of transformations between the same two languages. Thus,
no changes can be propagated across two paths to the same model. This
avoids at least two of the three introduced challenges regarding correctness,
because neither synchronization problems nor contradictions can occur.

While each kind of topology improves certain properties, it degrades others at
the same time. In other words, topologies induce trade-offs between different
properties. For example, a tree improves correctness, but degrades reusability
in comparison to a complete graph. Deriving how to use this knowledge to
mitigate trade-offs and improve different properties at the same time is our
properties and topologies challenge.

16



1.2. Consistency Specification Challenges

Improvement Challenge

We have seen that topologies directly influence properties of transformation
networks. We will see that an appropriate strategy of building networks
with a specific topology mitigates trade-offs. Currently, however, there is
no known approach that supports building transformation networks of spe-
cific topologies improving quality properties. Research approaches have
considered approaches and languages for single transformations or specific
composition purposes, such as transformations between the same two lan-
guages [WVD10; Wag+11], or chains of transformations [Pil+08; Van+07].

To relieve the developer from identifying a topology to improve different
properties, a universal approach to define an according topology and an
appropriate language that supports its definition should be provided. Inves-
tigating such a strategy and design options for an according specification
language constitutes our improvement challenge.

Problem Statement

We have discussed that topologies affect different correctness and quality
properties of transformation network and that they impose trade-offs be-
tween them. It is unclear how this insight can be used to systematically im-
prove different properties of transformation networks by building networks
of specific topologies. Thus, we derive the following problem statement.

Problem Statement 2
It is unknown how to systematically mitigate trade-off decisions be-
tween correctness and quality properties, such as reusability, of trans-
formation networks.

1.2.3. Challenges Overview

We have discussed several issues regarding the construction of transforma-
tion networks. Figure 1.8 summarizes the identified problem statements and
challenges. We have identified two central problem statements, one regard-
ing the correctness of networks and another regarding the improvement of
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Problem Statement 1:
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Figure 1.8.: The two identified problem statements and their challenges.

quality properties, each driven by specific challenges. We have discussed
orchestration, synchronization and contradiction as central challenges for
constructing correct transformation networks. For the improvement of qual-
ity properties, we have emphasized that the relation between properties and
topologies enables the construction of topologies mitigating trade-offs.

1.3. Research Objective

We have identified specific challenges and generalized problem statements
in the construction of transformation networks. In the following, we derive
our research goal and the actual research questions that we answer in this
thesis in response to the problem statements. Afterwards, we summarize the
context and the assumptions of our work. Finally, we give an overview of
the contributions to answer the defined research questions.

1.3.1. Research Goal and Questions

The central goal of our research can be summarized as follows.

Research Goal
Define a notion of correctness for networks of modular, independently
developed transformations and classify relevant quality properties. Pro-
vide approaches to systematically improve correctness and quality
properties of transformation networks by construction or by analysis.
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The benefits of achieving that goal are twofold. First, researchers and trans-
formation developers both gain systematic knowledge about how to achieve
correctness and improve quality properties in transformation networks. Sec-
ond, transformation developers are provided with concrete techniques and
languages that help to achieve correctness and improve other properties
either by construction or at least by analysis.

The research goal consists of two parts, one regarding correctness of trans-
formation networks and one regarding the improvement of their quality
properties. For each part, we identify fine-grained research questions.

Building Correct Transformation Networks

The first part of our research goal concerns correctness of transformation
networks. We want to know what correctness means for transformation
networks and which aspects of correctness we can achieve for every network.
In particular, we want to identify which of them we can achieve by proper
construction of each transformation, which we can analyze, and for which
we need to deal with potential incorrectness until their execution. We derive
the following research questions for the first part of our research goal.

RQ 1 When should networks of independently developed transformations
be considered correct and how can correctness be achieved?

RQ 1.1 What are relevant notions of correctness in transformation
networks and how can they be formalized?

RQ 1.2 When are the constraints induced by transformations contra-
dictory and how can that be analyzed?

RQ 1.3 Which requirements must a transformation fulfill for being
used in a network in comparison to using it on its own?

RQ 1.4 How can transformations in a network be orchestrated and
which properties can such an orchestration strategy fulfill?

RQ 1.5 Which errors can occur in transformation networks, how
can they be classified regarding their avoidability, and how
severe are they?
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RQ 1.1 is the fundamental question to precisely define what correctness
means, beyond our up to now informally given notion. RQ 1.2, RQ 1.3
and RQ 1.4 directly map to the previously identified challenges regarding
orchestration, synchronization and contradiction. Finally, RQ 1.5 asks for
the inverse, i.e., for the case in which errors occur due to incorrectness, to
find out how incorrectness manifests during execution and how likely and
thus severe the errors are.

Improving Quality Properties of Transformation Networks

The second part of our research goal concerns quality properties of transfor-
mation networks. We want to known how we can systematically improve
the quality of transformation networks. This includes the identification of
properties that are relevant when building transformation networks and how
they are affected by different topologies. We use this to systematically derive
a proper construction approach achieving a specific topology that resolves
trade-offs between quality properties. We derive the following research
questions for the second part of our research goal.

RQ 2 How can quality properties of transformation networks be improved
systematically?

RQ 2.1 What are relevant properties and topologies of transforma-
tion networks and how are they related?

RQ 2.2 How can topologies of transformation networks improve
quality properties of transformation networks?

RQ 2.3 How can a specialized language support the specification of
a network topology that improves quality properties?

RQ 2.1 maps to the properties and topologies challenge for identifying how
topologies affect the fulfillment of properties. RQ 2.2 and RQ 2.3 map to
the improvement challenge to identify how the proper construction of a
topology can improve quality properties and how an appropriate language
can support that.
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1.3.2. Context and Assumptions

In this thesis, we consider the context of model-driven development pro-
cesses for software or software-intensive technical systems. Thus, we assume
that a system under construction is described by several models containing
information about different extracts or properties of the system. We assume
that they usually share some overlap of information. Our discussions will
focus on software development artifacts. If they follow the same formal-
ism, however, the insights and techniques may be applied to artifacts from
arbitrary domains.

We assume that the knowledge about different transformations to be com-
bined to a network is distributed. To foster the development of transfor-
mations that can be used as RUSPs, we assume that transformations are
developed independently. Thus, transformations may not be adapted to be
used within transformation networks.

We do not restrict the kinds of relations between models to keep consistent
in any way. We will, however, discuss different types of consistency and
their relations to different kinds of processes to preserve consistency in Sub-
section 3.1.2. In fact, our contributions, although theoretically not restricted
to that, will be best applicable to a kind of structural dependencies rather
than behavioral dependencies.

Finally, transformations may not always be able to restore consistency on
their own, because necessary information to do so is missing. For example, a
developer may add a class in Java code and a transformation has to decide
whether that class shall represent a PCM component or not. That problem
can either be solved by requiring the class to fulfill certain patterns, like
containing “Component” in the class name, or by asking the user about his
intent. In cases where information is transformed to a semantically richer
model, often further information about how to transform it is needed. Kramer
[Kra17, p. 57] provides a classification for different levels of automation,
starting from no automation over suggestions and semi-automated repair to
fully automated repair. In this thesis, we assume that consistency is preserved
in a fully automated way, thus excluding the semi-automatic case. We will
finally discuss how our finding generalize to cases in which user decisions
need to be included.
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Figure 1.9.: Relations between context, problem statements, research questions, and contribu-
tions.

1.3.3. Contributions

The contributions that we make in this thesis are structured along the same
dimensions as the problems and the research questions, namely correctness
and quality properties of transformation networks. The contributions directly
map to the research questions. Figure 1.9 gives an overview of the relations
between the context of our work, the problem statements, the research
questions and the contributions that we make.

We make the following contributions regarding transformation network
correctness.

C 1.1 (Notion): We discuss different notions of correctness for transforma-
tion networks and precisely define the one relevant for our context. We
derive that compatibility, synchronization and orchestration constitute
relevant correctness notions.
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C 1.2 (Compatibility): We precisely define a notion of compatibility to ex-
press when transformations contain contradictory constraints. We
propose an approach that validates compatibility of transformations
and prove its correctness.

C 1.3 (Synchronization): We discuss how synchronization can be achieved
for transformations defined with existing transformation languages.
We prove that transformations fulfilling a specific property can be ap-
plied in transformation networks. We provide an algorithm to execute
the transformations in that case and propose a strategy to fulfill the
required property by construction.

C 1.4 (Orchestration): We prove that transformations can, in general, neither
be executed only once nor an arbitrary number of times in a fixed-point
iteration without the risk of non-termination. We prove that finding an
execution order of the transformations that yields consistent models
is an undecidable problem and discuss why we cannot make practica-
ble restrictions to the transformations to achieve its decidability. We
propose an algorithm for orchestration that executes the transforma-
tions according to a well-defined strategy that helps to find the cause
whenever it does not return consistent models.

C 1.5 (Errors): We systematically derive which errors can occur when cor-
rectness of a transformation network is not given. We empirically
evaluate the probability of the different errors to occur to classify their
severity and thus the importance of avoiding them.

We make the following contributions regarding the improvement of quality
properties of transformation networks.

C 2.1 (Topologies): We discuss how different quality properties of transfor-
mation networks are affected by the network topology. We derive
that trade-off decisions have to be made regarding the improvement
of different properties.

C 2.2 (Improvement): We propose a strategy for building a specific network
topology, which makes the consistency relations explicit in terms
of auxiliary models rather than transformations. We show that this
approach systematically improves different quality properties and
mitigates necessary trade-off decisions.
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C 2.3 (Language): We propose a specialized language for the definition of a
transformation network according to the strategy of C 2.2. We discuss
different design options for the language and its operationalization.

1.3.4. Expected Benefits

The contributions that we make in this thesis provide several benefits for
researchers, developers of transformations and transformation networks, as
well as transformation (network) users. All of them profit from systematic
knowledge about what correctness means for transformation networks, how
correctness is affected and can be guaranteed, and about relevant quality
properties in transformation networks as well as how they can be improved.
The contributions, however, have an intended focus on supporting transfor-
mation and transformation network developers.

Researchers can base on our definitions for correctness of transformation net-
works and can thus precisely contribute to particular parts of the correctness
notions, such as approaches to achieve correctness with explicitly knowing
how and which kinds of potential errors of transformation networks are
affected by that. Additionally, they can base further research on the insights
about property trade-offs induced by different network topologies.

The developers of actual transformation networks consist of developers of
the individual transformations and the ones combining them to a network.
The development of individual transformations is supported by the provision
of systematic approaches to build transformations that can be used within
networks, especially in terms of supporting synchronization. Transformation
network developers benefit from the knowledge that they have to deal with
undecidability of orchestration. They also benefit from approaches to validate
transformations they want to combine regarding compatibility, an actual and
practical orchestration strategy to execute transformations, and an approach
to build networks that mitigate property trade-offs.

Finally, the users of a transformation network, i.e., those who develop a
system using a transformation network to preserve consistency of its arti-
facts, benefit from the ability to use networks for which correctness was
systematically achieved. They also profit from an orchestration strategy that
supports them in finding and understanding the reasons why the network
may not be able to process certain changes to preserve consistency.

24



1.4. Thesis Outline

1.4. Thesis Outline

The remainder of this thesis is structured as follows. We briefly introduce fun-
damental terms, concepts and ideas in Chapter 2 and define own terminology
and notions on which we rely in Chapter 3. Part II and Part III then structure
the contributions along the topics of transformation network correctness and
the improvement of quality properties. Within Part II, Chapter 4 first derives
a reasonable notion of correctness for transformation networks, from which
the three topics of proving compatibility (Chapter 5), achieving synchroniza-
tion (Chapter 6), and orchestrating transformations (Chapter 7) are derived.
We discuss potential errors if correctness is not given in Chapter 8, before we
evaluate approaches presented in these chapters in Chapter 9. Within Part III,
Chapter 10 first discusses quality properties of transformations networks
and how they are affected by the network topology. Chapter 11 derives an
approach for mitigating trade-offs between these quality properties, which
is supported by a language proposed in Chapter 12 and which we evaluate
in Chapter 13. Each of the Chapters 4–7 and 10–12 addresses one of the
identified research questions and provides one of the depicted contributions,
whose central insight is summarized at the end of each chapter. After relating
our work to different fields of research in Chapter 14, we conclude with a
summary of future work in Chapter 15.

Beyond sequential reading, there are multiple other modes for readers par-
ticularly interested in specific topics. We suggest to always read Chapter 3
and, with less importance but for better understanding, also Chapter 4, as
they define essential notions and notations. Readers especially interested in
topics related to correctness of transformation networks can proceed with
any of the Chapters 5–8, which are almost independent, and follow back
references where necessary. Readers particularly interested in the improve-
ment of quality properties of transformation networks can skip Chapters
5–9 and proceed with Chapters 10–13, which should be read sequentially.
These chapters also refer to the insights from Chapters 5–9 but will also
be comprehensible without reading them or by following back references
where necessary. Readers who only want to obtain a better general overview
of the contributions of this thesis also have the option to read the insights
at the ends of the chapters and the conclusions in Chapter 15, potentially
complemented by the fundamental notions in Chapter 3 and Chapter 4.
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In this chapter, we introduce fundamental concepts and notations that we use
throughout this thesis. We consider modeling in terms of a notion of models
and methods in which they are used, and depict important formalisms and
frameworks for modeling. We introduce the idea of multi-view modeling
and, in particular, the Vitruvius approach, which we employ for evaluations.
Finally, we discuss model transformations and languages to describe them.
After introducing the case studies used for our evaluations and, partly, for
explanations of our contributions, we depict the mathematical notations that
we use in this thesis.

2.1. Modeling

This thesis researches the employment of transformations to keep multiple
models, which are used to describe a single software system, consistent.
Therefore, we first introduce a notion of models and how to use them.

2.1.1. Models and Model Theory

Models are a ubiquitous concept, which is used throughout many technical
and non-technical domains. The term model is used differently in various
contexts from informal depictions to mathematical formalizations [Sta73]. In
his work on general model theory, Stachowiak characterizes models by three
criteria: representation, abstraction and pragmatics [Sta73, p. 131–133].

Representation: The representation characteristic requires a model to be a
mapping or representation of some original. An original not necessarily
needs to be a natural, existing entity, but can also be any kind of concept,
which can, again, be a model [Sta73, p. 131]. We always consider models
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that are representations of a software-intensive system under construc-
tion. This characteristic requires a model to contain no information that
is not related to the system, such that, if the system and the model could
be represented by a set of explicit properties, we would be able to define
a mapping, or, more precisely, a homomorphism between them.

Abstraction: The abstraction characteristic requires a model to only repre-
sent a subset of the properties of its original. Properties are limited to
those that seem relevant to the creator of the model [Sta73, p. 132]. This
abstraction should be driven by the pragmatics of the model, defined as
the third characteristic. For example, an architecture model of a software
system may only represent properties relevant for some information
need at the architectural level, which could, for example, abstract from
behavior or implementation details.

Pragmatics: The pragmatic characteristic requires a model to be designed for
a specific purpose, such that it can only be related to its original for spe-
cific users, for specific points in time, and for specific operations [Sta73,
pp. 132]. Models of software systems can, for example, have the purpose
of depicting or editing the system structure or its behavior, or of perform-
ing some analyses or simulations for specific properties of the system.
The pragmatics influences the abstraction, as a specific purpose implies
a certain information need to be provided by a proper abstraction.

While this is a rather general notion of a model, it also fits to the one relevant
for software engineering, as depicted in our examples. One appropriate
definition for models in the domain of software design has been given by
Rumbaugh et al.: “A model is an abstraction of something for the purpose of
understanding it before building it” [RB05, p. 15]. This fits well to the notion of
making predictions about the systems upfront, such as the already mentioned
Palladio Simulator making performance predictions about a software system
based on an architectural model of it. Models may, however, not only be used
to understand the system but also to build it, especially when considering
code as a model as well.

2.1.2. Metamodels and Languages

To automatically or semi-automatically process models, such as compiling
source code, these models need to follow some specification, which can be
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considered a model that defines how a valid model for a specific purpose looks
like. Such a model of a model is often denoted as a metamodel. Models and
their metamodels induce an instance-of relationship, such that a metamodel
can be considered the type of a model, and a model is considered an instance
of a metamodel. This conforms to the notion of type and instance level
known from programming. The grammar of a programming language, such
as the Java language specification [Gos+18], can be considered a metamodel
for programs of that language.

In a simple notion, a metamodel can be considered as a set of models, such
that a model is an instance of that metamodel if it is contained in that set.
This is sometimes also referred to as model sets [Ste20b]. Usually, metamodels
will be described with some formalism, which we discuss in more detail in
Section 2.2. Such a formalism defines the elements of which a metamodel
consists and how these elements are instantiated in the models, along with
some constraints that a model has to fulfill to be considered a valid instance.

Models, especially in software engineering, are often understood as struc-
tures of objects and relations between them, which can be depicted in UML
class diagrams. Although this notion fits well to how we consider models
and how we later define them more precisely, the elements of models must
also have a meaning, i.e., a semantics [HR04], in the specific context they
are used for. This semantics is given by the pragmatics characteristic of Sta-
chowiak’s classification. For models in software engineering, this semantics
is usually defined by modeling languages and tools defined for that modeling
language, in which these models are defined and used. These languages and
tools, for example, transform models into another representation, i.e., into
another model, for which the semantics is known For code, execution seman-
tics can be given by its compilation to machine code for some, potentially
virtual, machine whose execution semantics is known. This is known as
transformational semantics [Pep79].

A modeling language consists of a specification of abstract and concrete
syntax, as well as its static and execution semantics [Völ+13, p. 26].

Abstract Syntax: Defines a data structure containing the relevant informa-
tion about a system or program, usually in terms of a tree or graph.

Concrete Syntax: The notation in which a user can express models, such as
a textual or graphical representation.
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Static Semantics: A set of constraints that a model has to fulfill in addition
to conforming to the syntax, such as a type system.

Execution Semantics: The semantics of a program or model when it is exe-
cuted, which can also be given by a transformation to another model.

Völter et al. [Völ+13] use the term Domain-Specific Language (DSL) instead of
modeling language. DSLs are supposed to increase productivity and concise-
ness for specifying models in a specific domain [Völ+13, p. 30] in contrast to
using a General-Purpose Language (GPL). A language is, however, not either
domain-specific or general-purpose, but domain specificity of a language is
a gradual notion [Völ+13, p. 30]. DSLs being designed for a specific domain
are usually assumed to have restricted expressiveness [Fow10, Chap. 2]. The
term domain can have different meanings. Völter et al. distinguish between
technical and application domain DSLs, although emphasizing that there is no
clear border between them [Völ+13, p. 26]. In the context of this work, we can
distinguish DSLs used by software developers and DSLs used by developers
of software development tools. DSLs for software developers can again be
separated into rather generic DSLs, such as the UML for general software de-
sign and the PCM for general performance prediction, and rather application
specific DSLs, such as MATLAB/Simulink [Simu] or AUTOSAR [Sch15] in
automotive software development. DSLs for software development tool de-
velopers cover languages to specify transformations and editors to be used for
developing software and keeping software models consistent. In this work,
especially transformation languages used by developers of transformation
networks to support software development are relevant, whereas languages
of software developers are used to define the models that transformations
have to keep consistent. Since we are not concerned with domain specificity
of a language, we only use the general term modeling language.

Metamodels are often considered as the abstract syntax of models [Völ+13,
p. 27], whose semantics is defined by the modeling language it is used in.
In this thesis, we use a notion of models and metamodels that we define
more precisely in Section 3.3, which does also not reflect the semantics of
the models explicitly. Some semantics of models is, however, represented
implicitly by the transformations preserving consistency.
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2.1.3. Model-Driven Software Development

Model-Driven Software Development (MDSD) [Sta+06] is a general term for
the idea of increasing abstraction in software development by using models
instead of or in addition to program code [AK03]. It also appears as model-

driven software engineering or simply model-driven development [AK03]. It
has been considered the natural continuation of increasing abstraction, like
achieved with more powerful compilers and higher abstraction in program-
ming languages before, by automating repetitive tasks such as support for
persistence or interoperability [AK03]. This includes that models are central
development artifacts, from which even code can be derived, rather than
documentation artifacts.

The Model-Driven Architecture (MDA) [MDA] proposed a standard for an
MDSD process, in which abstract, platform-independent, and thus highly
reusable and portable models are used to generate code for different platforms.
Stahl et al. propose a more sophisticated process, in which repetitive and
generic code is separated from individual code, such that repetitive code can
be generated and extended by individual code [Sta+06, Fig. 2.1].

We consider MDSD as an even more generic process using any models to
describe a system under construction, which do not only serve documentation
purposes but which all contain some information that is not represented in
the other models, while still sharing common information that, as a central
part of the motivation of this thesis, needs to be kept consistent. Thus, we
do especially not split the code into repetitive and individual code, as we
also treat code as a model that can be changed like the other models. In this
thesis, for example, we employ a metamodel for Java code [Hei+09a]. This
follows the notion of Bézivin that “everything is a model” [Béz05].

2.2. Modeling Formalisms and Frameworks

Models are instances of metamodels, as discussed in Subsection 2.1.2, which
usually rely on some formalism that defines which elements metamodels can
contain and how they are instantiated in models. Such a modeling formalism

can, again, be defined as a model of the metamodel, which is then called a
meta-metamodel. We call each of the instantiation levels of models and their
metamodels a meta-level. While there can, in general, be an arbitrary number
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of meta-levels, for practical reasons there has to be a topmost model in this
hierarchy that is self-describing.

We depict two modeling formalisms, the Meta Object Facility and Ecore, which
are commonly used in software engineering and which we use in this thesis.
Using a common modeling formalism for all models and metamodels enables
the application of common tooling to them, which, in our case, especially
concerns transformations. A modeling framework provides the infrastructure
for such common tooling of a modeling formalism. Ecore belongs to the
Eclipse Modeling Framework, which defines an infrastructure for tooling on
models and metamodels defined with Ecore, based on a code representation
of models with a well-defined Application Programming Interface (API).

2.2.1. Meta-Object Facility

The Meta Object Facility (MOF) [MOF] is a standardized modeling formalism,
i.e., it defines a self-describing meta-metamodel, which is also called MOF. It
contains the Essential Meta Object Facility (EMOF), which is a subset of the
MOF derived from class models in the UML [UML]. The MOF standard does
not prescribe a specific number of meta-levels [MOF, Sec. 7.3]. We do, how-
ever, usually assume four meta-levels, as defined by the UML standard [UML]
and as used for Ecore as a realization of the EMOF. These meta-levels, denoted
M3–M0, comprise the meta-metamodel at M3, metamodels at M2, models at
M1 and, finally, instances of models at M0.

The modeling formalism used in this work will be even more generic than the
one proposed by the EMOF, but can be considered a generalization of it. For
a less abstract understanding, the reader may, thus, have the EMOF in mind
and apply the discussions to it. In addition, we denote examples and perform
our evaluations with EMOF-compliant models and metamodels. To support
this, we depict an important subset of the EMOF meta-metamodel as a UML
class diagram in Figure 2.1. Comparable to class models in the UML, the
EMOF defines classes consisting of properties, which have multiplicities and
a type. The type of a property can, again, be a class but also an enumeration
or a primitive type. Each property has multiplicities that define an upper and
lower bound for the number of elements to refer to. In addition, a property
defines whether it is composite, denoting that the elements referenced in
an instance are to be considered contained in an instance of the class con-
taining that property. This simple structure of classes and relations between
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Element NamedElement

name : String
TypedElement

TypeEClassifierEnumerationLiteral

type0..1

Enumeration DataType Class
abstract : bool

ownedLiteral 0..*
/superClass0..*

AggregationKind
none
shared
composite

PrimitiveTypeMultiplicityElement

/lower : int
/upper : int
isOrdered : bool

Property
aggregation : AggregationKind
/isComposite : bool

ownedAttribute 1

Figure 2.1.: Simplified class diagram with central metaclasses of the EMOF modeling formal-
ism [MOF, p. 27]. Dotted lines denote indirect inheritance. Adapted from [Kra17, Fig. 2.2].

them leads to models and metamodels of the EMOF that are mathematically
equivalent to attributed, typed graphs with inheritance [Kra17, Sec. 2.1.3.1],
such that they are widely applicable. Even common engineering tools such
as AUTOSAR [Sch15] and SysML [SysML] use MOF-compliant models.

We usually denote the types of model elements as metaclasses rather than
classes, especially to avoid confusion with classes of UML class models. UML
class models, defined at M1, contain classes, which are instances of a Class

metaclass in the UML metamodel at M2, which, in turn, is an instances of
the Class metaclass of the EMOF.

Since the restriction to type and instance level of models and metamod-
els at M1 and M2 increases accidental complexity in models [AK08], other
formalisms such as multi-level modeling support an arbitrary number of meta-
levels and precisely separate ontological and linguistic modeling [AK03].
This accidental complexity is complementary to the one introduced by repli-
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cating information across different models, which we aim to manage with
consistency preservation mechanisms, as it concerns the accidental complex-
ity within the single models due to restricted modeling capabilities. Although
multi-level modeling gained more attention in the last years [AGK14], com-
mon modeling frameworks such as the Eclipse Modeling Framework are still
restricted to linguistic instantiation relations between metamodels, models
and their instances, which is why we stick to such formalisms.

2.2.2. Ecore and EMF

The Eclipse Modeling Framework (EMF) [Ste+09] is a modeling framework
for Eclipse, which is a plugin-based, extensible Integrated Development
Environment (IDE). It uses the meta-metamodel Ecore and provides an in-
frastructure for defining tools on models based on Ecore. This bases on a
code generator for metamodels [Ste+09, pp. 237], which does not only relieve
the developer from manually specifying a metamodel as a data structure in
code manually but also ensures that the code provides a well-defined API,
on which tools can rely, as it is provided by any metamodel developed with
the EMF. This enables the definition of tools, such as editor frameworks that
only require configuration files for providing a sophisticated graphical editor
for a model, or transformation languages that enable the definition of trans-
formations between arbitrary Ecore metamodels. Regarding meta-levels, the
EMF provides the Ecore meta-metamodel for which it allows the definition
of metamodels and which can then be instantiated in models.

Ecore can be considered a reference implementation of the EMOF standard.
Thus, Ecore and EMOF share most concepts, but, apart from minor structural
and naming changes, Ecore provides some refinements compared to EMOF.
We depict the relevant subset of the Ecore meta-metamodel as a UML class
diagram in Figure 2.2. The most notable difference is that Ecore separates
EMOF properties, called features, into attributes and references, of which
attributes refer to enumerations and primitive types, whereas references
refer to other classes. In contrast to properties being composite in EMOF,
references in Ecore have an explicit containment attribute.

In this thesis, whenever referring to an existing modeling formalism rather
than the more general one we propose, we use the terminology of Ecore. The
distinction of attributes and references in Ecore eases understanding, as it
conforms to the notion of class properties and associations in the UML.
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EModelElement ENamedElement

name : String
ETypedElement

lowerBound : int
upperBound : int
ordered : bool

EClassifierEEnumLiteral eType

0..1

EEnum EDataType EClass
abstract:bool

eLiterals 0..*

eSuperTypes0..*

EStructuralFeature

abstract : bool
EReference

containment : bool
EAttribute

id : bool

eStructuralFeatures 0..*

/eReferenceType 1
/eAttributeType 1

Figure 2.2.: Simplified class diagram with central metaclasses of the Ecore modeling formal-
ism [Ste+09, p. 107]. Adapted from [Kra17, Fig. 2.3].

For the EMF, many tools such as editor frameworks, transformation lan-
guages and language workbenches have been developed. We explicitly dis-
cuss transformation languages in Section 2.4. Language workbenches allow
the specification of modeling languages. One such workbench is Xtext [Bet16]
for defining languages with a textual concrete syntax. It allows to define
the language grammar, from which it derives the metamodel in terms of an
abstract syntax, as well as parsers and editors. A compiler or generator can
be defined to transform models in that language into another representa-
tion, such as executable code, giving them their semantics. Such a language
workbench can be used for languages to define domain models but also for
languages used as tooling in MDSD processes. We use Xtext for the imple-
mentation of the prototype of a transformation language that we propose
in this thesis, and it has also been used to develop the Reactions language,
which is a transformation language that we introduce in Subsection 2.4.3
and that we reuse for the evaluation in this thesis.

As already introduced in Subsection 2.1.3, code can also be considered a
model. For the representation of Java code as an Ecore model, JaMoPP has
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been proposed [Hei+09a; Hei+09b]. It defines an Ecore metamodel for the
Java language and also provides parsing and printing capabilities for treating
Java source code files as Ecore models.

2.3. Multi-View Modeling

Multi-view modeling covers the general topic of describing a system by means
of multiple views or, in general, multiple models [RST19]. A key challenge
in multi-view modeling is consistency [RST19], as we have motivated in
Chapter 1. Preserving consistency between multiple views is referred to
as model repair [MJC17], consistency restoration [Ste10; Kra17] or model

synchronization [Dis+16b], with slightly different meanings. We usually refer
to this as consistency preservation.

The term architecture view has been defined in the context of system archi-
tecture as an expression of the architecture regarding specific concerns in an
ISO standard [I42010, p. 2]. We generalize this to views as representations of
system extracts or properties regarding specific concerns. Approaches for
constructing views can be separated into synthetic and projective ones [I42010,
p. 22]. A synthetic approach composes a system description of views, such
that each of them represents some information not contained in the others.
Projective approaches derive the information in a view completely from an
underlying repository, thus views are only projections from that repository.
In projective approaches, the underlying repository can, again, be seen as
a model, such that views in projective approaches are projections of that
model [Kla+21, Fig. 5]. This underlying model is also called a Single Under-
lying Model (SUM) [ASB10, p. 210], which conforms to a metamodel, the
Single Underlying Metamodel (SUM metamodel) [Kla+21, Def. 2].

In a projective approach, the problem of preserving consistency between the
views, as it is necessary in a synthetic approach, is transferred to ensuring
consistency within the SUM, from which the views are projected. Consistency
of this SUM can be achieved in different ways [Mei+19; Mei+20], especially
depending on whether a SUM is essential or pragmatic [ATM15]. An essential
SUM is free of any redundancies or implicit dependencies, such that every
instance of its SUM metamodel is inherently consistent, whereas a pragmatic
SUM can allow arbitrary redundancies and dependencies, which then have
to be kept consistent by explicit mechanisms for consistency preservation,
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such as transformations. While the former approach is followed by the Or-
thographic Software Modeling approach, the latter is used in the Vitruvius
approach, which we depict in more detail in the following.

2.3.1. Orthographic Software Modeling

Orthographic Software Modeling (OSM) is an approach to multi-view model-
ing based on the idea of an essential SUM and proposed by Atkinson et al.
[ASB10]. It assumes a SUM, which is, in the best case, free of any redundan-
cies and dependencies and thus inherently consistent. The approach focuses
on the creation and management of projective views from this SUM [ASB10,
p. 211]. It proposes to structure these views along their properties, which
span different dimensions and induce a cube in which each cell potentially
represents a view, at least if the associated combination of property values
makes sense [ASB10, p. 212]. Dimensions can be static, such as the abstrac-
tion level or the notation, or dynamic, such as the elements to display. For
example, one might select a graphical view at the architecture level for a
specific component, or a textual view at the implementation level for a spe-
cific class. These views are created dynamically and on-demand from the
SUM [ASB10, p. 211], and views are assumed to be the only possibility to
modify information in the SUM. Views, like models, base on a metamodel that
defines when views are valid, which is called a view type [Gol11, p. 133].

Consistency in this approach is achieved by proper construction of a SUM
metamodel, which ensures that instances are always consistent. It requires
transformations between the views and the SUM to first generate a view and
later propagate changes in the view back to the SUM. The approach does,
however, not inherently solve the problem of concurrent modifications to
different views to be merged.

2.3.2. The VITRUVIUS Approach

The Vitruvius approach [Kla+21] bases on the OSM idea of having a SUM
from which projective views are derived through which the information in
the SUM can be modified. Instead of essential SUMs, is uses pragmatic SUMs,
which can contain redundancies and dependencies that are kept consistent.
The SUM internally consists of models, which are kept consistent by model
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Figure 2.3.: Exemplarily V-SUM metamodel consisting of three metamodels for component-
based development and exemplarily views derived from them. Adapted from [Lan17, Fig. 4.4].

transformations, called consistency preservation rules, and is denoted as a
Virtual Single Underlying Model (V-SUM) [Kla+21, Def. 9]. The metamodel
of a V-SUM is denoted as a Virtual Single Underlying Metamodel (V-SUM
metamodel) [Kla+21, Def. 10]. It is motivated by the insight that constructing
an essential, redundancy-free SUM is hard to achieve [Mei+20]. In addition,
to achieve compatibility with existing tools and their modeling languages
it may be easier to combine their metamodels with a synthetic approach,
because then the view used by each tool is only a projection given by an
isomorphism to one of the models within the V-SUM [Kla+21]. Still, in
contrast to a purely synthetic approach, it allows to define further projective
views derived from the information of the models in the V-SUM.
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Figure 2.3 depicts an exemplary V-SUM metamodel for component-based
development, using Java for the source code representation, the UML for de-
picting object-oriented design, and the PCM for representing the architecture
of the system and potentially performing quality predictions. These three
metamodels form the V-SUM metamodel, whose instances can be accessed via
views that can be instantiated from four exemplary view types. VT 1 and VT 3
depict existing view types, already used as visualizations of UML and PCM
models, whereas VT 2 and VT 4 represent view types projected from multiple
models within a V-SUM and potentially further information defined by the
consistency preservation rules. We will also introduce consistency between
these metamodels as a case study used for explanations and evaluations of
this thesis in Section 2.5.

Within a V-SUM, multiple models need to be kept consistent, which is one
application area for the contributions of this thesis. Vitruvius serves both as
a motivation for the contributions of this thesis, but its implementation in the
Vitruvius framework [GitVit] and especially its languages for consistency
preservation also serve as a basis for our prototypical implementation and
validation purposes. For Vitruvius, we have provided a simple but sufficient
formalism defining consistency [Kla+21]. The formalism in this thesis bases
on it but will be more detailed and fine-grained. Additionally, we will see that
the abstraction provided by a layer of projective views onto the models that
are kept consistent in a V-SUM provides additional benefits in our approach
for improving quality properties explained in Chapter 11 rather than using
it standalone.

2.4. Model Transformations

In addition to models and formalisms to define them, model transformations
are another core element of MDSD processes. They are sometimes considered
the “heart and soul” [SK03] of MDSD. Model transformations, which we also
simply denote as transformations throughout this thesis, generate one model
or even code from another model.

According to Kleppe et al. [KWB03], a transformation defines how to gen-
erate a target model from a source model by a transformation definition. A
transformation definition consists of transformation rules, which in turn
define how one or more constructs of the source language or metamodel
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Figure 2.4.: Artifacts of a transformation and transformation language, as well as their relations.
Adapted from [KWB03, Fig. 9-5].

are transformed into constructs of the target language or metamodel. For
example, a transformation definition may define how to transform a PCM
model into a UML model, which consists of transformation rules, of which
one could define how a component is transformed into a class. Transforma-
tion definitions and their rules need to fulfill some format expected by the
transformation engine, which is responsible for applying the transformation
rules. A transformation engine is often supported by a transformation defini-

tion language [KWB03, Sec. 9.2], or short transformation language, in which
transformation rules can be defined and from which appropriate artifacts for
the transformation engine are generated. These terms and their relations are
depicted in Figure 2.4, restricted to transformations between two metamodels.
While the notions of Kleppe et al. [KWB03] are specific to the MDA, thus
deriving more specific from abstract artifacts, we have generalized them to
transformations between arbitrary languages.

2.4.1. Properties and Bidirectional Transformations

Transformations do not only support the simple case of taking one model
and generating another, known as a batch transformation, but there are
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several degrees of freedom how information from one or more models can
be transferred into one or more other models by a transformation. This also
includes the incremental update of multiple models after concurrent changes
for restoring consistency. Czarnecki et al. [CH06] provides a classification of
transformations regarding a variety of features. For our use case, in particular
directionality and incrementality [CH06, p. 14] are important.

Directionality: Regarding directionality [CH06, Fig. 19], transformations
can be separated into unidirectional and multidirectional ones, of which
the latter includes the well-researched bidirectional transformations. It
describes whether a transformation can be applied in only one or multi-
ple directions. For consistency preservation purposes, transformations
usually need to be executed in multiple directions, depending on which
of the models was changed and requires others to be updated.

Incrementality: Incrementality [CH06, Fig. 19] concerns source incremental-

ity and target incrementality. We use the term incrementality specifically
for target incrementality, which describes the ability of a transformation
to update an existing target model after changes to the source model.
This is essential for consistency preservation, because otherwise changes
and additions made to the target models would become overwritten. For
example, if Java code is generated from a UML class model, then a change
to the UML model should incrementally update the Java code instead of
generating it anew to avoid that additions to the code, such as method im-
plementations, get lost. Target incrementality is also referred to as change
propagation. Source incrementality is about re-executing only transfor-
mation rules for changed parts of the source model. Instead of using this
term, we later introduce the notion of delta-based transformations, which
operate on the actual source model changes.

Another feature of transformations that is relevant for some of our contri-
butions are intermediate structures [CH06, p. 10]. These structures concern
additional models, which are often temporarily used for transformation
execution and especially include traceability models. Traceability models
represent which elements of the source and target model are related to each
other by a transformation rule and, to enable incremental execution, are
usually persisted in contrast to other structures [CH06, p. 10]. These models
define which model elements have some kind of dependency and thus serve
as information about or even a witness for consistency, which can even be
used to define transformations [DGC17].
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Among all options from unidirectional to multidirectional transformations,
bidirectional transformations are the ones that are of most interest for consis-
tency preservation and thus well-researched. These transformations relate
only two metamodels, which makes them less complex than other multidi-
rectional transformations. They define how consistency is restored in both
directions [Ste10], which is important for consistency preservation if in-
stances of both metamodels may be modified. Bidirectional transformations
consist of a relation defining when two models are consistent and two consis-

tency restorers, one for each direction. A consistency restorer is a function
that accepts two potentially inconsistent models and returns an updated
instance of one of the models, depending on the direction. There are also
derivations that expect two consistent models and explicit changes to one or
both of them, as we discuss in detail when introducing our formalism.

Important properties of such transformations are correctness and hippocratic-

ness, as defined by Stevens [Ste10]. A bidirectional transformation is correct if
the resulting models are consistent, i.e., if the updated instance of one model
and the input instance of the other model are in the relation of the transfor-
mation. A transformation is hippocratic if the consistency restorers do not
alter the input models if they are already consistent. Thus, consistent models
are induced by the image of a hippocratic transformation. We recapture the
notion of bidirectional transformations and the depicted properties to define
them more precisely for the formalism that we introduce in Chapter 4.

2.4.2. Transformation Languages

Although transformations can be implemented manually by directly modify-
ing the models [CH06, p. 16], they usually rely on some engine that accepts
rules implemented for a specific API and automate tasks such as scheduling
or orchestrating the execution of transformation rules. Such an engine can
be defined on its own but is often provided together with a transformation
language, which uses a specific syntax for defining transformation rules
and from which implementations of these rules for the specific API of the
engine are generated. Transformation languages can be considered DSLs (see
Subsection 2.1.2). We have already depicted these artifacts in Figure 2.4.

Among various degrees of freedom to define a transformation language,
just like a transformation itself, we especially distinguish between rather
imperative and declarative transformation languages. We say “rather” because
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being declarative is actually a gradual and not a total notion. Imperative
languages allow to define how consistency is restored whenever changes are
performed, whereas a declarative language allows to define when models
are considered consistent and the language derives how to restore this after
changes. This distinction is most relevant for us, because it maps to different
concepts in our formalization, which we present in Chapter 4. Although
languages can actually contain imperative and declarative constructs, we
make this rather broad distinction, as the basic distinction of whether the
developer specifies how to preserve consistency or whether the language
has to derive it from a declarative specification applies no matter whether
the complete language or only single constructs of it can be considered
declarative. In the classification of Czarnecki et al. [CH06], this is covered by
different paradigms of transformation languages, especially distinguishing
procedural and logic paradigms [CH06, Fig. 20], depending on whether they
describe how to achieve or restore consistency, or whether they only define
the constraints. They usually come along with a specific way of specifying
values [CH06, Fig. 20], in particular imperative assignment and constraints.

Czarnecki et al. [CH06] also distinguish different transformation approaches,
such as operational, relational, or graph-based approaches. Although we
usually only consider transformations and not the actual languages to define
them, the languages we explicitly consider or even propose in this thesis
follow either an operational approach, which imperatively specifies how to
preserve consistency, or a relational approach, which declaratively specifies
constraints between two metamodels.

Examples for transformation languages for the MOF are the languages of the
Query/View/Transformation (QVT) standard [QVT], namely QVT Opera-
tions (QVT-O), an imperative, operational and unidirectional language, and
QVT Relations (QVT-R), a declarative, relational and bidirectional language.
QVT-R is relevant for this thesis, as we propose a practical realization of
one of our approaches for that language. It uses the Object Constraint Lan-
guage (OCL) [OCL] for specifying the constraints that have to hold between
instances of two metamodels. QVT-R is even multidirectional and allows
to define relations between multiple metamodels, but we only consider the
bidirectional case.

For the QVT languages, implementations for the EMF (see Subsection 2.2.2)
exist. Further common EMF-based languages are VIsual Automated model
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TRAnsformations (VIATRA) [Ber+15], an imperative and unidirectional trans-
formation language, and the Atlas Transformation Language (ATL) [Jou+06;
MTD17], which is a hybrid language containing imperative and declarative
constructs. Another well-researched approach are Triple Graph Grammars
(TGGs), originally developed as a graph transformation approach [Sch95],
and later applied to the EMF [Leb+14] with tools like eMoflon [Anj14].

2.4.3. The Reactions Language

The Vitruvius framework (see Subsection 2.3.2) provides several languages
for defining consistency preservation [Kra17]. This comprises the Mappings

language [Wer16], which is a bidirectional, declarative language compara-
ble to QVT-R, and the Reactions language [Kla16] for defining imperative,
unidirectional transformations. While the Mappings language is used as a
conceptual basis for the language that we propose in Chapter 12, the Reac-
tions language is of specific importance for this thesis, because we use it for
prototypical implementations and evaluations. The Vitruvius framework
defines a transformation engine, which processes changes performed to a
model and calls given transformation rules that implement an API. The rules
update models that are accessed via a traceability model, which is called
correspondence model. This correspondence model represents between which
elements consistency has to be preserved. The Reactions language generates
implementations of transformation rules according to this API provided by
the framework. The Mappings language, in turn, generates specifications in
the Reactions language.

A transformation rule defined in the Reactions language is called a Reaction.
Listing 2.1 gives an impression of the language at an example that transforms
a PCM component into a UML class. A Reaction specifies after which type
of change it shall be executed, which, in this case, is the insertion of a
component into a repository. It may call one or more reusable routines that
restore consistency. Such a routine consists of a match block, which checks
whether it is responsible for restoring consistency and retrieves all relevant
elements from the models and the correspondence model, and an action

block, which restores consistency. In the example, the routine retrieves an
appropriate package in the UML model to place the class in. It then creates a
class, assigns its name, and adds a correspondence between the elements. For
a detailed explanation of the example, we refer to previous work [Kla+21].
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1 reaction {

2 after element pcm::Component inserted in

3 pcm::Repository[components]

4 call {

5 val component = newValue

6 createClass(component)

7 }

8 }

9
10 routine createClass(pcm::Component component) {

11 match {

12 val componentsPkg = retrieve uml::Package

13 corresponding to component.repository

14 tagged with "componentsPackage"

15 }

16 action {

17 val class = create uml::Class and initialize {

18 class.package = componentsPkg

19 class.name = component.name + "Impl"

20 }

21 add correspondence between component and class

22 }

23 }

Listing 2.1: Reaction creating a UML class for a PCM component. Adapted from [Kla+21, Lst. 2].

2.5. Case Studies

We use case studies from component-based software engineering for several
examples in this thesis that are more realistic than the ones based on a
running example that we introduce in Section 3.4 and for the evaluation
of several of our contributions. They cover a scenario already depicted in
Chapter 1, which is based on three metamodels. The PCM [Reu+16] is used
for defining the component-based architecture of a software system, the
UML [UML] is used for depicting the fine-grained object-oriented design in
terms of class models, and Java [Gos+18] depicts the implementation in code.
The UML is defined in a standard based on the MOF and Java is specified
with a grammar-based specification. Nevertheless, for all three languages an
Ecore-based metamodel for the EMF (see Subsection 2.2.2) exists.
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We assume basic concepts of class models of the UML and Java, or in gen-
eral object-oriented programming languages, to be known to the reader.
The elements of the PCM that we use in this thesis only require a broad
understanding of those component-based architecture descriptions. Basic
elements are components, interfaces and data types, which are all contained in
a repository. Data types specific structures for data, including primitive types,
such as integers or strings, composite types, which compose a type of multiple
other types, and collection types, which can contain multiple elements of a
defined other data type. Regarding interfaces, we only consider operation
interfaces, which contain operation signatures consisting of return types
and parameters, similar to methods in programming languages. The PCM
also provides further types of interfaces, which we do not consider in this
thesis. Finally, components define the reusable, architectural elements of a
software systems. They have provided and required roles, which define on
which interfaces a component depends and which interfaces it provides to
other components. Since PCM models do not only specify the architecture
of a software system but enable predictions of its performance, they allow to
define an abstract behavior specification of services provided by components,
called service effect specifications. We do not explain them in more detail, as
we do not consider these behavior specifications in this thesis.

In the case studies used in thesis, we consider a specific notion of consistency
between PCM, UML and Java models. We explain our notions of consistency
and, in particular, of consistency relations in detail in Chapter 3 and Chapter 4.
Broadly speaking, consistency relations define under which conditions one
model is considered consistent to another. We depict the consistency relations
for the metamodels of the case studies in such a general way that this broad
notion is sufficient for their comprehension. In the way we introduce the
relations, they are supposed to mean that if some elements are present in a
model, according other elements need to be present in another model, such
as that for every UML class a Java class with the same name has to exist.

The consistency relations between PCM, UML and Java consist of two parts.
First, the relations between PCM and object-oriented design in both UML
and Java were defined and explained in detail by Langhammer [LK15; Lan17].
He, in particular, proposed different options for relations between PCM and
Java, which can be generalized to object-oriented design. We have selected
the mapping of architectural components to classes and packages, as that
mapping was studied most intensively and its implementation is most mature.
This conforms to the mapping that we have already sketched in Chapter 1.
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PCM Element Object-Oriented Design Element

Repository Three packages: main, contracts, datatypes
Basic component Package in main package and a component realiza-

tion class within that package
Operation interface Interface in contracts package
Signature + parameters Method + parameters
Composite datatype Class in datatypes package with getter and setter

for inner types
Collection datatype Class in datatypes package that inherits from a col-

lection type
(e.g., ArrayList in Java)

Required role Field typed with required interface in the component
realization class and constructor parameter for the
field in the component realization class

Provided role Component realization class of providing component
implements the provided interface

Table 2.1.: Consistency relations between elements of the PCM repository metamodel and object-
oriented design elements (UML/Java). Adapted from [Lan17, Tab. 4.1].

Second, the relations between UML and Java reflect the usually implicitly
known mapping between the two languages, as both similarly describe the
object-oriented structure of a software system.

Table 2.1 sketches the relevant consistency relations between PCM models
and object-oriented design, which can be reflected in both UML and Java.
A PCM repository model consists of data types, interfaces (also denoted as
contracts) and components, which are all contained in one repository. The
repository is represented as a package structure of three packages in object-
oriented design. Each component is represented as a package containing a
so called component realization class. Interfaces with their signatures and
parameters are mapped to corresponding object-oriented elements as they
are. Composite data types are represented as a class containing the composed
types, and collection data types are represented as subclasses of a collection
type. Provided roles are realized by an implementation of the provided
interfaces in the component realization class. A required role, on the contrary,
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UML Element Java Code Element

Package Package
Class / Enumeration Class / Enumeration
Interface Interface
Method Method
Parameter [0-1 .. 1] Parameter of same type
Parameter [0-* .. 2-*] Parameter of collection type with type parameter
Field [0-1 .. 1] Field of same type
Field [0-* .. 2-*] Field of collection type with type parameter
Association [0-1 .. 1] Field of same type
Association [0-* .. 2-*] Field of collection type with type parameter

Table 2.2.: Consistency relations between UML class models and Java code.

is represented as a field in the component realization class, which must be set
via a constructor parameter. All these relations include further constraints
for their features, especially regarding their names.

We have mentioned that PCM models can also contain service effect specifica-

tions as an abstract behavior specification of components, whose consistency
to the implementation in Java was researched in detail by Langhammer
[Lan17]. We do, however, not consider such behavioral specifications in our
case studies, for which we explain the reasons in Subsection 3.1.2.

Table 2.2 shows the relevant consistency relations between UML models
and Java code. They reflect the intuitive notion of the relation between the
UML and Java of mostly one-to-one mappings, since we only consider Java
elements that are present in the abstraction provided by the UML, i.e., we
do especially not consider method bodies. The only special cases are fields
having a type of another class in Java, which can be expressed as associations
in the UML, as well as parameters, fields and associations, which can have
multiplicities in the UML that have to be expressed as collection types with
an appropriate type parameter in Java if the upper bound is higher than 1.
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Notation Description

S = s = {𝑎, 𝑏, . . .} A set S or s of elements
𝔗 = 𝔱 = ⟨𝑎, 𝑏, . . .⟩ A tuple 𝔗 or 𝔱 of elements
𝑆 [] = 𝑠 [] = [𝑎, 𝑏, . . .] A sequence 𝑆 [] or 𝑠 [] of elements
𝑆 [𝑖] Element at index 𝑖 of sequence 𝑆 []
Func A function

Table 2.3.: Notations for sets, tuples, sequences, and functions.

2.6. Mathematical Notations

For most of our definitions, we use standard mathematical notations. When-
ever we deviate from that within the thesis, we explicitly denote it and define
the used constructs. We use specific formatting especially for sets, tuples,
sequences, and functions to ease their distinction. We introduce this notation
in Table 2.3. Additionally, we define some shortcut operators for tuples,
which we frequently require throughout the thesis.

We usually denote variables representing sets of any kinds of elements in
blackboard bold font S and the definition of a set of elements by putting them
in curly brackets, e.g., {𝑎, 𝑏, . . .}. Likewise, we denote variables representing
tuples of elements in Gothic font 𝔗 and write elements forming a tuple
in angle brackets, e.g., ⟨𝑎, 𝑏, . . .⟩. Finally, we denote variables representing
sequences of elements by subsequent square brackets 𝑆 [] and the definition of
a sequence of elements by putting them into square brackets, e.g., [𝑎, 𝑏, . . . ].
To access an element at index 𝑖 of a sequence 𝑆 [], we write 𝑆 [𝑖]. We denote
the addition of an element 𝑒 to a sequence 𝑆 [] = [𝑠1, . . . , 𝑠𝑛] as:

𝑆 [] + 𝑒 ≔ [𝑠1, . . . , 𝑠𝑛, 𝑒]

Sequences are mathematically equal to tuples, but we make them explicit as
representations of orders of potentially equal elements, rather than combin-
ing elements of potentially different types in tuples. This is why we define
an access operator for contained elements of sequences. We deviate from
the described formatting of sets and tuples in specific situations whenever
the focus of the semantics of the variable is not that it is a set or a tuple. For
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example, if we consider a relation that is a set of tuples, we do not denote
it in our set syntax, as its semantics is to be a relation and not a set. If we
consider a set of relations, however, we denote it in the set syntax. We ensure
that the meaning of the variables stays clear from the context.

We often use tuples to ensure that the elements can be indexed, although
they cannot contain duplications and thus behave as sets if not interested
in the order of elements. Since we need to treat the tuples similar to sets in
several situations, especially to describe that a tuple contains an element or
that is has a specific relation to another tuple, we define several operators
which treat them as sets. For tuples 𝔱 and 𝔳 with 𝔱 = ⟨𝑡1, . . . , 𝑡𝑛⟩, we define:

𝑒 ∈ 𝔱 :⇔ ∃ 𝑖 ∈ {1, . . . , 𝑛} : 𝑒 = 𝑡𝑖

𝔱 ⊆ 𝔳 :⇔ ∀𝑒 ∈ 𝔱 : 𝑒 ∈ 𝔳
𝔱 ∩ 𝔳 ≔ {𝑒 | 𝑒 ∈ 𝔱 ∧ 𝑒 ∈ 𝔳}

Note that the intersection of tuples is not a tuple but a set, because we are
not interested in matching their orders.

In several situations, we define binary relations, which are sets of pairs,
whereat pairs are tuples of two elements. We define the concatenation of
two relations to express their transitive relation. For two binary relations
𝑅1 = {⟨𝑎𝑙 , 𝑎𝑟 ⟩, . . .} and 𝑅2 = {⟨𝑏𝑙 , 𝑏𝑟 ⟩, . . .}, we define their concatenation
𝑅1 ⊗ 𝑅2 as:

𝑅1 ⊗ 𝑅2 ≔ {⟨𝑎, 𝑏⟩ | ∃ 𝑧 : ⟨𝑎, 𝑧⟩ ∈ 𝑅1 ∧ ⟨𝑧, 𝑏⟩ ∈ 𝑅2}

This conforms to the composition of relations often denoted as 𝑅1;𝑅2.

We usually denote function names in small caps, e.g., Func. For functions,
we use the standard notation for their composition. For two functions F1 and
F2, we denote their composition for an input 𝑥 as:

F1 ◦ F2 (𝑥) ≔ F1 (F2 (𝑥))

For partial functions, we write F(𝑥) = ⊥ if a function F is undefined for 𝑥 .
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Models

In this chapter, we discuss general terms and notions as considered by us to
clarify the scope of this thesis. We discuss different dimensions of consis-
tency, its specification and preservation, as well as the process of specifying
consistency with a depiction of the involved roles and relevant scenarios. We
introduce the general notion of models used in this thesis and the notations
for them. Finally, we introduce a running example.

3.1. Dimensions of Consistency

In the following, we clarify different dimensions of how consistency can be
considered and specified, which types of consistency can be distinguished,
and how these types induce different processes of checking and enforcing
them. This leads to the restriction of our work to normative specifications of
preservation for structural consistency relations.

3.1.1. Normative and Descriptive Specification

So far, we have informally considered consistency as the absence of contra-
dictions between different models. It is, however, unclear when to consider
information in models contradictory. Consistency can be considered norma-

tively or descriptively [Kra17, Sec. 3.1.2], depending on whether a notion of
consistency already exists.

With a normative (or prescriptive) specification of consistency, we consider
models consistent whenever we want them to be consistent. Thus, if someone
specifies consistency, for example, in terms of a transformation, models are
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considered consistent when they adhere to that specification. Anything that
this person defines as consistent is actually considered as consistent, i.e.,
the transformation prescribes consistency. Such a specification can always
be considered correct, because there is no external specification to which
it has to adhere. For example, it is usually not predefined under which
conditions an architecture specification, be it defined in the UML, the PCM,
or some other language, is considered consistent to its realization in code, so
a transformation normatively defines how consistency is considered.

In the case of a descriptive specification of consistency, we assume that
consistency is already defined and we have to adhere to that definition. Thus,
if somebody specifies a transformation, it has to follow that existing definition
of consistency. The transformation does only describe consistency. Such an
existing specification may not exist explicitly but can exist implicitly, for
example, because there is some common notion of consistency for specific
languages. A descriptive specification may be incorrect, because it has to
adhere to the existing definition of consistency. For example, there is, at least
for most constructs, a common understanding of when UML class models
and Java code are considered consistent, even if this understanding is not
represented explicitly. Thus, any transformation has to describe that existing
notion of consistency.

In this thesis, we always assume a normative specification of consistency.
This does not mean that we exclude languages for which some notion of
consistency already exists, such as the UML and Java code, but we assume
that a specification of that consistency is normative. This means, if there is an
existing notion of consistency, we do not consider whether the specification is
correct with respect to that existing notion, but we assume it to be correct by
construction. It is subject to other research, including general requirements
engineering [TZL16] and especially transformation validation [AW15], to
check whether a transformation is correct with respect to some expectation,
which reflects an existing notion of consistency. This includes validation or
verification of invariants [Cab+10] or contracts [AZK17; Val+12].

3.1.2. Structural and Behavioral Consistency

In addition to the distinction between normative and descriptive consistency
specification, we can distinguish different types of consistency relations.
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From a pragmatic perspective, we can at least differentiate between struc-

tural and behavioral consistency relations, conforming to the distinction
of structural and behavioral models in the UML standard [UML]. While
structural consistency concerns everything that has no execution seman-
tics, behavioral consistency concerns semantics and thus also, for example,
method bodies. Structural consistency can thus be checked without execut-
ing the model, comparable to the distinction between static and execution

semantics of models, as introduced in Subsection 2.1.1. For example, having
the same classes and method signatures in a UML model and Java code would
be considered a structural relation, whereas the equivalence of a UML state
machine and its Java implementation would be considered a behavioral rela-
tion, as they must have the same execution semantics. Thus, the mechanisms
for checking these two types of consistency are likely to be different.

The execution semantics of models are often defined in a Turing-complete
formalism, be it because the model has some semantics itself or because it is
transformed into another specification of a Turing-complete formalism, such
as executable code. Behavioral consistency relations referring to the execu-
tion semantics of models thus have to put Turing-complete specifications
into relation. In consequence, one option for a clear distinction between
behavioral and structural consistency relations is their decidability, since
behavioral relations between Turing-complete specifications will, in general,
be undecidable, while we would intuitively assume structural relations to
be decidable. This leads to different levels of statements that we can make
about the different types of relations, especially including existentially and
universally quantified statements.

Universally Quantified: The approach can validate that a consistency rela-
tion holds for all instances of the modeled system. This can, for example,
be achieved with verification techniques, model checking and other anal-
yses. An exemplary application scenario is the equivalence of decidable
consistency relations.

Existentially Quantified: The approach can validate that a consistency rela-
tion holds at least for some instances of the modeled system. This can,
for example, be achieved with tests. In the best case, the test cases cover a
representative subset of the possible instances. An exemplary application
scenario is the equivalence of undecidable behavior descriptions.

Statistical: The approach can make statistical statements about the consis-
tency relations, such as the probability for a relation to be fulfilled in an
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instance. This can, for example, be achieved by simulation. An exemplary
application is consistency between quality requirements and the system
realization, such as the probability that for a given requirements model
and an according implementation of the system the implementation
fulfills a performance requirement.

While universally quantified statements can only be made about decidable
consistency relations, i.e., structural relations, existentially quantified and
statistical statements can be made for both of them, thus also for behavioral
consistency relations.

At a Dagstuhl seminar about multidirectional transformations [Cle+19],
different consistency relation scenarios in which more than two models are
related were considered. A central hypothesis was that relations between
more than two models can be decomposed into binary relations as long as
the relations are structural. Whether two or more models fulfill a behavioral
requirement may, however, not be easily decomposed into multiple binary
relations between model pairs.

In this thesis, we focus on structural relations, i.e., relations that are decidable
and about which we can make universally quantified statements without exe-
cuting the models. This does not mean that our contributions are restricted to
these kinds of structural relations. In fact, we do not make assumptions that
exclude other types of consistency relations, so as long as they conform to
the formalism that we propose our contributions also apply for them. We do,
however, only consider structural relations in our examples, considerations
and evaluations, such that a generalization to other relations types needs to
be evaluated.

3.1.3. Checking and Preserving Consistency

Based on a specification of consistency and potentially its preservation, con-
sistency between different models can be checked and potentially enforced
during the development of a system (cf. [QVT]). Basically, we can distinguish
whether a process is only checking or also preserving consistency. Some
consistency relations may only be checked and have to be manually ensured,
whereas others can (semi-)automatically be enforced.

Behavioral consistency relations may be hard to enforce but can, in the best
case, at least be checked. This also includes relations for quality properties,
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such as performance of an implementation regarding performance require-
ments. For example, it will usually not be possible to automatically adapt the
source code after a change leads to the violation of a consistency relation
between the implementation’s performance and the performance require-
ments. On the contrary, we expect that structural consistency relations can
often also be enforced, at least by collecting additional information from
the developer, because for redundant representations of structural elements
likely only one or few options to restore consistency exist in contrast to
solving the violation of a performance requirement.

In addition, it can be reasonable to check and enforce structural consistency
relations more often, because they can be checked in a rather fine-grained
way and more efficiently, in the extreme case even just-in-time. Checking
behavioral relations may also include long-running analyses or simulations
and may only make sense at specific points in time, indicated by the developer.
This at least applies to relations for which only existentially quantified or
statistical statements can be made. For example, adding an architectural
component to a PCM model can and should directly lead to the creation of
an implementing class in Java code. But whether a Java method fulfills some
behavioral consistency relation to another model, such as the behavioral
service specifications in a PCM model, usually makes sense less often, as it
requires more coarse-grained modifications to achieve consistency, such as
rewriting a complete method or multiple of its statements, whereas changes
of structural relations often only concern a single element, such as a name
or a type of a parameter. Checking such behavioral consistency relations
may thus take more time because of complex analyses or simulations to run.
The developer may explicitly indicate when a development state is reached
at which behavioral consistency relations can be checked. For behavioral
relations about which universally quantified statements can be made, such
as a security analysis, it may be up to the scenario whether checks should be
performed just-in-time or only at specific points in time.

In consequence, the distinction between structural and behavioral consis-
tency relations is also relevant for the processes of checking and preserving
consistency. While structural consistency relations may be preserved often
in a fine-grained way, behavioral consistency relations may be checked less
often. We depict the proposed process in Figure 3.1. In the best case, a
consistency mechanism can give hints to potential behavioral consistency
violations more often. For example, a performance-relevant modification of
the implementation could lead to a hint for the developer that performance
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automatically preserve structural consistency

𝛿1 𝛿2 𝛿3

result:
fulfillment
of . . .

violation
of . . .

behavioral consistency
validation results

validate

behavioral

consistency

«produces»

«triggers»
System State

𝛿 Change

Figure 3.1.: Proposed process for continuously and automatically preserving structural and
explicitly checking behavioral consistency.

may be affected by his modification with the information about the previous
analysis result, such that he or she can guess whether his or her modification
will violate the requirement. Given the information that a response time
requirement of 10 milliseconds was fulfilled during the last validation by an
actual response time of 1 millisecond can help the developer to decide that
his or her modification will unlikely violate that requirement.

In this thesis, we are interested in processes that continuously preserve and
not only check consistency. This is why we explicitly focus on structural con-
sistency relations in this thesis, although the insights might be transferable to
behavioral relations as well. As another consequence, the structural relations
that we consider are supposed to be decomposable into binary relations, as
discussed in Subsection 3.1.2.

In addition, we restrict ourselves to supporting the case in which only one
model is changed at a time and for which consistency with the other models
needs to be preserved. In general, there may be multiple developers perform-
ing changes to one or more models concurrently. This scenario is already
difficult for the case in which only two models need to be kept consistent by a
single transformation, as changes can be conflicting and conflicts need to be
resolved. It becomes even more complicated when transformations preserve
consistency of multiple models and thus conflicts need to be resolved across
multiple models and transformations. We refer this this topic as future work
and discuss solution options in Section 15.2.
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Figure 3.2.: Roles involved in a process for specifying a transformation network, their responsi-
bilities and dependencies. Extended from [TK19, Fig. 2].

3.2. Consistency Specification Process

In this thesis, we are concerned with the process of specifying consistency
in terms of a transformation network and different problems arising in that
process. We therefore discuss which roles are involved in that process and
which scenarios can be considered that induce specific requirements and
exemplify the application contexts of our contributions. Figure 3.2 gives an
overview of the roles and the essential specification process. While that pro-
cess focuses on the metamodel level (M2), a transformation network is finally
applied at the model level (M1) to an actual system under development.
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3.2.1. Roles

The specification of a transformation network involves the definition of the
individual transformations by domain experts and transformation developers

as well as their combination to a network by transformation network devel-

opers. The usage of the network involves its application to changes to a
system under development by a system developer, sometimes also called tool

user [TK19]. Apart from the explicit transformation network, these roles
and their responsibilities are comparable to the ones that were defined in
a working group of a Dagstuhl seminar, in which the author of this thesis
participated [TK19].

A domain expert has the knowledge about the consistency relations between
two (or more) tools and their languages or, more specifically, the metamodels
describing them. He or she performs the requirements engineering task for
the information to define in a transformation. A transformation developer is
then responsible for formalizing these relations and their preservation in a
transformation. We usually only refer to the transformation developer, as it
is not relevant for us where the information about the relations comes from
but only that it is encoded into a transformation. Finally, a transformation
network developer combines different transformations, which were usually
developed by different transformation developers, to a transformation net-
work. It may even be possible that several transformation network developers
compose several transformation networks to a larger transformation net-
work. Whenever the distinction is not relevant, we refer to transformation
and transformation network developers as transformation developers.

Actual systems are developed with the use of transformation networks by
system developers, who perform changes of models via the tools they use,
which is why they are also called tool users. Usually different system devel-
opers will be responsible for different models. In our introductory example,
we distinguished between software architects, developers, performance and
requirements engineers. Performing changes leads to the application of the
transformation network to restore consistency of the models. In this thesis,
we refer to system developers also as users, as they are the ones using the
transformation networks we are concerned with.

The roles reflect the different responsibilities when specifying and using
transformation networks. Several of them can, however, be fulfilled by the
same persons. This especially applies to domain experts and transformation
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developers. The same person may know about the relations and formalize
them in a transformation. Potentially, a domain expert may even be the one
who develops an actual system as a system developer.

3.2.2. Scenarios

Both for the development of transformations as well as for their combina-
tion to a network, different development scenarios can be distinguished.
Transformations can be developed generically or specific for a project.

Generic: Transformations are developed as artifacts off-the-shelf, which can
be used in any project. This especially applies for descriptive transforma-
tions (see Subsection 3.1.1), which encode a common understanding of
consistency, such as for UML class models and Java code.

Project-Specific: Transformations are developed for a specific project. This
can occur if a project requires specific rules how elements shall be related.
For example, the mapping of components to their implementation can be
project-specific [Lan17]. Eventually, such transformations can later be
used in a generic way.

The combination of transformations to networks can be distinguished espe-
cially regarding the point in time at which the combination takes place.

Big Bang: Transformations are developed first, and after they have been
completed a transformation network developer combines them to a net-
work. Problems regarding the compatibility of the transformations are
first recognized during this combination, thus transformations may need
to be adapted afterwards to properly work together.

Continuous: Transformations are combined to a network already during
their development. Starting with partial or even empty transformations,
the structure of the network can be defined early. This allows for a
continuous validation of compatibility of the developed transformations.
Ultimately, even an online checking of compatibility after each change
to a transformation can be performed to get early feedback.

For us, it is not relevant whether transformations are developed in a generic
or project-specific way. The distinction of scenarios in which transformation
networks are developed is, however, of special interest. It can be beneficial
for transformation developers to get feedback about the compatibility of
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Properties and Classes

𝑃 Property (attribute or reference)
𝐼𝑃 = {𝑝1, 𝑝2, . . .} Property values of a property 𝑃

𝐶 = ⟨𝑃1, . . . , 𝑃𝑛⟩ Class
𝐼𝐶 = {𝑜 = ⟨𝑝1, . . . , 𝑝𝑛⟩ | 𝑝𝑖 ∈ 𝐼𝑃𝑖 } Instances (objects) of a class 𝐶
𝑜 ∈ 𝐼𝐶 Object of a class 𝐶

(Meta-)Models

𝑀 = {𝐶1, . . . ,𝐶𝑚} Metamodel
𝐼𝑀 = {𝑚 | 𝑚 ⊆ ⋃︁

𝐶 ∈𝑀 𝐼𝐶 } Instances of a metamodel
𝔐 = ⟨𝑀1, . . . , 𝑀𝑘 ⟩ Tuple of metamodels
𝐼𝔐 = 𝐼𝑀1 × · · · × 𝐼𝑀𝑘

= {⟨𝑚1, . . . ,𝑚𝑘 ⟩ | 𝑚𝑖 ∈ 𝐼𝑀𝑖
}

Instances of a metamodel tuple
𝔐 = ⟨𝑀1, . . . , 𝑀𝑘 ⟩

𝑚 ∈ 𝐼𝑀 Model of metamodel 𝑀
𝔪 ∈ 𝐼𝔐 Model tuple of a metamodel tuple 𝔐

Table 3.1.: Models, metamodels, their elements and notations.

their developed transformations with others on-the-fly. This makes locating
a problem easier, because only the recent changes may have introduced it,
whereas with an a posteriori checking in a big bang process the effort to find
compatibility problems may increase because of missing locality.

While generic and project-specific transformations can obviously be mixed
in a single project, the combination processes may also be mixed. Some
transformations may be integrated in a big bang fashion whereas others are
integrated continuously. Project specificity of transformations can imply
this, because a generic transformation cannot be integrated continuously.

3.3. Models and Metamodels

The most essential elements used for descriptions in this thesis are models
and the metamodels they conform to. In Chapter 2, we have introduced what
we consider a model and that we adhere to the MOF modeling formalism.
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We use a sufficiently simplified notion of models, metamodels, and their
elements, which we summarize in Table 3.1. In the following, we introduce
the used notation and its conventions, as well as the used modeling elements.
Finally, we clarify assumptions that we make and discuss their impact.

3.3.1. Notation and Conventions

We use uppercase variables for elements at the metamodel level (M2), such
as 𝑀 for a metamodel or 𝐶 for a class, an depict elements at the model level
(M1) in lowercase, such as𝑚 for a model and 𝑜 for an object.

We use the notations for sets and tuples introduced in Section 2.6 for denoting
sets and tuples of the different elements, such as metamodels and models.
When considering multiple metamodels or models, we are usually not inter-
ested in their order and the same model or metamodel cannot appear twice.
Still, we always treat them as tuples rather than sets to be able to easily relate
a model to its metamodel by its index within the tuple. Thus, if not further
specified, we use the same indices to relate an element at the metamodel and
the model level, such as as 𝑚1 being an instance of 𝑀1, i.e., 𝑚1 ∈ 𝐼𝑀1 . This
could also be expressed by an explicit instantiation relation, but the used
notation is more concise and thus proposes to easy readability.

3.3.2. Modeling Elements

In general, we consider metamodels as a composition of metaclasses, which,
in turn, are composed of properties representing attributes or references.
Models instantiate metamodels and are composed of objects, which are
instances of metaclasses and, in turn, consist of property values, which
instantiate properties.

We denote properties, which are the information a metaclass consists of, such
as attributes or references, as 𝑃 and the property values as instances of a prop-
erty as 𝐼𝑃 = {𝑝1, 𝑝2, . . .} of property 𝑃 . We do not need to further differentiate
between attributes and references, like it is done in other formalizations such
as the OCL standard [OCL, A.1] or the thesis of Kramer [Kra17, Sec. 2.3.2].

We denote metaclasses, also shortly called classes, as tuples of properties
𝐶 = ⟨𝑃1, . . . , 𝑃𝑛⟩. Instances of a class are objects, each being a tuple of
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instances of the properties of the class. We denote all instances of a class
𝐶 = ⟨𝑃1, . . . , 𝑃𝑛⟩ as 𝐼𝐶 = {𝑜 = ⟨𝑝1, . . . , 𝑝𝑛⟩ | 𝑝𝑖 ∈ 𝐼𝑃𝑖 }.

We denote a metamodel 𝑀 = {𝐶1, . . . ,𝐶𝑚} as a finite set of classes. The
instances of a metamodel are sets of objects 𝐼𝑀 = {𝑚 | 𝑚 ⊆ ⋃︁

𝐶 ∈𝑀 𝐼𝐶 }. In
other work such as the articles by Stevens [Ste20b], such instance sets are
also called model sets and implicitly define a metamodel, thus representing a
lightweight definition of metamodels by simply enumerating its instances.
Each instance of a metamodel is called a model and represents a finite set of
objects that instantiate the classes in the metamodel. For a tuple of metamod-
els 𝔐 = ⟨𝑀1, . . . , 𝑀𝑘⟩, we denote the set that contains all sets of instances of
those metamodels as 𝐼𝔐 = {⟨𝑚1, . . . ,𝑚𝑘⟩ | 𝑚𝑖 ∈ 𝐼𝑀𝑖

}.

With 𝐼𝐶 and 𝐼𝑀 , we denote the sets of instances of a class and metamodels,
i.e., the objects and models instantiating them. Usually, additional constraints
exist that further restrict these sets. For example, a property can represent
a reference to another object, thus if a class contains a specific property
value representing a reference to an object, the referenced object must be
contained in the model as well. Thus, the sets of valid instances of classes
and metamodels are usually only subsets of the sets we denote with 𝐼𝐶 and
𝐼𝑀 , respectively. For reasons of simplicity, we do, however, usually only refer
to the denoted instance sets. The statements still apply to the sets of valid
objects and models as subsets of the considered sets.

3.3.3. Assumptions

We assume models to be finite, so for each model𝑚 , we assume that |𝑚 | < ∞.
Additionally, our proposed formalism assumes objects to be unique within a
model 𝑚 . This is already implicitly covered by the definition of 𝐼𝑀 for the
instances of a metamodel 𝑀.

In practice, it is usually allowed to have the same object, i.e., an element with
the same type, attribute and reference values, multiple times within the same
model. This is, however, only a matter of identity, which, in practice, is given
at least by different objects being placed at specific places in memory. We
assume, without loss of generality, the necessary information to distinguish
two elements to be represented within their properties.
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Person
firstname
lastname
address
income

Employee
name
socsecnumber
salary

Resident
name
address
socsecnumber

𝑝

𝐶𝑅𝑃𝐸 𝑒

𝑒

𝐶𝑅𝐸𝑅

𝑟

𝑟𝐶𝑅𝑃𝑅

𝑝

𝑝

𝐶𝑅𝑃𝐸𝑅

𝑒

𝑟

𝐶𝑅𝑃𝐸𝑅 = {⟨𝑝, 𝑒, 𝑟 ⟩ | p.firstname + ”␣” + p.lastname = e.name = r .name

∧ p.address = r .address ∧ p.income = e.salary

∧ e.socsecnumber = r .socsecnumber}

𝐶𝑅𝑃𝐸 = {⟨𝑝, 𝑒⟩ | p.firstname + ”␣” + p.lastname = e.name ∧ p.income = e.salary}

𝐶𝑅𝑃𝑅 = {⟨𝑝, 𝑟 ⟩ | p.firstname + ”␣” + p.lastname = r .name ∧ p.address = r .address}

𝐶𝑅𝐸𝑅 = {⟨𝑒, 𝑟 ⟩ | e.name = r .name ∧ e.socsecnumber = r .socsecnumber}

Figure 3.3.: Three simple metamodels for persons, employees and residents. One ternary relation
𝐶𝑅𝑃𝐸𝑅 between them and three binary relations𝐶𝑅𝑃𝐸 ,𝐶𝑅𝑃𝑅,𝐶𝑅𝐸𝑅 between each pair of them
describing consistency. Adapted from [Kla+20, Fig. 1].

3.4. Running Example

We use different variations of a running example throughout several parts
of this thesis. The basic example is depicted in Figure 3.3. It contains three
metamodels, one with persons, one with employees and one with residents,
each containing the name and some information specific for that metamodel.
Although these metamodels are rather simple and do not cover metamodels
from the software engineering domain, they are sufficient to explain many
concepts in this thesis and are easy to comprehend.

The example also contains a description of consistency between these three
metamodels, although only informally given at this point and more pre-
cisely defined later on. It requires that if any person, employee or resident
is contained in a model, there must also be the other two elements with
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the same names, addresses, incomes and social security numbers. Like for
the metamodels themselves, it can be challenged whether this consistency
relation may be reasonable, but it is easy to comprehend and sufficient for
explaining the essential concepts and also several issues in this thesis. This
relation can be expressed as a single ternary relation, denoted as 𝐶𝑅𝑃𝐸𝑅 , or
as three binary relations 𝐶𝑅𝑃𝐸,𝐶𝑅𝑃𝑅,𝐶𝑅𝐸𝑅 . Three models fulfill the ternary
relation in exactly those cases in which all pairs fulfills the binary relations.
The relations consist of tuples of the elements that are considered consistent,
i.e., the element pairs or triples that fulfill the specified constraints of their
property values.

The metamodels and consistency relations are defined in a way such that
no pair of the three binary consistency relations is equivalent to the ternary
relation in the sense that the same models are considered consistent to these
two binary relations whenever they are considered consistent to the ternary
relation. This is a consequence of each pair of metamodels sharing some
unique information, which is the income, the address and the social security
number. In consequence, we cannot omit one of the binary relations without
loosing consistency guarantees compared to the ternary relation.
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4. Correctness in Transformation
Networks

In this chapter, we first discuss a rather informal notion of consistency
and its preservation. It is supposed to describe the different dimensions in
which consistency and its preservation can be considered to then discuss
how correctness can be reasonably defined. After identifying the correctness
notion that is relevant in the context of our work, we define a suitable formal
notion of consistency. We formally define correctness of different artifacts
relevant for that notion of consistency. Finally, we present a refined notion
of consistency, which we do not require for the initial overview, but which
we later use for several detailed considerations.

This chapter thus constitutes our contribution C 1.1, which is composed of
four subordinate contributions: a discussion of consistency notions; a discus-
sion and determination of correctness notions for consistency specifications;
a formalization of a relevant correctness notion; and finally a refinement
of our consistency notion for later detailed considerations. It answers the
following research question:

RQ 1.1: What are relevant notions of correctness in transformation networks
and how can they be formalized?

Parts of the contributions in this chapter have been published in previous
work [Kla18; Kla+21; Kla+20]. We have motivated and informally derived the
correctness notion that we formalize in the following and gave an overview
of the goal regarding correctness of transformation networks [Kla18]. We
have used a simplified version of the formalization that we introduce in this
chapter and especially identified the challenge of orchestration [Kla+21],
which is central for the formalization of transformation networks. Finally,
we have introduced a fine-grained consistency notion [Kla+20], which is
required for detailed statements on compatibility.
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4.1. Notions of Consistency and its Preservation

We begin with an informal discussion of different ways to consider consis-
tency and its preservation. This involves intensional and extensional, as well
monolithic and modular notions, and different execution strategies.

4.1.1. Intensional and Extensional Consistency Notions

When we consider a tuple of models, we may intuitively assume it to be
consistent if it fulfills some kind of constraints. Defining these constraints
to derive or check whether a given tuple of models is consistent constitutes
an intensional specification of consistency, because the set that contains all
consistent model tuples is intensionally represented by these constraints and
can be derived from it. We can consider a set of constraints as a predicate, i.e.,
a Boolean-valued function 𝑃 , which indicates whether a model tuple 𝔪 ∈ 𝐼𝔐
fulfills the constraints 𝑃 : 𝐼𝔐 → {true, false}. Then we can say that:

𝔪 consistent to 𝑃 :⇔ 𝑃 (𝔪) = true

Alternatively, one can enumerate the (possibly infinite number of) consistent
tuples of models. Thus, a model tuple is considered consistent if that enumer-
ation contains it. This constitutes an extensional specification of consistency.
Given such an enumeration 𝐸 = {𝔪 | 𝔪 is consistent}, we can say that:

𝔪 consistent to 𝐸 :⇔ 𝔪 ∈ 𝐸

Both kinds of specification have equal expressiveness. For each intensional
specification, the extensional one can be derived by enumerating all models
that fulfill the constraints:

𝐸 = {𝔪 | 𝑃 (𝔪) = true}

An extensional specification can also be transferred to an intensional one by
defining constraints that are fulfilled by exactly the enumerated instances:

𝑃 (𝔪) ↦→
{︄
true, if 𝔪 ∈ 𝐸
false, if 𝔪 ∉ 𝐸
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For us, it will only be relevant that an intensional specification can be trans-
formed into an extensional one.

A developer who defines consistency usually wants to use an intensional
specification, as tools like transformation languages allow the specification
of constraints rather than enumerating consistent instances. Since there is
usually an infinite number of consistent models, he or she cannot explicitly
enumerate them but only define constraints that allow to derive them. From
a theoretical perspective, however, we prefer to consider extensional speci-
fications, because they allow to directly apply set theory in a concise way.
Due to the fact that each intensional specification can be transformed into
an extensional one, we can make theoretical statements about extensional
specifications that also hold for intensional ones. In the following, we always
consider extensional specifications unless otherwise stated. So we define
which models are considered consistent in terms of relations, which we also
call consistency relations.

4.1.2. Monolithic and Modular Consistency Notions

Consistency, be it specified intensionally or extensionally, can be considered
in an either monolithic or modular way. Having a single specification of
consistency for an arbitrary number of models constitutes a monolithic notion
of consistency. Like discussed for intensional and extensional consistency
specifications, this can be expressed by a tuple of models fulfilling constraints
or being contained in a relation. A modular notion of consistency considers
several relations for subsets of the relevant metamodels, which together
define when models are considered consistent.

For an extensional notion of consistency between three metamodels 𝑀1, 𝑀2
and 𝑀3, a modular specification could manifest in three relations𝐶𝑅1,2,𝐶𝑅1,3
and 𝐶𝑅2,3 defining the model pairs that are considered consistent. If two
models are consistent to one of the relations, we can say that they are locally

consistent to that relation. We are, however, interested in whether models
are globally consistent to all these relations, so we say:

𝑚1,𝑚2,𝑚3 are consistent :⇔
⟨𝑚1,𝑚2⟩ ∈ 𝐶𝑅1,2 ∧ ⟨𝑚1,𝑚3⟩ ∈ 𝐶𝑅1,3 ∧ ⟨𝑚2,𝑚3⟩ ∈ 𝐶𝑅2,3

69
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Due to the assumptions of independent development and modular reuse,
which we have defined in Subsection 1.3.2, we are interested in a modular
notion of consistency. In the example, we have considered a modular notion
based on binary relation. Such a modular notion, however, can also be based
on multiple multiary relations. But even with multiary relations, modularity
is necessary for reasons of independent development and reuse. For reasons
of simplicity, we stick to modular notions of binary relations, although most
of our considerations can be transferred to multiary ones.

4.1.3. Consistency Preservation

Consistency preservation is the process of ensuring that models stay consis-
tent. Based on a notion of consistency relations that describe when models
are considered consistent, this process ensures that models stay in that re-
lation. If models become changed such they that are not in the relation
anymore, consistency preservation updates the models such that they are
in that relation again. In consequence, consistency preservation is always
relative to relations defining consistency.

Consistency preservation can be considered as a function Cp that takes
(potentially inconsistent) models and returns a consistent tuple of models:

Cp : 𝐼𝔐 → 𝐼𝔐

∀𝔪 ∈ 𝐼𝔐 : Cp(𝔪) is consistent

The definition of is consistent depends on whether we rely on a monolithic
or modular notion of consistency. Thus it may require the models to be in
one or multiple relations. For example, given a monolithic relation 𝐶𝑅 , Cp is
supposed to fulfill that:

∀𝔪 ∈ 𝐼𝔐 : Cp(𝔪) ∈ 𝐶𝑅

Since these functions define how consistency is preserved, we also call them
consistency preservation rules.

Like for the proposed notion of consistency, we can also consider consistency
preservation in an either monolithic or modular way. With a modular notion
of consistency preservation, we may have multiple consistency preservation
rules that preserve consistency, each of them for a consistency relation
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𝑚1

𝑚2

𝑚3

𝑚′1

𝑚′2

𝑚3 𝑚′′1

𝑚2

𝑚′3

unclear whether𝑚′1 =𝑚′′1
or whether/how they can be merged

Cp1,3 Cp2,3

𝑚1

𝑚2

𝑚3

𝑚′1

𝑚′2

𝑚3

𝑚′′1

𝑚′2

𝑚′3

potentially ⟨𝑚′′1 ,𝑚′2 ⟩ ∉ 𝐶𝑅1,2

Cp1,2

Cp2,3

Independent ExecutionConsecutive Execution

Figure 4.1.: Scenarios for independently executing consistency preservation rules on input
models and consecutively executing them on the results of other rules. Circles denote models,
lines between models denote fulfilled (solid blue) or violated (dashed red) consistency relations,
and arrows between the model states (unidirectional green) denote the conduction of user
changes or consistency preservation execution.

that defines consistency for a subset of the involved models. Unlike for
the relations defining consistency, which can be evaluated independently
to identify whether models are consistent, the functions, i.e., consistency
preservation rules, cannot be evaluated independently. If each function is
executed independently, each of them returns new models that may need
to be merged. This is exemplified in the following scenario, which is also
depicted in Figure 4.1. Imagine two functions Cp1,2 and Cp1,3 that preserve
consistency for relations 𝐶𝑅1,2 and 𝐶𝑅1,3, respectively. Consider the input
models ⟨𝑚1,𝑚2,𝑚3⟩ that are not consistent to𝐶𝑅1,2 and𝐶𝑅1,3, i.e., ⟨𝑚1,𝑚2⟩ ∉
𝐶𝑅1,2 and ⟨𝑚1,𝑚3⟩ ∉ 𝐶𝑅1,3. This can, for example, occur because 𝑚1 was
changed by a user. Now if we apply the functions independently, we have
Cp1,2 (⟨𝑚1,𝑚2⟩) = ⟨𝑚′1,𝑚′2⟩ ∈ 𝐶𝑅1,2 and Cp1,3 (⟨𝑚1,𝑚3⟩) = ⟨𝑚′′1 ,𝑚′3⟩ ∈ 𝐶𝑅1,3.
It is now unclear how to unify𝑚′1 and𝑚′′1 to𝑚′′′1 , such that ⟨𝑚′′′1 ,𝑚′2⟩ ∈ 𝐶𝑅1,2
and ⟨𝑚′′′1 ,𝑚′3⟩ ∈ 𝐶𝑅1,3.
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An intuitive approach to execute the functions is their composition, i.e.,
a consecutive execution that does not apply the functions for consistency
preservation to the original models but to the models delivered by the pre-
vious executions of the functions, which is also exemplarily depicted in
Figure 4.1. If we consecutively apply the two given functions, we know that
Cp1,2 (⟨𝑚1,𝑚2⟩) = ⟨𝑚′1,𝑚′2⟩ ∈ 𝐶𝑅1,2 and Cp1,3 (⟨𝑚′1,𝑚3⟩) = ⟨𝑚′′1 ,𝑚′3⟩ ∈ 𝐶𝑅1,3.
It is, however, unclear whether ⟨𝑚′′1 ,𝑚′2⟩ ∈ 𝐶𝑅1,2, so it may be necessary to
execute Cp1,2 again. In fact, we need some method to decide in which order
and how often the consistency preservation rules are applied to result in
a consistent tuple of models. We call this an orchestration. The challenge
to find an execution order of transformations without leading to execution
cycles has also been identified by Kramer [Kra17, Sec. 3.9].

Even if consistency preservation rules were supposed to only modify one
model instead of two, the same problems of unifying changes of their inde-
pendent execution or orchestrating their consecutive execution occur as soon
as there are two sequences of consistency preservation rules that change the
same models.

In our work, we follow the approach of orchestrating and consecutively
executing consistency preservation rules. The benefits of this approach
are twofold. First, there is no additional logic required for unifying the
changes performed by independently executed consistency preservation
rules. Second, the unification may deliver a model that is not consistent to
any of the consistency relations anymore, whereas consecutive execution at
least guarantees that the models are consistent to the last applied consistency
preservation rule. With this approach, the repeated execution of consistency
preservation rules can be seen as a negotiation of a solution by reacting to
the changes the other consistency preservation rules performed.

Remark. Finally, every monolithic notion of consistency and its preservation
can be considered a special case of a modular notion. Having only one
consistency relation and one function that preserves it degrades the problem
by making the necessity to perform an orchestration of functions obsolete.

For now, the introduced consistency preservation rules can be any kind of
functions that return consistent models. Their realization may, for example,
be transformations that define how to react to certain changes for restoring
consistency, or constraint solvers that find consistent models by solving

72



4.1. Notions of Consistency and its Preservation

𝑀1 𝑀2
𝐶𝑅1,2

CP1,2

declarative specification
(ambiguous)

imperative specification
(unambiguous)

Figure 4.2.: Declarative and imperative specification of consistency relations and consistency
preservation rules for two metamodels 𝑀1 and 𝑀2.

consistency constraints. We do not yet need to consider how these func-
tions are realized to derive consistent models, although we later focus on
transformation-based approaches.

4.1.4. Declarative and Imperative Specifications

We have discussed that consistency preservation can be considered as func-
tions, called consistency preservation rules, that preserve consistency accord-
ing to some relations. In practice, however, one will usually not specify both
the consistency relation and the consistency preservation rule that preserves
it. Instead, one artifact is given and the other is implied or derived. This
leads to the two approaches of declarative and imperative consistency speci-
fications, depending on whether the specification defines how consistency is
achieved. The relation between the two approaches regarding a consistency
relation and a consistency preservation rule is depicted in Figure 4.2.

As a first option, a developer may only define relations that specify consis-
tency. Functions that preserve these relations can be derived from that. This
is called a declarative specification, because it only declares when models are
consistent but not how consistency is achieved. In general, there are multiple
valid options for deriving a consistency preservation rule from a relation. It
can, for example, calculate the result with minimal differences to the input
according to some defined metric. Or, especially if there is an intensional
specification of the relations, the approach may consider the type of input
change and calculate an appropriate change according to the constraints in
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the intensional specification. This approach is followed by many declarative
transformation languages, such as QVT-R [QVT] or TGGs [Anj+14].

As a second option, a developer can define consistency preservation rules
without explicitly specifying the consistency relations to which they preserve
consistency. Instead, these functions imply the underlying consistency rela-
tions that they preserve, at least if we assume that a consistency preservation
rule does not perform changes when the input models are already consis-
tent. Given a function Cp, the relation 𝐶𝑅 it preserves is implied by its fixed
points: 𝐶𝑅 = {𝔪 | Cp(𝔪) = 𝔪}. If a function preserving consistency does
not perform any changes, the models are, by definition, consistent. Usually,
we will assume that such a function returns consistent models with a single
application. Thus, if it does not perform changes when the input models
are already consistent, the function is idempotent and then the consistency
relation is given by its image, i.e., 𝐶𝑅 = {𝔪 | ∃𝔪′ : Cp(𝔪′) = 𝔪}. This is
called an imperative specification, because it declares how consistency can be
achieved. Such an approach is followed by many imperative transformation
languages, such as QVT-O [QVT].

4.1.5. Consistency Preservation Artifacts

We have discussed that consistency can be considered in a monolithic or
modular way. We have, however, also mentioned that the monolithic case
can be considered as a special case of the modular one. For the general
case, we thus know from the previous considerations that in a consistency
preservation process at least specifications that define consistency, called
consistency relations, functions that preserve consistency, called consistency

preservation rules, and a function for orchestrating the functions, in the
following called orchestration function, are necessary. Finally, we also need
a function that applies the consistency preservation rules in the order that
is determined by the orchestration function, which we call the application

function. To summarize, we consider the following four artifacts necessary
to handle consistency preservation.

Consistency Relations: Binary relations that specify which pairs of models
shall be considered consistent.

Consistency Preservation Rules: Functions that restore consistency for a
pair of models that became inconsistent by modification.
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Figure 4.3.: Execution process and artifacts for a modular consistency specification. Central
artifacts are annotated in (green) normal font.

Orchestration Function: A function that determines the execution order of
the consistency preservation rules to restore consistency.

Application Function: A function that applies the consistency preservation
rules in the order determined by the orchestration function.

We explicitly distinguish the orchestration and the application to be able to
make more fine-grained statements about the responsibilities for the orches-
tration and its actual execution. This is particularly useful to determine the
behavior in cases in which no orchestration of transformations that results
in consistent models can be found. The process is depicted in Figure 4.3.
Given models that are consistent according to some consistency relations
and changes to them that lead to inconsistencies, the orchestration func-
tion delivers an order of consistency preservation rules, which is used to
parametrize the application function that executes these rules in the given
order. The result is, in the best case, a model tuple that is consistent to the
relations again.
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4.2. Notions of Correctness for Consistency
Specifications

Before we formally define the above introduced artifacts, such as consistency
relations, consistency preservation rules, an orchestration function and an
application function, we first discuss different notions of correctness for them.
Since there are different dimensions of correctness, we need to clarify which
of them is relevant in the context of our research questions and will be defined
in the formalization.

4.2.1. Relative Correctness Notions

The overall objective regarding correctness of consistency preservation is to
find models that are actually consistent. Intuitively speaking, artifacts are
correct if they fulfill their intended purpose. In our case, this means that
consistency relations should consider models consistent whenever they are
actually supposed to be considered consistent. Consistency preservation rules
should return models that are consistent according to a consistency relation
to be considered correct. This also conforms to existing notions of correctness
for transformations [Ste10], which realize consistency preservation rules.
And finally, the orchestration and application functions should execute the
consistency preservation rules such that they yield models that are consistent
according to all relations afterwards.

Correctness of an artifact is usually considered with respect to some other
specification, be it formally defined or only an informal notion. For exam-
ple, consistency relations may be considered correct with respect to some
informal notion of correctness that is collected by domain experts and re-
quirements engineers. A consistency preservation rule should always be
consistent with respect to a consistency relation. As discussed before, this
relation may either be defined explicitly and the preservation rule has to be
correct with respect to it, or it may be induced by the fixed points of the
preservation rule. In the latter case, the consistency preservation rule will
always be correct by construction.
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4.2.2. Correctness regarding Global Knowledge

We previously distinguished between monolithic and modular consistency
notions. In the above considerations, we have related the artifacts of a
modular specification to each other. Another notion of correctness can be
defined by relating a modular artifact to a corresponding monolithic artifact.
For example, a set of modular consistency relations may be considered correct
with respect to a monolithic relation when it considers the same model tuples
consistent. For three metamodels 𝑀1, 𝑀2, 𝑀3 with three modular consistency
relations 𝐶𝑅1,2,𝐶𝑅1,3,𝐶𝑅2,3 between them, as well as a ternary consistency
relation𝐶𝑅1,2,3, we could say that𝐶𝑅1,2,𝐶𝑅1,3,𝐶𝑅2,3 are correct (with respect
to 𝐶𝑅1,2,3) if, and only if,

∀𝑚1 ∈ 𝑀1,𝑚2 ∈ 𝑀2,𝑚3 ∈ 𝑀3 :
(︁
⟨𝑚1,𝑚2,𝑚3⟩ ∈ 𝐶𝑅1,2,3

⇔ ⟨𝑚1,𝑚2⟩ ∈ 𝐶𝑅1,2 ∧ ⟨𝑚1,𝑚3⟩ ∈ 𝐶𝑅1,3 ∧ ⟨𝑚2,𝑚3⟩ ∈ 𝐶𝑅2,3
)︁

We may, analogously, define correctness for consistency preservation rules,
an orchestration function, and an application function with respect to a
monolithic preservation rule by defining that both deliver the same results
for the same inputs or at least return a consistent result in the same cases.

4.2.3. Dimensions of Correctness

The discussed correctness notions induce two dimensions: First, correctness
can be considered between artifacts within a monolithic or modular specifi-
cation. Second, correctness can be considered between artifacts of a modular
specification and corresponding artifacts of a monolithic specification. These
dimensions are depicted in Figure 4.4. The former dimension is depicted
vertically. Consistency preservation rules need to be correct with respect to
their consistency relations. In the modular case, in addition to each preserva-
tion rule being locally correct with respect to its relation, the combination of
preservation rules by an orchestration and application function must also be
globally correct with respect to the combination of all relations. The latter
dimension is depicted horizontally. Each modular artifact must be consistent
with respect to a corresponding monolithic artifact.

Although correctness of modular with respect to monolithic artifacts can be
interesting from a theoretical perspective, its practical relevance is limited.
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Figure 4.4.: Different notions of correctness for consistency and its preservation. Circles denote
metamodels with arrows between them representing consistency relations and consistency
preservation rules. Further unidirectional arrows denote different notions of correctness of one
or more artifacts with respect to others.

That notion of correctness assumes that there is some kind of global truth
that has to be reflected by a modular specification. This, however, has the
following two essential drawbacks.

Validation Artifacts: The artifacts to validate correctness against, i.e., the
global, monolithic consistency relation as well as an appropriate mono-
lithic consistency preservation rule, do usually not exist. If they existed,
they could directly be used to preserve consistency. Thus, it is impossible
to validate a set of consistency relations and consistency preservation
rules against such a global specification.

Modular Knowledge: This notion of correctness requires that the developers
have some global knowledge that represents a monolithic consistency
relation and its consistency preservation rule. We assume the knowledge
about relations between models to usually be distributed across several
persons. Thus, there will be no such global knowledge, and not even
an implicit notion of the necessary artifacts to validate the modular
specifications against exists.
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Since this conflicts with our assumption of distributed knowledge about
relations and independently developed, modular specifications, we do not
further consider this notion of consistency. We focus on correctness between
the artifacts of a modular consistency specification. We have discussed this
correctness notion as correctness between a modularization level and a global
level of consistency specifications in previous work [Kla+19b].

4.2.4. Correctness of Consistency Relations

The consistency notion that we consider in the following especially requires
that consistency preservation rules and the functions to orchestrate and
apply them must be correct with respect to consistency relations. This no-
tion does, however, not define when consistency relations are considered
correct. One option is to only consider correctness with respect to monolithic
artifacts for the case of consistency relations, as we have proposed in pre-
vious work [Kla+19b]. This, however, suffers from the discussed drawback
of requiring a global notion of consistency. Another notion of correctness
would be conformance of the specified relations with what developers expect
to be consistent, i.e., a validation of requirements. For example, a consistency
relation between UML and Java may only be considered correct if it fulfills
some “natural” notion of consistency, as developers know how elements are
related because they represent similar things, such as classes, or because a
standard like the UML [UML] prescribes it. In this work we do not consider
such a correctness notion with respect to external, maybe not formally spec-
ified artifacts, as it is part of separate research on requirements engineering
and validation.

In consequence, we might say that consistency relations are simply correct by

construction. Thus, relations would normatively define what is to be consid-
ered consistent. However, a consequence of not assuming a global knowledge
of consistency is that different domain experts may have different and even
conflicting notions of when models are to be considered consistent. Con-
sider for three metamodel 𝑀1, 𝑀2, 𝑀3 the three modular consistency relations
𝐶𝑅1,2 = {⟨𝑚1,𝑚2⟩}, 𝐶𝑅1,3 = {⟨𝑚1,𝑚3⟩}, and 𝐶𝑅2,3 = {⟨𝑚2,𝑚

′
3⟩}. Then there

is no triple of models that is considered consistent to all relations. Although
we still do not want to assume a global knowledge about consistency to
which the modular one must conform, we might say that these relations
are incompatible, as we do not want to combine relations that induce an
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empty set of consistent model tuples. Identifying an appropriate notion of
compatibility and how to check it constitutes RQ 1.2 and will be discussed
as our contribution C 1.2 in Chapter 5.

In fact, every set of modular consistency relations induces a monolithic
one. The monolithic relation 𝐶𝑅 for metamodels 𝑀1, . . . , 𝑀𝑛 and pairwise
relations 𝐶𝑅𝑖,𝑘 is defined by:

𝐶𝑅 = {⟨𝑚1, . . . ,𝑚𝑛⟩ |
⋀︂

1≤𝑖<𝑘≤𝑛
⟨𝑚𝑖 ,𝑚𝑘⟩ ∈ 𝐶𝑅𝑖,𝑘 }

At least if this induced relation is empty, we probably want to consider
the modular relations incompatible, because if no models are considered
consistent, we cannot describe any system consistently.

4.3. A Formal Notion of Transformation Networks

We have so far discussed a general notion of consistency and its preservation
with a focus on a modular way of specifying it. This notion was introduced
in a rather informal way to first be able to discuss correctness notions and
determine which notion is relevant for the considerations in this thesis. In
the following, we define a formal notion of consistency and its preservation,
based on the informal explanation given before. It extends the one we have
presented in previous work [Kla+21]. We also give a precise definition of
notions for correctness between the artifacts of a modular specification.
Furthermore, we now focus on transformation-based approaches, i.e., we
consider specifications that transform changes within one or more models
into changes in one or more other models, as a specialization of the general
notion for consistency preservation used before.

4.3.1. Modular Consistency Specification

As discussed informally before, an extensional specification of consistency
defines a relation between models by enumerating all tuples of models that
are considered consistent.
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Definition 4.1 (Model-Level Consistency Relation)
Given a tuple of metamodels 𝔐 = ⟨𝑀1, . . . , 𝑀𝑛⟩, a model-level consis-

tency relation 𝐶𝑅 is a relation for instances of the metamodels 𝐶𝑅 ⊆
𝐼𝔐 = 𝐼𝑀1 × · · · × 𝐼𝑀𝑛

.

For a tuple of models 𝔪 ∈ 𝐼𝔐 , we say that:

𝔪 consistent to 𝐶𝑅 :⇔ 𝔪 ∈ 𝐶𝑅

Otherwise, we call 𝔪 inconsistent to 𝐶𝑅 .

We consider a tuple of models consistent if the consistency relation contains
it. This conforms to existing consistency definitions for bidirectional transfor-
mations [Ste10]. We denote this kind of consistency relation as model-level,
because we later need to refine the notion of consistency relations to the
level of metaclasses and distinguish them.

If a single relation describes consistency between all relevant models, consis-
tency is defined by means of model tuples being contained in that relation.
We call such a relation monolithic. If a relation only defines consistency
between some of the relevant models and the global consistency relation
is defined by a combination of several such relations, we need an explicit
definition of such a modular notion of consistency. For the sake of simplicity,
we focus on binary relations as a modular representation of consistency.

Definition 4.2 (Model-Level Consistency)
Let 𝔐 = ⟨𝑀1, . . . , 𝑀𝑛⟩ be metamodels and let 𝐶𝑅𝑖,𝑘 ⊆ 𝐼𝑀𝑖

× 𝐼𝑀𝑘
be a

binary model-level consistency relation for 𝑀𝑖 , 𝑀𝑘 ∈ 𝔐. We say that a
model tuple 𝔪 = ⟨𝑚1, . . . ,𝑚𝑛⟩ ∈ 𝐼𝔐 is consistent to 𝐶𝑅𝑖,𝑘 if, and only if,
the instances of 𝑀𝑖 and 𝑀𝑘 are in that relation:

𝔪 consistent to 𝐶𝑅𝑖,𝑘 :⇔ ⟨𝑚𝑖 ,𝑚𝑘⟩ ∈ 𝐶𝑅𝑖,𝑘

For a set of binary model-level consistency relations CR for metamod-
els 𝔐, we say that a tuple of models 𝔪 ∈ 𝐼𝔐 is consistent to CR if, and
only if, it is consistent to each consistency relation in that set:

𝔪 consistent to CR :⇔ ∀𝐶𝑅 ∈ CR : 𝔪 consistent to 𝐶𝑅
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Figure 4.5.: A monolithic consistency relation that cannot be expressed by binary relations.
Small circles denote models and blue, solid hyperedges relate tuples of consistent models.

The definition states that models are consistent to a set of model-level con-
sistency relations if they are consistent to each relation in that set. Consider,
for example, for𝑚𝑖 ∈ 𝐼𝑀𝑖

the relations 𝐶𝑅1 = {⟨𝑚1,𝑚2⟩}, 𝐶𝑅2 = {⟨𝑚2,𝑚3⟩},
and 𝐶𝑅3 = {⟨𝑚1,𝑚3⟩}. Then the model tuple ⟨𝑚1,𝑚2,𝑚3⟩ is consistent to
these relations. These consistency relations are equivalent to a monolithic
relation 𝐶𝑅 = {⟨𝑚1,𝑚2,𝑚3⟩}, because a model tuple 𝔪 is consistent to 𝐶𝑅

exactly when it is consistent to {𝐶𝑅1,𝐶𝑅2,𝐶𝑅3}.

For reasons of simplicity, we assume only one consistency relation between
each pair of metamodels. This also includes that there are no two consistency
relations 𝐶𝑅𝑖, 𝑗 and 𝐶𝑅 𝑗,𝑖 for metamodels 𝑀𝑖 and 𝑀 𝑗 , which means that the
relations do not have a direction. This assumption is without loss of general-
ity, because two relations between the same metamodels are, independent
from their direction, equivalent to only considering their intersection, i.e.,
only the model pairs that are considered consistent by both relations.

Although in the preceding exemplary case the binary relations are equivalent
to a monolithic relation, such an equivalence is not always given. In general,
two interesting insights come along with the definition of consistency based
on modular relations. First, expressiveness of defining consistency modularly
by a set of relations is not equivalent to defining one monolithic relation.
Second, a modular definition of consistency can easily contain contradictions,
which can lead to an empty tuple of consistent models.
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Figure 4.6.: Modular consistency relations, which together cannot be fulfilled (left) or which
cannot be fulfilled for some of the consistent model pairs (right). Small circles denote models
and (blue) lines relate consistent model pairs.

Obviously, combining binary relations has not the same expressiveness as
defining a monolithic relation. For example, binary relations cannot express
the monolithic relation 𝐶𝑅 = {⟨𝑚1,𝑚2,𝑚

′
3⟩, ⟨𝑚1,𝑚

′
2,𝑚3⟩, ⟨𝑚′1,𝑚2,𝑚3⟩}, as

depicted in Figure 4.5. The binary relations necessarily need to contain
⟨𝑚1,𝑚2⟩ because ⟨𝑚1,𝑚2,𝑚

′
3⟩ ∈ 𝐶𝑅 , ⟨𝑚1,𝑚3⟩ because ⟨𝑚1,𝑚

′
2,𝑚3⟩ ∈ 𝐶𝑅 ,

and ⟨𝑚2,𝑚3⟩ because ⟨𝑚′1,𝑚2,𝑚3⟩ ∈ 𝐶𝑅 . However, this would mean that
⟨𝑚1,𝑚2,𝑚3⟩ is consistent to the binary relations although it is not consistent
to the monolithic relation𝐶𝑅 . Thus, using sets of binary relations in contrast
to a single monolithic relation reduces expressiveness. Stevens [Ste20b]
discusses the property of a multiary relation to be expressible by binary ones
as binary-definable in detail. She proposes restrictions to binary relations
that may be sufficient and still practical for expressing consistency, such as a
notion of binary-implemented relations. We have reasoned the assumption
that relations are specified independently and thus modularly, thus we have
to accept these theoretic restrictions in expressiveness anyway.

Additionally, it can easily occur that multiple binary relations can be fulfilled
by certain models, but no tuple of models exists that is consistent to all
of them. Consider the relations 𝐶𝑅1 = {⟨𝑚1,𝑚2⟩}, 𝐶𝑅2 = {⟨𝑚2,𝑚

′
3⟩}, and

𝐶𝑅3 = {⟨𝑚1,𝑚3⟩}, which are also depicted at the left of Figure 4.6. Although
for each of these relations a consistent pair of models exists, which is exactly
the one defined in each relation, no tuple of models exists that fulfills their
combination. This example illustrates the worst case, in which no consistent
models exist for a set of relations. In other cases, only for some models that are

83



4. Correctness in Transformation Networks

consistent according to one or some of the relations no model tuple may exist
that is consistent to all relations. Consider the relations 𝐶𝑅1 = {⟨𝑚1,𝑚2⟩},
𝐶𝑅2 = {⟨𝑚2,𝑚3⟩, ⟨𝑚2,𝑚

′
3⟩}, and 𝐶𝑅3 = {⟨𝑚1,𝑚3⟩}, which are also depicted

at the right of Figure 4.6. In this case, the tuple ⟨𝑚1,𝑚2,𝑚3⟩ is considered
consistent to the relations, but although ⟨𝑚2,𝑚

′
3⟩ ∈ 𝐶𝑅2 there exists no

consistent model tuple containing 𝑚3, i.e., there is no 𝑚∗1 ∈ 𝐼𝑀1 such that
⟨𝑚∗1,𝑚2,𝑚

′
3⟩ is consistent to all relations.

It is easy to see that one monolithic relation can be equally represented by
an arbitrary number of sets of binary relations by simply adding model pairs
to these binary relations that are never consistent to the other relations, like
we have seen for the pair ⟨𝑚2,𝑚

′
3⟩ in the previous example. This means that

the combination of relations can lead to the situation that some models are
actually forbidden (like 𝑚′3 in the example before) due to the combination of
consistency relations. Whether such a situation is intended can eventually
depend on the semantics of the models and relations, but we will discuss
which situations are unintended in general. We have informally discussed
this as a notion of compatibility, for which we investigate in Chapter 5 how
far this behavior should be expected.

4.3.2. Incremental Consistency Preservation

While the previous discussion only concerned when models are considered
consistent, it is of particular interest to ensure that consistency of models
is preserved. We informally introduced such specifications as consistency
preservation rules. In the following, we will restrict ourselves to incremental

and inductive consistency preservation and give a precise definition for that.
This means that we make the following assumptions to the process.

Information Preservation (Incrementality): After a change to one model,
the others are not generated from scratch but updated according to
the performed changes. This ensures that information that cannot be
generated but was added by users to the other models is preserved.

Consistency Assumption (Induction): We assume models to be consistent
before a change is processed by consistency preservation rules. Other-
wise, the preservation rules would need to be able to handle arbitrary
states of the models and intentions of performed changes could not be
incorporated to restore consistency.
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Incrementality is an essential requirement whenever consistency shall be
preserved to avoid information loss. Otherwise, if for example Java code is
always generated anew after changes to a UML model instead of adapting it
incrementally, all implementations of methods in Java get lost every time the
UML model is changed. Inductivity, on the other hand, may not be necessary,
as consistency preservation rules could also be defined to restore consistency
from arbitrarily inconsistent states. We, however, make this assumption to
avoid requiring from the consistency preservation rules that they need to
be able to process an inconsistent state without knowing which changes
introduced it. From a theoretical point of view, we could omit that require-
ment, but this would make the specification of consistency preservation
rules impractically complicated, such that omitting that requirement is not
practically relevant anyway.

Like we have discussed for consistency preservation rules in general, incre-
mental preservation rules can be realized in an either monolithic or modular
way. A monolithic consistency preservation rule takes a tuple of models that
is consistent to a consistency relation and a change to these models, and it
returns a tuple of models that is consistent again. In a modular specification
of consistency preservation rules, a set of such rules is given of which each
preserves consistency of a subset of the given models according to a modular
consistency relation. In our case, we consider such rules for two models, each
of them restoring consistency according to a binary consistency relation.

In existing terminology for transformations, a consistency preservation rule
that restores consistency of models according to a consistency relation in
one direction is called directional transformation [Ste10] or consistency re-

storer [Ste20b]. That terminology usually considers model states instead of
changes and defines a consistency preservation rule Cpr for metamodels 𝑀1
and 𝑀2 to modify the instance of 𝑀2 for restoring consistency as:

Cpr : 𝐼𝑀1 × 𝐼𝑀2 → 𝐼𝑀2

This notion, however, has two properties that imply essential drawbacks:

State-Based: Information about the performed changes that led to the in-
consistent state is missing. Thus the specification is not aware of how
the inconsistent state was reached.

Unidirectional: The specification is unidirectional, which always requires
to only update one model to restore consistency.
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Figure 4.7.: Execution of consistency preservation rules of which at least one cannot be unidirec-
tional, because both involved models (circles) have been modified by a user or other consistency
preservation rules.

State-based transformations suffer from not knowing which changes were
made that led to an inconsistent state, and reconstructing them from the
difference between two states is only a heuristic approximation [Dis+11].
This, for example, includes that information about elements that were moved
or renamed can potentially not be reconstructed, leading to elements that
are deleted and created anew and losing all information that was potentially
added to them. Unidirectionality may be reasonable when assuming that
only one of the models was modified. In that case, it is sufficient to update
the other model to restore consistency. With a modular specification of
consistency preservation, however, several consistency preservation rules
modifying the same models may need to be executed.

Figure 4.7 depicts an example in which unidirectional consistency preserva-
tion rules cannot be applied when used in combination with other such rules.
If the depicted consistency preservation rules Cpr1 and Cpr2 are executed
first, Cpr3 cannot be unidirectional, because both involved models𝑚1 and
𝑚3 have been modified by either the user or another consistency preser-
vation rule. Thus, it is, in general, not possible to only consider changes
in one model and unidirectionally propagate them to the other model. In
consequence, the preservation rules need to be able to deal with changes
performed in both models and, consequentially, need to update both models
to reflect the changes in each other.
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To be able to combine several consistency preservation rules without the
discussed drawbacks, we define a synchronizing rather than a unidirectional
notion of them. Those rules can react to changes in both models and produce
changes in both models again. This is sometimes also called the capability of
handling concurrent modifications (e.g. [Leb+14]). To precisely define this
behavior, we introduce a notion of changes and consistency preservation rules,
which we also refer to as synchronizing consistency preservation rules.

As motivated before, we base our notion of consistency preservation on
changes to explicitly express how an inconsistent state was derived from a
previously consistent one. We consider these changes as functions that take
a model and return a new one. They are not restricted to a specific model but
defined for all instances of a metamodel, because a change is supposed to
represent how specific elements are modified, such as adding, removing or
modifying them. Thus, they can be applied to any models containing these
affected elements. This is also how actual implementations, such as the one
in the EMF behave. When elements affected by a change are not present
in a model, applying the change may fail. For that reason, we consider the
function describing a change to be partial. We denote partiality by returning
⊥ for inputs the function is undefined for.

Definition 4.3 (Change)
Given a metamodel 𝑀, a change 𝛿𝑀 is a partial function that takes an
instance of that metamodel and returns another one or ⊥:

𝛿𝑀 : 𝐼𝑀 → 𝐼𝑀 ∪ {⊥}

We denote the identity change, i.e., the one always returning the input
model, as 𝛿id :

𝛿id (𝑥) ≔ 𝑥

We denote the universe of all changes in 𝑀, i.e., all injective subsets of
𝐼𝑀 × 𝐼𝑀 , as:

Δ𝑀 ≔ {𝛿𝑀 ⊆ 𝐼𝑀 × 𝐼𝑀 | ∀⟨𝑚1,𝑚2⟩, ⟨𝑚1,𝑚
′
2⟩ ∈ 𝛿𝑀 :𝑚2 =𝑚′2}
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Definition 4.4 (Change Tuple)
For a given metamodel tuple 𝔐 = ⟨𝑀1, . . . , 𝑀𝑛⟩, we denote a tuple of
changes to an instance of each metamodel as:

𝛿𝔐 = ⟨𝛿𝑀1 , . . . , 𝛿𝑀𝑛
⟩ ∈ Δ𝑀1 × · · · × Δ𝑀𝑛

We define the universe of change tuples in instance tuples of 𝔐 as:

Δ𝔐 ≔ Δ𝑀1 × · · · × Δ𝑀𝑛

We define the application of a change tuple 𝛿𝔐 = ⟨𝛿𝑀1 , . . . , 𝛿𝑀𝑛
⟩ to a

model tuple 𝔪 = ⟨𝑚1, . . . ,𝑚𝑛⟩ ∈ 𝐼𝔐 as the element-wise application:

𝛿𝔐 (𝔪) ≔ ⟨𝛿𝑀1 (𝑚1), . . . , 𝛿𝑀𝑛
(𝑚𝑛)⟩

For us, it does not matter how the function behaves in cases in which the
encoded change cannot be applied, e.g., because the changed or removed
element does not exist. The function may do nothing, i.e., return the identical
model, or even be undefined for those models, i.e., be partial and return ⊥.
In fact, we do not restrict the actual behavior of a change in any way. It may
return an empty model regardless of the input, or it may perform arbitrary
changes to different models instead of affecting only specific elements. Since
we do not need such restrictions, they are not reflected in the formalism.

With that notion of changes, we can define consistency preservation rules as
functions that receive two models and changes to them, and that return new
changes to both models. While the general definition does not prescribe this,
we assume the resulting changes to include the input changes such that not
both of them have to be executed consecutively. This will also be reflected
by a correctness notion for such rules.

Definition 4.5 (Consistency Preservation Rule)
Let𝐶𝑅 ⊆ 𝐼𝑀1×𝐼𝑀2 be a binary model-level consistency relation between
metamodels 𝑀1 and 𝑀2. A consistency preservation rule Cpr𝐶𝑅 for the
relation 𝐶𝑅 is a function:

Cpr𝐶𝑅 : (𝐼𝑀1 , 𝐼𝑀2 ,Δ𝑀1 ,Δ𝑀2 ) → (Δ𝑀1 ,Δ𝑀2 ) ∪ {⊥}
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For reasons of practical applicability, the rules need to be partial, as we
may not want to require them to be able to process arbitrary models and
changes. Like for changes, we denote this partiality by allowing the function
to return ⊥. First, this is because we do not require it to produce changes
when the input models were not consistent. Second, even if the input models
are consistent, it may not be possible to preserve consistency for the given
changes. For example, if conflicting changes in both changes are made, i.e.,
changes that require one of them to be reverted, it may be desired that the
consistency preservation rule does not return an unexpected result but to
indicate a failure by returning ⊥. Our formalism does not restrict such a
behavior, in fact it even allows to always return the same changes or to return
changes that always deliver empty models. Finally, it is up to the developer
to define reasonable consistency preservation rules and to define in which
cases the function does not return a result.

This notion of synchronizing consistency preservation conforms to the def-
inition of synchronizers given by Xiong et al. [Xio+13], which also reflect
the case that both models have been modified and can be updated by the
consistency preservation rule. They do, however, encode the changes in
terms of new model states rather than explicit changes.

To consider a consistency preservation rule correct, it has to return changes
that, when applied to the input models, result in models that are consistent
according to the model-level consistency relation for which the preservation
rule is defined. This conforms to the notion of correctness defined for bidi-
rectional transformations [Ste10] and the notion of consistency given for
synchronizers by Xiong et al. [Xio+13].

Definition 4.6 (Consistency Preservation Rule Correctness)
We call a consistency preservation rule Cpr𝐶𝑅 correct if, and only if,
it either returns ⊥ or changes that applied to the input models yield
models that are consistent to 𝐶𝑅 :

Cpr𝐶𝑅 correct :⇔ ∀𝑚1 ∈ 𝐼𝑀1 ,𝑚2 ∈ 𝐼𝑀2 , 𝛿𝑀1 ∈ Δ𝑀1 , 𝛿𝑀2 ∈ Δ𝑀2 :
∀𝛿 ′𝑀1

∈ Δ𝑀1 , 𝛿
′
𝑀2
∈ Δ𝑀2 :

(︁
Cpr𝐶𝑅 (𝑚1,𝑚2, 𝛿𝑀1 , 𝛿𝑀2 ) = (𝛿 ′𝑀1

, 𝛿 ′𝑀2
)

⇒ ⟨𝛿 ′𝑀1
(𝑚1), 𝛿 ′𝑀2

(𝑚2)⟩ consistent to 𝐶𝑅
)︁
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This definition does not restrict how the input and output changes are related.
In fact, a valid (and especially correct) consistency preservation rule could
always return identity changes. In consequence, the rule would simply revert
all input changes to achieve a consistent state. Although this may not be the
expected behavior, there is no reason to restrict this behavior by definition.
Actually, the developer should specify a preservation rule in a reasonable

way, such that it defines an expected behavior.

We have discussed that consistency preservation rules can be derived from
consistency relations and that consistency preservation rules can imply the
consistency relations by their image, i.e., the set of all models that can be
derived by applying the consistency preservation rule to any models and
changes for which it is defined. In practice there will only be one of these
specifications and the other is implied or derived. We thus define a synchro-

nizing transformation, in extension to bidirectional transformations [Ste10],
as an artifact that encapsulates a model-level consistency relation together
with a consistency preservation rule, no matter which of them is defined and
which is derived or implied.

Definition 4.7 (Synchronizing Transformation)
Let 𝐶𝑅 be a model-level consistency relation and Cpr𝐶𝑅 a consistency
preservation rule that restores consistency according to that relation.
A synchronizing transformation is a pair 𝔱 = ⟨𝐶𝑅,Cpr𝐶𝑅 ⟩.

We also use the short term transformation for a synchronizing transformation.
Correctness of a transformation is then given by correctness of its consistency
preservation rule.

Definition 4.8 (Synchronizing Transformation Correctness)
Let 𝔱 = ⟨𝐶𝑅,Cpr𝐶𝑅 ⟩ be a synchronizing transformation. We say that 𝔱
is correct if, and only if, Cpr𝐶𝑅 is correct according to Definition 4.6:

𝔱 correct :⇔ Cpr𝐶𝑅 correct

Transformations are usually expected to by hippocratic [Ste10]. This means
that a transformation, or more precisely its consistency preservation rule,
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does not perform any changes if the input changes applied to the input models
already yield consistent models. We define the application of hippocraticness
to synchronizing transformations as follows.

Definition 4.9 (Hippocratic Synchronizing Transformation)
Let 𝔱 = ⟨𝐶𝑅,Cpr𝐶𝑅 ⟩ be a transformation for metamodels 𝑀1 and 𝑀2.
We say that 𝔱 is hippocratic if, and only if, it returns the input changes
if their application to the input models yields consistent models:

𝔱 hippocratic :⇔ ∀𝑚1 ∈ 𝐼𝑀1 ,𝑚2 ∈ 𝐼𝑀2 , 𝛿𝑀1 ∈ Δ𝑀2 , 𝛿𝑀2 ∈ Δ𝑀2 :(︁
⟨𝛿𝑀1 (𝑚1), 𝛿𝑀2 (𝑚2)⟩ ∈ 𝐶𝑅
⇒ Cpr𝐶𝑅 (𝑚1,𝑚2, 𝛿𝑀1 , 𝛿𝑀2 ) = (𝛿𝑀1 , 𝛿𝑀2 )

)︁
Although hippocraticness is not a necessary requirement for our consid-
erations in most cases, it is usually a desired property in practice [Ste10].
One benefit of hippocraticness with regards to transformations is given if a
transformation is only defined by its consistency preservation rule and thus
implies the underlying consistency relation as its fixed points, as discussed in
Subsection 4.1.4. Actually, a consistency preservation rule according to our
definition does not have fixed points, because the signatures of definition and
value set of the function are different due to the models only occurring in the
definition set. Transferred to our definition, the consistency relation is im-
plied by iteratively applying the function to each pair of models and changes
with the changes delivered by the function until they are not modified by the
function anymore. In case that the transformation is correct and hippocratic,
it does always deliver changes that yield consistent models already upon its
first execution and does not modify them upon further applications, thus
the consistency relation is implied by applying the function to each pair of
models and changes only once.

In the following, we only refer to transformations rather than consistency
relations and consistency preservation rules if the distinction is not necessary.
We thus also say that models are consistent to a transformation, which
is supposed to mean that they are consistent to the consistency relation
encapsulated by that transformation.
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Definition 4.10 (Consistency to Transformation)
Let 𝔱 = ⟨𝐶𝑅,Cpr𝐶𝑅 ⟩ be a synchronizing transformation. We say that a
tuple of models 𝔪 is consistent to 𝔱 if, and only if, it is consistent to its
consistency relation:

𝔪 consistent to 𝔱 :⇔ 𝔪 consistent to 𝐶𝑅

For a set of transformations t, we say that a model tuple 𝔪 is consistent
to t if, and only if, it is consistent to all transformations in it:

𝔪 consistent to t :⇔ ∀ 𝔱 ∈ t : 𝔪 consistent to 𝔱

Although Definition 4.8 precisely defines correctness of a transformation, it is
unclear how to define a transformation that fulfills that property. In particular,
most existing transformation languages are restricted to input changes to
one model or to delivering changes to one model. We thus discuss how we
can achieve a correct synchronizing transformation with such a restricted
formalism. This question was introduced as RQ 1.3, and an approach for
that constitutes our contribution C 1.3, which we discuss in Chapter 6.

4.3.3. Transformation Orchestration

Preserving consistency between instances of multiple metamodels after
changes with multiple transformations requires their orchestration, i.e., the
decision in which order to execute them. We have discussed in Subsec-
tion 4.1.3 that transformations, or more precisely their consistency preserva-
tion rules, may be executed independently, which requires their results to be
unified, or to execute them consecutively. We have identified the drawbacks
of concurrent execution, including the necessity to define unification opera-
tors and the missing guarantee of consistency after unification. This is why
we follow the approach of consecutively executing transformations.

To consecutively execute transformations, an execution order has to be
determined. While in practice a dynamic algorithm will determine that order,
from a theoretical perspective that algorithm realizes a function that returns
the execution order. We call this an orchestration function, as it is responsible
for orchestrating the transformation execution.
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Definition 4.11 (Transformation Orchestration Function)
Let t be a set of transformations for metamodels 𝔐. A transformation
orchestration function Orct for these transformations is a function that
delivers a sequence of transformations for given models and changes:

Orct : (𝐼𝔐,Δ𝔐) → t<N

t<N denotes all finite sequences in t, i.e., t<N ≔
⋃︁∞

𝑖=0 t
𝑖

The orchestration function returns a sequence of transformations and deter-
mines that their consistency preservation rules need to be executed in the
given order. This especially includes that transformations may occur more
than once in such a sequence.

Without further restrictions to the transformations, an orchestration function
may not always find an execution order that yields a consistent model tuple
for given transformations, models, and changes to them. Such an order
may not exist, because due to the transformations making local decisions to
restore consistency for two models that are never consistent with the other
transformations. Additionally, even if such an order exists, it may not be
possible to find it. We discuss these problems in detail in Chapter 7 and prove
that the decision problem whether an orchestration that leads to a consistent
result exists is undecidable without further restrictions. For that reason, the
definition does not require that an orchestration of transformations has to
lead to a consistent result.

An orchestration function only determines an order of transformations. Con-
sistency for given models and changes can be preserved by requesting an
orchestration from that function and executing the transformations in that
order. We make this process explicit by defining an application function

that performs consistency preservation based on given transformations, an
orchestration function for them and the actual models and changes.

Before defining that application function, we first need to define an auxil-
iary function to concatenate transformations, more precisely their contained
consistency preservation rules. Consistency preservation rules according
to Definition 4.5 are restricted to the two metamodels they are defined for.
Additionally, they require initial models and changes as input, but only return
changes. For these two reasons, the functions describing the preservation
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rules cannot be easily concatenated. This, however, is necessary to compose
them to formally describe their consecutive execution. We define a gener-

alization function for transformations, which generalizes them to arbitrary
metamodel tuples and a conforming signature for their input and output,
which eases the description of their concatenation.

Definition 4.12 (Transformation Generalization Function)
Let 𝔐 = ⟨𝑀1, . . . , 𝑀𝑖 , . . . , 𝑀𝑘 , . . . , 𝑀𝑛⟩ be a metamodel tuple and let
𝔱 = ⟨𝐶𝑅,Cpr𝐶𝑅 ⟩ be a transformation for metamodels 𝑀𝑖 , 𝑀𝑘 . A trans-
formation generalization function Gen𝔐,𝔱 for metamodels 𝔐 and trans-
formation 𝔱 is a partial function:

Gen𝔐,𝔱 : (𝐼𝔐,Δ𝔐) → (𝐼𝔐,Δ𝔐) ∪ {⊥}

It generalizes the consistency preservation rule Cpr𝐶𝑅 of 𝔱 such that
it can be applied to changes in 𝔐 instead of 𝑀𝑖 and 𝑀𝑘 , i.e., it ap-
plies the changes delivered by Cpr𝐶𝑅 for the corresponding models
to the given change tuple. Let 𝔪 ∈ 𝐼𝔐 be a model tuple and let
𝛿𝔐 = ⟨𝛿𝑀1 , . . . , 𝛿𝑀𝑖

, . . . , 𝛿𝑀𝑘
, . . . , 𝛿𝑀𝑛

⟩ be a change tuple. We define
⟨𝛿 ′

𝑀𝑖
, 𝛿 ′

𝑀𝑘
⟩ ≔ Cpr𝐶𝑅 (𝑚𝑖 ,𝑚𝑘 , 𝛿𝑀𝑖

, 𝛿𝑀𝑘
). Then we define:

Gen𝔐,𝔱 (𝔪, 𝛿𝔐)

≔

{︄
⊥, if ⟨𝛿 ′

𝑀𝑖
, 𝛿 ′

𝑀𝑘
⟩ = ⊥

(𝔪, ⟨𝛿𝑀1 , . . . , 𝛿
′
𝑀𝑖
, . . . , 𝛿 ′

𝑀𝑘
, . . . , 𝛿𝑀𝑛

⟩), otherwise

Like consistency preservation rules, a generalization function must be partial
and return ⊥ for inputs it is undefined for to reflect cases in which it cannot
return a result. This is a direct consequence of consistency preservation rules
being partial, thus a generalization function is defined to return⊥ in the same
cases as the consistency preservation rule it generalizes. The generalization
function is a universally-defined auxiliary function only necessary for for-
malizing the concepts. It must neither be specialized for each transformation,
nor must a transformation developer specify it at all.

Finally, either the orchestration function or an application function must
be able to reflect the cases in which no execution order of transformations
that restores consistency can be found. In accordance to existing terminol-
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ogy [Ste20b], we call these cases unresolvable. From a theoretical perspective,
it does not matter whether the orchestration or application function makes
that decision, as the orchestration function could even be encoded into the
application function. From a practical perspective, however, we may want
to determine an execution order even if there is no order that results in a
consistent state. This supports finding out why no such order is found, e.g.,
which transformation induces that problem.

We define a transformation application function that applies transformations
to a given tuple of models and changes according to an order delivered by
an orchestration function. This function is partial to allow it to indicate that
no result with consistent models could be found, e.g., because the input mod-
els were inconsistent or because a transformation within the orchestration
delivered ⊥. We indicate those cases with the result ⊥.

Definition 4.13 (Transformation Application Function)
Let t be a synchronizing transformations set for consistency relations
CR on metamodels 𝔐 and Orct an orchestration function. A trans-
formation application function AppOrct for them is a partial function:

AppOrct : (𝐼𝔐,Δ𝔐) → 𝐼𝔐 ∪ {⊥}

The function takes a consistent tuple of models and a tuple of changes
that was performed on them and returns a changed tuple of models by
acquiring changes from the consistency preservation rules of t. Thus,
it has to fulfill the following condition:

∀𝔪 ∈ 𝐼𝔐 | 𝔪 consistent to CR : ∀𝛿𝔐 ∈ Δ𝔐 :
∀𝔪′ ∈ 𝐼𝔐 :

[︁
AppOrct (𝔪, 𝛿𝔐) = 𝔪′ ⇒

∃ 𝔱1, . . . , 𝔱𝑛 ∈ t : ∃ 𝛿 ′𝔐 ∈ Δ𝔐 :
(︁
Orct (𝔪, 𝛿𝔐) = [𝔱1, . . . , 𝔱𝑛]

∧ Gen𝔐,𝔱𝑛 ◦ . . . ◦ Gen𝔐,𝔱1 (𝔪, 𝛿𝔐) = (𝔪, 𝛿 ′
𝔐
) ∧ 𝛿 ′

𝔐
(𝔪) = 𝔪′

)︁ ]︁
While the previous definition does not restrict in which cases ⊥ and in which
an actual tuple of models is returned, we define when we consider an ap-
plication function correct. Correctness can be defined in several ways. For
example, we might say that the function is correct if it returns a consistent
tuple of models whenever there is an order of transformations that leads to
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those consistent models. As we will see later, this correctness notion is, how-
ever, inappropriate, because the underlying decision problem is undecidable.
In consequence, the application function needs to operate conservatively,
i.e., it may return ⊥ even if there is a sequence of transformations whose
application leads to consistent models. As an alternative, we might require
the function to return consistent models whenever the orchestration function
delivers a sequence of transformations whose application leads to a consis-
tent tuple of models. Since we have to deal with conservativeness anyway,
this, however, does not provide any benefits. In fact, the above discussed
requirements encode a kind of optimality for the functions, which we will
specify more precisely in Chapter 7. For now, we stick to the simple notion
of correctness that the application function does never return inconsistent
models, i.e., if a tuple of models is returned, it must be consistent.

Definition 4.14 (Transformation Application Function Correctness)
Let AppOrct be an application function for an orchestration function
Orct for transformations t. Let CR be the set of consistency relations
of transformations in t. We say that AppOrct is correct if, and only if,
its result is either ⊥ or consistent to CR:

AppOrct correct :⇔ ∀𝔪 ∈ 𝐼𝔐 | 𝔪 consistent to CR : ∀𝛿𝔐 ∈ Δ𝔐 :(︁
AppOrct (𝔪, 𝛿𝔐) = ⊥ ∨ AppOrct (𝔪, 𝛿𝔐) consistent to CR

)︁
This is, in fact, a rather weak notion of correctness. An application function
that always returns ⊥ is correct according to that definition. Because the or-
chestration and application function have to operate conservatively, a binary
correctness notion is less relevant than a gradual one anyway. The ques-
tion how to determine such an orchestration was introduced as RQ 1.4. We
present and discuss a concrete approach as contribution C 1.4 in Chapter 7.

4.3.4. Transformation Networks

Based on the previous definitions of transformations, orchestration and ap-
plication functions, we define what we consider a transformation network

and when we consider it correct. A transformation network is composed of
transformations, an orchestration and an application function. Although we
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define these artifacts specifically for one transformation network, i.e., an or-
chestration and application function according to their definitions are specific
for one set of transformations, the goal will be to find an orchestration and
application function that is independent from the actual transformations.

Definition 4.15 (Transformation Network)
Let t be a transformation set, Orct an orchestration function for these
transformations, andAppOrct an application function. A transformation
network 𝔑 is a triple:

𝔑 ≔ ⟨t,Orct,AppOrct⟩

Correctness of a transformation network is given by correctness of the
individual transformations and the application function, according to Defini-
tion 4.8 and Definition 4.14.

Definition 4.16 (Transformation Network Correctness)
Let 𝔑 = ⟨t,Orct,AppOrct⟩ be a transformation network. We say that
𝔑 is correct if, and only if, its transformations in t and the application
function AppOrct are correct:

𝔑 correct :⇔ ∀ 𝔱 ∈ t : 𝔱 correct ∧ AppOrct correct

We have already discussed that we will show that the application function has
to operate conservatively, which is why correctness is an essential property
but not the most interesting one to achieve. Additionally, we discussed that
the consistency relations of the transformations can be considered correct by
definition, but that we will discuss a notion of compatibility to reflect when
those relations contain unintended contradictions.

4.4. A Fine-Grained Notion of Consistency

We have up to now given a common definition of consistency [Ste10] by enu-
merating consistent pairs of models in a relation. That notion is sufficient for
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defining transformation networks, correctness of their artifacts, and also the
essential considerations regarding orchestration, as presented in the preced-
ing section. Domain experts and transformation developers, however, usually
think in terms of a more fine-grained notion of consistency. They do not
consider when complete models are consistent, but when specific relations
between some of their elements are fulfilled, i.e., which other elements they
require to exist if some elements are present in models. For example, they
consider consistency between architectural components and object-oriented
classes instead of complete models containing these elements.

This is also reflected by transformation languages, such as QVT-R. First, they
require relations to be defined at the level of classes and their properties.
They define how properties of some classes are related to properties of other
classes. Second, they are defined in an intensional way, i.e., constraints
specify which elements are consistent rather than enumerating all consistent
instances in an extensional specification. We have already discussed that
intensional and extensional specifications have equal expressiveness and
can be transformed into each other, which is why we stick to extensional
specifications for reasons of simplicity. However, we reuse the concept of
specifying relations at the level of classes and their properties.

This reflects a natural understanding of consistency and, in particular, makes
it easier to make statements about dependencies between consistency re-
lations, which we need to make statements about compatibility of consis-
tency relations. Thus, we introduce an appropriate, fine-grained notion of
consistency relations in the following. Finally, from such a fine-grained
specification, a model-level consistency relation can always be derived by
enumerating all models that fulfill all the fine-grained specifications, thus it
does not restrict expressiveness in any way and can be seen as a composi-

tional approach for defining consistency, which is only a refinement of the
notion of model-level consistency relations. We have presented the following
definitions of a fine-grained consistency notion, partly literally, in previous
work [Kla+20]. The definitions are based on those proposed in the work of
Kramer [Kra17, Sec. 2.3.2, 4.1.1] and Klare et al. [Kla+21].

4.4.1. Fine-Grained Consistency Relations

The central idea of the fine-grained consistency notion is to have consistency
relations that contain pairs of objects and, broadly speaking, requires that if
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the objects in one side of the pair occur in a model, the others have to occur
in another model as well. A condition encapsulates such objects, for which
we require objects in another model to occur.

Definition 4.17 (Condition)
A condition c for a class tuple ℭc = ⟨𝐶c,1, . . . ,𝐶c,𝑛⟩ is a set of object
tuples with:

∀⟨𝑜1, . . . , 𝑜𝑛⟩ ∈ c : ∀ 𝑖 ∈ {1, . . . , 𝑛} : 𝑜𝑖 ∈ 𝐼𝐶c,𝑖

An element 𝔠 ∈ c is called a condition element. For a model tuple 𝔪 ∈ 𝐼𝔐
of a metamodel tuple 𝔐 and a condition element 𝔠, we say that:

𝔪 contains 𝔠 :⇔ ∃𝑚 ∈ 𝔪 : 𝔠 ⊆ 𝑚

Conditions represent object tuples, called condition elements, that instantiate
the same tuple of classes. They are supposed to occur in models that fulfill a
certain condition regarding consistency and thus require elements in other
models to exist, as subsequently defined by consistency relations. We say that
a tuple of models contains a condition element if any of the models contains
all the objects within the condition element. This implies that such a model’s
metamodel has to contain all the classes in the class tuple of the condition.
We use conditions to define consistency relations as the co-occurrence of
condition elements.

Definition 4.18 (Consistency Relation)
Let ℭ𝑙,𝐶𝑅 and ℭ𝑟,𝐶𝑅 be two class tuples. A consistency relation 𝐶𝑅 is
a subset of pairs of condition elements in conditions c𝑙,𝐶𝑅 , c𝑟,𝐶𝑅 with
ℭ𝑙,𝐶𝑅 = ℭc𝑙,𝐶𝑅

and ℭ𝑟,𝐶𝑅 = ℭc𝑟,𝐶𝑅
:

𝐶𝑅 ⊆ c𝑙,𝐶𝑅 × c𝑟,𝐶𝑅

We call a pair of condition elements ⟨𝔠𝑙 , 𝔠𝑟 ⟩ ∈ 𝐶𝑅 a consistency relation

pair. For a model tuple 𝔪 and a consistency relation pair ⟨𝔠𝑙 , 𝔠𝑟 ⟩, we
say that:

𝔪 contains ⟨𝔠𝑙 , 𝔠𝑟 ⟩ :⇔ 𝔪 contains 𝔠𝑙 ∧𝔪 contains 𝔠𝑟
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A consistency relation is a set of pairs of condition elements, which indicate
the tuples of objects that are considered consistent with each other. This
means that if a model contains one of the left condition elements that occurs
in the relation, another model must contain one of the related right condition
elements. It bases on two conditions that define relevant object tuples in
instances of each of the two metamodels and defines the ones that are related
to each other. Without loss of generality, we assume that each condition
element of both conditions occurs in at least one consistency relation pair:

∀𝔠 ∈ c𝑙,𝐶𝑅 : ∃⟨𝔠𝑙 , 𝔠𝑟 ⟩ ∈ 𝐶𝑅 : 𝔠 = 𝔠𝑙

∧ ∀𝔠 ∈ c𝑟,𝐶𝑅 : ∃⟨𝔠𝑙 , 𝔠𝑟 ⟩ ∈ 𝐶𝑅 : 𝔠 = 𝔠𝑟

Based on these consistency relations, we can define a fine-grained notion of
consistency.

Definition 4.19 (Consistency)
Let𝐶𝑅 be a consistency relation and let 𝔪 ∈ 𝐼𝔐 be a tuple of models of
the metamodels in 𝔐. We say that:

𝔪 consistent to 𝐶𝑅 :⇔
∃𝑊 ⊆ 𝐶𝑅 :

[︁
∀⟨𝔠𝑙,1, 𝔠𝑟,1⟩, ⟨𝔠𝑙,2, 𝔠𝑟,2⟩ ∈𝑊 :(︁

⟨𝔠𝑙,1, 𝔠𝑟,1⟩ = ⟨𝔠𝑙,2, 𝔠𝑟,2⟩ ∨ (𝔠𝑙,1 ≠ 𝔠𝑙,2 ∧ 𝔠𝑟,1 ≠ 𝔠𝑟,2)
)︁

∧ ∀⟨𝔠𝑙 , 𝔠𝑟 ⟩ ∈𝑊 :
(︁
𝔪 contains 𝔠𝑙 ∧𝔪 contains 𝔠𝑟

)︁
∧ ∀𝔠′

𝑙
∈ c𝑙,𝐶𝑅 :

(︁
𝔪 contains 𝔠′

𝑙
⇒ 𝔠′

𝑙
∈ c𝑙,𝑊

)︁ ]︁
We call such a𝑊 a witness structure for consistency of 𝔪 to𝐶𝑅 , and for
all pairs ⟨𝔴𝑙 ,𝔴𝑟 ⟩ ∈𝑊, we call 𝔴𝑙 and 𝔴𝑟 corresponding to each other.

For a set of consistency relations CR = {𝐶𝑅1,𝐶𝑅2, . . .}, we say that:

𝔪 consistent to CR :⇔ ∀𝐶𝑅 ∈ CR : 𝔪 consistent to 𝐶𝑅

A consistency relation 𝐶𝑅 relates one condition element at the left side to
one or more other condition elements at the right side of the relation. The
definition of consistency ensures that if one condition element 𝔠 ∈ c𝑙,𝐶𝑅
at the left side of the relation occurs in a tuple of models, exactly one of
the condition elements related to it by a consistency relation 𝐶𝑅 occurs in
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Employee
name

Resident
name

𝑒

𝐶𝑅 = {⟨𝑒, 𝑟 ⟩ | e.name.toLower = r .name}
𝑟

Figure 4.8.: A consistency relation derived from Figure 3.3, which depicts the necessity of a
witness structure to ensure that only one employee out of those with differently capitalized
names is allowed to correspond to a resident with the same name.

another model to consider the tuple of models consistent. If another element
that is related to 𝔠 occurs in the models, this one has to be, in turn, related to
another condition element 𝔠′ ∈ c𝑙,𝐶𝑅 of the left side of condition elements
by 𝐶𝑅 that also occurs in the models. This ensures that a condition element
contained in a model uniquely corresponds to another element to which it is
considered consistent according to 𝐶𝑅 .

Consider the exemplary consistency relation in Figure 4.8, which is derived
from the one in our running example in Figure 3.3. The relation requires
for each resident an employee with an appropriate name to exist and vice
versa. It assumes that resident names are stored lowercase and allows the
employee name to be written in arbitrary capitalization. Thus, for example,
both the employees with names “Alice” and “alice” would be considered
consistent to a resident with name “alice”. Without the restriction defined by
the auxiliary witness structure𝑊, an employee model containing the employ-
ees with both capitalizations would be considered consistent to a resident
model containing a corresponding resident with the same name written in
lowercase. The witness structure, however, ensures that for each employee
one corresponding resident exists, thus there can only exist one employee
with one of the allowed capitalizations, as each of them is corresponding
to the resident with the lowercase name. In general, the witness structure
restriction ensures that if several alternatives for a corresponding element
exists, only one is actually allowed to be present.

Example 4.1. The definition of consistency is exemplified in Figure 4.9, which

is an alternation of an extract of Figure 3.3 only considering employees and

residents. Models with employees and residents are considered consistent if

for each employee exactly one resident with the same name or the name in

lowercase exists. The model pairs 1–3 are obviously consistent according to the

definition, because there is always a pair of objects that fulfills the consistency

relation. In model pair 4, there is a consistent resident for each employee, but

there is no appropriate employee for the resident with name = ”Bob”. However,
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Employee
name

Resident
name

𝑒

𝐶𝑅 = {⟨𝑒, 𝑟 ⟩ | e.name = r .name

∨ e.name.toLower = r .name}

𝑟

Employee
name = "Alice"

Resident
name = "Alice"

Employee
name = "Alice"

Resident
name = "alice"

Employee
name = "alice"

Employee
name = "Alice"

Resident
name = "alice"

Resident
name = "Alice"

Employee
name = "Alice"

Resident
name = "Alice"

Resident
name = "Bob"

Resident
name = "Alice"

Resident
name = "alice"

Employee
name = "Alice"

Resident
name = "alice"

Employee
name = "alice"

Employee
name = "Alice"

1.

2.

3.

4.

5.

6.

Figure 4.9.: A consistency relation between employee and resident and six example model pairs:
pairs 1–4 consistent with an appropriate witness structure𝑊 shown in blue, solid lines, and
pairs 5 and 6 inconsistent with an inappropriate mapping structure shown in red, dashed lines.
Adapted from [Kla+20, Fig. 2].
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our definition of consistency only requires that for each condition element at

the left side of the relation that appears in the models, an appropriate right

element occurs, but not vice versa. Thus, a relation is interpreted unidirectionally,

which we subsequently discuss in more detail. In model pair 5, there are two
residents with names in different capitalizations, which would both be considered

consistent to the employee according to the consistency relation. Comparably,

in model pair 6, there is a resident that fulfills the consistency relations for both
employees, each having a different but matching capitalization. However, the

consistency definition requires that each model element for which consistency is

defined by a consistency relation must only have one corresponding element. In

this case, there are two residents or employees that could be considered consistent

to the employee or resident, respectively, thus there is no witness structure with

a unique mapping between the elements as required by the definition.

As mentioned in the example, the definition considers consistency in a unidi-
rectional way, which means that a consistency relation may define that some
elements 𝔠𝑟 are required to occur in a tuple of models if some elements 𝔠𝑙
occur, but not vice versa. Such a unidirectional notion can also be reasonable
in our example, as it could make sense to require a resident for each em-
ployee, but not every resident might be employed and thus also represent an
employee. To achieve a bijective consistency definition, for each consistency
relation 𝐶𝑅 its transposed relation 𝐶𝑅𝑇 = {⟨𝔠𝑙 , 𝔠𝑟 ⟩ | ⟨𝔠𝑟 , 𝔠𝑙 ⟩ ∈ 𝐶𝑅} can be
considered as well. Regarding Figure 4.9, if we consider the relation between
employees and residents as well as its transposed, the model pair 4 would
also be considered inconsistent, because an appropriate employee for each
resident is required by the transposed relation. We call sets of consistency
relations that contain only bijective definitions of consistency symmetric.

Definition 4.20 (Symmetric Consistency Relation Set)
Let CR be a set of consistency relations. We say that CR is symmetric

if, and only if, for each contained relation its transposed one is also
contained:

CR is symmetric :⇔ ∀𝐶𝑅 ∈ CR : 𝐶𝑅𝑇 ∈ CR

Any description of bijective consistency relations can be defined with a
symmetric consistency relation set. We have defined consistency in a unidi-
rectional way for the two following reasons.
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1. Some relevant consistency relations are actually not bijective. Apart
from the simple example concerning residents and employees, this
situation always occurs when objects at different levels of abstraction
are related. Consider a relation between components and classes,
requiring for each component an implementation class but not vice
versa, or a relation between UML models and object-oriented code,
requiring for each UML class an appropriate class in code but not vice
versa. These relations could not be expressed if consistency relations
were always considered bijective.

2. We consider networks of consistency relations, in which a combination
of multiple bijective consistency relations does not necessarily imply
a bijective consistency relation again. Thus, we need a unidirectional
notion of consistency relations anyway.

One might argue that consistency is usually traced by means of a trace model,
which stores the pairs of element tuples in models that fulfill a consistency
relation. A trace model can be seen as an explicit representation of a wit-
ness structure as specified in Definition 4.19. We do, however, not explicitly
consider such an explicit trace model in this formalism for two reasons also
discussed in previous work [Kla+21]. First, a trace model is only necessary
in practice if no identifying information for related elements is present, or if
performance is to be improved. However, we assume such identifying infor-
mation to exist without loss of generality, as introduced in Subsection 3.3.3.
Second, a trace model can, from a theoretical perspective, be treated as a
usual model by defining consistency between one concrete and one trace
model. This conforms to the fact that each multiary relation can be expressed
by binary relations to an additional model (in this case the trace model), as
discussed in existing work [Ste20b; Cle+19]. We discuss practical benefits of
having an explicit trace model for consistency preservation in Chapter 6 to
distinguish modifications of elements from their removal and addition. But
this does, as discussed, not restrict applicability of our formalism.

4.4.2. Expressiveness of Fine-Grained Relations

The model-level consistency notion of Definition 4.2 is established and based
on notions used by several researchers. The fine-grained consistency notion
according to Definition 4.19 is based on the insight that practical approaches
to describe consistency and its preservation use fine-grained rules rather than
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enumerating consistent model pairs. We did, however, only provide examples
that justify specific decisions in the definitions, such as the witness structure
for corresponding elements, but we did not argue if and why fine-grained
relations are an actual refinement, such that statements about model-level
consistency relations also apply to fine-grained relations.

To show that every set of fine-grained consistency relations can be expressed
by a single model-level consistency relation, we can use the same constructive
approach that we have used to define consistency according to multiple
consistency relations, be they at the model level or fine-grained. Given fine-
grained consistency relations CR = {𝐶𝑅1, . . . ,𝐶𝑅𝑘 }, we can construct an
equivalent model-level consistency relation 𝐶𝑅 as follows:

𝐶𝑅 = {𝔪 | 𝔪 consistent to CR}

A model-level consistency relation can, however, not necessarily be expressed
by fine-grained consistency relations. The most simple construction approach
would define a single fine-grained consistency relation to express a model-
level consistency relation, which contains the complete models instead of
extracts of them. The definition of consistency is, however, different for the
two types of relations. While at the model level consistency is defined as
two (or more) models being in a relation (see Definition 4.2), fine-grained
consistency relations do only describe that if an element at the left side of
the relation occurs in a model, then any of the related elements at the right
side has to occur in another. If two models are considered consistent by a
model-level consistency relation, they are also consistent to the accordingly
constructed fine-grained relation, because there is a witness structure that
contains exactly the two consistent models. If there is a model that is not
considered consistent to any other model in the model-level consistency rela-
tion, thus the model-level consistency relation does not contain any pair with
that model, then there will also be no such pair in the fine-grained relation.
According to Definition 4.19 of consistency for fine-grained relations, if there
is no condition element in the relation, then consistency is not constrained
for the contained model elements. In consequence, such a model would be
considered consistent to every other model.

While, at first, this may seem inappropriate, it actually is appropriate for
two reasons. First, the formalism can only express that for some elements
other elements need to exist, but not that specific elements are not allowed
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to exist if other elements exist. This is reasonable, because consistency
between models is supposed to ensure that the overlap of information is
represented uniformly, thus to express that information in one model needs
to be represented in another one as well. Expressing that some elements
are not allowed to exist because of others, e.g., being an employee in one
model, the same person cannot be a student in another model, is actually
not a consistency constraint for information shared between models. This
is actually additional information that should be stored in a specific model
representing these semantics. Thus, we do not consider this case at all.

Second, the formalism for fine-grained consistency relations can not prevent
specific elements from existing at all. For example, a consistency relation may
define that for a component in an architecture model a corresponding class
in the object-oriented design model has to exist, but it may not restrict that
only components of specific names are allowed. Such restrictions should and
actually are separate specifications not related to consistency between models
but restricting a model on its own. Thus, the metamodel or some additional
specification for it should provide such restrictions of valid models, which
we have discussed as a restriction of 𝐼𝑀 for a metamodel 𝑀 in Section 3.3.

Summarizing, we found that we can express each set of fine-grained consis-
tency relations by a model-level consistency relation. Additionally, we know
that there are specific kinds of restrictions that can be encoded in model-level
consistency relations but not in fine-grained consistency relations. We have,
however, discussed why they are not relevant for the designated application
area of consistency preservation. In consequence, all insights made for model-
level consistency relations can also be applied to fine-grained consistency
relations and, if specific restrictions are excluded, vice versa.

4.4.3. Application to Consistency Preservation Rules

As mentioned before, the fine-grained notion of consistency fits well to how
transformation languages consider consistency. They allow to define rules
that relate only some classes by relations, conforming to fine-grained consis-
tency relations, from which fine-grained consistency preservation rules are
derived. Alternatively, they directly allow to define rules to preserve consis-
tency between specific classes. These rules are often called transformation

rules and composed to a transformation that consists of multiple such rules,
each encoding a consistency relation and a preservation rule.
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It may easily happen that the execution of one transformation rule leads to
the violation of the consistency relation of another, which induces depen-
dencies between the individual transformation rules. Thus, a combination of
transformation rules to a transformation has to ensure correctness, i.e., that
the consecutive execution of the rules leads to a consistent state of the models.
Languages such as QVT-R and QVT-O therefore specify that transformation
rules may not be conflicting [QVT, Sec. 7.10.2.]. It is also a dedicated topic of
research to ensure that the rules of a single transformation conform to each
other, e.g. [CGL17; Cab+10], which is why we assume that transformations
fulfill that property.

To avoid the necessity of specifying this conformance property for transfor-
mation rules, we stick to the existing notion of coarse-grained consistency
preservation rules, as it is sufficient for our considerations. Still, consistency
preservation rules were defined for model-level consistency relations in Def-
inition 4.5. This can, however, be easily extended to fine-grained consistency
relations, as we simply need to require the rule to consider consistency to a set
of fine-grained relations according to Definition 4.19 rather than consistency
to a single model-level consistency relation according to Definition 4.2.

A consistency preservation rule CprCR for a set of consistency relations
CR according to Definition 4.18 is thus still considered correct if it only
returns changes when they yield models that are consistent to all consistency
relations if applied to the input models, in accordance with Definition 4.6:

∀𝑚1 ∈ 𝐼𝑀1 ,𝑚2 ∈ 𝐼𝑀2 , 𝛿𝑀1 ∈ Δ𝑀1 , 𝛿𝑀2 ∈ Δ𝑀2 :
∀𝛿 ′𝑀1

∈ Δ𝑀1 , 𝛿
′
𝑀2
∈ Δ𝑀2 :

(︁
CprCR (𝑚1,𝑚2, 𝛿𝑀1 , 𝛿𝑀2 ) = ⟨𝛿 ′𝑀1

, 𝛿 ′𝑀2
⟩

⇒ ⟨𝛿 ′𝑀1
(𝑚1), 𝛿 ′𝑀2

(𝑚2)⟩ consistent to CR
)︁

Note that being consistent to all fine-grained consistency relations is equiva-
lent to being consistent to the model-level consistency relation induced by
the fine-grained relations.

Likewise, we consider a synchronizing transformation according to Defi-
nition 4.7 as a pair of fine-grained consistency relations and a consistency
preservation rule for them, thus 𝔱 = ⟨CR,CprCR⟩. Again, in conformance
with Definition 4.8, we call such a transformation 𝔱 correct if, and only if, its
consistency preservation rule is correct.
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Figure 4.10.: A conceptual model for the terms and artifacts introduced for transformation
networks and their relations. Adapted from [Kla+21, Fig. 5].

4.5. Summary

In this chapter, we have discussed notions of correctness for transformation
networks and the artifacts they consist of, and we have precisely defined the
notion that is relevant for the context of this thesis. We give an overview
of the introduced concepts and their relations in the conceptual model in
Figure 4.10. In summary, we provided the following insight in this chapter.
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Insight II.1 (Correctness Notion)
A reasonable notion of correctness for networks of modular, indepen-
dently developed transformations consists of correctness of the single
transformations, which need to be synchronizing, and correctness of
the application function that determines an execution order of the trans-
formations. An application function may not be able to return a result
for different reasons, such as transformations not being applicable to
specific changes, the absence of an execution order of the transforma-
tions that leads to consistent models, or the inability to find such an
order. Thus, in comparison to correctness, the degree of conservative-
ness is the more important property of an application function, which
indicates how often the function does not deliver a result although
there is an order of transformations that would restore consistency.
Additionally, although theoretically not relevant for correctness, the
relations defining when models are considered consistent must fulfill
some notion of compatibility to be useful, as they can otherwise prevent
transformations from finding consistent models.

In the following chapters, we thus define a notion of compatibility for con-
sistency relations, discuss how correctness of the individual synchronizing
transformations for achieving local consistency can be achieved, and finally
how a correct and appropriate application function to perform the orches-
tration for achieving global consistency can be defined. In summary, these
following contributions together allow to develop what we defined as a
correct transformation network.

For visualizing examples of consistency relations, consistency preservation
rules, and their execution throughout the next chapters, we use a notation
according to the example depicted in Figure 4.11. We visualize consistency
relations with blue arrows and a definition of the conditions for consistency
relation pairs forming that relation. In the example, the consistency relation
contains all pairs of employees and residents having the same name, except
for those with an empty name. The arrows of such a relation indicate whether
we only consider a directional consistency relation or also its transposed one.
We depict consistency preservation rules with orange arrows and denote
which changes it produces because of which input change. In the example,
we denote that the addition of an employee (+𝑒) leads to the addition of a
resident with the same name, specified by the according property assignment
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Employee
name

Resident
name

𝑒

𝐶𝑅 = {⟨𝑒, 𝑟 ⟩ |
e.name = r .name ∧ e.name ≠ ””} 𝑟

𝑒 Cpr

+𝑒 e.name ≠ ””−−−−−−−−−→ +𝑟 (name = e.name)

𝑟

Employee
name = "Alice"

Resident
name = "Alice"

+ +
Cpr

Figure 4.11.: Example for the visualization of consistency relations, consistency preservation
rules, and the execution of changes by users or consistency preservation.

𝑟 (name = e.name). In addition, we annotate conditions to the consistency
preservation rules, such as e.name ≠ ”” in the example, which restricts the
resident creation to the case in which the employee name is not empty. We
usually specify only parts of a consistency preservation rule if the other cases
are not relevant in the specific context. In the example, we only specify the
behavior for the case of adding an element but not of modifying or removing
it. Finally, we denote the execution of any changes, including consistency
preservation rules, with green arrows. In the example, we visualize the
addition of an employee by a user, denoted with a “+”, which leads to the
addition of a resident because of the execution of the above introduced
consistency preservation rule.
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Consistency Relations

Transformations, from which we construct transformation networks, are
composed of consistency relations and consistency preservation rules that
preserve them, as we have defined in Chapter 4. We focus on binary relations
and according preservation rules, which relate two metamodels. While we
have precisely defined correctness of transformations and their orchestration
in a network, we found that the underlying consistency relations themselves
can, from a theoretical perspective, be considered correct by construction, as
there is no other artifact (be it explicit or only given implicitly) with respect to
which it has to be correct. Since we assume transformations to be developed
independently and reused in a modular way, we can especially not assume a
monolithic consistency relation to which the modular consistency relations
must be correct (see Subsection 4.2.3).

We have, however, already given examples for cases in which binary consis-
tency relations are somehow contradictory. This is the case if the developers
of individual transformations have different, conflicting notions of consis-
tency between the metamodels. In the worst case, this can lead to the situation
that no single tuple of models would be considered consistent to a set of bi-
nary consistency relations, which is obviously unwanted behavior. We have
discussed an abstract example for that case already in Subsection 4.2.4.

We recapture the running example defined in Figure 3.3 and extend it with
alternatives for two of the binary consistency relations in Figure 5.1. The
example contains three pairwise consistency relations between persons, em-
ployees and residents. They are defined in a way such that none of them
can be omitted, because each pair shares a unique overlap in their attributes.
In the example, the consistency relations 𝐶𝑅𝑃𝐸,𝐶𝑅𝑃𝑅 and 𝐶𝑅𝐸𝑅 (as well as
their transposed ones) are fulfilled if for each person (and each employee and
resident analogously) in the models exactly one employee and one resident
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Person
firstname
lastname
address
income

Employee
name
socsecnumber
salary

Resident
name
address
socsecnumber

𝑝

𝐶𝑅𝑃𝐸 𝑒

𝑒

𝐶𝑅𝐸𝑅 / 𝐶𝑅′
𝐸𝑅

𝑟

𝑟𝐶𝑅𝑃𝑅 / 𝐶𝑅′
𝑃𝑅

𝑝

𝐶𝑅𝑃𝐸 = {⟨𝑝, 𝑒⟩ | p.firstname + ”␣” + p.lastname = e.name ∧ p.income = e.salary}

𝐶𝑅𝑃𝑅 = {⟨𝑝, 𝑟 ⟩ | p.firstname + ”␣” + p.lastname = r .name ∧ p.address = r .address}
𝐶𝑅′𝑃𝑅 = {⟨𝑝, 𝑟 ⟩ | p.lastname + ”, ␣” + p.firstname = r .name ∧ p.address = r .address}

𝐶𝑅𝐸𝑅 = {⟨𝑒, 𝑟 ⟩ | e.name = r .name ∧ e.socsecnumber = r .socsecnumber}
𝐶𝑅′𝐸𝑅 = {⟨𝑒, 𝑟 ⟩ | e.name.toLower = r .name ∧ e.socsecnumber = r .socsecnumber}

Figure 5.1.: Derivation of Figure 3.3: Three simple metamodels for persons, employees and
residents, and three binary relations 𝐶𝑅𝑃𝐸 ,𝐶𝑅𝑃𝑅,𝐶𝑅𝐸𝑅 for each pair of them, with 𝐶𝑅′

𝑃𝑅
as

an alternative for 𝐶𝑅𝑃𝑅 and 𝐶𝑅′
𝐸𝑅

as an alternative for 𝐶𝑅𝐸𝑅 . Adapted from [Kla+20, Fig. 1].

exist that fulfill the defined relations for names and other attributes. Accord-
ing to our notion of consistency relations (Definition 4.18), it is essential
that always only one such corresponding element exists. Intuitively, these
consistency relations are compatible, as they lead to a reasonable set of model
tuples that are considered consistent.

In contrast, considering 𝐶𝑅′
𝑃𝑅

instead of 𝐶𝑅𝑃𝑅 , the relations can never be
fulfilled, because the concatenation of firstname and lastname from person
to employee conflicts with the one from person to resident. The relation
between employees and persons assumes firstname and lastname in that
order, whereas the relation between residents and persons assumes them
to be concatenated vice versa and to be separated by a comma. Fulfilling
these relations would require an infinitely large model, as the cycle of the
relations requires for each person, employee, and resident the existence of
the others with firstname and lastname swapped and extended with a comma.
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: Person
firstname = "Alice"
lastname = "Avid" : Person

firstname = "alice"
lastname = "avid"

: Resident
name = "Alice Avid"

: Resident
name = "alice avid"

: Employee
name = "Alice Avid"

: Employee
name = "alice avid"

Figure 5.2.: Elements required by the consistency relations 𝐶𝑅𝑃𝐸 , 𝐶𝑅𝑃𝑅 and 𝐶𝑅′
𝐸𝑅

(as well as
their transposed) in Figure 5.1 for a resident with the name “Alice Avid”. Solid blue lines connect
corresponding elements, which do not form a valid witness structure.

As finite models cannot fulfill this, the set of consistent model tuples would
be empty.

In addition, considering consistency relation𝐶𝑅′
𝐸𝑅

instead of𝐶𝑅𝐸𝑅 , no models
containing residents with a name not written in lowercase can be consistent
to all relations, as depicted in the example in Figure 5.2, which, for reasons
of simplicity, omits all other attributes than the names. A resident with a
non-lowercase name requires a person with equally capitalized firstname and
lastname to exist. This requires an employee with an equally capitalized name

to exist. The relation 𝐶𝑅′
𝐸𝑅

now requires a resident with the name written
in lowercase to exist, which, again, requires a person with the lowercase
name to exist. This, in turn, requires an employee with the lowercase name

to exist as well. In consequence, the resident with the lowercase name would
correspond to both the employee with the original and the lowercase name,
whereas the resident with the original name does not correspond to any
employee. Since there is no witness structure with a unique mapping of
corresponding elements, as also reflected in Figure 4.9, such models cannot
be consistent to the consistency relations. More intuitively speaking, it is
impossible to find an employee that fulfills the consistency relation 𝐶𝑅′

𝐸𝑅

for a resident with a non-lowercase name. This is what we call and later
precisely define as an incompatibility of the consistency relations, as they
define constraints that cannot be fulfilled at the same time. This can always
occur if there is a cycle in the graph induced by the consistency relations.
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Such incompatibilities are unwanted, as they indicate that developers have
different, contradictory notions of consistency. Additionally, they can easily
result in transformations that do not yield consistent models or for which
finding an orchestration that yields consistent models becomes unnecessarily
difficult. For that reason, we first discuss scenarios to identify an intuitive
notion of compatibility, which we then transfer into a formal notion. After-
wards, we develop a formal, inductive approach to prove compatibility of
relations, for which we prove correctness. It is based on the insight that con-
sistency relations forming a specific kind of tree structure are compatible and
that removing a specific kind of redundant relations preserves compatibility.
We then derive a practical approach for the transformation language QVT-R.
This chapter thus constitutes our contribution C 1.2, which consists of four
subordinate contributions: a discussion of compatibility notions; a formal
definition of one such notion; a formal approach to prove compatibility;
and finally a practical realization of that approach. It answers the following
research question:

RQ 1.2: When are the constraints induced by transformations contradictory
and how can that be analyzed?

We will see that it is, in general, not possible to prove that transformations
are incompatible if the language, in which the relations are described, is un-
decidable, such as QVT-R. We can, however, at least conservatively validate
compatibility of transformations. Thus, if our approach proves compatibil-
ity, the transformations are actually compatible, but not vice versa. This
enables transformation developers to validate compatibility of their trans-
formations on-the-fly during transformation development, if developed for
a specific scenario, or a posteriori during their combination, according to
the scenarios introduced in Section 3.2. In particular, in the first scenario
developers can immediately react to the introduction of incompatibilities
during transformation development.

We have published central contributions of this chapter, in particular the
formal and the practical approach for validating compatibility, in previous
work [Kla+20]. Parts of some sections of this chapter are also literally taken
from that publication, which we further indicate in the respective sections.
The practical approach has been developed in the Master’s thesis of Pepin
[Pep19], which was supervised by the author of this thesis.
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𝑚′1
𝑚1𝐼𝑀1

𝑚′2
𝑚2 𝐼𝑀2

𝑚′3

𝑚3

𝐼𝑀3

𝐶𝑅1,2 = {⟨𝑚1,𝑚′2⟩, ⟨𝑚
′
1,𝑚2⟩}

𝐶𝑅1,3 =
{⟨𝑚1,𝑚3⟩, ⟨𝑚′1,𝑚

′
3⟩}

𝐶𝑅2,3 =
{⟨𝑚2,𝑚3⟩, ⟨𝑚′2,𝑚

′
3⟩}

Figure 5.3.: Example for consistency relations that imply an empty global relation. Small circles
denote models, and solid, blue lines relate consistent models.

5.1. Towards a Notion of Compatibility

We start with general considerations on model-level consistency relations, no
matter whether they are specified explicitly or implied by sets of fine-grained
consistency relations. A set of binary model-level consistency relations in-
duces a monolithic, multiary relation, also called global relation, as discussed
in Subsection 4.2.4. A monolithic relation 𝐶𝑅 for metamodels 𝑀1, . . . , 𝑀𝑛

and pairwise consistency relations 𝐶𝑅𝑖,𝑘 is defined by:

𝐶𝑅 = {⟨𝑚1, . . . ,𝑚𝑛⟩ |
⋀︂

1≤𝑖<𝑘≤𝑛
⟨𝑚𝑖 ,𝑚𝑘⟩ ∈ 𝐶𝑅𝑖,𝑘 }

As discussed before, the consistency relations are correct by definition and
so is the induced global relation, even if it is empty. It is, however, unclear
whether the relations are reasonable in combination.

In fact, if the relations induce an empty global relation, these relations do ac-
tually not properly fit to each other, because no single tuple of models would
be considered consistent, thus no system could be consistently described.
One may thus consider such relations incompatible. Figure 5.3 shows an
extended version of the example already given in Subsection 4.2.4, which
induces an empty global relation. This is an abstraction of the concrete
examples that we have already discussed for our our running example, in
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which modified consistency relations lead to an empty set of consistent model
tuples due to conflicting concatenations of names between persons, residents
and employees.

There may, however, be more cases than empty induced global relations
that we want to exclude by considering the relations incompatible. In gen-
eral, the goal of finding incompatibilities and excluding them is twofold:
First, we want to identify if different developers of modular relations have
an incompatible notion of consistency, such that the results of preserving
consistency would never be as expected. This is what we have seen in the
examples with the name relations. We want to exclude these cases, because
developers will not want to combine transformations based on relations that
are contradicting. Second, incompatibilities may lead to transformations not
being able to find consistent models, so the orchestration would not be able to
execute transformations in an order that achieves a consistent state. If we, for
example, encoded the relations from the running example with the inverse
concatenation of firstname and lastname (𝐶𝑅′

𝑃𝑅
) into transformations, each

cycle in which the transformations are executed would produce one new
person, employee, and resident, or it would change each of the existing ones,
such that firstname and lastname are swapped and a comma is appended
to lastname. In consequence, transformations would not be able to find a
consistent state and, if not stopped preemptively, be executed endlessly. Thus,
we also want to exclude such cases, because they can prevent the execution
of transformations in a transformation network from terminating.

5.1.1. Necessity of Obsolete Relation Elements

A first intuitive option to define incompatibility is the presence of model pairs
in the consistency relations, for which no globally consistent model tuple
containing them can be found. This canonically covers the case in which
the modular relations induce an empty global relation, because for none of
the model pairs in each relation a globally consistent model tuple containing
them can be found. An example for this case is depicted in Figure 5.4, in
which the relation 𝐶𝑅1,2 contains the pairs ⟨𝑚1,𝑚

′
2⟩ and ⟨𝑚′1,𝑚2⟩, for which

neither 𝑚3 nor 𝑚′3 is consistent to both other consistency relations, as the
induced global relation is 𝐶𝑅 = {⟨𝑚1,𝑚2,𝑚3⟩, ⟨𝑚′1,𝑚′2,𝑚′3⟩}. Thus, these
model pairs may be denoted obsolete as they cannot occur in any globally
consistent model tuple.
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𝑚′1
𝑚1𝐼𝑀1

𝑚′2
𝑚2 𝐼𝑀2

𝑚′3

𝑚3

𝐼𝑀3

𝐶𝑅1,2 = {⟨𝑚1,𝑚2⟩, ⟨𝑚1,𝑚′2⟩, ⟨𝑚
′
1,𝑚2⟩, ⟨𝑚′1,𝑚

′
2⟩}

𝐶𝑅1,3 =
{⟨𝑚1,𝑚3⟩, ⟨𝑚′1,𝑚

′
3⟩}

𝐶𝑅2,3 =
{⟨𝑚2,𝑚3⟩, ⟨𝑚′2,𝑚

′
3⟩}

Figure 5.4.: Example for obsolete model pairs in consistency relation 𝐶𝑅1,2, which can never
occur in a globally consistent model tuple. Small circles denote models, and solid, blue lines
relate consistent models.

While this point of view may be reasonable when considering only the
consistency relations, as we are finally just interested in results that are
globally consistent, it induces problems to the process of achieving such a
result by means of the execution of transformations or, more precisely, their
consistency preservation rules. In fact, transformation networks need to
allow intermediate states of models that are only locally consistent, although
they can never occur in a globally consistent state. This is necessary, because
otherwise each transformation would have to consider which model pairs
are not only locally consistent but can be globally consistent as well. We,
however, excluded such an alignment of the transformations by assumption of
independent development and modular reuse and instead let the orchestration
of transformations negotiate a consistent result.

Consider the following example, which is also exemplarily depicted in Fig-
ure 5.5. A UML class model and Java code are considered consistent when
the same classes and interfaces with the same methods (in Java potentially
with an empty body) are contained. Declaring the methods in a class when
they are already declared in an implemented interface is optional in the
UML. Then for each UML model a usually infinite number of consistent Java
models exists, containing arbitrary implementations of the methods. PCM
models and UML class models are consistent when components are realized
as classes implementing the provided interfaces of the components. In this
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«component»
Comp

«interface»
I

method()

«component»
Comp

«provides»

«interface»
I

method()

Comp

«interface»
I

method()

Comp
method()

interface I {

void method();

}

class Comp implements I {

void method() {}

}

interface I {

void method();

}

class Comp implements I {

void method() {

// log something

}

}

PCM Model 1

PCM Model 2

UML Model 1

UML Model 2

Java Model 1

Java Model 2

Figure 5.5.: Example for an obsolete model pair in consistency relations between PCM, UML
and Java: The Java model with the empty method is locally consistent to the UML class model
specifying the interface method also in the component implementation class. But these two
models can never be globally consistent, because for the PCM component providing the interface,
the consistency relation requires at least a default implementation of the method. Lines relate
consistent models, whereof models related by dashed, red lines are never globally consistent.

case, the classes are required to declare the methods of provided interfaces
again. Every class with “Comp” in its name is considered a component.
Analogously, each component is represented by a Java class implementing
the provided interfaces. The consistency relation between PCM and Java
may, however, require that a method within a class that realizes a method
of a provided interface of a component contains at least some default im-
plementation, be it logging or something more component-specific. If we
considered model pairs that can never occur in globally consistent model
tuples as incompatible and thus forbid them, a UML model could not be
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considered consistent to a Java model if any method in a class with “Comp”
in its name that is declared in one of its interfaces is realized by a Java method
with an empty body. The transformation between UML and Java would thus
not be allowed to create an empty Java method upon creation of such a UML
method. This would, however, enforce the relation between UML and Java to
encode information about components, which both breaks our assumption
of independent development, as the developer of the transformation between
UML and Java would need to know about components, and of modular reuse,
because the transformation is then tied to the scenario in which the PCM is
used as well.

In consequence of the given scenario and the according insight that transfor-
mations may need to produce transient states that are only locally consistent
to ensure independence of the transformations and their reusability in dif-
ferent contexts, such obsolete consistency relations do not induce a proper
notion of incompatibility.

5.1.2. Prevention from Finding Consistent Solutions

To identify a proper notion of incompatibility, we consider an exemplary
transformation scenario from which we can derive such a notion. In the
example depicted in Figure 5.6, we start with the models 𝑚1, 𝑚2 and 𝑚3,
which are consistent to all three defined consistency relations. If a user
performs a change of 𝑚2 to 𝑚′2, one possible execution of transformations
can be as follows: The transformation for 𝐶𝑅2,3 changes𝑚3 to𝑚′3, the one
for 𝐶𝑅1,3 changes 𝑚1 to 𝑚′1 and then the one for 𝐶𝑅1,2 changes 𝑚′2 back to
𝑚2, as that is the only model consistent to𝑚′1. Now the transformation for
𝐶𝑅2,3 changes𝑚′3 back to𝑚3, and finally the one for 𝐶𝑅1,3 restores𝑚1. As a
result, the determined execution order yields the initial models before the
user change, which are actually consistent but reject the user change.

Apart from the three given models, only 𝑚′′1 , 𝑚′2, and 𝑚′3 are consistent.
Upon the user change of𝑚2 to 𝑚′2, we would expect the transformations to
find these models as a consistent result, as otherwise, like in the exemplary
execution, the original models are returned, which actually rejects the user
change. The issue results from model 𝑚′1 being present in the consistency
relations but not being consistent in any globally consistent model tuple.
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𝑚′1
𝑚1

𝑚′′1

𝐼𝑀1

𝑚′2
𝑚2 𝐼𝑀2

𝑚′3

𝑚3

𝐼𝑀3

𝐶𝑅1,2 = {⟨𝑚1,𝑚2⟩, ⟨𝑚1,𝑚′2⟩, ⟨𝑚
′
1,𝑚2⟩, ⟨𝑚′′1 ,𝑚

′
2⟩}

𝐶𝑅1,3 =
{⟨𝑚1,𝑚3⟩, ⟨𝑚′1,𝑚

′
3⟩, ⟨𝑚

′′
1 ,𝑚

′
3⟩}

𝐶𝑅2,3 =
{⟨𝑚2,𝑚3⟩, ⟨𝑚′2,𝑚

′
3⟩}

Input: ⟨𝑚1,𝑚2,𝑚3⟩
𝛿−→ ⟨𝑚1,𝑚

′
2,𝑚3⟩

Execution: →𝑚′3 →𝑚′1 →𝑚2 →𝑚3 →𝑚1

Output: ⟨𝑚1,𝑚2,𝑚3⟩

Figure 5.6.: Example for rejecting a user change because of consistency relations containing
model pairs that are never globally consistent. Small circles denote models, and solid, blue lines
relate consistent models.

Nevertheless, the selection of 𝑚′1 is valid and appropriate for each transfor-
mation locally, as there are models to which it is locally consistent according
to each consistency relation on its own.

Note that this scenario is different from the case discussed for obsolete
relation elements. In the scenarios discussed for obsolete relation elements,
each model in such an obsolete pair occurs in a globally consistent model
tuple but not both models in that pair together do. For example, the Java
class with an empty method body actually occurs in a globally consistent
model tuple but not together with the UML class model in which the method
is declared in the class, although they are locally consistent.

We have seen that it is problematic when consistency relations define con-
sistency of models that do not occur in any globally consistent model tuple.
This can easily lead to transformations that do not find expected solutions
and unnecessarily reject user changes. We did not define a requirement that
user changes may not be reverted on purpose, as that behavior may also be
expected to express that certain changes are not allowed to be made. How-
ever, if there was a reasonable sequence of transformations that returns a
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consistent tuple of models reflecting the user changes, it should be preferred
over one that reverts the user change.

5.1.3. An Informal Notion of Compatibility

The discussed case that models do not occur in any globally consistent model
tuple can be seen as a special case of obsolete relation elements, because
it actually means that for each pair in a consistency relation in which a
model occurs, the model pair cannot occur in a globally consistent model.
In consequence, we found that in a combination of relations a model is
problematic if

1. it is locally consistent to another model, i.e., it occurs in a consistency
relation pair, and

2. it can never be globally consistent, i.e., it is not contained in any
model tuple that is consistent to all consistency relations.

The model𝑚′1 in Figure 5.6 is such a model, as it is locally consistent to𝑚2
and 𝑚′3, but those two are inconsistent. We can distinguish the following
two cases that lead to the occurrence of such a model like𝑚′1.

User: The model was created by the user, thus adapting the model is un-
wanted as the user introduced it. Such a change should be rejected as the
model cannot be globally consistent.

Transformation: The model was created by a transformation. In our example,
this can either be the case because 𝑚2 or 𝑚′3 was created. There is,
however, at least𝑚′′1 to which𝑚2 and𝑚′3 are consistent as well, so the
transformation should better select that one. If there was no such 𝑚′′1 ,
then𝑚2 and𝑚′3 would also not be in any globally consistent model tuple,
thus the argumentation could be applied inductively.

In consequence, allowing such models during the process of describing a
system and preserving consistency between the system models does not
provide any benefits and thus should, in the best case, not occur. There is
no reason to create such models, but it may prevent transformations from
finding consistent states. In fact, disallowing the adaptation of the user
change is even more reasonable when not concerning the complete model,
like proposed with authoritative models by Stevens [Ste20b], but only the
part considered by a specific rule that describes consistency. This can, for
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example, be a rule specifying the relation between classes and components
rather than between the complete metamodels of the PCM and the UML.
This is one of the reasons why we provided the formalization of fine-grained
consistency relations in Definition 4.18 that relate extracts of models rather
than complete ones. We use this fine-grained notion for formalizing and
analyzing compatibility.

Transferred to our fine-grained notion of consistency relations, we consider
consistency relations incompatible if there is a condition element (rather
than a model) which does not occur in any tuple of models that is globally
consistent to all consistency relations. We can thus formulate the following,
for now informal notion of compatibility:

For every condition element occurring in a consistency relation
pair, a globally consistent model tuple containing it must exist.

This notion is especially reasonable when we consider the process of preserv-
ing consistency after user changes. We want to ensure that if consistency of
the elements modified by the user is restricted by a consistency relation, there
should at least be one consistent tuple of models that reflects the user change,
i.e., contains the condition element he or she introduced or modified. If this
is not the case, the transformations will not be able to produce a reasonable
result, apart from reverting or adapting the user change.

Note that this notion of compatibility does only exclude combinations of
relations according to the above made argumentation of being generally
useless and potentially preventing transformations from finding consistency
result. This does, however, not exclude further useless or unintended com-
binations of relations, for which the semantics of the relations would have
to be known and analyzed. The already discussed example of the necessity
to infinitely swap firstname and lastname and append a comma induced by
the alternative consistency relation 𝐶𝑅′

𝑃𝑅
in Figure 5.1 leads to the situation

that no tuple of models can fulfill those constraints, thus the global induced
consistency relation is empty. If we, however, relax 𝐶𝑅′

𝑃𝑅
such that only

firstname and lastname are swapped but no comma is appended, the relations
can be fulfilled by models that contain each person twice, once with firstname

and lastname assigned properly and once with them swapped. Although we
might say that the relations are not intended that way, it is impossible for
a generic approach to validate that without knowing about the semantics
of the attributes firstname, lastname and their combination in name. In a
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different context, it may be desired that two attributes are concatenated in
both orders, thus we cannot disallow that case in general.

Obviously, the given notion of compatibility is a property of a set of consis-
tency relations and not of a single consistency relation. We may say that
compatibility of a single relation is context-dependent. In consequence, that
property can neither be analyzed nor systematically achieved for a single con-
sistency relation. We can, by definition, not provide a construction approach
for consistency relations to be compatible in each context. Compatibility
can only be achieved by construction if all consistency relations to be used
together are known and developed together, such that compatibility can be
analyzed on-the-fly.

5.1.4. An Analysis for Compatibility of Relations

In the following sections, we define a formal notion of compatibility and
derive a formal as well as a practical approach for analyzing or, more precisely,
proving it. To give a first overview of this approach, we briefly introduce the
central idea based on the informal notion of compatibility, which we first
introduced in previous works [Kla18; Kla+19b].

We have seen that incompatibilities can arise whenever there are cycles in
the graph induced by consistency relations. This means that the same models
are related across two paths of relations, which may be contradictory. Thus,
to avoid incompatibilities by construction, one could define a network of
transformations and thus underlying consistency relations that does not
contain any cycles. This situation is given when the network forms a tree.
As we have already discussed, it is, however, in general not possible to define
such a tree. First, it contradicts our assumption of independent development,
as transformations would need to be aligned such that the missing direct
relations between metamodels are expressed across other paths. Second,
like we have seen in the running example in Figure 5.1, if three metamodels
all share specific information only pairwise, there needs to be a cycle of
transformations to keep that information consistent.

Even if we cannot construct a tree, we can use the insight that trees of
transformations consist of inherently compatible consistency relations to
analyze arbitrary topologies for compatibility. This bases on the following
two techniques.
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𝑀1

𝑀2 𝑀3

𝐶𝑅1 𝐶𝑅2

𝐶𝑅3 = 𝐶𝑅4 ∪𝐶𝑅5

𝐶𝑅5 ∩𝐶𝑅4 = ∅
(to be precisely defined later as independence)

𝐶𝑅1 ⊗ 𝐶𝑅2 ⊆ 𝐶𝑅4

𝑀1

𝑀2 𝑀3

𝐶𝑅1 𝐶𝑅2

𝑀1

𝑀2 𝑀3
𝐶𝑅5

+

Figure 5.7.: Example for the decomposition of independent and removal of redundant consistency
relations for analyzing compatibility. Adapted from [Kla18, Fig. 4].

Redundancy: If a consistency relation is redundant in a network, i.e., the
same model tuples are considered consistent with or without that specific
relation, we can remove it without affecting compatibility of the relations.
More precisely, 𝐶𝑅1 is redundant in {𝐶𝑅1,𝐶𝑅2,𝐶𝑅3} if, and only if, a
model tuple ⟨𝑚1,𝑚2,𝑚3⟩ is consistent to {𝐶𝑅1,𝐶𝑅2,𝐶𝑅3} exactly when
it is consistent to {𝐶𝑅2,𝐶𝑅3}. Iteratively identifying redundant relations
and removing them until the remaining network is a tree, which is in-
herently compatible, we inductively know that the network with the
redundant relations is compatible as well.

Independence: A second compatibility-preserving property of fine-grained
consistency relations is independence. For example, if consistency be-
tween components and classes between PCM, UML and Java is expressed
in one set of relations and consistency between different interface rep-
resentations in another, they can be considered independently, because
modifications in components and classes do not affect interfaces and
vice versa. Proving compatibility for each independent set of consistency
relations inductively proves compatibility of the union of all sets.

Finding independent subsets of relations and removing their redundancies
until only trees remain proves compatibility. We call this approach decom-

position, as we decompose the original relations into independent, essential
relations, and we say that the resulting trees witness compatibility.

Figure 5.7 sketches the ideas for proving compatibility based on the given
informal notion. We consider consistency relations 𝐶𝑅1, 𝐶𝑅2, and 𝐶𝑅3 be-
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tween three metamodels, for which we know that 𝐶𝑅3 can be separated into
disjoint 𝐶𝑅4 and 𝐶𝑅5, i.e., the relations are independent. Thus, one relation
may relate components and classes and the other may relate different in-
terface representations, as exemplarily explained before. Additionally, we
know that the combination of 𝐶𝑅1 and 𝐶𝑅2 is a subset of 𝐶𝑅4, thus 𝐶𝑅4 is
redundant as models are only considered consistent if they are consistent
to 𝐶𝑅1 and 𝐶𝑅2 anyway. In other words, 𝐶𝑅1 ⊗ 𝐶𝑅2 is more restrictive
regarding consistency than 𝐶𝑅4. In consequence, we can, for the scope of
the analysis, remove𝐶𝑅4 and consider𝐶𝑅1 and𝐶𝑅2 independently from𝐶𝑅5.
This results in two independent trees of relations, which are inherently com-
patible. Since redundancy and independence are compatibility-preserving,
this proves compatibility of the original relations.

5.2. A Formal Notion of Compatibility

In this section, we precisely define our up to now informally introduced
notion of compatibility. For that, we use the fine-grained notion of con-
sistency and its defining relations as proposed in Section 4.4. We discuss
implicit relations, which are induced by a set of consistency relations, such
as transitive relations, and, finally, derive a compatibility notion from the
consistency formalization and its pursued perception. The contents of this
and the remaining sections of this chapter are mostly, in parts literally, taken
from our published article on proving compatibility [Kla+20].

5.2.1. Implicit Consistency Relations

Considering sets of consistency relations, as they are implicitly defined by
the set of transformations in a transformation network, their combination
is of especial interest. Each set of consistency relations defines relations
between two sets of classes but also implies further transitive consistency
relations. Having one relation between classes 𝐴 and 𝐵 and one between 𝐵

and𝐶 implies an additional relation between 𝐴 and𝐶 . We define a notion for
the concatenation of relations that implies such transitive relations, which
are supposed to reflect the consistency constraints introduced by the concate-
nated relations. Models should always be consistent to a concatenation of
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consistency relations if they are consistent to each of the concatenated rela-
tions, as otherwise the concatenation would introduce additional constraints.
To achieve this, the following definition makes appropriate restrictions to
the derived consistency relation pairs.

Definition 5.1 (Consistency Relations Concatenation)
Let𝐶𝑅1 and𝐶𝑅2 be consistency relations. We define their concatenation
𝐶𝑅1 ⊗ 𝐶𝑅2 as:

𝐶𝑅1 ⊗ 𝐶𝑅2 ≔ {⟨𝔠𝑙 , 𝔠𝑟 ⟩ |
∃⟨𝔠𝑙 , 𝔠𝑟,1⟩ ∈ 𝐶𝑅1 : ∃⟨𝔠𝑙,2, 𝔠𝑟 ⟩ ∈ 𝐶𝑅2 : 𝔠𝑙,2 ⊆ 𝔠𝑟,1

∧ ∀⟨𝔠𝑙 , 𝔠′𝑟,1⟩ ∈ 𝐶𝑅1 : ∃⟨𝔠′𝑙,2, 𝔠
′
𝑟,2⟩ ∈ 𝐶𝑅2 : 𝔠′𝑙,2 ⊆ 𝔠′𝑟,1}

with ℭ𝑙,𝐶𝑅 = ℭ𝑙,𝐶𝑅1 and ℭ𝑟,𝐶𝑅 = ℭ𝑟,𝐶𝑅2

The concatenation of two consistency relations contains pairs of object tuples
that are related across common elements in the right respectively left side
of the consistency relation pairs. Such a concatenation may be empty. Two
requirements ensure that all models considered consistent to the concatena-
tion are also consistent to the single relations: First, two consistency relation
pairs of 𝐶𝑅1 and 𝐶𝑅2 are only combined if the left condition element of the
consistency relation pair of 𝐶𝑅2 is a subset of the right condition element of
the consistency relation pair of 𝐶𝑅1. Only in that case the existence of the
right condition element of the pair of 𝐶𝑅1 in a model requires the existence
of an according condition element in 𝐶𝑅2. Second, it is necessary that for
all elements 𝔠′𝑟,1 in the right side of 𝐶𝑅1, which are considered consistent to
a condition element 𝔠𝑙 , there must be a matching condition element, i.e., a
subset of 𝔠′𝑟,1, in the left condition of 𝐶𝑅2. If there was an element 𝔠′𝑟,1 in the
right side of 𝐶𝑅1 for which the left-side condition of 𝐶𝑅2 does not contain a
subset, the concatenation does not constrain consistency for the existence
of 𝔠𝑙 . Thus, without these restrictions the occurrence of 𝔠𝑙 in a model tuple
would not necessarily impose any consistency constraint by𝐶𝑅2. We explain
these two restrictions at an example.

Example 5.1. Figure 5.8 extends the example in Figure 5.1 with further classes

in the consistency relations, such that they do not only relate single classes to

each other. It defines an address for employees and, in the second example, also a
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Person
name

Resident
name
street

Employee
name

Address
street

address

𝑝

𝐶𝑅1

𝑟 𝑟

𝐶𝑅2 /
𝐶𝑅′2

𝑒

𝑎𝐶𝑅1 = {⟨𝑝, 𝑟 ⟩ | p.name = r .name}

𝐶𝑅2 = {⟨𝑟, (𝑒, 𝑎)⟩ | r .name = e.name ∧ r .street = a.street}
𝐶𝑅′2 = {⟨𝑟, (𝑒, 𝑎)⟩ | ⟨𝑟, (𝑒, 𝑎)⟩ ∈ 𝐶𝑅2 ∧ r .street ≠ ””}

Person
name

Resident
name

Location
street

address

Employee
name

Address
street

address

𝑝

𝐶𝑅3

𝑟 𝑟

𝐶𝑅4

𝑒

𝑙 𝑎

𝐶𝑅3 = {⟨𝑝, 𝑟 ⟩ | p.name = r .name}

𝐶𝑅4 = {⟨(𝑟, 𝑙), (𝑒, 𝑎)⟩ | r .name = e.name ∧ l.street = a.street}

Figure 5.8.: Two scenarios, each with two consistency relations: Consistency relations 𝐶𝑅1 and
two options 𝐶𝑅2,𝐶𝑅′2 with 𝐶𝑅1 ⊗ 𝐶𝑅2 ≠ ∅ and 𝐶𝑅1 ⊗ 𝐶𝑅′2 = ∅, and consistency relations
𝐶𝑅3 and 𝐶𝑅4 with 𝐶𝑅3 ⊗ 𝐶𝑅4 = ∅ and 𝐶𝑅𝑇4 ⊗ 𝐶𝑅𝑇3 ≠ ∅. Taken from [Kla+20, Fig. 3].

location for the addresses of residents, which are represented in additional classes.

Both examples contain consistency relations between persons and residents (𝐶𝑅1
and 𝐶𝑅3), which define that for each person a resident with the same name

has to exist. The examples provide different options for the consistency relation

between residents (with locations) and employees with addresses (𝐶𝑅2,𝐶𝑅
′
2, and

𝐶𝑅4), which exemplify the necessity for the restrictions in Definition 5.1:

1. 𝐶𝑅1 ⊗ 𝐶𝑅2: 𝐶𝑅2 requires for each resident an employee with the same

name and an address with the same street name. Because residents

with arbitrary street names are consistent to a person with the same

name, 𝐶𝑅1 ⊗ 𝐶𝑅2 relates each person to an employee having the same

name and addresses with all possible street names. All models that are

consistent to the concatenation are also consistent to the single relations.

2. 𝐶𝑅1 ⊗ 𝐶𝑅′2: 𝐶𝑅
′
2 is similar to 𝐶𝑅2 but additionally requires that the

street of a resident must not be empty. In consequence, for a resident with

an empty street name it is not required that an employee exists. This
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results in𝐶𝑅1 ⊗ 𝐶𝑅′2 = ∅, because every person is consistent to a resident
with an empty street name, thus not requiring a corresponding employee.

This shows the necessity of the second restriction in the definition.

3. 𝐶𝑅3 ⊗ 𝐶𝑅4: The concatenation 𝐶𝑅3 ⊗ 𝐶𝑅4 is obviously empty, because

𝐶𝑅3 requires a resident for each person, but 𝐶𝑅4 only requires an em-

ployee if there is also a location. Such a location does not necessarily

exist if a person exists, thus if the models are consistent to 𝐶𝑅3 and 𝐶𝑅4,
there does not have to be an employee for any contained person. This

shows the necessity for the first restriction in Definition 5.1, which would

require a left condition element from 𝐶𝑅4 (resident and location) to be a
subset of a right condition element in 𝐶𝑅3 (resident).

4. 𝐶𝑅𝑇4 ⊗ 𝐶𝑅𝑇3 : This concatenation of transposed relations contains all

combinations of each possible employee with all addresses and relates

them to a person with the same name. This is reasonable, because 𝐶𝑅𝑇4
requires for all existing employees and addresses that an appropriate

resident with the same name has to exist, which then requires a person

with that name to exist due to 𝐶𝑅𝑇3 . The definition does only cover that

case due to its first restriction, because 𝔠𝑙,2, i.e., the resident related to a
person by 𝐶𝑅𝑇3 is a subset of 𝔠𝑟,1, i.e., a tuple of resident and location.

We can formally show that the defined notion of concatenation does not lead
to any restriction of consistency regarding the single relations:

Lemma 5.1 (Concatenation Consistency)
Let 𝐶𝑅1 and 𝐶𝑅2 be two consistency relations for a metamodel tuple𝔐,

and let 𝐶𝑅 = 𝐶𝑅1 ⊗ 𝐶𝑅2 be their concatenation. Then it holds that:

∀𝔪 ∈ 𝐼𝔐 :
(︁
𝔪 consistent to {𝐶𝑅1,𝐶𝑅2} ⇒ 𝔪 consistent to 𝐶𝑅

)︁
Proof. For any tuple of models 𝔪 that is consistent to 𝐶𝑅1 and 𝐶𝑅2, take a
witness structure 𝑊1 that witnesses consistency of 𝔪 to 𝐶𝑅1 and 𝑊2 that
witnesses consistency of 𝔪 to 𝐶𝑅2. Now consider the composed witness
structure𝑊 =𝑊1 ⊗𝑊2. We show that𝑊 is a valid witness structure for 𝐶𝑅 .

Let us assume there were ⟨𝔠𝑙 , 𝔠𝑟 ⟩, ⟨𝔠′𝑙 , 𝔠
′
𝑟 ⟩ ∈ 𝑊 with 𝔠𝑙 = 𝔠′

𝑙
and 𝔠𝑟 ≠ 𝔠′𝑟 ,

such that 𝑊 is not a witness structure for 𝐶𝑅 . Per definition, 𝔠𝑙 only oc-
curs in one ⟨𝔠𝑙 , 𝔠𝑟,1⟩ ∈𝑊1. So there must be two consistency relation pairs
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⟨𝔠𝑙,2, 𝔠𝑟 ⟩, ⟨𝔠′𝑙,2, 𝔠
′
𝑟 ⟩ ∈ 𝐶𝑅2 with 𝔠𝑙,2 ⊆ 𝔠𝑟,1 and 𝔠′

𝑙,2 ⊆ 𝔠𝑟,1. However, since 𝔠𝑙,2
and 𝔠′

𝑙,2 contain instances of the same classes and are both subsets of the
same object tuple 𝔠𝑟,1, we have 𝔠𝑙,2 = 𝔠′

𝑙,2. So we know that𝑊 fulfills the first
condition of a witness structure according to Definition 4.19 for consistency:

∀⟨𝔠𝑙,1, 𝔠𝑟,1⟩, ⟨𝔠𝑙,2, 𝔠𝑟,2⟩ ∈𝑊 :
(︁
⟨𝔠𝑙,1, 𝔠𝑟,1⟩ = ⟨𝔠𝑙,2, 𝔠𝑟,2⟩ ∨ 𝔠𝑙,1 ≠ 𝔠𝑙,2 ∧ 𝔠𝑟,1 ≠ 𝔠𝑟,2

)︁
Additionally, since𝑊1 and𝑊2 are witness structures for consistency of 𝔪
to 𝐶𝑅1 and 𝐶𝑅2, the model tuple contains all condition elements in𝑊1 and
𝑊2. Consequentially, 𝔪 also contains the condition elements in𝑊, as those
in𝑊 are composed of the ones in𝑊1 and𝑊2. This implies that the second
condition of Definition 4.19 is fulfilled:

∀⟨𝔠𝑙 , 𝔠𝑟 ⟩ ∈𝑊 :
(︁
𝔪 contains 𝔠𝑙 ∧𝔪 contains 𝔠𝑟

)︁
Finally, we assume the third condition of Definition 4.19 was unfulfilled, i.e.:

∃ 𝔠′
𝑙
∈ c𝑙,𝐶𝑅 :

(︁
𝔪 contains 𝔠′

𝑙
∧ 𝔠′

𝑙
∉ c𝑙,𝑊

)︁
We know that c𝑙,𝐶𝑅 ⊆ c𝑙,𝐶𝑅1 , because the left condition elements in 𝐶𝑅

are, per definition, taken from the left condition elements in 𝐶𝑅1 and thus
also contained in 𝐶𝑅1. Since 𝔪 contains 𝔠′

𝑙
, there must be a consistency

relation pair ⟨𝔠′
𝑙
, 𝔠′𝑟,1⟩ ∈𝑊1 that witnesses consistency of 𝔠′

𝑙
according to 𝐶𝑅1.

There must be at least one consistency relation pair ⟨𝔠′
𝑙,2, 𝔠

′
𝑟,2⟩ ∈ 𝐶𝑅2 with

𝔠′
𝑙,2 ⊆ 𝔠′𝑟,1, because otherwise 𝔠′

𝑙
would, per definition, not occur in the left

condition of 𝐶𝑅 . For all such tuples ⟨𝔠′
𝑙,2, 𝔠

′
𝑟,2⟩, we know that 𝔪 contains 𝔠′

𝑙,2,
because 𝔪 contains 𝔠′𝑟,1 due to its containment in𝑊1 and due to 𝔠′

𝑙,2 ⊆ 𝔠′𝑟,1.
In consequence, consistency to 𝐶𝑅2 requires that for one of those 𝔠′𝑟,2 it
holds that 𝔪 contains 𝔠′𝑟,2 and that there is ⟨𝔠′

𝑙,2, 𝔠
′
𝑟,2⟩ ∈ 𝑊2 that witnesses

this consistency. Summarizing, due to ⟨𝔠′
𝑙
, 𝔠′𝑟,1⟩ ∈ 𝑊1 and ⟨𝔠′

𝑙,2, 𝔠
′
𝑟,2⟩ ∈ 𝑊2

with 𝔠′
𝑙,2 ⊆ 𝔠′𝑟,1 and due to the definition of 𝑊 as 𝑊1 ⊗ 𝑊2, we know that

⟨𝔠′
𝑙
, 𝔠′𝑟,2⟩ ∈𝑊, which breaks our assumption. So we have shown that:

∀𝔠′
𝑙
∈ c𝑙,𝐶𝑅 :

(︁
𝔪 contains 𝔠′

𝑙
⇒ 𝔠′

𝑙
∈ c𝑙,𝑊

)︁
Summarizing, we have shown that 𝑊 fulfills all three requirements for a
witness structure for consistency according to Definition 4.19, so we know
that 𝔪 consistent to 𝐶𝑅 .
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5.2.2. Transitive Closure of Consistency Relations

Based on the introduced notion of concatenation, we can define a transitive
closure for a consistency relation set, which contains all relations in that set
complemented by all possible concatenations of them, i.e., implicit relations

of that set. Having shown that our definition of concatenation of consistency
relations is well-defined in the sense that it does not introduce further re-
strictions for consistency, we can show that the transitive closure does not
restrict consistency in comparison to the set of consistency relations itself.

Definition 5.2 (Consistency Relations Transitive Closure)
LetCR be a set of consistency relations. We define its transitive closure
CR+ as:

CR+ ≔ {𝐶𝑅 | ∃𝐶𝑅1, . . . ,𝐶𝑅𝑘 ∈ CR : 𝐶𝑅 = 𝐶𝑅1 ⊗ . . . ⊗ 𝐶𝑅𝑘 }

The transitive closure of a set of consistency relations CR contains all
consistency relations ofCR and all their concatenations. Thus, the transitive
closure contains consistency relations that relate all elements that are directly
or indirectly related due to CR. Due to cycles in the concatenation of
relations, this closure can, in general, be of infinite size.

The transitive closure of a consistency relation set does not restrict consis-
tency in comparison to the original set, i.e., if a model tuple is consistent to a
set of consistency relations, it is also consistent to their transitive closure.
We show that by first extending the argument of Lemma 5.1, which shows
that concatenation does not further restrict consistency, to the transitive
closure, which is only a set of concatenations of consistency relations.

Lemma 5.2 (Relation Set Consistency)
Let CR be a set of consistency relations for a tuple of metamodels 𝔐.

Then it holds that:

∀𝐶𝑅 ∈ CR+ \CR : ∃𝐶𝑅1, . . . ,𝐶𝑅𝑘 ∈ CR : ∀𝔪 ∈ 𝐼𝔐 :(︁
𝔪 consistent to {𝐶𝑅1, . . .𝐶𝑅𝑘 } ⇒ 𝔪 consistent to 𝐶𝑅

)︁
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Proof. Per definition, every 𝐶𝑅 ∈ CR+ is a concatenation of relations in
CR, i.e.:

∀𝐶𝑅 ∈ CR+ : ∃𝐶𝑅1, . . . ,𝐶𝑅𝑘 ∈ CR : 𝐶𝑅 = 𝐶𝑅1 ⊗ . . . ⊗ 𝐶𝑅𝑘

We know for every two consistency relations 𝐶𝑅1 and 𝐶𝑅2 and all model
tuples 𝔪 that if 𝔪 consistent to {𝐶𝑅1,𝐶𝑅2}, then 𝔪 consistent to 𝐶𝑅1 ⊗ 𝐶𝑅2
(Lemma 5.1). Inductively applying that argument to𝐶𝑅1, . . . ,𝐶𝑅𝑘 shows that
𝔪 consistent to 𝐶𝑅 whenever 𝔪 consistent to {𝐶𝑅1, . . . ,𝐶𝑅𝑘 }.

As a result of this lemma, we can show that the transitive closure of a
consistency relation set considers the same tuples of models consistent as
the consistency relation set itself.

Lemma 5.3 (Transitive Closure Consistency)
Let CR be a consistency relation set for a metamodel tuple 𝔐. Then it

holds that:

∀𝔪 ∈ 𝐼𝔐 :
(︁
𝔪 consistent to CR⇔ 𝔪 consistent to CR+

)︁
Proof. Adding a consistency relation to a set of consistency relations can
never relax consistency, i.e., it cannot lead to models being consistent that
were not considered consistent before. Definition 4.19 for consistency defines
models as consistent when they are consistent to all consistency relations in
a set. Thus, only adding relations can further restrict the set of consistent
model tuples. In consequence, it holds that:

𝔪 consistent to CR+ ⇒ 𝔪 consistent to CR

According to Lemma 5.3, a tuple of models that is consistent toCR is always
consistent to all transitive relations in CR+ as well. Thus, we know that:

𝔪 consistent to CR⇒ 𝔪 consistent to CR+

In consequence, the same models are consistent to CR and its transitive
closure CR+.
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5.2.3. Compatibility of Consistency Relations

Based on the notion of fine-grained consistency relations and their concatena-
tion, we can precisely formulate our initially informal notion of compatibility

of consistency relations. We have stated that we consider consistency rela-
tion incompatible if they are contradictory, like the relation between names
in our initial example in Figure 5.1. In that example, for residents with
non-lowercase names no consistent tuple of models could be derived. We for-
malize this notion of non-contradictory relations by requiring that relations
may not restrict that an object tuple, for which consistency is defined in any
consistency relation, cannot occur in a consistent model tuple anymore.

Definition 5.3 (Compatibility)
Let CR be a set of consistency relations for a tuple of metamodels 𝔐.
We say that:

CR compatible :⇔ ∀𝐶𝑅 ∈ CR : ∀𝔠 ∈ c𝑙,𝐶𝑅 : ∃𝔪 ∈ 𝐼𝔐 :(︁
𝔪 contains 𝔠 ∧𝔪 consistent to CR

)︁
We call a set of consistency relation CR incompatible if it is not com-
patible.

We exemplify this notion of compatibility at an extract of the initial example
with different consistency relations.

Example 5.2. Figure 5.9 shows an extract of the three metamodels from Fig-

ure 5.1 and several consistency relations, of which different combinations are

compatible or incompatible according to the previous definition. We always

consider the actual relations together with their transposed ones to have a

symmetric set of consistency relations.

{𝐶𝑅1,𝐶𝑅
𝑇
1 ,𝐶𝑅2,𝐶𝑅

𝑇
2 ,𝐶𝑅3,𝐶𝑅

𝑇
3 }: These relations are obviously compatible, be-

cause they relate firstname, lastname and name in the same way. Thus,

for each object with any name, and thus any condition element in all of

the consistency relations, a consistent model tuple can be found by adding

instances of the other classes with appropriate names.
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Person
firstname
lastname

Employee
name

Resident
name

𝑝

𝐶𝑅2 / 𝐶𝑅′2 / 𝐶𝑅′′2
𝑒

𝑒

𝐶𝑅3 / 𝐶𝑅′3
𝑟

𝑝

𝐶𝑅1

𝑟

𝐶𝑅1 = {⟨𝑝, 𝑟 ⟩ | r .name = p.firstname + ”␣” + p.lastname}

𝐶𝑅2 = {⟨𝑝, 𝑒⟩ | e.name = p.firstname + ”␣” + p.lastname}
𝐶𝑅′2 = {⟨𝑝, 𝑒⟩ | e.name = p.firstname + ”, ␣” + p.lastname}
𝐶𝑅′′2 = {⟨𝑝, 𝑒⟩ | e.name = p.lastname + ”␣” + p.firstname}

𝐶𝑅3 = {⟨𝑟, 𝑒⟩ | r .name = e.name}
𝐶𝑅′3 = {⟨𝑟, 𝑒⟩ | r .name = e.name.toLower}

Figure 5.9.: Three metamodels with different options for consistency relations. The relation sets
{𝐶𝑅1,𝐶𝑅𝑇1 ,𝐶𝑅2,𝐶𝑅𝑇2 ,𝐶𝑅3,𝐶𝑅𝑇3 } and {𝐶𝑅1,𝐶𝑅𝑇1 ,𝐶𝑅

′′
2 ,𝐶𝑅

′′𝑇
2 ,𝐶𝑅3,𝐶𝑅𝑇3 } are compatible,

whereas the sets {𝐶𝑅1,𝐶𝑅𝑇1 ,𝐶𝑅
′
2,𝐶𝑅

′𝑇
2 ,𝐶𝑅3,𝐶𝑅𝑇3 } and {𝐶𝑅1,𝐶𝑅𝑇1 ,𝐶𝑅2,𝐶𝑅𝑇2 ,𝐶𝑅

′
3,𝐶𝑅

′𝑇
3 }

are not. Taken from [Kla+20, Fig. 4].

{𝐶𝑅1,𝐶𝑅
𝑇
1 ,𝐶𝑅

′
2,𝐶𝑅

′𝑇
2 ,𝐶𝑅3,𝐶𝑅

𝑇
3 }: These relations are incompatible, because

each person p1 requires the existence of an additional person p2 with

p2.firstname = p1.firstname + ”, ” and p2.lastname = p1.lastname due

to𝐶𝑅′2 and the transitive relations requiring the addition of a comma. Thus,

each person would require an infinite number of further persons to exist in

a consistent tuple of models. Models are, however, finite, so there is no such

model tuple and the relations are incompatible.

{𝐶𝑅1,𝐶𝑅
𝑇
1 ,𝐶𝑅

′
2,𝐶𝑅

′𝑇
2 ,𝐶𝑅3,𝐶𝑅

𝑇
3 }: These relations are compatible. The rela-

tions define that for a person p1, another person p2 with p2.firstname =

p1.lastname and p2.lastname = p1.firstname has to exist, so that the tuple

of models is consistent. Although that behavior may not be desired, it does

not violate the definition of compatibility, because for every object in the

relations, a consistent model tuple can be constructed. In general, it can

even be necessary that consistency relations require the same elements with

swapped attribute values to exist, such that this behavior can and should

not be forbidden. Finally, such a relation does also not prevent a consistency
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preservation rule from finding a consistent model tuple. In consequence,

such behavior may be undesired due to the specific semantics of a meta-

model’s domain, but it can neither be detected automatically nor does it

lead to problems when executing transformations.

{𝐶𝑅1,𝐶𝑅
𝑇
1 ,𝐶𝑅2,𝐶𝑅

𝑇
2 ,𝐶𝑅

′
3,𝐶𝑅

′𝑇
3 }: These consistency relations reflect the ones

of our motivational example in Figure 5.2 for an intuitive notion of in-

compatibility. The formal definition of compatibility also considers these

relations as incompatible, because it is not possible to create a resident with

an uppercase name, such that the containing tuple of models is consistent.

For a resident with name = ”𝐴 𝐵”, a person with firstname = ”𝐴” and
lastname = ”𝐵” has to exist, which requires the existence of an employee

with name = ”𝐴 𝐵”. Now𝐶𝑅′3 requires a resident with name = ”𝑎 𝑏” to ex-
ist, which in turn requires a person with firstname = ”𝑎” and lastname = ”𝑏”
and an employee with name = ”𝑎 𝑏” to exist. In consequence, there are two

employees, one with the uppercase and one with the lowercase name, for

which a resident with the lowercase name has to exist according to the rela-

tion 𝐶𝑅′3. So there is no witness structure with a unique mapping between

the elements that is required to fulfill Definition 4.19 for consistency.

To summarize, compatibility is supposed to ensure that consistency rela-
tions do not impose restrictions on other relations such that their condition
elements, for which consistency is defined, can never occur in consistent
models. The goal of ensuring compatibility is especially to prevent the exe-
cution of consistency preservation rules in transformation networks from
non-termination, as it may occur in the second example scenario, in which an
infinitely large model would be required to fulfill the consistency relations.

Analogously to the equivalence of a set of consistency relations CR and its
transitive closure CR+ in regards to consistency of a model tuple, we can
show that a set of consistency relations and its transitive closure are always
equal with regards to compatibility.

Lemma 5.4 (Transitive Closure Compatibility)
Let CR be a set of consistency relations. Then it holds that:

CR compatible ⇔ CR+ compatible
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Proof. The reverse direction of the equivalence is given by definition, since
compatibility of a set of consistency relations implies compatibility of every
subset by definition. So we have to show the forward direction by considering
the compatibility definition for all 𝐶𝑅 ∈ CR+. We partition CR+ into CR
and CR+ \CR and consider their consistency relations independently.

First, we consider 𝐶𝑅 ∈ CR+ \ CR. According to Definition 5.2 for the
transitive closure, each 𝐶𝑅 ∈ CR+ \CR is a concatenation of consistency
relations 𝐶𝑅1, . . . ,𝐶𝑅𝑘 ∈ CR. In consequence of that definition, we know
that c𝑙,𝐶𝑅 ⊆ c𝑙,𝐶𝑅1 , so it is given that:

∀𝔠𝑙 ∈ c𝑙,𝐶𝑅 : ∃ 𝔠′
𝑙
∈ c𝑙,𝐶𝑅1 : ∀𝔪 ∈ 𝐼𝔐 :(︁

𝔪 contains 𝔠𝑙 ⇒ 𝔪 contains 𝔠′
𝑙

)︁
(1)

Since CR is compatible, we know from Definition 5.3 for compatibility that:

∀𝔠′
𝑙
∈ c𝑙,𝐶𝑅1 : ∃𝔪 ∈ 𝐼𝔐 :

(︁
𝔪 contains 𝔠′

𝑙
∧𝔪 consistent to CR

)︁
(2)

Because of Equation 1 and Equation 2, we know that:

∀𝔠𝑙 ∈ c𝑙,𝐶𝑅 : ∃𝔪 ∈ 𝐼𝔐 :
(︁
𝔪 contains 𝔠𝑙 ∧𝔪 consistent to CR

)︁
(3)

Furthermore, Lemma 5.3 states that:

∀𝔪 ∈ 𝐼𝔐 :
(︁
𝔪 consistent to CR⇔ 𝔪 consistent to CR+

)︁
(4)

In consequence of Equations 3 and 4, we know that:

∀𝐶𝑅 ∈ CR+ \CR : ∀𝔠 ∈ c𝑙,𝐶𝑅 : ∃𝔪 ∈ 𝐼𝔐 :(︁
𝔪 contains 𝔠 ∧𝔪 consistent to CR+

)︁
(5)

Second, we consider 𝐶𝑅 ∈ CR. Due to compatibility of CR and Lemma 5.3
showing equality of consistency of 𝔪 regarding CR and CR+, it holds that:

∀𝐶𝑅 ∈ CR : ∀𝔠 ∈ c𝑙,𝐶𝑅 : ∃𝔪 ∈ 𝐼𝔐 :(︁
𝔪 contains 𝔠 ∧𝔪 consistent to CR+

)︁
(6)

Equations 5 and 6 show compatibility of CR+ if CR is compatible.
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5.3. A Formal Approach to Prove Compatibility

In this section, we derive a formal approach for proving compatibility of
consistency relations from the given definition. It bases on two ideas:

1. A set of consistency relations in which each pair of classes is only
related across one concatenation of relations is inherently compatible,
because there cannot be any contradictory relations. We precisely
define this in a specific notion of consistency relation trees.

2. A consistency relation that is redundant in a set of relations, i.e.,
a relation that does not alter the notion of consistency for models
regarding the other relations in that set, does not affect compatibility
and can thus be removed from that set of relations.

Given a set of consistency relations, compatibility can be proven inductively
by finding a consistency relation tree (or multiple such trees) that is equivalent
to the set of relations by removing redundant relations from that set. Such
an equivalent consistency relation tree serves as a witness for compatibility
of a set of relations. In the following, we formalize and prove this inductive
approach to check compatibility of a set of consistency relations.

The sketched approach is essentially based on a notion of equivalence for
sets of consistency relations. We consider two sets of consistency relations
equivalent if they consider the same model tuples consistent.

Definition 5.4 (Consistency Relations Equivalence)
Let CR1 and CR2 be two sets of consistency relations defined for a
tuple of metamodels 𝔐. We say that:

CR1 equivalent to CR2 :⇔
∀𝔪 ∈ 𝐼𝔐 :

(︁
𝔪 consistent to CR1 ⇔ 𝔪 consistent to CR2

)︁
We later use the notion of equivalence to introduce a notion of redundancy
that is compatibility-preserving. In the following, we first consider structures
of consistency relation sets that are inherently compatible and afterwards
discuss redundancy as a means to reduce and decompose a relation set into
an equivalent composition of such inherently compatible structures.
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We consider the following two properties of a consistency relation set that
lead to its inherent compatibility.

Composability: The union of independent, compatible sets of relations is
compatible.

Trees: Relations fulfilling a special notion of consistency relation trees are
compatible.

Showing that these properties imply compatibility, we know that a consis-
tency relation set of independent subsets of consistency relation trees is
inherently compatible.

5.3.1. Independence of Consistency Relations

We consider two consistency relation sets to be independent if the tuples of
classes they put into relation are disjoint.

Definition 5.5 (Consistency Relation Sets Independence)
Let CR1 and CR2 be two sets of consistency relations. We say that:

CR1 and CR2 are independent :⇔⋃︂
𝐶𝑅 ∈CR1

ℭ𝑟,𝐶𝑅 ∩
⋃︂

𝐶𝑅 ∈CR2

ℭ𝑙,𝐶𝑅 = ∅

∧
⋃︂

𝐶𝑅 ∈CR2

ℭ𝑟,𝐶𝑅 ∩
⋃︂

𝐶𝑅 ∈CR1

ℭ𝑙,𝐶𝑅 = ∅

We call CR connected if there is no partition of CR into two subsets
that are independent, i.e.:

∀CR1,CR2 ⊆ CR :
(︁
CR1 ∩CR2 = ∅ ∧CR1 ∪CR2 = CR

⇒ ¬(CR1 and CR2 are independent )
)︁

In fact, this notion of independence is not the most general one that ensures
preservation of compatibility. Such a notion would only require that for each
condition element in each of the consistency relation sets still a consistent
model tuple can be found when both consistency relation sets are considered

137



5. Proving Compatibility of Consistency Relations

Resident
name

Employee
name

Location
street

Address
street

𝑒

𝐶𝑅1 = {⟨𝑟, 𝑒⟩ | e.name = r .name}
𝑟

𝑙

𝐶𝑅2 = {⟨𝑙, 𝑎⟩ | l.street = a.street}
𝑎

Figure 5.10.: Two independent (sets of) consistency relations. Taken from [Kla+20, Fig. 5].

together. This means that it is only necessary that for all instances of class
tuples that may be required by one of the consistency relation sets to produce
a consistent model tuple for each of the condition elements, there is no
condition element containing these instances within the consistency relations
of the other set. Such a notion does, however, become complicated to validate
and the given one already reflects a reasonable notion of independence, which
is sufficient for all cases that we consider in our evaluation, which indicates
general adequacy. Thus, we stick to the given notion of independence.

Example 5.3. Figure 5.10 depicts a simple example with two consistency re-

lations 𝐶𝑅1 and 𝐶𝑅2, each relating instances of two disjoint classes with each

other. Since there is no overlap in the classes that are related by the consistency

relations, they are considered independent according to Definition 5.5.

An important property of independent consistency relation sets is that com-
puting their union is compatibility-preserving, i.e., the union of compatible,
independent consistency relation sets is compatible as well.

Theorem 5.5 (Independent Relation Sets Compatibility)
LetCR1 andCR2 be two independent sets of consistency relations. Then
it holds that:

CR1 ∪CR2 compatible ⇔ CR1 compatible ∧CR2 compatible

Proof. The forward direction is trivially given. Compatibility of the union of
the consistency relation sets means that for every condition element in the
consistency relations of the union, a model tuple containing that condition
element and being consistent to the union of the consistency relation sets can
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be found. Then the same model tuple is consistent to each of the consistency
relation sets and, in particular, the one containing the condition element.

The backward direction of the equivalence can be seen by construction. Since
CR1 is compatible, per definition there is a model tuple 𝔪 for each condition
element 𝔠 of the left condition of each consistency relation in CR1 that
contains 𝔠 and that is consistent to CR1. Taking any such 𝔪, we create
𝔪′ by removing all elements from 𝔪 that are contained in any condition
elements of the left conditions in every consistency relation 𝐶𝑅 ∈ CR2 and
thus potentially require other elements to occur to be considered consistent to
that consistency relation. The classes of these elements are thus in ℭ𝑙,𝐶𝑅 . In
consequence, 𝔪′ does not contain any condition elements in left conditions
of consistency relations in CR2 and is thus consistent to CR2 by definition.
Additionally, 𝔪′ is still consistent to CR1, because due to the independence
of CR1 and CR2, there cannot be any consistency relation 𝐶𝑅′ ∈ CR1 that
requires the existence of the removed elements. Otherwise, the classes of
these elements would be in ℭ𝑟,𝐶𝑅′ . Per definition of independence, however,
ℭ𝑙,𝐶𝑅 ∩ ℭ𝑟,𝐶𝑅′ = ∅, which is a contradiction. In consequence, for each
condition element 𝔠 of each consistency relation in CR1, a model tuple
that contains 𝔠 and is consistent to CR1 ∪CR2 exists. The argumentation
applies to CR2 analogously, so the definition of compatibility is fulfilled for
all condition elements of all consistency relations in CR1 ∪CR2.

The constructive proof can also be reflected exemplarily in Figure 5.10: Take
any tuple of models that, for example, contains a resident with an arbitrary
name and is consistent to 𝐶𝑅1, i.e., that also contains an employee with the
same name. If that tuple of models contains any addresses or locations, they
can be removed without violating consistency to𝐶𝑅1, because addresses and
locations are independently related by 𝐶𝑅2.

5.3.2. Consistency Relation Trees

In addition to independence of consistency relation sets as a property that
inherently implies compatibility, we aim at finding a specific structure of a
connected consistency relation set that leads to inherent compatibility of the
contained relations. In consequence, if we can reduce sets of consistency
relations to independent sets of such a structure in a compatibility-preserving
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Person
firstname
lastname

Resident
name

Employee
name

𝑝

𝐶𝑅1

𝑟 𝑟

𝐶𝑅2

𝑒

𝐶𝑅1 = {⟨𝑝, 𝑟 ⟩ | 𝑟 .𝑛𝑎𝑚𝑒 = p.firstname + ”␣” + p.lastname}
𝐶𝑅2 = {⟨𝑟, 𝑒⟩ | r .name = e.name}

Figure 5.11.: A consistency relation tree {𝐶𝑅1,𝐶𝑅𝑇1 ,𝐶𝑅2,𝐶𝑅𝑇2 }. Adapted from [Kla+20, Fig. 6].

way, we know that the relations are compatible. Intuitively, such a struc-
ture can be expected from a kind of trees, because then there are no two
concatenations of relations that can relate elements in a contradictory way.

Definition 5.6 (Consistency Relation Tree)
Let CR be a symmetric, connected consistency relation set. We say:

CR is a consistency relation tree :⇔
∀𝐶𝑅 = 𝐶𝑅1 ⊗ . . . ⊗ 𝐶𝑅𝑚 ∈ CR+ :
∀𝐶𝑅′ = 𝐶𝑅′1 ⊗ . . . ⊗ 𝐶𝑅′𝑛 ∈ CR+ \𝐶𝑅 :[︁
∀ 𝑠, 𝑡 | 𝑠 ≠ 𝑡 :

(︁
𝐶𝑅𝑠 ≠ 𝐶𝑅𝑇𝑡 ∧𝐶𝑅′𝑠 ≠ 𝐶𝑅′𝑇𝑡

)︁
⇒ ℭ𝑙,𝐶𝑅 ∩ ℭ𝑙,𝐶𝑅′ = ∅ ∨ ℭ𝑟,𝐶𝑅 ∩ ℭ𝑟,𝐶𝑅′ = ∅

]︁
The definition of a consistency relation tree requires that there are no two
sequences of consistency relations that put the same classes into relation,
i.e., all pairs of classes are only put into relation by a single concatenation
of consistency relations. Since we assume a symmetric set of consistency
relations, we exclude the symmetric relations from that argument. Otherwise,
there would always be two such concatenations by adding a consistency
relation and its transposed relation to any other concatenation.

Example 5.4. Figure 5.11 depicts a rather simple consistency relation tree.

Persons are related to residents and residents are related to employees, all having

the same names or a concatenation of firstname and lastname, respectively,

by the relations 𝐶𝑅1 and 𝐶𝑅2, as well as their transposed relations 𝐶𝑅𝑇1 and

𝐶𝑅𝑇2 . There are no classes that are put into relation across different paths of

consistency relations, thus the definition for a consistency relation tree is fulfilled.
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: Person
firstname = "Alice"
lastname = "Avid"

: Resident
name = "Alice Avid"

: Employee
name = "Alice Avid"

𝑝

𝐶𝑅1

𝑟 𝑟

𝐶𝑅2

𝑒

𝐶𝑅1 = {⟨𝑝, 𝑟 ⟩ | 𝑟 .𝑛𝑎𝑚𝑒 = p.firstname + ”␣” + p.lastname}
𝐶𝑅2 = {⟨𝑟, 𝑒⟩ | r .name = e.name}

1. 2. 3.

Figure 5.12.: Model tuple construction with condition element of 𝐶𝑅1 containing person “Alice
Avid” for a consistency relation tree of relations in Figure 5.11. Adapted from [Kla+20, Fig. 7].
Arrows with numbers indicate the order in which elements are created.

If an additional relation between persons and employees was specified, like in

Figure 5.1, the tree definition would not be fulfilled.

The definition also covers the more complicated case in which multiple
classes are put into relation by consistency relations, but only a subset of
them that is put into relation by different consistency relations. We can now
prove that a consistency relation tree is always compatible. To preserve the
reading flow, we only provide a proof sketch in the following and refer for
the complete proof with an auxiliary lemma to Appendix A.

Theorem 5.6 (Consistency Relation Tree Compatibility)
Let CR be a consistency relation tree. Then CR is compatible.

Proof Sketch. The complete proof is given in Appendix A. It is based on a
proven lemma stating that starting with any of the consistency relations of
a consistency relation tree, there is a sequence of the consistency relations
such that there is no overlap in the classes of the conditions at the right
sides of these relations and that for each relation there is no overlap in the
classes of the condition at the left side with the ones at the right side of any
subsequent relation in the sequence. More informally speaking, the relations
do not induce a cycle between any of the classes in the metamodels. We use
this insight to define a construction approach for such sequences given a set
of consistency relations. For proving compatibility, we need to show that
for each condition element in a consistency relation, we find a consistent
model tuple containing it. Thus, we start with each condition element of each
relation and add a corresponding element according to that relation. We then
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5. Proving Compatibility of Consistency Relations

inductively add further elements required by other consistency relations due
to the just added elements. Based on the properties of consistency relation
trees, we can show that this construction is always possible and terminates
with a consistent model tuple.

A simple example for that construction is depicted in Figure 5.12, which is
based on the relations in the consistency relation tree in Figure 5.11 and
more precisely explained in the complete proof. The example shows the
construction for the condition element with the person named “Alice Avid”,
consecutively selecting consistency relations for whose fulfillment further
elements, namely an appropriate resident and employee, are added.

Summarizing, Theorem 5.5 and Theorem 5.6 show that consistency relation
sets fulfilling the notion of consistency relation trees are compatible and
that combining compatible independent sets of relations is compatibility-
preserving. In consequence, having a consistency relation set that consists of
independent subsets that are consistency relation trees, this set of relations is
inherently compatible. An approach that evaluates whether a given set of con-
sistency relations fulfills Definition 5.5 and Definition 5.6 for independence
and trees can be used to prove compatibility of those relations.

5.3.3. Redundancy of Consistency Relations

We have introduced specific structures of consistency relation sets that are
inherently compatible. However, actual consistency relation sets have such a
structure only in specific cases. In general, like in our initial example in Fig-
ure 5.1, multiple consistency relations may put the same classes into relation,
such that the definition for consistency relation trees is not fulfilled.

In the following, we present an approach to reduce the relations in a set of
consistency relations to, in the best case, an equivalent set of independent
consistency relation trees. The essential idea is to identify relations within a
set, such that whether or not they are contained in the set does not change its
compatibility. An approach that finds such relations and, for the scope of the
analysis, removes them from the set until the remaining relations represent
independent consistency relation trees proves compatibility of the given set
of relations. We first define the term of a compatibility-preserving relation.
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Definition 5.7 (Compatibility-Preserving Consistency Relation)
Let CR be a compatible set of consistency relations and let 𝐶𝑅 be a
consistency relation. We say that:

𝐶𝑅 compatibility-preserving to CR :⇔ CR ∪ {𝐶𝑅} compatible

To find such compatibility-preserving relations, we introduce the notion of
redundant relations and prove the property of being compatibility preserving.
Informally speaking, a relation is redundant if it is expressed transitively
across others, i.e., if it does not restrict or relax consistency compared to a
combination of other relations. We precisely define redundancy as follows.

Definition 5.8 (Redundant Consistency Relation)
Let CR be a set of consistency relations for a tuple of metamodels 𝔐.
For a consistency relation 𝐶𝑅 ∈ CR, we say that:

𝐶𝑅 redundant in CR :⇔ ∃𝐶𝑅′ ∈ (CR \ {𝐶𝑅})+ : ∀𝔪 ∈ 𝐼𝔐 :(︁
𝔪 consistent to 𝐶𝑅′ ⇒ 𝔪 consistent to 𝐶𝑅

)︁
The definition of redundancy of a consistency relation𝐶𝑅 ensures that there
is another consistency relation, possibly transitively expressed across others,
such that if a model is consistent to that other relation, it is also consistent to
𝐶𝑅 . This means that there are no model tuples that are considered inconsis-
tent to 𝐶𝑅 but not to another relation, thus 𝐶𝑅 does not restrict consistency.
Actually, the definition of redundancy implies that the set of consistency
relations with and without the redundant one are equivalent according to
Definition 5.4, thus both consider the same model tuples to be consistent.

Lemma 5.7 (Redundant Relations Equivalence)
Let 𝐶𝑅 ∈ CR be a redundant consistency relation in a relation set CR.

Then CR is equivalent to CR \ {𝐶𝑅}.

Proof. As discussed in Lemma 5.3, adding a consistency relation to a set
of consistency relations can never lead to a relaxation of consistency, i.e.,
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models becoming consistent that were not considered consistent before. This
is a direct consequence of Definition 4.19 for consistency, which requires
models to be consistent to all consistency relations in a set to be considered
consistent and thus restricts the set of consistent model tuples by adding
further consistency relations. In consequence, it holds that:

𝔪 consistent to CR⇒ 𝔪 consistent to CR \ {𝐶𝑅}

Additionally, a direct consequence of Definition 5.8 for redundancy is that a
redundant consistency relation does not restrict consistency, as it considers all
models consistent that are also considered consistent to another consistency
relation in the transitive closure of the consistency relation set. Thus, all
models that are considered consistent to the transitive closure of CR \ {𝐶𝑅}
are also consistent to 𝐶𝑅 and thus to all relations in CR:

𝔪 consistent to (CR \ {𝐶𝑅})+ ⇒ 𝔪 consistent to CR

According to Lemma 5.3, each tuple of models that is consistent to a consis-
tency relation set is also consistent to its transitive closure and vice versa.
So the latter implication is also true for CR \ {𝐶𝑅}. Summarizing, CR and
CR \ {𝐶𝑅} are equivalent.

In general, to consider a consistency relation redundant in CR, it has to
define equal or weaker requirements for consistency than one of the other
relations in CR. Informally speaking, such weaker requirements mean that
the redundant relation must have weaker conditions, i.e., it must require
consistency for less objects and consider the same or more objects consistent
to each of the left condition elements.

Example 5.5. Such weaker consistency requirements are exemplified in the

example in Figure 5.13, which shows a consistency relation𝐶𝑅1 that is redundant
in {𝐶𝑅1,𝐶𝑅2}. A redundant consistency relation, such as𝐶𝑅1, must have weaker

requirements in the left condition, such that it requires consistent elements to

exist in less cases. This means that it may have a larger set of classes that are

matched and that there may be less condition elements for which consistency

is required. In case of 𝐶𝑅1, the left condition contains both a resident and a

location, whereas the left condition of 𝐶𝑅2 only contains residents. Thus, 𝐶𝑅1
requires consistent elements, i.e., employees, only if a resident and a location

exist, whereas 𝐶𝑅2 already requires that for an existing resident. Furthermore,
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Resident
name

Employee
name

Location
street

Address
street

𝑟 𝐶𝑅1 𝑒

𝑙

𝑟

𝐶𝑅2

𝑒

𝑎

𝐶𝑅1 = {⟨(𝑟, 𝑙), 𝑒⟩ | r .name ≠ ”” ∧ (r .name = e.name ∨ r .name = e.name.toLower)}

𝐶𝑅2 = {⟨𝑟, (𝑒, 𝑎)⟩ | r .name = e.name ∧ a.street ≠ ””}

Figure 5.13.: Redundant consistency relation 𝐶𝑅1 in {𝐶𝑅1,𝐶𝑅2}. Taken from [Kla+20, Fig. 8].

the residents for which 𝐶𝑅1 constrains consistency are a subset of those for

which 𝐶𝑅2 constrains consistency, as 𝐶𝑅1 does not constrain consistency for

residents with an empty name. Thus, the left condition elements of 𝐶𝑅1 are
a subset of those of 𝐶𝑅2. In consequence, if 𝐶𝑅1 constrains consistency for a

resident and a location, 𝐶𝑅2 constrains it for the contained resident anyway.

Additionally, a redundant consistency relation, such as 𝐶𝑅1, must have weaker

requirements for the elements at the right side, such that one of the consistent

right condition elements is contained anyway, because another relation already

required them. This means that the relation may have a smaller set of classes,

of whom instances are required to consider the models consistent. In addition,

there may be more condition elements at the right side considered consistent

to condition elements at the left side to not restrict the elements considered

consistent. 𝐶𝑅1 only requires an employee to exist for a resident, whereas 𝐶𝑅2
also requires a non-empty address to exist. Additionally, 𝐶𝑅1 does not restrict
the employees that are considered consistent to residents in comparison 𝐶𝑅2, as
it also considers employees with the same name as consistent, but additionally

those having the name of the resident in lowercase.

Our goal is to have a compatibility-preserving notion of redundancy, i.e.,
adding a redundant relation to a compatible relation set should preserve
compatibility. Unfortunately, the up to now given intuitive redundancy
definition is not compatibility-preserving.
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Proposition 5.8 (Redundant Relations Non-Compatibility)
LetCR be a compatible consistency relation set and let𝐶𝑅 be a consistency

relation that is redundant in CR ∪ {𝐶𝑅}. Then 𝐶𝑅 is in general not

compatibility-preserving to CR.

Proof. We prove the proposition by providing a counterexample. Consider
the example in Figure 5.14. 𝐶𝑅2 relates each employee to a person with
the same name and 𝐶𝑅3 relates each person to a resident with the same
name in lowercase. The consistency relation set {𝐶𝑅2,𝐶𝑅3} is obviously
compatible, because for each employee and each person, which constitute the
left condition elements of the consistency relations, a consistent model tuple
containing the person and employee, respectively, can be created by adding
the appropriate person or employee with the same name and a resident with
the name in lowercase. Furthermore, 𝐶𝑅1 is redundant in {𝐶𝑅1,𝐶𝑅2,𝐶𝑅3}.
If a model is consistent to 𝐶𝑅2, it is also consistent to 𝐶𝑅1, since 𝐶𝑅1 also
requires persons with the same name as an employee to be contained in a
model tuple but in less cases, precisely those in which the models also contain
a resident such that the employee’s name is the resident’s name written in
uppercase.

{𝐶𝑅1,𝐶𝑅2,𝐶𝑅3} is, however, not compatible. Intuitively, this is because 𝐶𝑅1
and𝐶𝑅3 define an incompatible mapping between the names of residents and
persons. Consider a model with an employee and a resident with name = ”𝐴”.
This is a condition element in c𝑙,𝐶𝑅1 . Consequentially, 𝐶𝑅1 requires a person
with name = ”𝐴” to exist. Then 𝐶𝑅3 requires a resident with name = ”𝑎” to
exist. Thus, there are two tuples of employees and residents, both with the
employee named ”𝐴” and one with resident ”𝐴” as well as one with resident
”𝑎”, for which a person with name = ”𝐴” is required by 𝐶𝑅1. However, 𝐶𝑅1
forbids to have two residents with one having the lowercase name of the
other, because both are condition elements in 𝐶𝑅1 requiring an appropriate
person to occur in a consistent model, but both can only be mapped to
the same person with the uppercase name. In consequence, there is no
witness structure with a unique mapping as required by Definition 4.19
for consistency. This example shows that adding a redundant consistency
relation to a compatible consistency relation set does not necessarily preserve
its compatibility.
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Employee
name

Person
name

Resident
name

𝑒 𝐶𝑅1 𝑝

𝑙

𝑒

𝐶𝑅2

𝑝

𝑝

𝐶𝑅3𝑟

𝐶𝑅1 = {⟨(𝑒, 𝑟 ), 𝑝⟩ | e.name = r .name.toUpper ∧ e.name = p.name}

𝐶𝑅2 = {⟨𝑒, 𝑝⟩ | e.name = p.name}

𝐶𝑅3 = {⟨𝑝, 𝑟 ⟩ | r .name = p.name.toLower}

Figure 5.14.: A consistency relation𝐶𝑅1 being redundant in {𝐶𝑅1,𝐶𝑅2,𝐶𝑅3} with {𝐶𝑅2,𝐶𝑅3}
being compatible and {𝐶𝑅1,𝐶𝑅2,𝐶𝑅3} being incompatible. Taken from [Kla+20, Fig. 9].

5.3.4. Compatibility-Preserving Redundancy

In consequence of Proposition 5.8, we need a stronger definition of redun-
dancy, which is compatibility-preserving. The counterexample in Figure 5.14
shows that it is problematic if a redundant relation considers more classes in
its left condition than the relation it is redundant to. Therefore, we define a
stronger notion that restricts the left class tuple.

Definition 5.9 (Left-Equal Redundant Consistency Relation)
Let CR be a set of consistency relations for a metamodel tuple 𝔐. For
a consistency relation 𝐶𝑅 ∈ CR, we say:

𝐶𝑅 left-equal redundant in CR :⇔
∃𝐶𝑅′ ∈ (CR \ {𝐶𝑅})+ : ∀𝔪 ∈ 𝐼𝔐 :(︁
(𝔪 consistent to 𝐶𝑅′ ⇒ 𝔪 consistent to 𝐶𝑅) ∧ ℭ𝑙,𝐶𝑅 = ℭ𝑙,𝐶𝑅′

)︁
The definition of left-equal redundancy restricts the notion of redundancy
to cases in which the left condition of the redundant consistency relation
𝐶𝑅 considers the same classes as the other relation in the set of consistency
relations that induces consistency of a model tuple to 𝐶𝑅 . As discussed
before, redundancy in general allows that the left condition of a redundant
consistency relation can consider a superset of those classes.
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Lemma 5.9 (Left-Equal Redundancy to Redundancy)
Let 𝐶𝑅 be a consistency relation that is left-equal redundant in a set of

consistency relations CR. Then 𝐶𝑅 is redundant in CR.

Proof. Since the definition of left-equal redundancy is equal to the one for
redundancy except for the additional class tuple restriction, redundancy of a
left-equal redundant relation is a direct implication of the definition.

We prove an auxiliary lemma to show that left-equal redundancy preserves
compatibility. It shows that if a model tuple contains a left condition element
of a left-equal redundant relation, i.e., if that relation requires the model
tuple to contain corresponding elements for that object tuple, there is another
relation that requires corresponding elements for that object tuple.

Lemma 5.10 (Left-Equal Redundancy Containment)
Let 𝐶𝑅 be a consistency relation that is left-equal redundant in a consis-

tency relation set CR for a metamodel tuple 𝔐. Then it holds that:

∃𝐶𝑅′ ∈ (CR \ {𝐶𝑅})+ : ∀𝔠𝑙 ∈ c𝑙,𝐶𝑅 : ∃ 𝔠′
𝑙
∈ c𝑙,𝐶𝑅′ :

∀𝔪 ∈ 𝐼𝔐 :
(︁
𝔪 contains 𝔠′

𝑙
⇒ 𝔪 contains 𝔠𝑙

)︁
Proof. Due to left-equal redundancy of 𝐶𝑅 in CR, we know per definition:

∃𝐶𝑅′ ∈ (CR \ {𝐶𝑅})+ : ∀𝔪 ∈ 𝐼𝔐 :(︁
(𝔪 consistent to 𝐶𝑅′ ⇒ 𝔪 consistent to 𝐶𝑅) ∧ ℭ𝑙,𝐶𝑅 = ℭ𝑙,𝐶𝑅′

)︁
This implies that:

∃𝐶𝑅′ ∈ (CR \ {𝐶𝑅})+ : ∀𝔠𝑙 ∈ c𝑙,𝐶𝑅 : 𝔠𝑙 ∈ c𝑙,𝐶𝑅′

Because if there was a 𝔠𝑙 ∈ c𝑙,𝐶𝑅 so that 𝔠𝑙 ∉ c𝑙,𝐶𝑅′ , then the model tuple 𝔪

only consisting of 𝔠𝑙 would be consistent to 𝐶𝑅′. In contrast, there is at least
one ⟨𝔠𝑙 , 𝔠𝑟 ⟩ ∈ 𝐶𝑅 , so that 𝔪 needs to contain 𝔠𝑟 to be consistent to𝐶𝑅 , which
is not given by construction. This shows that c𝑙,𝐶𝑅′ contains all elements
in c𝑙,𝐶𝑅 , so there is always at least one element in c𝑙,𝐶𝑅′ that a model tuple
contains if it contains an element in c𝑙,𝐶𝑅 , which proves the lemma.
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Theorem 5.11 (Left-Equal Redundancy Compatibility)
Let CR be a compatible set of consistency relations and let 𝐶𝑅 be left-

equal redundant in CR ∪ {𝐶𝑅}. Then CR ∪ {𝐶𝑅} is compatible.

Proof. Left-equal redundancy of 𝐶𝑅 in CR ∪ {𝐶𝑅} implies general redun-
dancy according to Definition 5.8. In consequence, CR and CR ∪ {𝐶𝑅} are
equivalent, as shown in Lemma 5.7. Because of this equivalence, we know
that:

∀𝔪 ∈ 𝐼𝔐 :
(︁
𝔪 consistent to CR⇔ 𝔪 consistent to CR ∪ {𝐶𝑅}

)︁
(1)

It follows from Definition 5.3 for compatibility and Equation 1:

∀𝐶𝑅′ ∈ CR : ∀𝔠𝑙 ∈ c𝑙,𝐶𝑅′ : ∃𝔪 ∈ 𝐼𝔐 :(︁
𝔪 contains 𝔠𝑙 ∧𝔪 consistent to CR ∪ {𝐶𝑅}

)︁
(2)

This already shows that forCR the compatibility definition is fulfilled, so we
need to prove that the compatibility definition is fulfilled for𝐶𝑅 as well. Due
to compatibility of CR and Lemma 5.4 showing equality of compatibility for
a consistency relation set and its transitive closure, we know that:

∀𝐶𝑅′ ∈ CR+ : ∀𝔠𝑙 ∈ c𝑙,𝐶𝑅′ : ∃𝔪 ∈ 𝐼𝔐 :(︁
𝔪 contains 𝔠𝑙 ∧𝔪 consistent to CR+

)︁
(3)

Due to left-equal redundancy of 𝐶𝑅 in CR ∪ {𝐶𝑅}, we have shown in
Lemma 5.10 that the following is true:

∃𝐶𝑅′ ∈ CR+ : ∀𝔠𝑙 ∈ c𝑙,𝐶𝑅 : ∃ 𝔠′
𝑙
∈ c𝑙,𝐶𝑅′ : ∀𝔪 ∈ 𝐼𝔐 :(︁

𝔪 contains 𝔠′
𝑙
⇒ 𝔪 contains 𝔠𝑙

)︁
(4)

The combination of Equation 3 and Equation 4 gives:

∃𝐶𝑅′ ∈ CR+ : ∀𝔠𝑙 ∈ c𝑙,𝐶𝑅 : ∃ 𝔠′
𝑙
∈ c𝑙,𝐶𝑅′ :[︁

∀𝔪 ∈ 𝐼𝔐 :
(︁
𝔪 contains 𝔠′

𝑙
⇒ 𝔪 contains 𝔠𝑙

)︁
∧ ∃𝔪 ∈ 𝐼𝔐 :

(︁
𝔪 contains 𝔠′

𝑙
∧𝔪 consistent to CR+

)︁ ]︁
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A simplification by combining the two last lines of that statement leads to:

∀𝔠𝑙 ∈ c𝑙,𝐶𝑅 : ∃𝔪 ∈ 𝐼𝔐 :
(︁
𝔪 contains 𝔠𝑙 ∧𝔪 consistent to CR+

)︁
Due to Equation 1 and Lemma 5.3, which shows equality of consistency for
a consistency relation set and its transitive closure, this is equivalent to:

∀𝔠𝑙 ∈ c𝑙,𝐶𝑅 : ∃𝔪 ∈ 𝐼𝔐 :(︁
𝔪 contains 𝔠𝑙 ∧𝔪 consistent to CR ∪ {𝐶𝑅}

)︁
(5)

The combination of Equation 2 and Equation 5 shows thatCR∪{𝐶𝑅} fulfills
Definition 5.3 for compatibility.

Corollary 5.12 (Transitive Redundancy Compatibility)
Let CR be a compatible set of consistency relations and let 𝐶𝑅1, . . . ,𝐶𝑅𝑘
be consistency relations with:

∀ 𝑖 ∈ {1, . . . , 𝑘} : 𝐶𝑅𝑖 left-equal redundant in CR ∪ {𝐶𝑅1, . . . ,𝐶𝑅𝑖 }

Then CR ∪ {𝐶𝑅1, . . . ,𝐶𝑅𝑘 } is compatible.

Proof. CR is compatible. Sequentially adding𝐶𝑅𝑖 toCR∪{𝐶𝑅1, . . . ,𝐶𝑅𝑖−1}
inductively ensures compatibility of CR ∪ {𝐶𝑅1, . . . ,𝐶𝑅𝑖 } due to Theo-
rem 5.11, which shows compatibility of CR ∪ {𝐶𝑅1, . . . ,𝐶𝑅𝑖−1}.

With Corollary 5.12, we have shown that if we have a set of consistency
relations CR and are able to find a sequence of redundant consistency
relations 𝐶𝑅1, . . . ,𝐶𝑅𝑘 according to Corollary 5.12 such that we know that
CR\{𝐶𝑅1, . . . ,𝐶𝑅𝑘 } is compatible, then it is proven thatCR is compatible.

5.3.5. An Algorithm to Prove Compatibility

In the previous subsections, we have proven the following three central
insights.

1. Compatibility is composable: If independent sets of consistency rela-
tions are compatible, their union is compatible as well (Theorem 5.5).
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Algorithm 5.1 Proof for compatibility of consistency relations.
1: procedure ProveCompatibility(CR)
2: if IsRelationTree(CR) then
3: return true
4: end if
5: if HasIndependentSubsets(CR) then
6: {CR1,CR2} ← FindIndependentSubsets(CR)
7: isFirstSetCompatible← ProveCompatibility(CR1)
8: isSecondSetCompatible← ProveCompatibility(CR2)
9: return isFirstSetCompatible ∧ isSecondSetCompatible

10: end if
11: 𝐶𝑅redundant ← FindRedundantRelation(CR)
12: if 𝐶𝑅redundant ≠ ∅ then
13: return ProveCompatibility(CR \ {𝐶𝑅redundant})
14: end if
15: return false
16: end procedure

2. Consistency relation trees are compatible: If there are no two con-
catenations of consistency relations in a consistency relation set that
relate the same classes, that set is compatible (Theorem 5.6).

3. Left-equal redundancy is compatibility-preserving: Adding a left-
equal redundant consistency relation to a compatible consistency
relation set, the union of that set with the redundant relation is com-
patible (Corollary 5.12).

These insights enable us to define a formal approach for proving compat-
ibility of a set of consistency relations. Given a set of relations for which
compatibility shall be proven, we search for consistency relations in that set
that are left-equal redundant to it. If iteratively removing such redundant
relations from the set leads to a set of independent consistency relation trees,
it is proven that the initial set of consistency relations is compatible.

Algorithm 5.1 realizes this procedure. It executes the described steps and
assumes appropriate procedures to find out whether the given set of relations
is a relation tree, whether it consists of independent subsets, and whether it
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5. Proving Compatibility of Consistency Relations

contains a redundant relation. It is easy to see that this algorithm is correct,
as is implements the proven findings summarized before. This does, however,
not mean that implementing the sub-procedures is trivial. We provide a
practical approach to realize them in the subsequent section.

Theorem 5.13 (Compatibility Algorithm Correctness)
Algorithm 5.1 is correct, i.e., it only returns true if the given consistency

relation set CR is compatible.

Proof. We make a case distinction for the returning statements of the algo-
rithm.

1. If the consistency relation set is a tree, the algorithm directly returns
true (Lines 2–4), which is correct according to Theorem 5.6.

2. If the consistency relation set can be split into independent sets, the
algorithm returns true when both independent sets are identified
as compatible by recursive application of the algorithm (Lines 5–10),
which is correct according to Theorem 5.5.

3. If the consistency relation set contains a redundant relation, the al-
gorithm returns true when the set without the redundant relation
is identified as compatible by recursive application of the algorithm
(Lines 11–14), which is correct according to Corollary 5.12.

4. In all other cases, the algorithm returns false (Line 15).

The algorithm, however, also operates conservatively. If the approach finds
redundant relations, such that a consistency relation set can be reduced to a
set of independent consistency relation trees, the set is proven compatible,
as we have shown by proof. If the approach is not able to find such rela-
tions, the set may still be compatible, but the approach is not able to prove
that. Conceptually, this can be due to the fact that there are compatibility-
preserving relations that do not fulfill the definition of left-equal redundancy,
or because our independence definition is too restrictive. Furthermore, an
actual technique to identify left-equal redundant relations may not be able
to find all of them automatically for undecidability reasons, as we see later
at the practical approach.
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Theorem 5.14 (Compatibility Algorithm Conservativeness)
Algorithm 5.1 operates conservatively, which means that it is correct but

the given consistency relation set CR is not necessarily incompatible if it

returns false.

Proof. We know that the algorithm is correct due to Theorem 5.13. Addi-
tionally, it is easy to find examples for which the algorithm cannot prove
compatibility, although the relations are compatible. Let us assume a consis-
tency relation 𝐶𝑅 . Then we construct a consistency relation 𝐶𝑅′ by taking
𝐶𝑅 , adding an arbitrary class 𝐶 to the left-hand side class tuple of the rela-
tion, and constructing the relation elements by taking the ones in 𝐶𝑅 , each
complemented by all instances of 𝐶 . Then {𝐶𝑅,𝐶𝑅′} is, by construction,
compatible, but the two relations are neither independent or a consistency re-
lation tree, as they relate the same classes, nor are they redundant according
to Definition 5.9, because the left-side class tuples are not equal.

The example given in the proof for conservativeness shows that the strictness
of our definition for left-equal redundancy (Definition 5.9) can prevent the
algorithm from proving compatibility. We will, however, see in the evaluation
in Section 9.1 that it is still sufficient in realistic cases, although such special
cases as discussed in the proof are not supported.

In the following, we discuss how such an approach can be operationalized.
First, we discuss at the example of QVT-R how transformations can be repre-
sented in a graph-based structure, which conforms to our formal notion and
allows to check whether the structure is an independent set of consistency re-
lation trees. Second, we present an approach for finding consistency relations
that are left-equal redundant by means of a Satisfiability Modulo Theories
(SMT) solver applied to the constraints defined in QVT-R transformations.

5.4. A Practical Approach to Prove Compatibility

We have presented a formal and proven correct approach for validating
compatibility of consistency relations in the previous section. It comprises
the reduction of a given set of consistency relations by removing redundant
relations to result in independent consistency relation trees. In this section,
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we propose an algorithm that turns the formal approach into an operational
procedure. For the most part, this approach is based on results developed
and described in detail in the Master’s thesis of Pepin [Pep19], which was
supervised by the author of this thesis, and published in a report [Kla+20].

We call the process of removing redundant relations from a consistency
relation set to generate independent consistency relation trees decomposition.
A decomposition procedure requires a representation of consistency rela-
tions present in actual model transformations that allows to validate their
redundancy, more specifically the property of left-equal redundancy (see Def-
inition 5.9). We have decided to employ the transformation language QVT-R
for the operationalization. First, QVT-R is standardized [QVT] and well
researched. Second, it provides a level of abstraction at which consistency
relations are explicitly represented. In contrast, imperative languages would
first require to extract consistency relations from their implicit specification
as the image of the transformation rules.

In the following, we first present a mapping between the formalization
of the previous sections to the QVT-R transformation language through
the use of predicates. We then propose a fully automated decomposition
procedure that takes a set of QVT-R transformations, called a consistency

specification, as an input and removes redundant consistency relations as
far as possible. To find a redundant relation, the procedure identifies an
alternative concatenation of consistency relations relating the same classes,
according to Definition 5.9, and performs a redundancy test with respect to
that alternative concatenation. We explicitly separate the identification of
candidates for the alternative concatenation from the redundancy test to
assert exchangeability of the redundancy test approach.

5.4.1. Practical Specification of Consistency Relations

In Subsection 4.1.1, we have discussed the distinction of intensional and
extensional specifications of consistency. We have used an extensional speci-
fication for formalizing consistency relations in Definition 4.18. Developers,
however, define transformations with intensional specifications of the con-
straints that have to hold. In relational transformation languages, such as
QVT-R, they define consistency as a set of conditions that models must ful-
fill. Such conditions are expressed with metamodel elements, like attributes
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and references. For example, an employee and a resident are considered
consistent if their name values are equal.

Conditions represent predicates, i.e., Boolean-valued filter functions. Con-
sistency relations are then defined as sets of condition element pairs for
which the predicate evaluates to true. In Subsection 4.1.1, we have already
shown that this type of specification has equal expressiveness and can be
transformed into an extensional specification. We define such a predicate
based on combinations of properties, selected from each metamodel, which
we introduce in the following.

Definition 5.10 (Property Set)
A property set P𝐶 for a class 𝐶 is a subset of properties of 𝐶 , i.e.,
P𝐶 = {𝑃𝐶,1, . . . , 𝑃𝐶,𝑛} such that 𝑃𝐶,𝑖 ∈ 𝐶 .

A property set represents a selection of properties of a class that are relevant
for the definition of a predicate in order to distinguish consistent and non-
consistent condition elements. For a consistency relation, not all properties
of a class may be relevant and thus need to be considered. In a case of an
extensional specification at the level of classes rather than properties, such
as the one defined in Definition 4.18, this is expressed by enumerating all
objects with all possible values of the irrelevant properties. Thus, expressing
the relations at the level of classes or properties have equal expressiveness.

Definition 5.11 (Tuple of Property Sets)
For a class tuple ℭ = ⟨𝐶1, . . . ,𝐶𝑛⟩, we denote a tuple of property sets
for every class as a property tuple 𝔓ℭ :

𝔓ℭ = ⟨P𝐶1 , . . . ,P𝐶𝑛
⟩ = ⟨{𝑃𝐶1,1, . . . , 𝑃𝐶1,𝑚}, . . . , {𝑃𝐶𝑛,1, . . . , 𝑃𝐶𝑛,𝑘 }⟩

Since condition elements in consistency relations consist of objects that
instantiate multiple classes, property set tuples generalize the use of property
sets to class tuples.
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Definition 5.12 (Property Value Set)
A property value set p𝐶 for a property setP𝐶 = {𝑃𝐶,1, . . . , 𝑃𝐶,𝑛} is a set
in which each property in P𝐶 is instantiated, i.e., p𝐶 = {𝑝𝐶,1, . . . , 𝑝𝐶,𝑛}
with 𝑝𝐶,𝑖 ∈ 𝐼𝑃𝐶,𝑖

. Analogously, a tuple of property value sets is built
from a tuple of property sets by instantiating each property set in it.

A property value set is a subset of property values of an object 𝑜 that in-
stantiates 𝐶 , like a property set is a subset of properties of a class 𝐶 . Such a
property value set represents the information of an object 𝑜 that is relevant
for consistency according to a specific consistency relation.

Definition 5.13 (Predicate)
A predicate for two class tuples ℭ𝑙 = ⟨𝐶𝑙,1, . . . ,𝐶𝑙,𝑛⟩ and ℭ𝑟 is a triple
𝜋 = ⟨𝔓ℭ𝑙

,𝔓ℭ𝑟
, f𝜋 ⟩ where 𝔓ℭ𝑙

= ⟨P𝐶𝑙,1 , . . . ,P𝐶𝑙,𝑛
⟩ (resp. 𝔓ℭ𝑟

) is a tuple
of property sets of ℭ𝑙 (resp. ℭ𝑟 ) and f𝜋 is a Boolean-valued function for
instances of 𝔓ℭ𝑙

and 𝔓ℭ𝑟
, i.e.,

f𝜋 : 𝐼𝔓ℭ𝑙
× 𝐼𝔓ℭ𝑟

→ {true, false}

For better readability, we define the property collection P𝜋 of a predicate
𝜋 = (𝔓ℭ𝑙

,𝔓ℭ𝑟
, f𝜋 ) as the union of all properties in that predicate:

P𝜋 ≔
⋃︂
𝑗

P𝐶𝑙,𝑗
∪
⋃︂
𝑘

P𝐶𝑟,𝑘

The definition of a predicate requires the selection of properties of the classes
within the class tuples related by a consistency relation𝐶𝑅 and the definition
of a function f𝜋 that defines whether two instances of these properties are
considered consistent. If f𝜋 evaluates to true for given property values of
two object tuples, they match the predicate and are considered consistent,
i.e., they represent the condition elements of a consistency relation pair
according to Definition 4.18.

Predicates thus model how consistency relations are defined in model trans-
formation languages in terms of conditions to evaluate for object tuples, i.e.,
condition elements, rather than enumerating all consistent pairs of condition

156



5.4. A Practical Approach to Prove Compatibility

elements. We define when we consider property values to match objects and
then derive how consistency relations can be defined by predicates.

Definition 5.14 (Property Matching)
Let p𝐶 = {𝑝𝐶,1, . . . , 𝑝𝐶,𝑛} be a property value set. We say that:

p𝐶 matches 𝑜 :⇔ 𝑜 ∈ 𝐼𝐶 ∧ ∀𝑝𝐶,𝑖 ∈ p𝐶 : 𝑝𝐶,𝑖 ∈ 𝑜

Similarly, let 𝔭ℭ = ⟨p𝐶1 , . . . ,p𝐶𝑛
⟩ be a tuple of property value sets and

𝔬 = ⟨𝑜1, . . . , 𝑜𝑛⟩ a tuple of objects. We say that:

𝔭ℭ matches 𝔬 :⇔ ∀p𝐶𝑖
∈ 𝔭ℭ : p𝐶𝑖

matches 𝑜𝑖

Definition 5.15 (Predicate-Based Consistency Relation)
Let c𝑙 and c𝑟 be two conditions for two class tuples ℭc𝑙 and ℭc𝑟 . Let Π
be a set of predicates for ℭc𝑙 and ℭc𝑟 . A Π-based consistency relation
𝐶𝑅Π is a subset of pairs of condition elements:

𝐶𝑅Π ≔ {⟨𝔠𝑙 , 𝔠𝑟 ⟩ ∈ c𝑙 × c𝑟 | ∀⟨𝔓ℭc𝑙
,𝔓ℭc𝑟

, f𝜋 ⟩ ∈ Π :
∃pℭc𝑙

∈ 𝐼𝔓ℭc𝑙
,pℭc𝑟

∈ 𝐼𝔓ℭc𝑟
:(︁

𝔭ℭc𝑙
matches 𝔠𝑙 ∧ 𝔭ℭc𝑟 matches 𝔠𝑟 ∧ f𝜋 (𝔭ℭc𝑙 ,𝔭ℭc𝑟 ) = true

)︁
}

The construction of consistency relations by means of predicates is compa-
rable to the one discussed in Subsection 4.1.1 at the level of models. Defini-
tion 5.15 extends that construction to fine-grained consistency relations. It
expresses how consistency relations enumerating consistent object tuples are
defined by means of predicates. The construction of the consistency relation
fully amounts to the evaluation of the predicate function.

Example 5.6.We construct a consistency relation 𝐶𝑅𝑃𝑅 based on predicates

between persons and residents, according to Figure 5.1. 𝐶𝑅𝑃𝑅 ensures that the

name of a resident concatenates the firstname and lastname of a person and

that both have the same address. 𝐶𝑅𝑃𝑅 involves one class in each metamodel,

resulting in two class tuples ℭ𝑃 = ⟨𝐶Person⟩ and ℭ𝑅 = ⟨𝐶Resident⟩. Two predicates
need to represent consistency conditions, which are equal names and equal
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import 𝑀1 : ’path_m1.ecore’;

import 𝑀2 : ’path_m2.ecore’;

transformation T(𝑀1, 𝑀2) {

[top] relation 𝑅1 {

[variable declarations]

domain M a : A { 𝜋𝑀 }

domain N b : B { 𝜋𝑁 }

[when { PRECONDITION }] [where { INVARIANT }]

}

[top] relation 𝑅2 { ... }

}

Listing 5.1: Simplified structure of a QVT-R transformation. Adapted from [Kla+20, Lst. 1].

addresses. The first predicate considers firstname and lastname of a person and

name of a resident, so𝔓ℭ𝑃 ,1 = ⟨{firstname, lastname}⟩ and𝔓ℭ𝑅 ,1 = ⟨{name}⟩.
Similarly,𝔓ℭ𝑃 ,2 = ⟨{address}⟩ and𝔓ℭ𝑅 ,2 = ⟨{address}⟩. The functions of the
predicate, shortly denoting name as 𝑛, firstname as fn, lastname as ln, as well

as address of a person as 𝑎𝑃 and of a resident as 𝑎𝑅 , are:

f𝜋,1 (⟨{fn, ln}⟩, ⟨{𝑛}⟩) =
{︄
true, if 𝑛 = fn + ” ” + ln
false, otherwise

f𝜋,2 (⟨{𝑎𝑃 }⟩, ⟨{𝑎𝑅}⟩) =
{︄
true, if 𝑎𝑃 = 𝑎𝑅

false, otherwise

𝐶𝑅𝑃𝑅 is a Π-based consistency relation where Π is the set of the two predicates

for names and addresses {⟨𝔓ℭ𝑃 ,1,𝔓ℭ𝑅 ,1, f𝜋,1⟩, ⟨𝔓ℭ𝑃 ,2,𝔓ℭ𝑅 ,2, f𝜋,2⟩}.

We have decided to use QVT-R as the relational language of the QVT stan-
dard [QVT] for implementing the formal approach for validating compatibil-
ity. The defined relations can be interpreted as predicates defining Π-based
consistency relations. The language can be executed in checkonly mode to
check models for fulfillment of consistency relations, or in enforce mode to
repair consistency in a specified direction if not all relations are fulfilled. The
relevant parts of the structure of a QVT-R transformation are as follows and
also exemplified in Listing 5.1.
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fstn:String; lstn:String; inc:Integer;

domain person p:Person {

firstname = fstn, lastname = lstn, income = inc

};

domain employee e:Employee {

name = fstn + ’ ’ + lstn, salary = inc

};

Listing 5.2: Two QVT-R domains, each with one domain pattern. Adapted from [Kla+20, Lst. 2].

A QVT-R transformation receives models, which conform to defined meta-
models, and checks or repairs their consistency. Each transformation is
composed of relations, which define when objects of both models are con-
sidered consistent. These relations are only invoked if they are prefixed by
the top keyword, if they belong to the precondition (when) of a relation to be
invoked, or if they belong to the invariant (where) of a relation that was al-
ready invoked. The QVT-R mechanism for checking consistency is based on
pattern matching. The relations between information in the different models
are represented by variables assigned to class properties. These variables
contain values that must remain consistent from one object to another. To
consider models consistent, there must exist some assignment that matches
all patterns at the same time.

More precisely, each QVT-R relation contains two domains, which in turn
contain domain patterns. In QVT terminology, a domain pattern is a variable
instantiating a class. This variable can take values that are constrained
by conditions on its properties, known as property template items. These
conditions are expressed by OCL constraints [OCL]. We give an example for
the domains of persons and employees according to the running example
in Listing 5.2, in which each domain has one pattern. These patterns filter
Person objects with three property template items for firstname, lastname,
and income, and Employee objects with two property template items for name

and salary, respectively. For two objects to be consistent, there must exist
values of fstn, lstn, and inc that match property values of these objects, thus
ensuring that the employee name equals the concatenation of the firstname

and the lastname of the person and that both have the same income. If objects
are inconsistent, e.g., if the person and the employee have different incomes,
then there is no such variable assignment. The QVT-R transformations for
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all three relations of the running example introduced with Figure 5.1 are
depicted in Listing 5.3.

In checkonly mode, QVT-R evaluates the existence of a value that fulfills all
property template items in domain patterns. These patterns can be regarded
as predicates. To transfer QVT-R relations into our formalism, each relation
is translated into one or multiple predicates. A predicate is formed by the
properties that are bound to the same QVT-R variables, because having QVT-
R variables in common means that values of these properties are interrelated
and thus need to fulfill some consistency constraints. The properties of each
domain form one of the property sets of a predicate. Extracting the OCL
constraints of the property template items generates the predicate function.
The property sets together with the predicate function represent a predicate.
We subsequently present a formal construction of predicates from QVT-R
and their representation in a graph.

5.4.2. Consistency Relations Represented as Graphs

In the following, we introduce the decomposition procedure for proving
compatibility, which relies on an algorithmic way to detect redundant con-
sistency relations. We have defined the notion of left-equal redundancy for
extensionally specified consistency relations in Definition 5.9. That notion is
based on classes, whereas predicate-based consistency relations are defined
for properties. We have, however, already discussed that both kinds of speci-
fication have equal expressiveness. Comparing predicate-based consistency
relations of different transformations to evaluate redundancy is what we call
a redundancy test.

Consistency specifications induce a graph of class properties, which are
related by edges that are labeled with the predicates that define the consis-
tency relations. Such a graph representation enables the application of graph
algorithms to identify independent and redundant consistency relations. The
decomposition procedure thus creates such a graph, denoted as a property

graph, out of QVT-R transformations and detects redundant relations in
that graph. It represents properties and predicates as a hypergraph with
labeling.
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import personMM : ’personmm.ecore’;

import employeeMM : ’employeemm.ecore’;

import residentMM : ’residentmm.ecore’;

transformation PersonEmployee(person: personMM, employee: employeeMM) {

top relation PE {

fstn:String; lstn:String; inc:Integer;

domain person p:Person {

firstname = fstn, lastname = lstn, income = inc

};

domain employee e:Employee {

name = fstn + ’ ’ + lstn, salary = inc

};

}

}

transformation PersonResident(person: personMM, resident: residentMM) {

top relation PR {

fstn:String; lstn:String; addr:String;

domain person p:Person {

firstname = fstn, lastname = lstn, address = addr

};

domain resident r:Resident {

name = fstn + ’ ’ + lstn, address = addr

};

}

}

transformation EmployeeResident(employee: employeeMM, resident: residentMM) {

top relation ER {

n:String; ssn:Integer;

domain employee e:Employee {

name = n, socsecnumber = ssn

};

domain resident r:Resident {

name = n, socsecnumber = ssn

};

}

}

Listing 5.3: Three binary QVT-R transformations forming a consistency specification, based on
the relations in Figure 5.1. Adapted from [Kla+20, Fig. 10].
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Definition 5.16 (Property Graph)
Let CR = {𝐶𝑅1, . . . ,𝐶𝑅𝑛} be a set of consistency relations where each
consistency relation 𝐶𝑅𝑖 is based on a set of predicates Π𝑖 . A property
graph is a coupleM = ⟨H , l⟩, such thatH = ⟨𝑉H, 𝐸H⟩ is a hypergraph
and l is a hyperedge labeling: 𝑉H is the set of vertices, i.e., the union of
properties in all predicates:

𝑉H ≔
𝑛⋃︂
𝑖=1

⋃︂
𝜋∈Π𝑖

P𝜋

𝐸H is the set of hyperedges, i.e., 𝐸H ⊆ P(𝑉H) \ {∅}. Each hyperedge
consists of the properties of one predicate:

𝐸H ≔
𝑛⋃︂
𝑖=1

⋃︂
𝜋∈Π𝑖

{P𝜋 }

l labels each hyperedge with its corresponding predicate function:

∀ 𝑖 ∈ {1, . . . , 𝑛} : ∀𝜋 = ⟨𝔓ℭ𝑙
,𝔓ℭ𝑟

, f𝜋 ⟩ ∈ Π𝑖 : l(P𝜋 ) = f𝜋

A property graph groups properties that are used in the same predicate. Each
hyperedge with its labeling represents a predicate, which, in turn, represents
a consistency relation. Thus, such a graph is useful for detecting independent
sets of consistency relations and potential redundancies. When there are sets
of hyperedges that do not share any vertices, they relate independent sets of
properties. According to Definition 5.5, the consistency relations represented
by the hyperedges are independent. On the contrary, if multiple sequences of
hyperedges relate the same properties, the represented consistency relations
form a cycle and may thus be incompatible or redundant.

A property graph needs to be a hypergraph, because a predicate can relate
more than two properties, so an edge must be able to relate more than two
vertices. The consistency relation 𝐶𝑅𝑃𝐸 of the running example relates an
employee’s name to the concatenation of the firstname and lastname of a
person and thus contains three properties. We depict the hypergraph for the
running example in Figure 5.15. In the following, we discuss the construction
of a property graph from QVT-R transformations. The identification of redun-
dancies in the represented relations is part of the subsequent subsection.
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Figure 5.15.: Property graph for the QVT-R example in Listing 5.3 based on relations in Fig-
ure 5.1. Hyperedges are represented as shaded areas. Constraints for the predicate functions are
annotated in boxes. Adapted from [Kla+20, Fig. 11].

The construction of the property graph for a given set of QVT-R transfor-
mations requires each of them to be processed. Since transformations are
not executed but only transformed into a property graph, the processing
order is not relevant. Each transformation consists of a set of QVT-R re-
lations, of which each usually only defines consistency for small parts of
the metamodels. Those relations depend on each other and can thus not

163



5. Proving Compatibility of Consistency Relations

be processed in arbitrary order. Only those relations that may be invoked
during the execution of transformations need to be considered, which could
be derived from a call graph. While top-level relations are always invoked
during execution, other relations are only invoked in where or when clauses
of other relations similar to function calls. Since when and where clauses are
dual to each other, we restrict ourselves to relations that are invoked in where

clauses. Then, starting from top-level relations, relevant relations can simply
be identified by a depth-first traversal.

The property graph construction starts with an empty graph. For every pro-
cessed QVT-R relation, vertices and a hyperedge may be added. Each QVT-R
relation needs to be translated into a set of predicates, which are represented
by labeled hyperedges, in accordance with Definition 5.16. As an example,
we consider the relation PE of our running example in Listing 5.3, which
relates the domains for persons and employees. For each domain of a relation,
the class tuples of the predicates are specified in the domain patterns. In the
example, these class tuples are ℭperson = ⟨𝐶Person⟩ and ℭemployee = ⟨𝐶Employee⟩.
Each class in each class tuple is associated with a set of property template
items. A property template item relates a property to an OCL expression.
For example, the property template item name = fstn + ”␣” + lstn defines
that the property name must match the OCL expression fstn + ”␣” + lstn.
The OCL expressions, in turn, contain QVT-R variables, such as fstn and
lstn. Predicates are supposed to relate those properties that actually share
a consistency relation, i.e., that are actually put into relation by the QVT-R
relation. Such a relation is only given if two properties are related by the
same QVT-R variables, because in such a case a value assignment to that
variable must satisfy the property template items of both properties. In such
a case, a hyperedge is created and labeled with a function that realizes the
conditions of the property template item. For example, Person.firstname,
Person.lastname and Employee.name are related by the QVT-R variables fstn
and lstn, thus a hyperedge is generated between them. In contrast, con-
straints on Employee.salary and Employee.name are independent, because
the property template items relate them to disjoint sets of QVT-R variables.
Thus consistency of one does not depend on consistency of the other. In
addition to property template items, OCL expressions relating properties
occur in when and where clauses, of which we, again, focus on invariants of
where clauses. Like for property template items, properties related by shared
QVT-R variables in these clauses have to be grouped into a hyperedge.
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Algorithm 5.2 Merge to predicates. Adapted from [Kla+20, Alg. 1].
1: procedure MergeProperties({⟨{𝑝},𝑉{𝑝 }⟩})
2: stopMerge← true
3: entries[] ← [⟨{𝑝},𝑉{𝑝 }⟩] ⊲ Convert input set to sequence
4: do
5: stopMerge← true
6: results← ∅
7: while entries[] ≠ [] do
8: ref ≔ ⟨Pref ,𝑉Pref

⟩ ← entries[0]
9: others← entries[1 :]

10: entries[] ← []
11: for ⟨P,𝑉P⟩ ∈ others do
12: if 𝑉P ∩𝑉Pref

= ∅ then
13: entries[] ← entries[] + ⟨P,𝑉P⟩
14: else
15: stopMerge← false
16: ref ← ⟨P ∪Pref ,𝑉P ∪𝑉Pref

⟩
17: end if
18: end for
19: results← results ∪ {ref }
20: end while
21: entries[] ← [results] ⊲ Convert results to sequence
22: while ¬stopMerge

23: return set (entries[]) ⊲ Convert sequence to output set
24: end procedure

Algorithm 5.2 expresses the sketched procedure of merging properties to
predicates that finally represent hyperedges of the property graph. It manages
couples, called entries, of properties and QVT-R variables. These entries
denote that a set of properties is related by the according set of QVT-R
variables. The algorithm starts with a set of couples, of which each couple
⟨{𝑝},𝑉{𝑝 }⟩ consists of a singleton {𝑝} that presents a property 𝑝 and the
QVT-R variables 𝑉{𝑝 } it is related to by its property template item. In each
iteration, the algorithm chooses one reference entry and merges it with all
other entries to which the intersection of their QVT-R variables is not empty.
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The algorithm terminates when all sets of QVT-R variables are pairwise
disjoint.

Example 5.7. The relation PE of the QVT-R transformation PersonEmployee

in Listing 5.3 contains five properties, which can be described with these entries:

⟨{firstname}, {fstn}⟩, ⟨{lastname}, {lstn}⟩, ⟨{income}, {inc}⟩,
⟨{name}, {fstn, lstn}⟩, ⟨{salary}, {inc}⟩

After the execution of the algorithm, properties are merged into two sets:

⟨{firstname, lastname, name}, {fstn, lstn}⟩, ⟨{income, salary}, {inc}⟩

Each entry delivered by the algorithm can be transformed into a hyperedge.
To this end, the properties are grouped into two tuples according to the
domains they originally belonged to. The predicate function is given by the
conjunction of all OCL expressions associated with properties of the entry,
i.e., property template items and invariants. For the subsequent identification
of redundant relations, we only need to operate on this hypergraph rather
than the original metamodels or QVT-R transformations.

5.4.3. Decomposition of Consistency Relations

The decomposition procedure for proving compatibility of consistency re-
lations aims at removing redundant relations until, in case of success, the
remaining relations form sets of independent consistency relation trees. For a
property graphM = ⟨H , l⟩, this is achieved by removing the hyperedges of
H that represent redundant consistency relations until no further redundant
relations can be found. Redundancy according to Definition 5.9 is given if for
a consistency relation an alternative concatenation of consistency relations
that relates the at least partly same classes does not restrict consistency. In
terms of a graph, this means that there must be two paths between the same
properties. Independence of consistency relations is then given by connected
components of the hypergraph, because they represent the properties that
are related by constraints involving the same QVT-R variables. According
to Theorem 5.5, consistency relations are compatible if they are composed
of independent, compatible subsets. Thus if compatibility can be shown for
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the relations in each connected component of the hypergraph, their union is
also compatible.

While the hypergraph representation of predicates in consistency relations
is well suited for reasons of expressiveness, the drawback of hypergraphs is
the increased complexity of graph algorithms, such as graph traversal. We
therefore replace the property graph with its dual, i.e., an equivalent simple
graph, for the realization of the redundancy test. This dual graph contains the
hyperedges of the property graph as vertices and edges between two vertices
when their hyperedges in the property graph share at least one property.
Figure 5.16 shows the dual of a property graph of the running example.

Definition 5.17 (Dual of a Property Graph)
LetM = (H , l) be a property graph. The dual of the property graph
M, denotedM∗, is a tuple ⟨G, v, l⟩ with a simple graph G and two
functions v and l such that:

• 𝑉G ≔ 𝐸H

• 𝐸G ≔ {{𝐸1, 𝐸2} | ∀⟨𝐸1, 𝐸2⟩ ∈ 𝐸2H : 𝐸1 ∩ 𝐸2 ≠ ∅}

• ∀⟨𝐸1, 𝐸2⟩ ∈ 𝐸G : v({𝐸1, 𝐸2}) = 𝐸1 ∩ 𝐸2

The function v labels each edge {𝐸1, 𝐸2} in the dual with the set of properties
that occur both in 𝐸1 and 𝐸2. Since the property graph and its dual have
equal expressiveness, the property graph can be constructed out of the dual
again. Given a dualM∗ = ⟨G, v, l⟩, the property graphM = ⟨H , l⟩ can be
built by defining 𝑉H =

⋃︁
𝑉 ∈𝑉G 𝑉 and 𝐸H = 𝑉G .

Independence of consistency relations in the property graph is characterized
by the existence of two (or more) subhypergraphs1 such that there is no path
(i.e., sequence of incident hyperedges) from one to the other. In the dual of
the property graph, such a situation is represented by two subgraphs that
are not connected to each other. This conforms to the notion of connected
components, which are maximal subgraphs such that any two vertices are
connected by a path of edges and reflects the notion of independence given in

1 A subhypergraph of a hypergraph H = (𝑉H, 𝐸H ) is a hypergraph S = ⟨𝑉S, 𝐸S ⟩ such that
𝐸S ⊆ 𝐸H and𝑉S =

⋃︁
𝐸∈𝐸S 𝐸
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Figure 5.16.: Dual of the property graph for the QVT-R example in Listing 5.3 based on the
relations in Figure 5.1. Adapted from [Kla+20, Fig. 12].

Definition 5.5. Per definition, each subgraph relates disjoint sets of properties,
as otherwise an edge between two vertices that contain an intersection of
these properties would exist. These property sets occur in independent sets
of consistency relations, as otherwise there would be a vertex in the dual
of the property graph for a hyperedge of the property graph that relates
the properties that are linked by an OCL expression and according QVT-R
variables. We use Tarjan’s algorithm to compute the connected components
of the dual of the property graph in linear time [Tar71]. These indepen-
dent subgraphs can be processed independently, since their compatibility
composes (see Theorem 5.5).

In addition to independence, Theorem 5.6 stating that consistency relation
trees are compatible also applies to the dual of the property graph. When
there are no two paths relating the same classes or properties, respectively,
the notion of a consistency relation tree is fulfilled, thus the represented
consistency relations are inherently compatible. Consequently, if the dual of
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the property graph is only composed of independent trees, i.e., if it is a forest,
it is inherently compatible.

Finally, Corollary 5.12 has shown that adding left-equal redundant consis-
tency relations to a compatible consistency relation set preserves its compat-
ibility. According to Definition 5.9 for redundancy, we consider a predicate
and its representing hyperedge, respectively, redundant if there is another
concatenation of predicates that are always fulfilled if the redundant one
is fulfilled. In the hypergraph, this conforms to an alternative sequence of
hyperedges that represent those predicates, which relates the same prop-
erties as the possibly redundant one. In our operationalization, we only
consider the case when the exact same classes are related by both the possi-
bly redundant and the alternative concatenation of predicates, although the
definition only requires the classes at the left side to be equal. The existence
of such an alternative path is, however, only a necessary but not a sufficient
condition. The predicates must also relate the properties in the same way, as,
for example, one predicate may ensure that two string attributes are equal,
whereas an alternative sequence of predicates only ensures that they have
the same length. This is the reason why we perform a redundancy test for
redundancy candidates given by such an alternative path, which we explain
in the subsequent subsection.

An alternative path for a hyperedge 𝐸, which represents a predicate in the
property graph, is a sequence of pairwise incident hyperedges, of which the
first and last edge are incident to 𝐸. In the dual of the property graph, these
hyperedges are represented by vertices. Thus, in the dual such an alternative
sequence is given by a cycle including the vertex 𝐸. Let [𝐸, 𝐸1, . . . , 𝐸𝑛, 𝐸] be
the vertex sequence of such a cycle, then [𝐸1, . . . , 𝐸𝑛] is the alternative path.
The generation of redundant paths amounts to the enumeration of pairs
⟨𝐸, 𝐸 []𝑖⟩, where 𝐸 is a possibly redundant predicate, i.e., a vertex in the dual
of the property graph, and 𝐸 []𝑖 is an alternative sequence of predicates that
may replace 𝐸. There may be multiple such possible alternative paths for a
single predicate, thus all simple cycles in the dual of the property graph need
to be considered. The problem of finding all simple cycles in an undirected
graph is called cycle enumeration.

Algorithm 5.3 implements the enumeration of alternative paths for predi-
cates and their removal in case they are redundant. The implementation
of identifying a candidate predicate as actually redundant within a cycle is
assumed to be available as an external function IsRedundant. As discussed
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Algorithm 5.3 Predicates removal. Adapted from [Kla+20, Alg. 2].
1: procedure RemoveRedundantPredicates(DualM∗, pred ∈ 𝑉M∗ )
2: {base1, . . . , base𝑛} ← PatonAlgorithm(M∗)
3: foundCycles← {base1}
4: currentCycles← ∅, currentCycles∗ ← ∅
5: for base ∈ {base2, . . . , base𝑛} do
6: for foundCycle ∈ foundCycles do
7: newCycle← foundCycle ⊕ base

8: if foundCycle ∩ base ≠ ∅ then
9: currentCycles← currentCycles ∪ {newCycle}

10: else
11: currentCycles

∗ ← currentCycles
∗ ∪ {newCycle}

12: end if
13: end for

// Remove non-simple cycles from currentCycles

14: for cycle1, cycle2 ∈ currentCycles do
15: if cycle2 ⊂ cycle1 then
16: currentCycles← currentCycles \ {cycle1}
17: currentCycles

∗ ← currentCycles
∗ ∪ {cycle1}

18: end if
19: end for

// New valid cycles are in currentCycles ∪ {base}
20: for cand ∈ currentCycles ∪ {base} do
21: if pred ∈ cand ∧ IsRedundant(pred, cand) then
22: remove pred and its incident edges fromM∗
23: break
24: end if
25: end for
26: foundCycles← foundCycles ∪ currentCycles
27: foundCycles← foundCycles ∪ currentCycles∗ ∪ {base}
28: currentCycles← ∅, currentCycles∗ ← ∅
29: end for
30: end procedure
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before, this allows us to plug in different implementations for the redundancy
test, of which we depict one in the subsequent subsection. The algorithm is
mainly concerned with the enumeration of alternative paths.

The algorithm relies on the computation of a cycles basis, which is a set of
simple cycles from which all other simple cycles of the graph can be derived
by combination. This cycle basis is computed using Paton’s algorithm [Pat69].
For a given predicate, the enumeration processes each cycle from the cycle
basis and merges it with all cycles that have been processed so far. Every
cycle is represented as a set of edges. We denote the symmetric difference
with the ⊕ sign, i.e., 𝐴 ⊕ 𝐵 is the set of edges that are in 𝐴 or in 𝐵 but not
in both. The set foundCycles contains all linear combinations of cycles that
have been processed so far. Merged with cycles of the basis base1, . . . , base𝑛 ,
these linear combinations are used to merge more than two cycles of the
basis. In each iteration of Algorithm 5.3, processing a new cycle base from
the cycle basis, new simple cycles are in currentCycles∪{base}. Edge-disjoint
or non-simple cycles are stored in currentCycles

∗.

The redundancy test is performed in Line 21 whenever new cycles are gen-
erated. It checks for the given predicate pred whether one of the newly
generated cycles is redundant, i.e., whether it contains pred and whether
pred can be replaced by the concatenation of other predicates. If the test suc-
ceeds for an alternative sequence of predicates, the candidate can be removed.
The algorithm then proceeds with further possibly redundant predicates.
It terminates as soon as all predicates have been tested. If the connected
component of the graph becomes a tree after a predicate removal, the dual of
the connected component does not contain cycles anymore, thus no further
redundancy tests have to be performed. In the following, we discuss how
such a redundancy test can be realized.

5.4.4. Redundancy Check for Consistency Relations

We have so far considered the redundancy test of predicates in the decompo-
sition procedure as a black box, which can be realized by any approach that is
able to prove redundancy of predicates. This fosters independent reuse of the
proposed decomposition procedure and the redundancy test to be presented
in the following. Algorithm 5.3 contains the function IsRedundant that
needs to realize this check.

171



5. Proving Compatibility of Consistency Relations

Since OCL expressions have equal expressiveness than fist-order logic, reason-
ing about satisfiability of OCL constraints is undecidable [BKS02]. Deciding
whether a predicate is redundant reduces to deciding satisfiability, which
is why no strategy that always decides redundancy can be defined. In the
following, we first discuss how predicates can be generally compared to
prove compatibility. We then present an approach that translates OCL con-
straints of the predicates into first-order formulae and applies a theorem
prover. Finally, we discuss the limitations of the approach especially arising
from the translation to first-order logic and the use of a theorem prover.

A redundancy test takes a couple ⟨𝐸, [𝐸1, . . . , 𝐸𝑛]⟩ and returns true when-
ever the predicate 𝐸 is proven to be redundant to the sequence of predicates
[𝐸1, . . . , 𝐸𝑛]. Redundancy as defined in Definition 5.9 requires the set of
consistency relations, which are defined by the predicates, to be equiva-
lent with and without the redundant relation. This especially means that
removing the redundant relation must not weaken consistency, i.e., it must
not lead to models being considered consistent without that relation that
are not considered consistent with that relation. This is equivalent for a
property graph, in which a redundant predicate may not restrict consistency
by considering a model with specific property values inconsistent that are
considered consistent by an alternative sequence of predicates. A predicate 𝐸
can thus only be removed if all instances matching the predicate also match
predicates [𝐸1, . . . , 𝐸𝑛]. In fact, Definition 5.9 limits redundancy to relations
in which the left-side classes are equal. We do, however, only consider rela-
tions between the same sets of properties, thus being restricted to relations
between the same sets of classes anyway.

In consequence, a redundancy test realizes the comparison of two sets of
instances of models or, in particular, property values. A predicate can, how-
ever, be fulfilled by an infinite number of property values, i.e., condition
elements in terminology of consistency relations, such as consistency of
person incomes and employee salaries by an infinite number of integer pairs.
An extensional element-wise comparison is thus generally impossible.

For that reason, we consider the intensional specification of consistency
relations by means of OCL constraints. These constraints are annotated to
the property graph as hyperedge labels. The redundancy test can thus be
realized by a static analysis of these labels and QVT-R relation conditions
in when and where clauses. One such strategy is the transformation of OCL
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expressions into first-order logic and the reasoning about the resulting first-
order formulae [BKS02; BCD05]. We set up the first-order formulae such that
they are valid, i.e., true under every possible interpretation, whenever the
redundancy test is positive. This transformation benefits from the availability
of theorem proving tools for reasoning about first-order formulae.

Since first-order logic is generally undecidable, redundancy of a relation
cannot be proven for every derived formula. Thus, the result quality of the
decomposition procedure depends on the quality of the theorem prover. The
transformation of OCL to logic formulae requires a representation of all
constructs, such as arithmetic operations, strings, arrays, etc., in formulae.
Objects, such as strings, floats, sequences, and others can be represented by
theories of theorem provers. With theories, the satisfiability problem equates
to assigning values to variables in first-order logic sentences such that their
evaluation returns true. For example, the formula (𝑎 × 𝑏 = 6) ∧ (𝑎 + 𝑏 > 0)
is satisfiable given the assignment {𝑎 = 2, 𝑏 = 3}. This extension is known
as Satisfiability Modulo Theories (SMT). Formulae for the SMT problem are
called SMT instances. Theory-based theorem provers provide built-in theories,
to which we translate OCL constraints for our redundancy test.

The information that is necessary for a redundancy test is given by the
predicates passed to the test. Let 𝐸 = ⟨𝔓ℭ𝑙

,𝔓ℭ𝑟
, f𝐸⟩ be a predicate for

two class tuples ℭ𝑙 and ℭ𝑟 . During the construction of the property graph,
a hyperedge composed of all properties in 𝔓ℭ𝑙

and 𝔓ℭ𝑟
is labeled with

the description of the predicate function f𝐸 . Such a predicate 𝐸 can be
replaced by a sequence of other predicates [𝐸1, . . . , 𝐸𝑛] if f𝐸 evaluates to
true whenever f𝐸1 ∧ · · · ∧ f𝐸𝑛 evaluates to true. In that case, the removal of
the consistency relation given by 𝐸 does not weaken consistency, because it
is fulfilled only when the relation given by the concatenation of [𝐸1, . . . , 𝐸𝑛]
is fulfilled anyway. In consequence, 𝐸 is redundant. This redundancy test
can be encoded as a formula in the following way:

(f𝐸1 ∧ · · · ∧ f𝐸𝑛 ) ⇒ f𝐸

This formula is a Horn clause. According to common terminology, we call
terms at the left-hand side of the clause facts and the term at the right-hand
side goal. The assignment of values to variables in the Horn clause also
models the instantiation of properties, i.e., the assignment of property values.
If the Horn clause is valid, the alternative sequence of predicates can replace
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the other predicate for every instance. Variables in Horn clauses are usually
implicitly quantified universally. Predicate functions of OCL expressions,
however, need to contain existentially quantified QVT-R variables, as the
pattern matching of the expressions requires the existence of values for these
variables.

Example 5.8. Figure 5.16 depicts the dual of the property graph for the mo-

tivational example in Listing 5.3. It contains four connected components, of

which three contain only one predicate. These three components are trivial

trees, so compatibility for them is proven. The other component consists of

three predicates and contains a cycle ([1, 2, 3]). Let 3 be the possibly redundant

predicate. Then, the alternative combination of predicates is composed of 1 and
2. This leads to the following formula with facts 1 and 2 and goal 3:(︁

Person.firstname = fstn1 ∧ Person.lastname = lstn1

∧ Resident .name = fstn1 + ” ” + lstn1
∧ Person.firstname = fstn2 ∧ Person.lastname = lstn2

∧ Employee.name = fstn2 + ” ” + lstn2
)︁

⇒
(︁
∃𝑛 : (Resident .name = n ∧ Employee.name = n)

)︁
QVT-R variables have been renamed to avoid conflicts, because they are no

longer isolated as they were before in distinct QVT-R relations. The formula is

valid and will be identified as such by an SMT solver. For that reason, predicate 3
can be removed from the property graph and its dual. Since the component

then only consists of two predicates and thus forms a tree, the represented

consistency relations are compatible. Since all independent consistency relation

sets, represented by the independent connected components of predicates, are

compatible, the complete consistency specification is compatible.

Whenever such a Horn clause is valid, i.e., true under every interpretation,
redundancy of the consistency relation represented by the predicate given
as the clause goal is proven. The SMT solver takes the clause as an SMT
instance and verifies its satisfiability whenever possible. Proving that a
Horn clause 𝐻 is valid is equivalent to proving that its negation ¬𝐻 is
unsatisfiable. Therefore, we actually let the SMT solver prove that the SMT
instance f𝐸1 ∧ · · · ∧ f𝐸𝑛 ∧ ¬f𝐸 is unsatisfiable. The complete process of
the redundancy test is depicted in Figure 5.17. The solver can provide the
following three results.
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Person.firstname = fstn

∧ Person.lastname = lstn

∧ Employee.name

= fstn + ”␣” + lstn

Resident .name = 𝑛

∧ Employee.name = 𝑛

Person.firstname = fstn

∧ Person.lastname = lstn

∧ Resident .name

= fstn + ”␣” + lstn

Possibly
Redundant Predicate

Alternative Sequence
of Predicates

(not

(and

(= firstname fstn)

(= lastname lstn)

(= name

(str.++ fst

(str.++ ’ ’ lstn)

)

)

)

)

...

...

∧

∧

SMT
Solver

SAT. The initial
Horn clause is
not always valid,
so the predicate
is not entirely
redundant.
→ No removal

UNKNOWN. By
conservativeness.
→ No removal

UNSAT. The ini-
tial Horn clause
is valid, so the
predicate is re-
dundant.
→ Removal

OCL Expressions SMT Formula Result

Figure 5.17.: Overview of the redundancy test from OCL expressions to the SMT solver results.
Adapted from [Kla+20, Fig. 14].

Satisfiable: If¬𝐻 is satisfiable,𝐻 is not valid. An interpretation exists, i.e., an
instantiation of properties, that fulfills the possibly redundant predicate
but not the alternative sequence of predicates. Thus, the predicate is not
redundant and cannot be removed.

Unsatisfiable: If ¬𝐻 is unsatisfiable, 𝐻 is valid. Thus, when the alternative
sequence is fulfilled, the predicate is fulfilled as well. It is redundant and
can be removed.

Unknown: First-order logic being undecidable, a theorem prover cannot
evaluate satisfiability of all formulae, thus also returning Unknown. To
ensure conservativeness, the redundancy test is considered negative. As
a result, the predicate is not removed.

For the actual translation of OCL expressions in QVT-R relations into SMT
instances, we refer to existing work on translating OCL to first-order formu-
lae [BKS02] and, in particular, to our work presenting the specific translation
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for proving compatibility [Kla+20]. QVT-R uses a subset of OCL called Es-

sentialOCL [QVT], which is a side-effect-free sublanguage that provides
primitive data types, data structures and operations to express constraints
on models. Several OCL constructs have a direct equivalent in theories of the
theorem prover or can be mapped to a combination of primitive constructs.
We employ the SMT-LIB specification, which is a standard that provides an
input language for SMT solvers [BFT17], and the Z3 theorem prover [dB08]
to realize the redundancy test. A complete reference of translated constructs
has been developed in the Master’s thesis of Pepin [Pep19].

In addition to undecidability of OCL, some OCL operations are said to be
untranslatable, because no mapping to features of SMT solvers were found
yet. Thus, some QVT-R relations cannot be processed automatically by
the proposed decomposition procedure. For example, string operations like
toLower and toUpper cannot be easily translated into logic formulae for SMT
solvers without several used-defined axioms. Although decision procedures
for such a case exist [Vea+12], they are not yet integrated into solvers.

In this section, we have discussed how the formal approach for proving
compatibility as depicted in Algorithm 5.1 can be realized for QVT-R. We
have defined a representation of consistency relations in graphs and explained
how they can be derived from QVT-R transformations. We have discussed
how a consistency relation tree and independent relation sets manifest in
such a graph and how candidates for redundancies can be found in it. Finally,
we have presented a redundancy test based on transforming OCL expressions
of potentially redundant relations into Horn clauses that are validated by
SMT solvers.

5.5. Summary

In this chapter, we have discussed the challenge regarding compatibility
of consistency relations, which are encoded in transformations. We have
derived and precisely defined a notion of compatibility and presented a formal
approach that is able to validate it for given relations. The approach is proven
to be correct. Based on the formal approach, we have developed a practical
approach that validates compatibility of relations defined with QVT-R and
OCL. We conclude this chapter with the following central insight.
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Insight II.2 (Compatibility)
Transformations that are supposed to preserve contradictory consis-
tency relations easily lead to problems when combining them to a
network, because their relations cannot be fulfilled at the same time.
The relations preserved by transformations should thus be compatible,
i.e., they should not restrict consistency for elements such that no con-
sistent set of models can be found by the transformation network. That
notion of compatibility can be proven for given transformations by
considering their preserved consistency relations, finding redundant re-
lations, and removing them until only a tree of relations remains. Since
we were able to prove that consistency relation trees are inherently com-
patible and removing redundant relations is compatibility-preserving,
this approach is proven correct. Compatibility is a property of the
network and not a single transformation, thus it cannot be achieved
by construction of the individual transformations, but it can only be
analyzed for a given transformation network.

177





6. Constructing Synchronizing
Transformations

Transformations are the central artifacts of which a transformation network
is composed. In Definition 4.7 and Subsection 4.4.3, we have introduced them
as synchronizing transformations, which are combinations of consistency rela-
tions with a consistency preservation rule that preserves them. Correctness
of such a transformation was then defined as the property of the consistency
preservation rule to preserve consistency of given models according to the
consistency relations (see Definition 4.8). In theory, a correct transformation
can simply be achieved by adhering to that definition.

Using existing transformation languages, the defined transformations will,
however, not follow the definition of a synchronizing transformation. Trans-
formation languages usually allow the specification of unidirectional con-
sistency preservation rules, i.e., rules that restore consistency by updating
one model if the other was modified, such as QVT-O and QVT-R [QVT],
ATL [Jou+06], or VIATRA [Ber+15]. Even if transformation languages al-
low bidirectional specifications, they still derive unidirectional consistency
preservation rules from such a specification, such as forward and back-
ward transformations (which may be incremental or not) derived from TGG
rules [Leb+14]. In the following, we refer to such transformations as ordinary
transformations and give a more precise definition of them later on. Synchro-
nizing transformations, as we assume in transformation networks, are able
to process changes made in both models and, in turn, also produce changes
for both models. This is an inevitable property in transformation networks,
because both models involved in a transformation may have been modified
due to different sequences of transformations having modified both of them.
The case that developers modify multiple models concurrently is sometimes
also referred to as synchronization, although the term is sometimes even used
for the simple case of incremental updates. If we consider that scenario, we
will refer to it as concurrent editing to avoid confusion.
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In this chapter, we aim to close this gap between synchronizing transforma-
tions as required in transformation networks and ordinary transformations
with unidirectional consistency preservation rules used by transformation
languages. We investigate which requirements such an ordinary transfor-
mation has to fulfill to emulate a synchronizing transformation and thus to
be used in a transformation network. This chapter constitutes our contribu-
tion C 1.3, which consists of four subordinate contributions: a discussion
of the formal basis for the gap between synchronizing and ordinary trans-
formations; a discussion of different strategies to combine unidirectional
consistency preservation rules of ordinary transformations to emulate a
synchronizing transformation; a derivation of requirements for ordinary
transformations to be used as synchronizing ones; and finally techniques to
ensure that ordinary transformations fulfill these requirements. It answers
the following research question:

RQ 1.3: Which requirements must a transformation fulfill for being used in
a network in comparison to using it on its own?

The benefit of enabling the definition of ordinary transformations that can
be used as synchronizing ones instead of providing an approach or language
for the specification of synchronizing transformations is that existing and
well-researched transformation languages and knowledge about them can
be reused. Additionally, it is expected to reduce complexity, because the
definition of two unidirectional consistency preservation rules is likely to be
less cumbersome than the definition of a single synchronizing transformation,
which has to consider all possible combinations of changes in two models.
We will see that this is founded by the insight that only few combinations of
changes are problematic and have to be considered explicitly.

We have published parts of the contributions in this chapter in previous
work [Kla18; Kla+19b]. We have discussed the identification of essential is-
sues when constructing synchronizing transformations from ordinary trans-
formations that are defined in existing transformation languages [Kla18].
In the Master’s thesis of Syma [Sym18], which was supervised by the au-
thor of this thesis, several issues in transformation networks have been
identified, and for the category of changes arising from the combination of
unidirectional transformation specifications a constructive solution has been
proposed. We have also published that approach [Kla+19b] and present the
results especially in Section 6.4.
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6.1. Deriving the Gap to Ordinary Transformation

6.1. Deriving the Gap to Ordinary Transformation

We have introduced that there is both a formal and a practical gap between
synchronizing transformations, which we have defined as a component of
transformation networks, and ordinary transformations, which are unidirec-
tional and non-synchronizing as used by many transformation languages.
In the following, we first give an example for faulty behavior if we simply
used ordinary transformations in a transformation network. Afterwards, we
give a formal definition of unidirectional preservation rules and ordinary
transformations, then defined as bidirectional transformations. Finally, we
discuss the relation between unidirectional consistency preservation rules
and unidirectional consistency relations, as introduced in Section 4.4.

We have already sketched the example of creating a class in UML and Java
after adding a component to a PCM model in Section 1.2.1. In that scenario, it
was possible that for a created PCM component first a UML class is generated,
which is then transformed into a Java class. Additionally, the transformation
between PCM and Java creates another Java class, as it does not consider
that there may be another transformation that has already created that class.
Such scenarios can lead to the duplication of elements, as an already existing
element is inserted again, or to an overwrite of an already existing element.
Overwriting a previously created element may also remove information that
was already added to it, like the transformation across UML may have added
information to the Java class which is overwritten by the class creation of
the transformation from PCM to Java.

An analogous example can be given for the running example of persons,
employees, and residents depicted in Figure 3.3. We consider the consistency
relations 𝐶𝑅𝑃𝐸,𝐶𝑅𝐸𝑅 , and 𝐶𝑅𝑃𝑅 . As discussed in Chapter 5, these relations
are compatible, thus for any given person, employee, or resident, there is
a consistent tuple of models containing it. Thus, the relations do not pre-
vent transformations from finding consistent models whenever a person,
employee or resident is added. Ordinary transformations with unidirectional
consistency preservation rules react to the changes in one model and update
another accordingly. In case of adding a person, this may look as depicted in
Figure 6.1. For each of the given consistency relations, we assume unidirec-
tional consistency preservation rules that preserve consistency according
to them. They especially create an employee for each added person and a
resident for each created employee and person, respectively. Since the trans-
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: Person
firstname = "Alice"
lastname = "Avid"

: Employee
name = "Alice Avid"

: Resident
name = "Alice Avid"

: Resident
name = "Alice Avid"

«creates»
created by Cpr𝐶𝑅𝑃𝐸

created by Cpr𝐶𝑅𝐸𝑅

created by Cpr𝐶𝑅𝑃𝑅

Figure 6.1.: Duplicate creation of a resident by two sequences of consistency preservation rules.

formations assume the models to be consistent before applying the changes,
they always add a corresponding element when one of the elements is added.
This leads to the situation that the consistency preservation rules for both
𝐶𝑅𝑃𝑅 as well as 𝐶𝑅𝐸𝑅 , namely Cpr𝐶𝑅𝑃𝑅

and Cpr𝐶𝑅𝐸𝑅
, create a resident upon

creation of a person. In consequence, there exist two residents with the same
name, which does not fulfill the consistency relations.

It is our goal to find out how such a situation can be avoided by proper defini-
tion of consistency preservation rules in existing transformation languages.
A simple solution in this example would have been to first check whether
the elements to create already exist. This can either be done by using a trace
model, which many transformation language use to store corresponding
elements, or by searching for an appropriate element in the other model,
using some key information like its name. Using a trace model, however, has
some drawbacks and pitfalls, which we investigate in Subsection 6.4.2.

6.1.1. Unidirectional Consistency Preservation Rules

Before we can discuss options how unidirectional consistency preservation
rules can be used to emulate the behavior of synchronizing consistency
preservation rules, we first need to define them to be able to formally compare
the two of them. In contrast to a synchronizing consistency preservation rule
as defined in Definition 4.5, a unidirectional consistency preservation rule
only receives changes made to one of the two models and returns changes to
the other model instead of receiving and returning changes to both.
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Definition 6.1 (Unidirectional Consistency Preservation Rule)
Let CR be a set of consistency relations between elements of two
metamodels 𝑀1 and 𝑀2. A unidirectional consistency preservation rule

CprCR for the relation set CR is a partial function:

CprCR : (𝐼𝑀1 , 𝐼𝑀2 ,Δ𝑀1 ) → Δ𝑀2 ∪ {⊥}

This is how the consistency preservation rules defined in or derived from
many existing transformation languages operate. They take two models and
changes to one of them and generate changes for the other. Most of them
even directly apply the changes instead of returning a dedicated change
artifact. The rule is partial to indicate inputs of models and changes that it is
not able to handle. In these cases, the function returns ⊥.

In addition, these rules usually expect the input models to be consistent
and then ensure that after applying the input and the output changes to
the models, the resulting models are consistent again. Their behavior for
inconsistent input models is undefined, such that they either return ⊥ or a
change that does not necessarily guarantee that the models are consistent
after applying the input and output changes. This conforms to the common
notion of correctness for consistency preservation rules, like for the state-
based (rather than our delta-based) notion of consistency preservation rules
defined by Stevens [Ste10]. This is even compliant to the correctness notion
that we have defined for synchronizing consistency preservation rules in
Definition 4.6. Thus, we define correctness of a unidirectional consistency
preservation rule as follows.

Definition 6.2 (Unidirectional Preservation Rule Correctness)
Let CprCR be a unidirectional consistency preservation rule. We call
CprCR correct if, and only if, the resulting models when applying the
input and output changes are consistent to CR again:

CprCR correct :⇔ ∀𝑚1 ∈ 𝐼𝑀1 ,𝑚2 ∈ 𝐼𝑀2 , 𝛿𝑀1 ∈ Δ𝑀1 :[︁
⟨𝑚1,𝑚2⟩ consistent to CR⇒
∀𝛿𝑀2 ∈ Δ𝑀2 :

(︁
Cpr𝐶𝑅 (𝑚1,𝑚2, 𝛿𝑀1 ) = 𝛿𝑀2

⇒ ⟨𝛿𝑀1 (𝑚1), 𝛿𝑀2 (𝑚2)⟩ consistent to CR
)︁ ]︁
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In Definition 6.1, we explicitly allow consistency preservation rules to be
partial. This was only an optional requirement for synchronizing consistency
preservation rules defined in Definition 4.5, because there may be changes to
both models that cannot be processed reasonably as one of the changes may
need to be reverted to achieve consistency. Ignoring this practical require-
ment, it is theoretically possible to always return changes that, if applied to
the input models, produce consistent models. These changes may perform
arbitrarily unreasonable modifications but still restore consistency.

For unidirectional consistency preservation rules, partiality is not only a
practical requirement. They must be partial, because there can be models for
which no other models can be generated such that they are consistent to a con-
sistency relation set. Consider the consistency relation 𝐶𝑅 = {⟨𝑎, 𝑧⟩, ⟨𝑏, 𝑧⟩}
and its transposed 𝐶𝑅𝑇 = {⟨𝑧, 𝑎⟩, ⟨𝑧, 𝑏⟩}. If a change led to the model
𝑚 = {𝑎, 𝑏}, then no second model to which it is consistent can be generated.
A consistent model would have to contain 𝑧, because𝐶𝑅 requires for 𝑎 and 𝑏
an element 𝑧 to exist in another model. 𝐶𝑅𝑇 , however, requires that for a 𝑧
only either 𝑎 or 𝑏 exists in the other model, as otherwise no witness structure
with unique corresponding elements can be found (see Definition 4.19). In
consequence, a unidirectional consistency preservation rule cannot produce
a result for such an input without violating the correctness definition.

In fact, the definition does not specify for which inputs a unidirectional consis-
tency preservation rule is allowed to be undefined. One could restrict this be-
havior to cases in which there is no𝛿𝑀2 ∈ Δ𝑀2 for given models𝑚1 and𝑚2 and
a given change 𝛿𝑀1 ∈ Δ𝑀1 such that ⟨𝛿𝑀1 (𝑚1), 𝛿𝑀2 (𝑚2)⟩ consistent to CR
for consistency relations CR. We, however, leave it up to the developer to
decide for which inputs a consistency preservation rule is undefined, as there
might be cases in which a change restoring consistency can theoretically be
generated but does semantically not make sense. This was also the reason for
allowing a synchronizing consistency preservation rule to be partial, which
is why we have already discussed the scenario in Subsection 4.3.2.

6.1.2. Unidirectional Relations and Preservation

Because of the definition of unidirectional consistency preservation rules
based on a unidirectional notion of consistency relations, it seems reasonable
to have a unidirectional consistency preservation rule associated with the uni-
directional consistency relations for one direction between two metamodels.
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For each pair of metamodels, this would result in two sets of unidirectional
consistency relations and a consistency preservation rule for each of them.

It is, however, easy to see that a unidirectional consistency preservation
rule cannot only consider one direction of consistency relations but needs
to consider both. Consider the example in Figure 6.2, which contains an
extract of the consistency relations of the running example. We assume
the consistency relations 𝐶𝑅𝐸𝑅 and 𝐶𝑅𝑇

𝐸𝑅
describing that for each employee

a single corresponding resident must exist and vice versa. As discussed
before, only considering 𝐶𝑅𝐸𝑅 would realize the notion of not requiring
an employee for every resident. If we define a unidirectional consistency
preservation rule Cpr𝐶𝑅𝐸𝑅

only for the consistency relation 𝐶𝑅𝐸𝑅 with the
goal to always preserve consistency according to that relation after changes
to the employee model, the example scenario 1 in Figure 6.2 shows that this is
not the case. The rule properly propagates the change of adding an employee
by adding a resident and thus restores consistency. Removing an employee,
however, leads to a violation of consistency. The removal does not require the
consistency preservation rule to perform any changes in the resident model,
because 𝐶𝑅𝐸𝑅 only requires a unique resident to exist for every employee,
but does not forbid that there is a resident for which no employee exists. This
is defined by the inverse relation 𝐶𝑅𝑇

𝐸𝑅
. In consequence, after removing an

employee the consistency preservation rule does not perform any changes,
as consistency to 𝐶𝑅𝐸𝑅 is given, but the models are then inconsistent to
𝐶𝑅𝑇

𝐸𝑅
. Cpr𝐶𝑅𝐸𝑅

must, however, also be responsible for restoring consistency
to𝐶𝑅𝑇

𝐸𝑅
in case of an element removal, because the consistency preservation

rule Cpr𝐶𝑅𝑇
𝐸𝑅

for the inverse direction can not restore consistency to 𝐶𝑅𝑇
𝐸𝑅

,
as the resident model was not changed.

The given scenario exemplifies the general case that consistency according
to a consistency relation cannot only be violated by performing changes to
the model containing the left condition elements of the relations, but also by
changes to the model containing the right condition elements of the relation.
In general, consistency of models to a consistency relation is affected by
the presence of condition elements in the models. Consistency is defined
as the ability to define a witness structure, i.e., a unique mapping between
condition elements of the consistency relations that occur in the models.
Thus, adding, changing, or removing elements in a model that constitute a
condition element of the consistency relations can lead to inconsistencies.
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Employee
name

Resident
name

𝑒 𝑟𝐶𝑅𝐸𝑅 = {⟨𝑒, 𝑟 ⟩ | e.name = r .name}
𝐶𝑅′

𝐸𝑅
= 𝐶𝑅𝐸𝑅 ∪

{⟨𝑒, 𝑟 ⟩ | e.name = r .name.toLower}

1. Removing an employee with Cpr𝐶𝑅𝐸𝑅
only for 𝐶𝑅𝐸𝑅

: Employee
name = "Alice"

: Resident
name = "Alice"

∅

1.
add by user 2. add by Cpr𝐶𝑅𝐸𝑅

consistent to {𝐶𝑅𝐸𝑅,𝐶𝑅𝑇𝐸𝑅}

3.
remove by user

consistent to 𝐶𝑅𝐸𝑅

inconsistent to 𝐶𝑅
𝑇
𝐸𝑅

2. Adding a resident with its effect to 𝐶𝑅′
𝐸𝑅

: Employee
name = "alice"

: Resident
name = "alice"

: Resident
name = "Alice" add by user

consistent to 𝐶𝑅′
𝐸𝑅

inconsistent
to 𝐶𝑅′

𝐸𝑅

3. Removing an employee with its effect to 𝐶𝑅′
𝐸𝑅

: Employee
name = "alice"

: Employee
name = "Alice"

: Resident
name = "alice"

: Resident
name = "Alice"

remove
by user

inconsistent to 𝐶𝑅′
𝐸𝑅

consistent to 𝐶𝑅′
𝐸𝑅

Figure 6.2.: Non-alignment of unidirectional relations and preservation rules. Blue lines without
arrowheads connect elements that together are consistent or inconsistent to the noted relations.
Green lines with arrowheads indicate changes by users or consistency preservation.
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We can see that every type of change can lead to the violation of a consistency
relation in either direction:

Addition: Whenever a condition element of the left side of a consistency
relation is added to a model, a corresponding condition element needs
to exist in another model. If it does not exist yet, the models are not
consistent to that relation. When a condition element of the right side
of a consistency relation is added to a model, this does, according to
the definition of consistency, not require another condition element to
exist in another model. It can, however, lead to the situation that no
witness structure with a unique mapping between the elements exists
anymore. Consider the exemplary relation 𝐶𝑅′

𝐸𝑅
in Figure 6.2 and the

example scenario 2. Having an employee with the name “alice” and a
corresponding resident with the same name, the models are consistent
to that relation. Adding a resident with the name “Alice” violates 𝐶𝑅′

𝐸𝑅
,

because the employee “alice” corresponds to both residents, so there is no
mapping inducing a witness structure for consistency. In consequence,
adding a condition element of the right side of the consistency relation
to the models can also violate consistency to a consistency relation.

Removal: Whenever a condition element of the right side of a consistency
relation is removed from a model, the corresponding condition element
in the other model still exists. Because this element does not necessarily
have a corresponding one anymore, there may not be a valid witness
structure and thus the models may not be consistent anymore. When a
condition element of the left side of a consistency relation is removed
from a model, the originally corresponding element is not connected
to the removed element in the witness structure anymore. If there is
another element that occurs in a consistency relation pair with that
corresponding element, there is no unique mapping of elements anymore.
Consider again the relation𝐶𝑅′

𝐸𝑅
in Figure 6.2 and the example scenario 3.

Having two employees and residents with the names “alice” and “Alice”,
the models are consistent, because each employee has a corresponding
resident and vice versa. If we remove the employee “Alice”, the models
are not consistent to 𝐶𝑅′

𝐸𝑅
anymore, because the remaining employee

corresponds to both residents, so there is no unique mapping between
condition elements representing a witness structure.

Change: We do not have a precise notion of when a condition element can
be considered changed, as elements do not have an identity. Additionally,
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consistency in terms of being able to find a witness structure is only based
on the existence or non-existence of condition elements, thus whether
an element was changed or whether it was removed and created makes
no difference. We might say that a condition element can be considered
changed when the change describes modifications of the model elements
in the condition element that lead to a new condition element within
the same condition. This does, conceptually, not differ from the removal
of one and the addition of another condition element. Thus, the same
situations as discussed for addition and removal above can occur.

It is also easy to see that there is no trivial way of specifying a unidirectional
consistency preservation rule that is synchronizing. It may seem natural
to define a consistency preservation rule that is able to process changes in
both models and then return only changes in one of them to restore consis-
tency to close the gap between synchronizing and ordinary transformations.
Consider the situation that we have two residents and employees named
“Alice” and “Bob”. If one of them is removed in the residents model and the
other in the employees model, then a proper synchronizing transformation
should remove both corresponding elements such that the models are empty.
This requires changes to both models. With a unidirectional consistency
preservation rule for each direction, neither of them can produce changes
in one of the models that reasonably restore consistency. Such a rule would
necessarily revert one removal to restore consistency, which is not the in-
tended behavior and would probably not be specified by a developer that
way. In consequence, the consistency preservation rule would be undefined
for that input, although a synchronization transformation would be able to
resolve those changes. In fact, we would expect to have two unidirectional
consistency preservation rules of which each removes one of the elements.
This does, however, violate our existing notion of correctness for a single
consistency preservation rule. In the subsequent sections, we therefore dis-
cuss relaxed requirements to unidirectional consistency preservation rules
to be able to act like a synchronizing transformation.

6.1.3. Bidirectional Transformations

A unidirectional consistency preservation rule usually appears in combina-
tion with another rule for the opposite direction. We have seen that even a
single unidirectional consistency relation between two metamodels requires
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unidirectional consistency preservation rules for both directions to preserve
consistency according to that relation after changes to instances of either of
the metamodels. Many transformation languages allow the specification of
bidirectional transformations, which means that they derive unidirectional
consistency preservation rules for both directions (see Section 2.4).

In general, it is reasonable to consider two unidirectional consistency preser-
vation rules between two metamodels together, such that after changes in
instances of any of the two metamodels, the other can be updated to restore
consistency. A synchronizing transformation according to Definition 4.7 is
also able to process changes in any of the two models, thus such a notion
fits to our goal of emulating synchronizing transformations. According to
common terminology, we define this as a bidirectional transformation.

Definition 6.3 (Bidirectional Transformation)
Let 𝑀1 and 𝑀2 be two metamodels, and let CR be a set of consis-
tency relations between them. Additionally, let Cpr→

CR
and Cpr←

CR
be

unidirectional consistency preservation rules with:

Cpr→
CR

: (𝐼𝑀1 , 𝐼𝑀2 ,Δ𝑀1 ) → Δ𝑀2 ∪ {⊥}
Cpr←

CR
: (𝐼𝑀2 , 𝐼𝑀1 ,Δ𝑀2 ) → Δ𝑀1 ∪ {⊥}

A bidirectional transformation is a triple 𝔱 = ⟨CR,Cpr→
CR

,Cpr←
CR
⟩.

We call such a bidirectional transformation correct if both consistency preser-
vation rules are correct according to Definition 6.2.

Definition 6.4 (Bidirectional Transformation Correctness)
Let 𝔱 = ⟨CR,Cpr→

CR
,Cpr←

CR
⟩ be a bidirectional transformation. We

call 𝔱 correct if, and only if, Cpr→
CR

and Cpr←
CR

are both correct.

Such bidirectional transformations ensure that if any of two models is
changed, a change for the other is generated such that both changed models
are consistent again, or it may fail returning ⊥. This does, however, not
reflect the case that both models have been modified concurrently, as it is the
case in transformation networks and thus supported by our initial definition
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of synchronizing transformations. We therefore discuss in the following
sections how we can combine the unidirectional consistency preservation
rules of a bidirectional transformation and which requirements we have
to make to them such that the bidirectional transformation behaves like a
synchronizing one.

6.2. Combining Unidirectional Consistency
Preservation Rules

We have introduced that bidirectional transformations, as we assume to be
the notion for practically usable transformation specifications, can only be
applied after changes to one model and update the other to restore consis-
tency. This induces a gap to synchronizing transformations, as required in
transformation networks, which are able to accept changes made in both
models and update both models to restore consistency. To close this gap,
we discuss options to combine the unidirectional consistency preservation
rules of a bidirectional transformation, such that it considers changes made
to both models and thus acts like a synchronizing transformation.

6.2.1. Options for Combination

Existing work already proposed strategies to synchronize concurrent changes
between two models. This includes techniques for processing concurrent
changes with TGGs [Her+12; OPN20] and specific algorithms for a general
notion of synchronizing transformations according to our definition [Xio+13;
Xio+09]. All these approaches, however, deal with the more general case that
arbitrary changes may have been made. This especially includes conflicting
updates by one or more users, which need to be resolved and potentially
require one of the changes to be reverted.

We are, however, in the situation that transformations do not perform ar-
bitrary changes and that changes of other transformations may need to be
revised but not reverted. For example, it may be necessary to update an
attribute value again, because the interval of consistent values of the cur-
rently executed transformation is smaller than the one of a transformation
executed before. It will, however, not be necessary to completely revert the

190



6.2. Combining Unidirectional Consistency Preservation Rules

modification of the attribute value, because the modification was necessary
for another transformation to restore consistency. Thus, the causal change
for which consistency was restored would need to be reverted as well. Finally,
this would result in reverting a user change, which should never happen.

We assume the consistency relations of transformations to be compatible
according to Definition 5.3, which excludes contradictions that may prevent
transformations from finding a consistent result for specific changes. This
assumptions reduces the potential conflicts that may occur when changes of
different transformations need to be synchronized.

A bidirectional transformation according to Definition 6.3 consists of two
unidirectional consistency preservation rules. We have discussed in Sub-
section 6.1.2 that it is not possible to extend those consistency preservation
rules to be synchronizing such that the execution of a single unidirectional
consistency preservation rule restores consistency to all consistency relations
after changes to both models. In fact, it will be necessary to execute both
preservation rules at least once to restore consistency. Different options to
apply the rules exist, each having individual benefits and drawbacks.

We have sketched two scenarios for executing multiple consistency preserva-
tion rules in Subsection 4.1.3, which can be transferred to the case of executing
the two consistency preservation rules of a bidirectional transformation. A
first option is to independently apply the consistency preservation rules and
then merge the results. Imagine models 𝑚1 and 𝑚2 and changes 𝛿𝑀1 and 𝛿𝑀2
to them. Applying the two unidirectional consistency preservation rules inde-
pendently yields 𝛿 ′

𝑀2
= Cpr→

CR
(𝑚1,𝑚2, 𝛿𝑀1 ) and 𝛿 ′

𝑀1
= Cpr←

CR
(𝑚2,𝑚1, 𝛿𝑀2 ).

It is, however, not guaranteed that ⟨𝛿 ′
𝑀1
(𝛿𝑀1 (𝑚1)), 𝛿 ′𝑀2

(𝛿𝑀2 (𝑚2))⟩ is consis-
tent to CR. It is even not guaranteed that the changes, such as 𝛿𝑀1 and
𝛿 ′
𝑀1

, can be concatenated at all, since 𝛿 ′
𝑀1

was generated for𝑚1 and not for
𝛿𝑀1 (𝑚1). As an example, 𝛿𝑀1 may remove an element from 𝑚1, which 𝛿 ′

𝑀1
changes. Even if the change is still defined for that modified model, the result
may not be consistent, because the necessary change produced by Cpr→

CR

cannot be applied anymore. Thus merging the changes of both consistency
preservation rules does not necessarily yield a consistent result.

Another option is to sequence the execution. In a first step, we generate the
change 𝛿 ′

𝑀2
= Cpr→

CR
(𝑚1,𝑚2, 𝛿𝑀1 ) as before. Then, ⟨𝛿𝑀1 (𝑚1), 𝛿 ′𝑀2

(𝑚2)⟩ is
consistent due to correctness of Cpr→

CR
. Afterwards, we apply the second

consistency preservation rule to the newly generated consistent models and
the original change 𝛿𝑀2 to 𝑚2, thus 𝛿 ′

𝑀1
= Cpr←

CR
(𝛿 ′

𝑀2
(𝑚2), 𝛿𝑀1 (𝑚1), 𝛿𝑀2 ).
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𝑚1

𝛿𝑀1 (𝑚1)

𝛿 ′
𝑀1
(𝛿𝑀1 (𝑚1))

𝑚2

𝛿 ′
𝑀2
(𝑚2)

𝛿𝑀2 (𝛿 ′𝑀2
(𝑚2))

consistent to CR

consistent to CR

consistent to CR

𝛿𝑀1

𝛿 ′
𝑀1

𝛿 ′
𝑀2

𝛿𝑀2

Cpr→
CR

Cpr←
CR

Figure 6.3.: Schema for sequencing unidirectional consistency preservation rules after concurrent
changes. Circles denote model states, blue lines connect consistent models, and green lines with
arrowheads denote the execution of changes or consistency preservation.

As a result, we receive ⟨𝛿 ′
𝑀1
(𝛿𝑀1 (𝑚1)), 𝛿𝑀2 (𝛿 ′𝑀2

(𝑚2))⟩, which is consistent to
CR. This means that 𝛿𝑀2 is not applied to𝑚2 anymore, in which the changes
were performed originally, but needs to be applied to 𝛿 ′

𝑀2
(𝑚2). It is, again,

unclear whether the change can be applied to that state, i.e., whether 𝛿𝑀2
is defined for 𝛿 ′

𝑀2
(𝑚2). However, if the changes are applicable, all original

changes are reflected in the result. In addition, the resulting models are
consistent because of correctness of the consistency preservation rules.

Both discussed options have the drawback that they cannot guarantee to
produce a result, as it is possible that the involved changes cannot be concate-
nated. In addition, the first option of independently applying the consistency
preservation rules and then merging the results cannot even guarantee that
the resulting models are consistent if changes can be concatenated. Thus, we
only consider the second option of sequencing the execution of consistency
preservation rules and further discuss it in the following.

6.2.2. Sequencing of Consistency Preservation Rules

The sequential application of original changes and execution of consistency
preservation rules is depicted schematically in Figure 6.3. It has two important
properties. First, it ensures that all original changes are applied to the models
and, second, it guarantees that the resulting models are consistent. It is,
however, only applicable in specific situations. The optimal case, in which
the approach is always applicable, is if Cpr→

CR
produces changes for the
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Employee
name

Resident
name

𝑀1 𝑀2

𝑒 𝑟

𝐶𝑅𝐸𝑅 = {⟨𝑒, 𝑟 ⟩ | e.name = r .name.toLower}

CR = {𝐶𝑅𝐸𝑅,𝐶𝑅𝑇𝐸𝑅}

: Employee
name = "alice"

: Resident
name = "alice"

: Resident
name = "Alice"

𝑚1 𝑚2

𝛿𝑀1

𝛿 ′
𝑀2

= Cpr→
CR

𝛿𝑀2

consistent to CR

inconsistent to CR

Figure 6.4.: Example for non-transformability when sequencing the application of unidirectional
consistency preservation rules and concurrent changes. Blue lines without arrowheads connect
elements that are (in-)consistent toCR, and green lines with arrowheads indicate changes.

second model that affect a disjoint set of elements in CR compared to the
original changes to the second model 𝛿𝑀2 . If two changes affect completely
disjoint sets of elements, they can obviously be consecutively applied. It
would then not even make a difference in which order they are applied.

Unfortunately, the change 𝛿 ′
𝑀2

produced by Cpr→
CR

and the original one 𝛿𝑀2
produced by other transformations do not necessarily affect disjoint sets of
elements. In that case, the two following problems can occur.

Non-Applicability: The most obvious problem, which we have already dis-
cussed, is that the original change to the second model 𝛿𝑀2 cannot be
applied to the model changed by 𝛿 ′

𝑀2
as the result of Cpr→

CR
. This can, for

example, happen when 𝛿 ′
𝑀2

removes an element that is affected by 𝛿𝑀2 .
Since the element was changed in 𝛿𝑀2 , it is part of a condition element
in another transformation that was executed before. As Cpr→

CR
removed

that element, the condition element does no longer exist anyway, thus
this removal has to be propagated back by the transformation that orig-
inally introduced the change 𝛿𝑀2 . In consequence, the modification in
𝛿𝑀2 can simply be ignored. In the worst case, all elements affected by 𝛿𝑀2
were removed by 𝛿 ′

𝑀2
. Then, 𝛿𝑀2 can be completely ignored, because all

condition elements of the involved consistency relations were removed.
Thus, we can always ensure that the changes, at least those that are still
relevant, can still be applied.
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Non-Transformability: Even if the change 𝛿𝑀2 can be applied to 𝛿 ′
𝑀2
(𝑚2),

this does not guarantee that Cpr←
CR

is able to process the given change.
In fact, this requirement applies to all changes, even including origi-
nal user changes, but there are special circumstances in this situation
that make the transformation prone to not being able to transform the
changes. Whenever 𝛿 ′

𝑀2
adds condition elements that were already added

by 𝛿𝑀2 , their concatenation can lead to a duplication of those elements.
Consider the scenario depicted in Figure 6.4 with consistency relations
CR = {𝐶𝑅𝐸𝑅,𝐶𝑅

𝑇
𝐸𝑅
}. An employee “alice” is added by the original change

to 𝑚1. The consistency preservation rule then generates an appropri-
ate resident with the same name to fulfill the consistency relation. The
original change to 𝑚2 adds a resident “Alice”, which was generated by
another transformation, e.g., the one that created an appropriate per-
son and changed the capitalization of the name. Applying this original
change leads to two residents with different name capitalizations. Now it
is impossible for Cpr←

CR
to generate a change 𝛿 ′

𝑀1
for the first model to

restore consistency. The employee corresponds to both residents, as both
fulfill the constraint of the consistency relation. But there is no additional
employee that could be added to achieve a unique mapping between cor-
responding elements. A synchronizing transformation would have been
able to produce a consistent result by considering both original changes
at once and then simply not performing any additional changes, as the
originally added resident is already consistent to the originally added
employee. In consequence, if the unidirectional consistency preservation
rule had known that the resident was already added, it would not have
performed any changes.

As remarked before, the situation that certain changes cannot be processed
by the consistency preservation rules cannot be avoided. If the user had
added the second resident in the previous scenario, there would have also
been no possibility for the consistency preservation rule to generate changes
that restore consistency. The difference is, however, that in this case it is
fine that no result is found. In case of the scenario discussed above, the
original changes could have been reasonably processed to a consistent result
if the unidirectional consistency preservation rule would have considered
that there was already a change that restored consistency.

In consequence, it is inevitable that consistency preservation rules need to
be able to deal with the situation that the target model was already modified,
such that the given models are not initially consistent. This is necessary
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A
i

B
i

𝑎 𝑏

𝐶𝑅1 = {⟨𝑎, 𝑏⟩ | 𝑎.𝑖, 𝑏.𝑖 ≥ 0 ∧ 𝑏.𝑖 = 𝑎.𝑖 + 1 ≠ 5}
𝐶𝑅2 = {⟨𝑎, 𝑏⟩ | 𝑎.𝑖 = 𝑏.𝑖}

Figure 6.5.: Two consistency relations requiring multiple executions of unidirectional consistency
preservation rules to find a consistent result.

to reflect the changes that have already been made and to integrate them
into consistency preservation. In consequence, we finally have to relax our
requirements for the input of consistency preservation rules to be able to
consider the changes to both models. This means that we need to make
further requirements to the preservation rules, because we do not yet assume
the consistency preservation rules to produce results for inputs that are
not consistent. We have already given examples for scenarios in which
it is not possible to restore consistency by one unidirectional consistency
preservation rule after changes in both models.

Before we define a precise notion of further requirements to consistency
preservation rules that accept inconsistent inputs, we first discuss how often
it may be necessary to execute both consistency preservation rules to restore
consistency, as this directly affects the requirements we have to define.

6.2.3. Execution Bounds

Correctness of unidirectional consistency preservation rules ensures that
after executing such a rule the resulting models are consistent. It is easy to see
that this correctness notion cannot be fulfilled for certain sets of consistency
relation sets. This is exemplified at the artificial scenario depicted in Figure 6.5.
We consider two consistency relations 𝐶𝑅1 and 𝐶𝑅2 and their transposed
relations, i.e., CR = {𝐶𝑅1,𝐶𝑅

𝑇
1 ,𝐶𝑅2,𝐶𝑅

𝑇
2 }. 𝐶𝑅1 requires that for each A

an instance of B exists that has the same value of 𝑖 incremented by 1. The
only exception is that if 𝑖 in A is 4 (or any other arbitrary value), then no
corresponding element B is required. 𝐶𝑅2 requires that for each A an instance
of B exists, which has the same value of 𝑖 . We want to define a bidirectional
transformation of two unidirectional consistency preservation rules Cpr→

CR

for propagating changes in models with instances of A to one with instances
of B and Cpr←

CR
to propagate changes in the opposite direction.
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Consider the following scenario: If an A with 𝑖 = 0 is added to an empty
model, Cpr→

CR
cannot perform any changes in an (also empty) model with

instances of B that restore consistency. Because of 𝐶𝑅1, a B with 𝑖 = 1 has to
be created, and because of 𝐶𝑅2, a B with 𝑖 = 0 has to be created. While this
also fulfills 𝐶𝑅𝑇1 , the existence of B with 𝑖 = 1 requires the existence of an A

with 𝑖 = 1 due to𝐶𝑅𝑇2 . Since Cpr→
CR

cannot modify the model with instances
of A, it is impossible for Cpr→

CR
to restore consistency in that case.

Allowing the consistency preservation rules to react to each other multiple
times can, however, lead to a consistent result. If Cpr←

CR
adds an A with 𝑖 = 1

in response to the previous execution of Cpr→
CR

, all consistency relations
except 𝐶𝑅1 are fulfilled. Cpr→

CR
can then create a B with 𝑖 = 2, which is

iteratively processed by Cpr←
CR

. This process terminates as soon as Cpr←
CR

adds an A with 𝑖 = 4, as then 𝐶𝑅1 is also fulfilled, because it does not require
a corresponding B for an A with 𝑖 = 4.

We have seen that it is possible to execute unidirectional consistency preser-
vation rules multiple times to achieve a consistent state and that it is not
always possible to ensure consistency with only one execution of such a
rule. In fact, the number of necessary executions of consistency preservation
rules can be arbitrarily high. The value of 5 in 𝐶𝑅1 of the example can be
exchanged by any value requiring an arbitrary high number of executions.
We may only circumvent this by requiring that Cpr→

CR
must perform changes

such that Cpr←
CR

can then restore consistency with a single execution. In
our scenario, this would mean that Cpr→

CR
adds all instances of B with 𝑖 ≤ 4.

Anyway, such a behavior requires a relaxation of the correctness require-
ment for consistency preservation rules, because the execution of Cpr→

CR

can never result in a consistent state.

Additionally, it may be desired that elements of a consistency relation are
created by a consistency preservation rule, although a condition element was
only created partially so far. In that case, the partial condition element has to
be completed in one model in addition to the creation of the corresponding
condition element in the other model. Thus, changes in both models are
required, which can only be achieved by executing both consistency preser-
vation rules and accepting that executing the first one does not result in
consistent models. An example for such a scenario could be the consistency
relation between a component in the PCM and its realization as a package
and a class in Java. It may be desired that a package at a specific place, e.g.,
within a “components” package, or with a specific name, e.g., containing
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“Component”, in the Java code is identified as a component. Creating such
a package shall then lead to the creation of a component in the the PCM
model as well as of the implementation class in Java. In that case, there is no
complete condition element created in Java, because this would also require
the existence of an appropriate class. If the elements shall still be created,
both models have to be changed. Thus, the first consistency preservation
rule introduces the PCM component, which introduces an inconsistency
between the models, as the corresponding Java class is missing. This is then
corrected by the consistency preservation rule in opposite direction adding
the implementation class.

Finally, it is questionable whether such scenarios should be considered in
the formal framework or if it should be up to a developer to implement such
a scenario without having specific guarantees regarding termination of the
consistency preservation rules or regarding consistency of the models after
executing the rules a specific number of times. Since we need to relax the
requirement of consistency preservation rules to always produce consistent
results after one execution in the synchronization scenario where both models
have been modified, we will allow the consistency preservation rules to be
executed more than once anyway. Regarding the example in Figure 6.5, if we
started with an A with 𝑖 = 6 and let the consistency preservation rules operate
as discussed above, i.e., always adding the elements with 𝑖 incremented
by one, this process would never terminate. We thus need to ensure that
such an execution terminates. Since the consistency preservation rules
depend on each other, this will, however, be a property of the bidirectional
transformation rather than the individual consistency preservation rule.

6.2.4. Necessity for Synchronization Extension

In the previous subsections, we have discussed that after changes to two
models, these changes and the ones produced by consistency preservation
rules that restore consistency between these models cannot be sequenced
in a way such that we receive consistent models in all cases the consistency
preservation rules are able to handle. We especially found that it is necessary
for a unidirectional consistency preservation rule to consider the changes
made to the model it is supposed to modify. Thus, we need to enable con-
sistency preservation rules to deal with the situation that the input models
are inconsistent. In our current definition, no behavior of a consistency
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preservation rule and the encapsulating bidirectional transformation for
such a situation is defined. Thus, we discuss an appropriate extension of
bidirectional transformations that support this scenario of synchronization
in the following section.

Additionally, we found that consistency preservation rules may need to be
executed multiple times. This is obviously necessary to make bidirectional
transformations synchronizing, as they need to be able to change both models
after both of them may have been modified. Therefore, we consider how we
can achieve execution bounds, such that the termination of multiple execu-
tions of the consistency preservation rules of a bidirectional transformation
is guaranteed.

6.3. Synchronizing Bidirectional Transformations

In the following, we discuss how we can extend bidirectional transformations
and, in particular, their unidirectional consistency preservation rules such
that they are able to deal with the situation that both models may have been
modified. To achieve this, we extend consistency preservation rules to also
accept models that are not initially consistent. We can then not require them
to restore consistency with a single execution anymore. Instead, we define a
notion of partial consistency, which allows us to specify how the execution of
consistency preservation rules has to improve the degree of consistency. We
derive requirements for the transformations to improve partial consistency
and finally show that transformations fulfilling these requirements terminate
consistently.

6.3.1. Partial Consistency of Models

Given two models 𝑚1 and 𝑚2 and changes 𝛿𝑀1 and 𝛿𝑀2 to each of them, a
unidirectional consistency preservation rule Cpr→

CR
needs to accept and pro-

cess the change in one model, be it 𝛿𝑀1 without loss of generality, and receive
the unchanged model 𝑚1 as well as the changed second model 𝛿𝑀2 (𝑚2). We
have discussed the necessity to process the changed second model in the
previous section. While𝑚1 and𝑚2 are consistent,𝑚1 and 𝛿𝑀2 (𝑚2) may not.
In consequence, Cpr→

CR
, even if correct according to Definition 6.2, does

not guarantee that applying the returned change yields consistent models,
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as its behavior for inconsistent input models is undefined. 𝑚1 and 𝛿𝑀2 (𝑚2)
will, however, usually still fulfill some kind of partial consistency notion.
Depending on the complexity of 𝛿𝑀2 large parts of the models will still be
consistent. Such a notion of partial consistency may be defined in two ways.
First, two models may only fulfill an extract of the consistency relations.
Second, only extracts of two models may fulfill the consistency relations.

In the first option, we consider that the given models are only consistent to
a subset of the given consistency relations. There may, however, be only a
single element in the models that leads to the violation of all consistency
relations. Thus, we would call the models completely inconsistent just be-
cause of a single element. We could circumvent that by defining a notion of
partial consistency relations, such that we can consider models consistent to
a part of a consistency relation. Such a notion would have to be defined at
the level of consistency relation pairs and their condition elements within
the consistency relations. Considering subsets of consistency relations, i.e.,
only a subset of their consistency relation pairs, would, however, not make
sense, because when analyzing consistency of two models those consistency
relation pairs are not independent. Consistency is not evaluated individually
for each consistency relation pair but by the ability to find a witness structure,
which is a subset of the consistency relation pairs that uniquely relates the
condition elements of a consistency relation that occur within models. Thus,
if consistency to a relation is given by removing only a single consistency
relation pair does not mean that there is only one missing or superfluous
element in the models to be consistent. Due to these interdependencies of
consistency relation pairs, consistency to partial consistency relations will
in general not provide insights on the reasons for models being inconsistent,
which is why we do not consider this as our notion for partial consistency.

In the second option, we consider that only parts of the given models are
consistent to all given consistency relations. In addition to the missing
ability of the first option to give reasonable insights on inconsistencies, this,
intuitively, is a more reasonable notion, because it explicitly defines that parts
of the models are consistent whereas other parts are not. We thus define
partial consistency as models having subsets that are actually consistent. To
identify how far models are partially consistent, we also define an according
metric based on finding maximal subsets of the models that are consistent.
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Definition 6.5 (Partial Consistency)
Let CR be a set of consistency relations. Given two models𝑚1 ∈ 𝐼𝑀1
and𝑚2 ∈ 𝐼𝑀2 , their maximal consistent subsets𝑚

𝑝

1 ⊆ 𝑚1 and𝑚
𝑝

2 ⊆ 𝑚2
with regards to CR are the subsets of 𝑚1 and 𝑚2 that are consistent
and larger than all other consistent subsets:

⟨𝑚𝑝

1 ,𝑚
𝑝

2 ⟩ consistent to CR ∧𝑚
𝑝

1 ⊆ 𝑚1 ∧𝑚𝑝

2 ⊆ 𝑚2

∧ ∀𝑚𝑝′

1 ∈ P(𝑚1),𝑚𝑝′

2 ∈ P(𝑚2) :(︁
⟨𝑚𝑝′

1 ,𝑚
𝑝′

2 ⟩ consistent to CR⇒ |𝑚
𝑝′

1 | + |𝑚
𝑝′

2 | ≤ |𝑚
𝑝

1 | + |𝑚
𝑝

2 |
)︁

Partial consistency consCR of two models regarding CR is the ratio
between the sizes of the maximal consistent subsets and the models:

consCR : (𝐼𝑀1 , 𝐼𝑀2 ) → [0, 1], (𝑚1,𝑚2) ↦→
|𝑚𝑝

1 |+|𝑚
𝑝

2 |
|𝑚1 |+|𝑚2 |

Such maximal consistent subsets always exist. When models are not consis-
tent in any way, it is𝑚𝑝

1 =𝑚
𝑝

2 = ∅, because empty models are consistent by
definition. In that case, partial consistency of the models is 0. When models
are consistent, the maximal consistent subsets are the models themselves,
which is why partial consistency is 1.

A comparable notion of partial consistency has been introduced by Stevens
[Ste14; Ste20b]. She introduces a consistency indicator replacing a consistency
relation, which determines how consistent two models are. It is based on
a partial order between models regarding their degree of consistency. This
notion is used to define partial bidirectional transformations that ensure
that their execution does not reduce consistency. Our definition of partial
consistency can be seen as an implementation of such a consistency indicator.
We, however, use the notion to ensure that the iterative application of con-
sistency preservation rules of transformations results in totally consistent
models after a finite number of steps.

6.3.2. Transformations for Partially Consistent Models

Before we consider the case that two models have been modified and need to
be synchronized, we start with the case that of two initially consistent models
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one has been changed. We then extend that scenario to the case when both
models have been changed. We use the notion of partial consistency to define
that the given models are initially partially consistent and how this partial
consistency improves by executing the bidirectional transformation. As
discussed in Subsection 6.2.3, it may be necessary to execute the consistency
preservation rules multiple times to achieve a consistent state, producing
several intermediate changes that generate partially consistent models.

In the following, we derive the properties a bidirectional transformation has
to fulfill to eventually return models that are consistent if applied repeatedly.
They are based on the idea that each execution has to improve partial consis-
tency of the given models. Since a single consistency preservation rule may
not be able to improve partial consistency in every case, we always consider
the combination of both preservation rules of a bidirectional transformation
and require that property from them. Therefore, we define the notion of a
bidirectional transformation execution step, which is composed of a single
execution of both unidirectional consistency preservation rules.

Definition 6.6 (Bidirectional Transformation Execution Step)
Let 𝔱 = ⟨CR,Cpr→

CR
,Cpr←

CR
⟩ be a bidirectional transformation for

metamodels 𝑀1 and 𝑀2. An execution step Ex1
𝔱

of 𝔱 is a function:

Ex1𝔱 : (𝐼𝑀1 , 𝐼𝑀2 ,Δ𝑀1 ) → (𝐼𝑀1 , 𝐼𝑀2 ,Δ𝑀1 ) ∪ {⊥}

(𝑚1,𝑚2, 𝛿𝑀1 ) ↦→
{︄
(𝑚′1,𝑚′2, 𝛿 ′𝑀1

)
⊥

with:

𝛿 ′𝑀2
≔ Cpr→

CR
(𝑚1,𝑚2, 𝛿𝑀1 ) 𝑚′1 ≔ 𝛿𝑀1 (𝑚1)

𝛿 ′𝑀1
≔ Cpr←

CR
(𝑚2,𝑚

′
1, 𝛿
′
𝑀2
) 𝑚′2 ≔ 𝛿 ′𝑀2

(𝑚2)

If Cpr→
CR
(𝑚1,𝑚2, 𝛿𝑀1 ) = ⊥ or Cpr←

CR
(𝑚2,𝑚

′
1, 𝛿
′
𝑀2
) = ⊥, then the exe-

cution is undefined, i.e., Ex1
𝔱
(𝑚1,𝑚2, 𝛿𝑀1 ) = ⊥.

Such execution steps can be applied repeatedly. Each execution step delivers
a new change to the first model and a changed version of the second model
by applying the changes delivered by the consistency preservation rules of
the bidirectional transformation. The execution step can be reapplied to
these resulting models and the resulting change.
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Algorithm 6.1 Execution of a bidirectional transformation.
1: procedure Execute(𝔱 = ⟨CR,Cpr→

CR
,Cpr←

CR
⟩,𝑚1,𝑚2, 𝛿𝑀1 )

2: if ¬(⟨𝑚1,𝑚2⟩ consistent to CR) then
3: return ⊥
4: end if
5: while ¬(⟨𝛿𝑀1 (𝑚1),𝑚2⟩ consistent to CR) do
6: (𝑚1,𝑚2, 𝛿𝑀1 ) ← Ex1

𝔱
(𝑚1,𝑚2, 𝛿𝑀1 )

7: if (𝑚1,𝑚2, 𝛿𝑀1 ) = ⊥ then
8: return ⊥
9: end if

10: end while
11: return ⟨𝛿𝑀1 (𝑚1),𝑚2⟩
12: end procedure

The execution of a bidirectional transformation consists of the consecutive
application of execution steps until the delivered models are consistent, as
defined in Algorithm 6.1. Although we, theoretically, require the consistency
preservation rules to handle initial models that can be arbitrarily inconsistent,
it will not be possible to define such rules in practice. Therefore, we stick
to the requirement that inconsistencies are introduced by changes. Then, it
is up to the consistency preservation rules to process the changes in a way
such that all introduced inconsistencies are resolved.

Without loss of generality, we have defined bidirectional transformation
execution steps for original changes in 𝑀1, although the consistency preser-
vation rules of a transformation are also able to handle changes in 𝑀2. The
definitions can be applied to that case accordingly by swapping Cpr→

CR

and Cpr←
CR

. Since we finally consider the case that both models have been
changed, it is not relevant for us which change to consider first.

6.3.3. Transformation Execution Termination

The algorithm obviously only returns ⊥ if an execution step of the transfor-
mation cannot be applied. Additionally, we can easily show that in all other
cases in which the algorithm terminates, it returns consistent models.
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Lemma 6.1 (Bidirectional Transformation Execution Consistency)
If Algorithm 6.1 terminates, it either returns ⊥ or a consistent model pair.

Proof. Algorithm 6.1 terminates with one of its return statements. It returns
⊥ in Line 3 or Line 8, which fulfills the lemma. It returns ⟨𝛿𝑀1 (𝑚1),𝑚2⟩ in
Line 11. This line is reached when the loop condition was not fulfilled, i.e.,
when ⟨𝛿𝑀1 (𝑚1),𝑚2⟩ consistent to CR, which fulfills the lemma.

The algorithm does, however, not ensure termination for arbitrary bidirec-
tional transformations and input models and changes. To ensure termination,
we need to assure that after a finite number of execution steps of the trans-
formation the algorithm either delivers consistent models or cannot apply
further execution steps, i.e., returns ⊥. To achieve this, we enforce execution
steps to improve partial consistency to finally reach a consistent state. We
provide the following notion of partial consistency improvement for that.

Definition 6.7 (Partial Consistency Improvement)
Let 𝔱 be a bidirectional transformation for metamodels 𝑀1 and 𝑀2. We
say that 𝔱 is partial-consistency-improving if, and only if, an execution
step always improves partial consistency by reducing the size of the
models or improving the size of the maximal consistent subsets.

We define (𝑚′1,𝑚′2, 𝛿 ′𝑀1
) ≔ Ex1

𝔱
(𝑚1,𝑚2, 𝛿𝑀1 ) for all inputs, for which

Ex1
𝔱

does not return ⊥. We denote 𝛿𝑀1 (𝑚1)𝑝 and 𝑚
𝑝

2 as the maxi-
mal consistent subsets of 𝛿𝑀1 (𝑚1) and𝑚2. We denote 𝛿 ′

𝑀1
(𝛿𝑀1 (𝑚1))𝑝

and 𝛿 ′
𝑀2
(𝑚2)𝑝 as the maximal consistent subsets of 𝛿 ′

𝑀1
(𝛿𝑀1 (𝑚1)) and

𝛿 ′
𝑀2
(𝑚2). We require that when 𝛿𝑀1 (𝑚1)𝑝 ≠ 𝛿𝑀1 (𝑚1) and𝑚𝑝

2 ≠𝑚2 (i.e.,
when 𝛿𝑀1 (𝑚1) and𝑚2 are not consistent):

|𝛿 ′𝑀1
(𝛿𝑀1 (𝑚1))𝑝 | + |𝛿 ′𝑀2

(𝑚2)𝑝 | − |𝛿𝑀1 (𝑚1)𝑝 | − |𝑚𝑝

2 |
> |𝛿 ′𝑀1

(𝛿𝑀1 (𝑚1)) | + |𝛿 ′𝑀2
(𝑚2) | − |𝛿𝑀1 (𝑚1) | − |𝑚2 |

Although the definition may first look like a rather theoretic requirement, it
obviously matches an intuitive expectation regarding consistency preserva-
tion. In each execution step of the bidirectional transformation, we expect
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that no existing consistency is destroyed and that further consistency is
introduced. To this end, we expect either the size of the maximal consistent
subsets to improve more than the size of the models or the size of the models
to decrease more than the size of the maximal consistent subsets. This is
reasonable, because consistency preservation should either add or modify
elements such that more elements are consistent or remove elements that
are inconsistent because their corresponding elements were removed.

In the first case, the size of the maximal consistent subsets is improved by
adding or modifying elements such that they are consistent again. At the
same time, models should not increase in size by the same value as the maxi-
mal consistent subsets do, because then elements were added which do either
not improve consistency of any already existing element or otherwise violate
consistency of some of the existing elements. We do, however, not want con-
sistency preservation rules to violate consistency for any already consistent
element. In the second case, the size of the models is decreased by removing
elements that were not consistent because of the removal of a corresponding
element. At the same time, models should not decrease in size by the same
value due to the same reasons as in the first case. If elements are removed
from the models, which were also present in the maximal consistent subsets,
elements that were actually consistent are removed, which is undesired. For
these reasons, we consider the requirement in Definition 6.7 to be appropriate
for practical transformation definition. They even represent a weaker notion
than what we aim to achieve in practice, because the requirement only bases
on the sizes of the models and their maximal consistent subsets but not
their actual contents. In practice, the consistent subsets before executing a
transformation will be a subset of those after executing a transformation,
although this is not formally required by the definition.

Remark. The definition for partial-consistency-improving transformations
is based on a notion of partial consistency that considers the maximal consis-
tent subsets. In practice, the subsets of the models that are to be considered
consistent may not necessarily be the maximal ones. It is possible that there
are larger subsets that could be considered consistent, but due to the history
of changes, other, smaller subsets actually represent the consistent subsets.
The requirement in the formalization is, however, only necessary to have a
unique subset that can be calculated from each model state and to make state-
ments about. In practice, usually trace models are used to represent which
elements are corresponding and thus witness consistency. Ensuring that the
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requirements of partial consistency improvement apply to the consistent
subsets induced by that trace model, the previous and following insights are
still applicable, as it is only necessary that partial consistency improves with
each transformation execution step and finally reaches 1.

The given notion of partial consistency improvement is stronger than the
intuitive notion of just requiring the application of an execution step to im-
prove partial consistency according to the metric in Definition 6.5. Although
expecting such an improvement also ensures that the execution steps are
strongly monotone regarding partial consistency, it does not ensure that a
partial consistency of 1 is reached after a finite number of execution steps.
This is due to the possibility of just having an asymptotic approximation of 1,
which can, e.g., be achieved by adding consistent elements that do not affect
the existing elements in each step. Then the sizes of the maximal consistent
subsets and the models themselves increase by the same value, thus partial
consistency improves but never reaches 1.

Lemma 6.2 (Bidirectional Transformation Execution Termination)
Let 𝔱 = ⟨CR,Cpr→

CR
,Cpr←

CR
⟩ be a partial-consistency-improving bidi-

rectional transformation. Then Algorithm 6.1 terminates for every input.

Proof. The while loop of the algorithm consecutively applies an execution
step of the bidirectional transformation 𝔱. The algorithm terminates when
at some point a return statement is executed, thus either an execution step
cannot be executed and returns ⊥, or the loop condition is not fulfilled any-
more. To quit the loop, the model pair ⟨𝛿𝑀1 (𝑚1),𝑚2⟩ needs to be consistent.
𝑚1, 𝑚2, and 𝛿𝑀1 are the results of an execution step of 𝔱, to which the val-
ues 𝑚1, 𝑚2, and 𝛿𝑀1 of the previous iteration were given. We know that
⟨𝛿𝑀1 (𝑚1),𝑚2⟩ consistent to CR if, and only if, their partial consistency is 1,
i.e., ConsCR (𝛿𝑀1 (𝑚1),𝑚2) = 1. Partial consistency is 1 if, and only if, the
sizes of the maximal consistent subsets are equal to the sizes of the models
themselves, i.e., when |𝛿𝑀1 (𝑚1)𝑝 | + |𝑚𝑝

2 | = |𝛿𝑀1 (𝑚1) | + |𝑚2 |. To show that
partial consistency reaches 1, we consider the development of the size differ-
ences of the maximal consistent subsets and the models during the execution
of the algorithm. We start with the initial size difference:

sizeDifference0 ≔ |𝛿𝑀1 (𝑚1) | + |𝑚2 | − |𝛿𝑀1 (𝑚1)𝑝 | − |𝑚𝑝

2 |
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It is sizeDifference0 ≥ 0, because the models are always larger than their
maximal consistent subsets. In the 𝑖-th iteration of the loop, we start with
models𝑚𝑖−1

1 ,𝑚𝑖−1
2 and change 𝛿𝑖−1

𝑀1
, and the execution step returns𝑚𝑖

1,𝑚𝑖
2,

and 𝛿𝑖
𝑀1

. Then we have the size differences before this iteration, i.e., the
difference after iteration 𝑖 − 1, and after this iteration, as:

sizeDifference𝑖−1 ≔ |𝛿𝑖−1𝑀1
(𝑚𝑖−1

1 ) | + |𝑚𝑖−1
2 | − |𝛿𝑖−1𝑀1

(𝑚𝑖−1
1 )𝑝 | − |𝑚

𝑖−1,𝑝
2 |

sizeDifference𝑖 ≔ |𝛿𝑖𝑀1
(𝑚𝑖

1) | + |𝑚𝑖
2 | − |𝛿𝑖𝑀1

(𝑚𝑖
1)𝑝 | − |𝑚

𝑖,𝑝

2 |

The reduction of the size difference in the 𝑖-th iteration is given by:

sizeDifferenceReduction𝑖 ≔ sizeDifference𝑖 − sizeDifference𝑖−1
= |𝛿𝑖𝑀1

(𝑚𝑖
1) | + |𝑚𝑖

2 | − |𝛿𝑖𝑀1
(𝑚𝑖

1)𝑝 | − |𝑚
𝑖,𝑝

2 |

−
(︁
|𝛿𝑖−1𝑀1
(𝑚𝑖−1

1 ) | + |𝑚𝑖−1
2 | − |𝛿𝑖−1𝑀1

(𝑚𝑖−1
1 )𝑝 | − |𝑚

𝑖−1,𝑝
2 |

)︁
We know that sizeDifferenceReduction𝑖 > 0, because 𝔱 is partial-consistency-
improving. Because of the model sizes being natural numbers, we know:

sizeDifferenceReduction𝑖 ≥ 1

So we can calculate the remaining size difference in the 𝑖-th iteration by
applying all size difference reductions starting from sizeDifference0:

sizeDifference𝑖 = sizeDifference0 −
𝑖∑︂

𝑘=1
sizeDifferenceReduction𝑘

≤ sizeDifference0 −
𝑖∑︂

𝑘=1
1 = sizeDifference0 − 𝑖

Thus, we have sizeDifference𝑖 ≤ 0 if 𝑖 ≥ sizeDifference0. In fact, we have
sizeDifference𝑖 = 0, because sizeDifference𝑖 ≥ 0 by definition. Thus, mod-
els are consistent after at most sizeDifference0 loop iterations. Since 0 ≤
sizeDifference0 < ∞, the algorithm leaves the loop after a finite number
of iterations. Note that, for reasons of simplicity, we have ignored that
sizeDifferenceReduction𝑖 = 0 if models were already consistent in iteration
𝑖 − 1 and thus models and their maximal consistent subsets have equal size
in iterations 𝑖 − 1 and 𝑖 .
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With Lemma 6.2, we know that we are able to execute transformations for
given models that are not initially consistent such that their execution termi-
nates in a consistent state whenever possible, as long as these transformations
fulfill the property of being partial-consistency-improving. Note that this
property substitutes the correctness property of consistency preservation
rules. In fact, the original correctness notion is a special case of being partial-
consistency-improving, because in that case one execution of a consistency
preservation rules leads to a completely consistent pair of models.

We thus found a requirement for transformations that enables us to repeatedly
apply their execution step to consecutively improve consistency until the
models are finally consistent again. Based on this requirement, we can
define a process for integrating changes to both involved models to finally
yield consistent models. The requirement is, however, still only a theoretic
requirement. Although it conforms to an intuitive expectation regarding
transformations, it does not provide any assistance in how to be achieved in
practice. We discuss this in the subsequent section.

6.3.4. Synchronizing Execution of Transformations

We have discussed how and under which conditions unidirectional consis-
tency preservation rules can be executed iteratively to restore consistency
between two models. The approach is, theoretically, able to process changes
to models that are initially arbitrarily inconsistent. For practical applicability,
we restricted the approach to initially consistent models and a change to one
of them introducing an inconsistency. The transformation then iteratively
improves partial consistency until consistent models are delivered.

Since we want to consider the case that both models instead of only one of
them have been modified, we extend the approach to process changes to both
models. More precisely, we introduce a modified notion of transformation
execution steps that is able to process changes to both models. The operation
of such an execution step is depicted in Figure 6.6. To this end, the first
executed consistency preservation rule is applied to the first model and the
change to it, but receives the modified state of the second model. We have
motivated the necessity not to apply the first consistency preservation rule to
the unmodified second model in Subsection 6.2.2. Afterwards, we apply the
second consistency preservation rule to the modified first model, the original
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𝑚1

𝛿𝑀1 (𝑚1)

𝛿 ′
𝑀1
(𝛿𝑀1 (𝑚1))

𝑚2

𝛿𝑀2 (𝑚2)

𝛿 ′
𝑀2
(𝛿𝑀2 (𝑚2))

consistent to CR

𝛿𝑀1

𝛿 ′
𝑀1

𝛿𝑀2

𝛿 ′
𝑀2

Cpr→
CR

Cpr←
CR

𝛿 ′
𝑀2
◦ 𝛿𝑀2

Figure 6.6.: Operation of a synchronizing bidirectional transformation execution step. The blue
line without arrowheads connects elements that are consistent to CR, and green lines with
arrowheads indicate changes or consistency preservation execution.

second model, and the modifications to the second model as the concatena-
tion of the original change and the one generated by the first consistency
preservation rule. This ensures that all inconsistencies are introduced by
changes processed by the consistency preservation rules, which was our
requirement for practical applicability, as it requires to only react to changes
instead of processing arbitrarily inconsistent models states.

Definition 6.8 (Synchronizing Bidirectional Execution Step)
Let 𝔱 = ⟨CR,Cpr→

CR
,Cpr←

CR
⟩ be a bidirectional transformation for

metamodels 𝑀1 and 𝑀2. A synchronizing execution step SyncEx1
𝔱

of 𝔱 is
a function:

SyncEx1𝔱 : (𝐼𝑀1 , 𝐼𝑀2 ,Δ𝑀1 ,Δ𝑀2 ) → (𝐼𝑀1 , 𝐼𝑀2 ,Δ𝑀1 ) ∪ {⊥}

(𝑚1,𝑚2, 𝛿𝑀1 , 𝛿𝑀2 ) ↦→
{︄
(𝑚′1,𝑚′2, 𝛿 ′𝑀1

)
⊥

with:

𝛿 ′𝑀2
≔ Cpr→

CR
(𝑚1, 𝛿𝑀2 (𝑚2), 𝛿𝑀1 ) 𝑚′1 ≔ 𝛿𝑀1 (𝑚1)

𝛿 ′𝑀1
≔ Cpr←

CR
(𝑚2,𝑚

′
1, 𝛿
′
𝑀2
◦ 𝛿𝑀2 ) 𝑚′2 ≔ 𝛿 ′𝑀2

(𝛿𝑀2 (𝑚2))

If Cpr→
CR
(𝑚1, 𝛿𝑀2 (𝑚2), 𝛿𝑀1 ) = ⊥ or Cpr←

CR
(𝑚2,𝑚

′
1, 𝛿
′
𝑀2
◦ 𝛿𝑀2 ) = ⊥,

the execution is undefined, i.e., SyncEx1
𝔱
(𝑚1,𝑚2, 𝛿𝑀1 , 𝛿𝑀2 ) = ⊥.

208



6.3. Synchronizing Bidirectional Transformations

Algorithm 6.2 Synchronizing execution of a bidirectional transformation.
1: procedure ExecuteSync(𝔱 = ⟨CR,Cpr→

CR
,Cpr←

CR
⟩,𝑚1,𝑚2, 𝛿𝑀1 , 𝛿𝑀2 )

2: if ¬(⟨𝑚1,𝑚2⟩ consistent to CR) then
3: return ⊥
4: end if
5: if ¬(⟨𝛿𝑀1 (𝑚1), 𝛿𝑀2 (𝑚2)⟩ consistent to CR) then
6: (𝑚1,𝑚2, 𝛿𝑀1 ) ← SyncEx1

𝔱
(𝑚1,𝑚2, 𝛿𝑀1 , 𝛿𝑀2 )

7: if (𝑚1,𝑚2, 𝛿𝑀1 ) = ⊥ then
8: return ⊥
9: end if

10: end if
11: while ¬(⟨𝛿𝑀1 (𝑚1),𝑚2⟩ consistent to CR) do
12: (𝑚1,𝑚2, 𝛿𝑀1 ) ← Ex1

𝔱
(𝑚1,𝑚2, 𝛿𝑀1 )

13: if (𝑚1,𝑚2, 𝛿𝑀1 ) = ⊥ then
14: return ⊥
15: end if
16: end while
17: return ⟨𝛿𝑀1 (𝑚1),𝑚2⟩
18: end procedure

The synchronizing bidirectional execution step is necessary to first integrate
the changes made in both models. It only produces a change in the first
model, such that afterwards ordinary execution steps that only need to deal
with a change to one model can be applied. This leads to Algorithm 6.2
for the synchronizing execution of a bidirectional transformation. It is an
extension of Algorithm 6.1 for the non-synchronizing case. Thus, it has the
same properties regarding termination and return values.

Theorem 6.3 (Synchronizing Transformation Termination)
Let 𝔱 be a partial-consistency-improving bidirectional transformation.

Then Algorithm 6.2 terminates for every input and either returns ⊥ or a

consistent model pair.

Proof. The algorithm is identical to Algorithm 6.1 except for Lines 5–10,
which add the initial synchronization step. These lines add a single return
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statement that can return ⊥. The return statement in Line 17 not returning
⊥ is still preceded by the while loop having the loop condition that the
model pair needs to be inconsistent. Thus, the argument of the proof for
Lemma 6.1 ensuring that only consistent models are returned still applies. In
consequence, we know that the algorithm either returns ⊥ or a consistent
model pair.

Termination of the algorithm is guaranteed for the non-synchronizing case
proven in Lemma 6.2. Although the additional execution of SyncEx1

𝔱
may

introduce further inconsistencies, the proof already considered that the
models given to the while loop may be arbitrarily inconsistent. Thus, the
inductive improvement in partial consistency through the while loop is given
in the same way and, thus, the models finally become consistent.

We have proven that a bidirectional transformation that is partial-consistency-
improving can be executed for two given models and changes to both of
them such that consistent models are delivered, as long as the transformation
can process the changes. In fact, we have already restricted the algorithm
such that it does not need to deal with arbitrarily inconsistent models but
with models that are initially consistent, such that only the given changes
introduce inconsistencies. This is supposed to ease the definition of trans-
formations that fulfill the property of being partial-consistency-improving
in practice, as they can rely on the assumption that inconsistency is only
introduced by the given changes.

With the insight that partial-consistency-improving bidirectional transfor-
mations can be used to integrate changes to both of two models and deliver
consistent models based on those changes, we define synchronizing bidirec-

tional transformations as bidirectional transformations with the property of
being partial-consistency-improving.

Definition 6.9 (Synchronizing Bidirectional Transformation)
Let 𝔱 be a partial-consistency-improving bidirectional transformation.
Then we call 𝔱 a synchronizing bidirectional transformation.

As discussed in Subsection 6.3.2, we have defined bidirectional transformation
execution steps starting with Cpr→

CR
, although it can also be necessary

to start with Cpr←
CR

depending on which model was changed. We have
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discussed that the order restriction is without loss of generality and that
definitions can be transferred by swapping the rules. For the synchronization
case, in which both models have been modified, the execution order does,
theoretically, not even make a difference, because changes to both models are
present. From a practical perspective, it can, however, make sense to define
which of the consistency preservation rules to execute first. For example, it
might make sense to first execute the consistency preservation rule from the
more abstract to the more detailed model, if such a relation exists between
the models. We leave such considerations up to the individual transformation
developer or future research, as the selection of the order does not provide
any conceptual benefits but, in the best case, only eases the definition of
appropriate consistency preservation rules and improves usability.

6.3.5. Equivalence to Synchronizing Transformations

For our definition of transformation networks, we have used the notion of
synchronizing transformations (see Definition 4.7). Its single consistency
preservation rule accepts two consistent models as well as a change to each of
them and returns two changes that, if applied to the models, result in consis-
tent models again. Synchronizing bidirectional transformations, i.e., the just
defined transformations composed of unidirectional consistency preservation
rules, also accept two consistent models and a change to each of them and
return two consistent models. We could also define those transformations
to return changes rather than the consistent models by concatenating the
changes calculated by the execution steps. For reasons of simplicity, we have
omitted that in the formalization.

Although synchronizing transformations and synchronizing bidirectional
transformations have the same requirements for their inputs and provide
the same guarantees regarding consistency for their outputs, both may also
return ⊥. While a synchronizing transformation can be defined such that
it never returns ⊥ by defining a consistency preservation rule that is total,
the ability of a synchronizing bidirectional transformation to never return ⊥
depends on the interplay of the two unidirectional consistency preservation
rules. Nevertheless, we can show that both have equal expressiveness, i.e.,
they can always return the same results for the same inputs.
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Theorem 6.4 (Synchronizing Transformation Expressiveness)
Synchronizing bidirectional transformations and synchronizing transfor-

mations have equal expressiveness, i.e., each synchronizing transformation

can be expressed by a synchronizing bidirectional transformation and vice

versa.

Proof. Each synchronizing bidirectional transformation can be realized by
a synchronizing transformation by simply defining the function of the con-
sistency preservation rule such that it returns the result that is produced by
the execution of the synchronizing bidirectional transformation. Let 𝔱 be a
synchronizing bidirectional transformation with:

ExecuteSync(𝔱,𝑚1,𝑚2, 𝛿𝑀1 , 𝛿𝑀2 ) = (𝑚′1,𝑚′2)

We define the consistency preservation rule Cpr of a synchronizing transfor-
mation for each possible input as:

Cpr (𝑚1,𝑚2, 𝛿𝑀1 , 𝛿𝑀2 ) ≔ (𝑚1,𝑚2, 𝛿
′
𝑀1
, 𝛿 ′𝑀2
)

with 𝛿 ′𝑀1
(𝑚1) ≔ 𝑚′1 ∧ 𝛿 ′𝑀2

(𝑚2) ≔ 𝑚′2

Per definition, applying the resulting changes to the input models, the syn-
chronizing transformation delivers for every possible input the same result
by applying Cpr as the synchronizing bidirectional transformation.

Realizing a synchronizing transformation by a synchronizing bidirectional
transformation requires the repeated execution of the two consistency preser-
vation rules to emulate the behavior of the single synchronizing consistency
preservation rule. Let Cpr be the consistency preservation rule of a synchro-
nizing transformation with:

Cpr (𝑚1,𝑚2, 𝛿𝑀1 , 𝛿𝑀2 ) = (𝑚1,𝑚2, 𝛿
′
𝑀1
, 𝛿 ′𝑀2
)

Then we can define the two unidirectional consistency preservation rules of
the synchronizing transformation 𝔱 as follows.

Cpr→ (𝑚1, 𝛿𝑀2 (𝑚2), 𝛿𝑀1 ) ≔ 𝛿𝑏𝑀2
with 𝛿𝑏𝑀2

(𝛿𝑀2 (𝑚2)) ≔ 𝛿 ′𝑀2
(𝑚2)

Cpr← (𝑚2, 𝛿𝑀1 (𝑚1), 𝛿𝑏𝑀2
◦ 𝛿𝑀2 ) ≔ 𝛿𝑏𝑀1

with 𝛿𝑏𝑀1
(𝛿𝑀1 (𝑚1)) ≔ 𝛿 ′𝑀1

(𝑚1)
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So we simply define the two consistency preservation rules in a way such
that each of them delivers for the inputs in the synchronizing execution step
SyncEx1

𝔱
those changes that are necessary to produce exactly the results of

the consistency preservation rule Cpr of the synchronizing transformation.
Then, according to the behavior of SyncEx1

𝔱
, we have:

SyncEx1𝔱 (𝑚1,𝑚2, 𝛿𝑀1 , 𝛿𝑀2 ) = (𝑚𝑠
1,𝑚

𝑠
2, 𝛿

𝑠
𝑀1
) with

𝛿𝑠𝑀1
(𝑚𝑠

1) = 𝛿𝑠𝑀1
(𝛿𝑀1 (𝑚1)) = Cpr← (𝑚2, 𝛿𝑀1 (𝑚1), 𝛿𝑏𝑀2

◦ 𝛿𝑀2 ) (𝛿𝑀1 (𝑚1))
= 𝛿𝑏𝑀1

(𝛿𝑀1 (𝑚1)) = 𝛿 ′𝑀1
(𝑚1)

∧𝑚𝑠
2 = Cpr→ (𝑚1, 𝛿𝑀2 (𝑚2), 𝛿𝑀1 ) (𝛿𝑀2 (𝑚2))

= 𝛿𝑏𝑀2
(𝛿𝑀2 (𝑚2)) = 𝛿 ′𝑀2

(𝑚2)

So SyncEx1
𝔱

produces𝑚𝑠
1,𝑚𝑠

2, and 𝛿𝑠
𝑀1

, for which we know that 𝛿𝑠
𝑀1
(𝑚𝑠

1) and
𝑚𝑠

2 are consistent, because their equivalents 𝛿 ′
𝑀1
(𝑚1) and 𝛿 ′

𝑀2
(𝑚2) are consis-

tent by assumption. Thus, the execution of the synchronizing bidirectional
transformation 𝔱 according to Algorithm 6.2 terminates after the conditional
statement in Line 5 with the same consistent models that are delivered when
applying the changes calculated by the consistency preservation rule Cpr of
the assumed synchronizing transformation.

With these construction approaches, we have shown that each synchro-
nizing transformation can be expressed by a synchronizing bidirectional
transformation and vice versa.

Although we have proven that each synchronizing transformation can be
expressed by a synchronizing bidirectional transformations and thus the
latter ones can be used to express any desired consistency preservation in a
transformation network, the constructive proof does not reflect a practical
construction approach for the unidirectional consistency preservation rules
of a synchronizing bidirectional transformation. In practice, it will usually
not be possible to define the rules in a way that they deliver consistent
models after executing each of them once, as we have already discussed in
Subsection 6.2.3. It shows, however, that it would possible in theory.

Based on the knowledge that we can use synchronizing bidirectional trans-
formations in transformation networks, we discuss in the following how
a transformation developer can actually achieve that the specification of
a bidirectional transformation in terms of two unidirectional consistency
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preservation rules does actually fulfill the requirements of being partial-
consistency-improving and thus represents a synchronizing bidirectional
transformation that can be used in a transformation network.

6.4. Achieving Synchronization

We have introduced the notion of synchronizing bidirectional transforma-
tions, which can be used within transformation networks in place of syn-
chronizing transformations. They are composed of two unidirectional con-
sistency preservation rules, which fits to the way how transformations are
specified in transformation languages. In contrast to only being correct, as
commonly required of transformations, they need to fulfill the notion of
being partial-consistency-improving to be used instead of synchronizing
transformations.

The knowledge about this requirement, theoretically, gives a transformation
developer the ability to define appropriate transformations to be used in
transformation networks. We have discussed that the requirement for trans-
formations to be partial-consistency-improving is reasonable, as it reflect
intuitive requirements to transformations to always restore more consistency
than is violated by their execution. There is, however, still no canonical way
to fulfill that requirement. It may be possible to define analyses for trans-
formations or even appropriate transformation languages that guarantee
the property by construction. This could, however, even lead to severe re-
strictions in expressiveness if analyzability is the primary goal. In addition,
research about synchronizing concurrent changes (e.g. [Her+12; OPN20;
Xio+13; Xio+09] already addresses a comparable problem. Thus, we do not
discuss or investigate such approaches in this thesis.

We leave it up to transformation developers to thoroughly define their trans-
formations such that they fulfill the required property. Having precise knowl-
edge about the property that needs to be fulfilled by the transformations
already provides a benefit regarding the baseline of using ordinary trans-
formations in a transformation network without knowing how the trans-
formations have to be improved to work properly. In addition, we discuss
a distinction of possible scenarios that can occur when changes need to be
synchronized and come up with engineering considerations how to system-
atically deal with these scenarios. We identify one essentially problematic
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scenario and propose a strategy to avoid that problem by proper construction
of transformations. In our evaluation in Chapter 9, we will see that it is
actually the only occurring and thus most relevant problem scenario that
transformation developers have to deal with when developing synchronizing
bidirectional transformations.

6.4.1. Synchronization Scenarios

For the execution of synchronizing bidirectional transformations, we have
assumed that inconsistencies are only introduced by changes. Thus, defining
a consistency preservation rule that processes changes in one model must
consider that it has to deal with the situation that the other model has been
changed as well. Although this might intuitively lead to the expectation
that distinguishing the different types of changes, such as element insertions
and removals, helps to identify relevant scenarios, actually the modification
of condition elements of the consistency relations rather than individual
elements is relevant.

If we process a change 𝛿𝑀1 to model 𝑚1, and if 𝑚2 was changed by 𝛿𝑀2 as
well, a consistency preservation rule Cpr→ from 𝑀1 to 𝑀2 of a synchronizing
bidirectional transformation 𝔱 produces a change 𝛿 ′

𝑀2
in the execution of the

synchronizing execution step SyncEx1
𝔱
. If we assume that 𝛿𝑀1 performs a

change that introduces a new condition element, Cpr→ is responsible for
adding a corresponding element to 𝛿𝑀2 (𝑚2) such that partial consistency
between the two is improved and, in the best case, already restored to 1.
Cpr→ must also consider the change 𝛿𝑀2 , which may have already added
an appropriate corresponding element, such that adding a further one may
reduce instead of improve partial consistency. Adding a condition element
to a model can, however, not only be the result of adding an element but
also of different types of changes, such as also the change of an attribute or
reference value. In fact, it must only be considered that a condition element
was added but not which kind of change introduced it.

We have already discussed in Subsection 6.1.2 that the addition, removal,
and change of condition elements are the relevant scenarios that can lead to
consistency violations. In case of adding a condition element, an appropriate
corresponding element for it may be missing, such that no witness structure
for consistency is given. This requires an appropriate element to be added.
In case of removing a condition element, the element was corresponding
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to another one, which now has no corresponding element anymore. This
requires the corresponding condition element to be removed. Changing a
condition element can be seen as a modification of model elements such that
they represent another condition element of the same condition, thus still
belonging to the same consistency relation. The consistency preservation
rule must then update the corresponding condition element appropriately.

This behavior is what consistency preservation rules are actually supposed
to implement. A bidirectional transformation with such preservation rules
is inherently supposed to fulfill the property of being partial-consistency-
improving, because the elements that have no corresponding elements due to
a change are not part of the maximal consistent subsets before executing the
consistency preservation rule. After executing it, either the corresponding
element is removed and thus the model size decreases, or a corresponding
element is added and the size of the maximal consistent subsets improves.

In addition to the above considerations, a transformation may be prevented
from being partial-consistency-improving, because the addition or removal
of a condition element to improve consistency affects further condition
elements. This can occur because these condition elements overlap, i.e.,
some model elements may be part of several condition elements. Then, if all
elements of a condition element are removed, the other condition element
is not present anymore as well. A consistency preservation rule must thus
be carefully defined such that removing one condition element does not
lead to the removal of another one, which was actually part of the maximal
consistent subset. Otherwise, the consistency preservation rule introduces
a new violation of consistency. The same applies to the scenario of adding
condition elements. If the addition leads to the introduction of an additional
condition element, because some objects in the added condition element
together with other existing objects form a condition element of another
consistency relation, this introduces an inconsistency if no corresponding
element exists yet, thus reducing partial consistency. If the previously existing
elements within the induced condition element were part of the maximal
consistent subset, the consistency preservation rule is actually not correct.
If the models were consistent before and only the change to one model is
performed, correctness of the consistency preservation rule requires the
result to be consistent. However, it introduces a further condition element
that has no corresponding element, thus the result is not consistent. If, on the
other hand, the previously existing elements within the induced condition
element were not part of the maximal consistent subset, it is fine that these
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elements are still inconsistent, as the consistency preservation rules still
need to process them anyway. These problems are comparable to those of
fine-grained transformation rules, as discussed in Subsection 4.4.1, which
need to be defined such that one rule does not lead to the violation of the
consistency relation of another.

The previous considerations reflected the case that only one model was
changed. If the other model was changed as well, the combinations of
changes can lead to specific situations that have to be handled differently.
We therefore distinguish the addition, removal, and change of a condition
element to be processed by the consistency preservation rule and discuss
what conflicts may occur by changes performed in the other model. Changes
of condition elements are, in practice, traced by the usage of trace models
that store trace links between corresponding elements. It can be seen as
a representation of the witness structure we have defined for identifying
consistency. If elements become changed, the trace links still exist and
indicate which corresponding elements need to be adapted. According to the
defined notion of consistency, these potential conflicts are just based on the
question whether appropriate condition elements exist or not.

Addition: Whenever a condition element is added to one model, it must be
ensured that a corresponding condition element in the other model exists.
In the case that both models were consistent before, the corresponding
element cannot already be present in the other model and thus has to be
added. If the other model has been changed, an appropriate corresponding
element may have already been added. That scenario has to be explicitly
considered to avoid a duplicate creation of the condition element, which
then may lead to a violation of consistency that cannot be resolved by
adding further elements anymore.

Removal: Whenever a condition element is removed from one model, the
corresponding condition element must be removed from the other model,
as otherwise its corresponding element is missing, which would violate
consistency. If the models were consistent before, it is guaranteed that the
corresponding element exists and can thus be removed. If the correspond-
ing condition element is not present, because it was already removed
from the other model, the element cannot but also does not need to be
removed anymore. It must only be considered that the existence of the
corresponding element cannot be assumed.
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Change: When model elements are changed such that they represent a dif-
ferent condition element of the same condition as before, they usually
also require the corresponding element to be updated to represent the
condition element of an applicable consistency relation pair. If the corre-
sponding element was removed, the consistency preservation rule in the
opposite direction will remove the changed condition element anyway
to restore consistency. Thus, the consistency preservation rule must only
consider that the corresponding element may have been removed but
does not need to perform changes. If the corresponding element was
changed, which is identified by the trace model still containing a link
to a changed element, it must be adapted such that both elements form
a consistency relation pair again. The modification to the correspond-
ing element will then be propagated back by the opposite consistency
preservation rule.

In summary, we have to deal with two specific situations that can occur when
the target model of a consistency preservation rule may have been changed.
First, when adding condition elements, their corresponding elements may
already exist in the other model. Second, when removing condition elements,
their corresponding elements may have already been removed from the
other model. While the second scenario is easy to handle by doing nothing
whenever the corresponding elements of removed elements are not present
anymore, the first scenario requires an approach to identify whether cor-
responding elements already exist. While existing corresponding elements
can be retrieved from a trace model, no trace links exist for these newly
created elements. In the following, we thus discuss an approach to find
corresponding elements.

6.4.2. Identification of Existing Corresponding Elements

Whenever a condition element is added, which requires a corresponding
element to exist in the other model, the consistency preservation rule will
usually create appropriate elements in the other model. This is due to the
reason that in the case when the target model has not been modified as well,
these elements cannot already exist. In the synchronization case, however,
the change to the target model may have already introduced those elements,
thus it is necessary to find them to avoid their duplicate creation.
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In previous work [Kla+19b], we have proposed a strategy to identify such
corresponding elements. Transformation languages usually use trace models
to store the information about which elements are corresponding to each
other. Thus, whenever the consistency preservation rule in the opposite
direction added the element whose addition is currently processed, a trace link
already exists. When the corresponding elements were created by different
transformations, however, there will not be a trace link between them.

An intuitive attempt would be to use the trace links of the other transforma-
tions across which they were created. For example, if for a PCM component
a UML class is created, and for this UML class a Java class is created, then
there are trace links between the PCM component and the UML class, as well
as between the UML class and the Java class. Synchronizing the addition
of the PCM component and the Java class should not result in a redundant
addition of a further Java class. Resolving the existing trace links transitively
is, however, not a solution. In this case, a unique one-to-one mapping exists
that actually traces the PCM component to the corresponding Java class. It
would, however, also be possible that a PCM component has trace links to
several elements in the Java model across the UML. If those elements are
even multiple classes, such as one public and one internal utility class, but
the consistency relation between PCM and Java only requires one Java class
for a PCM component, it would be unclear which to select.

Transformation languages usually tag trace links with additional informa-
tion, for example, containing the transformation rule that created them, to
distinguish links to instances of the same class. Since these tags are created
by other transformations, considering them would violate our assumption
of independent development and modular reuse of transformations. Even
worse, it could also be the case that another third class is required by the
consistency relation between PCM and Java. Finally, it is up to the actual
consistency relation to define when elements are to be considered corre-
sponding, because there may be more semantics beyond the types of the
elements related by a trace link that determines how they belong together.

Thus, whether corresponding elements already exist cannot be identified
by transitively resolving trace links of other transformations but only by
considering the two involved models. The information to identify whether
elements can be considered corresponding is precisely given in the consis-
tency relation. For example, if the relation specifies that, in a very simplified
notion, a PCM component is consistent to all Java classes that have the same
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name, no matter what implementation the class contains, then if any class
with the name of the PCM component is found in the Java code, it can be
considered corresponding.

We come up with the following three levels of identifying corresponding
elements.

Explicit Unique: The information that elements correspond is unique and
represented explicitly, e.g., within a trace model.

Implicit Unique: The information that elements correspond is unique but
represented implicitly, e.g., in terms of key information within the models,
such as element names.

Non-Unique: Without unique information, heuristics based on ambiguous
information or transitive resolution of indirect trace links must be used.

In the best case, a trace link already exists between the corresponding ele-
ments. This can be because a consistency preservation rule in one direction
created the corresponding element and added the trace link. Then the con-
sistency preservation rule in the other direction processes the change that
introduced the corresponding element but now can already retrieve the trace
link. This is what we call explicit unique information, because the information
is represented explicitly and unambiguously in the trace model.

If no trace link exists, like in the synchronization scenario, the information
specified in consistency relations to identify corresponding elements needs
to be used. This can be considered key information, because the information
is used as the key to identify corresponding elements. To this end, the model
has to be queried for elements with the given information. The transforma-
tion language QVT-R already provides a language construct to specify such
key information within transformation rules [QVT, Sec. 7.10.2.]. We call
this information implicit unique, because elements can be unambiguously
identified by implicit information within the models. Note that in case that
multiple corresponding elements match the key information, any of them
can be selected. It is up to the consistency preservation rule for the other
direction to add further elements such that corresponding elements for all of
them are added, such that a valid witness structure is induced.

In the worst case, no unique information is given. Precisely following our
formalism, this scenario can never occur, because each consistency relation
defines the necessary key information. Thus, this scenario can only occur
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Algorithm 6.3 Retrieval of corresponding elements.
1: procedure FindCorresponding(𝐶𝑅, 𝔠𝑙 ,𝑚2,𝑚traces)
2: tracedElements← {𝔠𝑟 | ⟨𝔠𝑙 , 𝔠𝑟 ⟩ ∈𝑚traces}
3: for 𝔠𝑟 ∈ tracedElements do
4: if ⟨𝔠𝑙 , 𝔠𝑟 ⟩ ∈ 𝐶𝑅 then
5: return 𝔠𝑟
6: end if
7: end for
8: for 𝔠𝑟 ∈ P(𝑚2) do
9: if ⟨𝔠𝑙 , 𝔠𝑟 ⟩ ∈ 𝐶𝑅 then

10: 𝑚traces ←𝑚traces ∪ {⟨𝔠𝑙 , 𝔠𝑟 ⟩}
11: return 𝔠𝑟
12: end if
13: end for
14: return ⊥
15: end procedure

in practice with a relaxed notion of consistency. This can be the case when
for an element a corresponding one is always created, containing some
related information, but no unique information to identify that the two are
corresponding is given. In that case, only trace links identify that the elements
are corresponding. Thus, if other transformations created the elements and
thus no direct trace link exists, it is impossible to identify that these elements
shall be corresponding. Since no information to identify that the elements
should be corresponding is present anyway and since this requires a relaxed
consistency notion, we assume this scenario unlikely to occur at all and did
not face it in our evaluation at any time. If, nevertheless, this scenario occurs,
only heuristics can be used to identify corresponding elements without any
guarantee of success. It would also be possible to involve the developer and
let him decide whether an element should be considered corresponding.

In summary, it is necessary that transformation developers use key infor-
mation for identifying corresponding elements based on implicit unique

information in addition to the usage of explicit unique information in terms
of trace links. In case that corresponding elements are found based on im-
plicit unique information, they need to establish a trace link for the elements.
We define this behavior in Algorithm 6.3, which is an extended version of
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an algorithm [Sağ20, Alg. 1] defined in the Master’s thesis of Sağlam, which
was supervised by the author of this thesis, and adapted to our formalism.

Algorithm 6.3 receives the consistency relation for which corresponding
elements shall be found, the condition element 𝔠𝑙 of the condition c𝑙,𝐶𝑅 that
was added to model 𝑚1 for which corresponding elements shall be found or
created, the model𝑚2 in which the corresponding elements shall be searched,
and the trace model𝑚traces ⊆ P(𝑚1) × P(𝑚2) containing pairs of elements
in 𝑚1 and 𝑚2, which represents a combination of witness structures for
consistency relations between metamodels 𝑀1 and 𝑀2. The algorithm first
retrieves all corresponding elements for the condition element from the trace
model and then, in Line 3, checks whether any of the corresponding elements
according to the trace model is a corresponding element in 𝐶𝑅 . If this is
the case, a corresponding element 𝔠𝑟 is found and the procedure returns 𝔠𝑟 .
Otherwise, model𝑚2 is browsed for the existence of a corresponding element
in the loop starting in Line 8. It considers all subset of𝑚2, i.e., the potency
set P(𝑚2), of which each could be such a corresponding element. If one of
them is corresponding according to 𝐶𝑅 , then the pair ⟨𝔠𝑙 , 𝔠𝑟 ⟩ is added to the
trace model𝑚traces as an appropriate trace link and the procedure returns the
found element 𝔠𝑟 . If no such element is found, the procedure returns ⊥ to
indicate that no corresponding element is found and thus has to be created
by the consistency preservation rule.

The loop in Line 8 is defined in a rather inefficient way but describes its
purpose in the most general way. In a practical implementation, it may not
consider every subset of the model 𝑚2 but instead retrieve all candidate
elements, for example, by filtering model elements by their class. Depending
on the modeling framework, different possibilities to efficiently find specific
elements can be used. The implementation of the EMF, for example, provides
functions that yield all instances of a specific class.

The transformation developer has to apply this algorithm every time he
or she specifies the creation of corresponding elements due to a change
adding a condition element. This ensures that applying the bidirectional
transformation to the synchronization case properly handles the situation
that a change has already created the corresponding elements to ensure that
the resulting transformation is partial-consistency-improving.

In contrast to the insights of the previous sections, the engineering consid-
erations we have made in this section are not completely formally founded
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and proven. We have not proven that if a transformation developer fol-
lows the discussed rules for the construction of consistency preservation
rules and applies the FindCorresponding function whenever condition el-
ements are created leads to a synchronizing bidirectional transformation,
i.e., a bidirectional transformation that fulfills the requirement of being
partial-consistency-improving. We derived the insights from thorough argu-
mentation but further validate them in the evaluation in Chapter 9.

6.4.3. Model Changes To Condition Element Changes

The previous discussions distinguished different change scenarios for condi-
tion elements, as those are relevant when considering the synchronization
case of bidirectional transformations. A transformation does, however, not
receive changes of condition elements but changes of actual model elements.
These then eventually lead to the addition, removal, or change of a condition
element. Thus, a transformation developer needs to decide which model
changes introduce which modifications of condition elements to determine
appropriate behavior of the consistency preservation rules.

The possible types of model changes are induced by the used modeling
formalism, as the meta-metamodel defines which types of changes can be
performed in models. Our modeling formalism introduced in Section 3.3 is
conforming to the EMOF, which is why we consider changes in EMOF- and
Ecore-based models. Kramer proposes feature models that express all kinds
of possible changes in EMOF-based models [Kra17, Fig. 5.2] and Ecore-based
models [Kra17, Fig. 5.3]. Since both are rather similar (see Subsection 2.2.2),
we focus on Ecore as the practically realized modeling formalism. We depict
a modified version of the feature model for changes in Ecore-based models
in Figure 6.7. In comparison to the original model [Kra17, Fig. 5.3], we have
made the following changes.

No Compound Changes: We do not consider compound changes, because
they are simply compositions of atomic changes and thus do not need to
be considered explicitly.

No Permutation: We removed the Permutation feature, because it can be
considered as a compound change of a subtractive and additive multi-
valued feature change. Whether or not permutation rather than the
removal and addition is relevant is up to the interpretation of the change
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Change

Atomic

Content

Additive Subtractive

Target

Root Feature

Type

Attribute Reference

Multiplicity

Single Multi

Existential

Create Delete

Compound

. . .

Constraints:
1. Single⇒ (Additive ∧ Subtractive)
2. Multi⇒ (Additive ⊕ Subtractive)
3. Root⇒ (Additive ⊕ Subtractive)

4. Existential⇒ (Root ⊕ Reference)
5. Create⇒ Additive
6. Delete⇒ Subtractive

Figure 6.7.: Feature model for changes in Ecore-based models. Adapted from [Kra17, Fig. 5.3].

sequence and is comparable to moving an element from one reference to
another, which is also modeled as a compound change.

Mandatory Content: We made the Content feature mandatory, because ev-
ery change is either additive or subtractive due to the removal of the
permutation.

Constraints Reduction: We reduced the constraints to those that are still
relevant after performing the previously discussed changes.

Error Correction: We fixed an error in the constraints of the original model.
They required a Create change of a root element to be subtractive, which
does not make sense. We corrected that error by simplification.

The set of all possible change types in Ecore-based models is given by enumer-
ating all valid configurations of the feature model. We discuss for each of the
resulting changes the types of condition element changes it may induce.
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Additive Root Change (Possibly Create): Adding a root element can lead to
the addition of a condition element, which consists only of this root
element. It will not induce a change or removal of a condition element.

Subtractive Root Change (Possibly Delete): The removal of a root element
can lead to the removal of a condition element, which involves the root
element. Since it removes an element, it can neither lead to a change nor
to an addition of a condition element.

Single-Valued Attribute Change: Changing an attribute can lead to either an
addition, removal, or change of a condition element. The change may lead
to an element that now, potentially together with other elements, forms
a condition element. It may also lead to a different condition element of
the same condition, e.g., by renaming an element. Finally, it can also lead
to an element that is not present in a condition anymore. This applies no
matter whether the attribute change is only additive, only subtractive, or
both, thus whether it adds, removes, or replaces the attribute value.

Additive Multi-Valued Attribute Change: Adding a value to a multi-valued
attribute can lead to either an addition, removal, or change of a condition
element. The change can lead to the situation that the element is now
part of a condition element, is not part of a condition element anymore,
or that it represents a different condition element of the same condition
and is thus comparable to the change of a single-valued attribute.

Subtractive Multi-Valued Attribute Change: Removing a value from a multi-
valued attribute can lead to either an addition, removal, or change of a
condition element, due to the same reasons as the additive multi-valued
attribute change.

Single-Valued Reference Change (Possibly Create/Delete): The change of a
reference can lead to either an addition, removal, or change of a condition
element, due to the same reasons as for single-valued attribute changes.
This is even independent from whether the added or removed element is
created or deleted, respectively.

Additive Multi-Valued Reference Change (Possibly Create): The addition of
a value to a multi-valued reference can lead to either an addition, removal,
or change of a condition element, due to the same reasons as for adding
an attribute to a multi-valued attribute. Like for single-valued reference
changes, this is even independent from whether the element was created
or already existed before.
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Subtractive Multi-Valued Reference Change (Possibly Delete): If a value is
removed from a multi-valued reference, this can lead to either an addition,
removal, or change of a condition element, due to the same reasons as
for removing an attribute from a multi-valued attribute. Like for single-
valued reference changes and additive multi-valued reference changes,
this is even independent from whether the element was created or already
existed before.

It is easy to see that except for root changes each type of model change can
lead to any kind of condition element change, because almost every type
of change can lead to the situation that model elements form a condition
element or do not form a condition element anymore. There may be a missing
reference or attribute value, or even a superfluous reference or attribute value,
after whose change the model elements form a condition element. This
conforms to the notion of creating a corresponding element whenever all
conditions for some model elements are fulfilled in the QVT-R-like Mappings

Language [Kra17, p. 283]. Since all types of changes can lead to the fulfillment
of conditions, the addition of a condition element is not tied to a specific
type of change.

Depending on the specific consistency relation, there may, however, be some
change types that are not relevant in that case. For example, if a consistency
relation puts two model elements having only reference values into relation,
then no attribute change will lead to the addition, removal, or change of a
condition element of that consistency relation.

The specific case of identifying corresponding elements during synchroniza-
tion discussed in the previous subsection needs to be considered whenever a
condition element was added. Since this can occur because of any type of
change except for removals of root elements, we cannot make any general
restrictions on the types of model changes that need to be explicitly con-
sidered for the synchronization case. The transformation developer must
decide after which changes a condition element may be created, independent
from whether corresponding elements may already exist or not. Thus, he or
she makes this decision anyway and must only extend the existing logic for
finding corresponding elements according to the given algorithm.
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6.5. Summary

In this chapter, we have discussed how synchronizing transformations, as
required in transformation networks, can be defined with existing transfor-
mation languages. To this end, we have defined synchronizing bidirectional
transformations as an extension of bidirectional transformations specified
in transformation languages. We have formally proven that these transfor-
mations always terminate consistently and have equal expressiveness than
synchronizing transformations. Finally, we have identified properties and
proposed an algorithm to be implemented by a transformation specified in a
transformation language to be synchronizing. We close this chapter with the
following central insight.

Insight II.3 (Synchronization)
Synchronizing transformations, as required in transformation networks,
process pairs of models that both may have been and need to be modi-
fied. In contrast, ordinary bidirectional transformations consist of two
unidirectional consistency preservation rules, each of them accepting
changes in one model and updating the other. We have shown that if
changes have been performed to both models, the consistency preser-
vation rules cannot be sequenced such that they produce consistent
results. By requiring that a bidirectional transformation fulfills a no-
tion of being partial-consistency-improving, we were able to define an
execution algorithm for it that delivers consistent models after a fi-
nite number of execution steps. In return, we were able to formally
prove that such transformations have equal expressiveness than syn-
chronizing transformations as required for transformation networks.
Finally, we found that a transformation developer needs to consider
only few situations explicitly to make a bidirectional transformation
partial-consistency-improving. The most important situation is that
a transformation creates elements that already exist, because another
transformation already created them, for which we provide an algo-
rithm to avoid issues due to duplicate element creation already by
construction. In consequence, synchronizing transformations can be
constructed with existing transformation languages by fulfilling an
additional property for which we provide a constructive strategy and
without knowing about other transformations to combine them with.
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A transformation network is composed of transformations and an application
function, which executes the transformations in an order determined by an
orchestration function. In the previous chapters, we have discussed how the
individual transformations can be defined and which properties they have to
fulfill to be properly usable in a transformation network. In this chapter, we
discuss how the combination of transformations, as the second essential part
of a transformation network, can be realized by an application function.

Although the behavior of an application function has already been defined in
Definition 4.13, we have shortly discussed that we cannot require correctness
for such a function in the sense that it always yields consistent models for
every given models and changes to them. We will prove that statement and
show that this can either be because there is no execution order of the given
transformations that yields consistent models for given models and changes
to them or, even if it exists, it may not be possible to find it.

In this chapter, we thus discuss under which conditions we can require an
application function to return consistent models. We derive an algorithm
that realizes an application function and prove that it is not possible to ensure
its termination without further restrictions to the transformations or the
cases in which the algorithm is expected to return consistent models. The
discussion of different restriction options gives us the insight that none
of them is practically applicable, because they restrict expressiveness of
transformations and transformation networks too much. Thus, we finally
propose an algorithm that operates conservatively. This means, if it returns
models, they are consistent, but it may not always return consistent models
although an execution order of transformations that yields them exists. This
algorithm is supposed to improve the ability of a transformation developer to
identify why no execution order of transformations could be found although
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it existed. We have envisioned this as the comprehensibility property in
Subsection 1.1.3.

This chapter thus constitutes our contribution C 1.4, which consists of four
subordinate contributions: a discussion of the design of an application func-
tion with possible bounds for the number of executions and a notion of opti-
mality leading to the definition of the orchestration problem; the derivation
of an algorithm for an application function, for which we discuss termina-
tion, prove undecidability of the orchestration problem, and discuss different
strategies to restrict transformations such that the orchestration problem be-
comes decidable; a gradual definition of optimality of an application function
and a discussion of its systematic improvement; and finally the proposal of an
algorithm that operates conservatively based on well-defined properties that
ensure its termination and help to find the reasons whenever no execution
order of transformations that yields consistent models is found. It answers
the following research question:

RQ 1.4: How can transformations in a network be orchestrated and which
properties can such an orchestration strategy fulfill?

While existing approaches to orchestrate transformations are restricted to
specific network topologies, our approach is supposed to not restrict the
supported topology in any way. Existing work proposes, for example, to
define an execution order explicitly [Pil+08; Van+07] or to derive a topological
order [Ste20b], which restricts the supported topologies to those in which
a transformation needs to be executed only once. We prove that it is not
possible to orchestrate arbitrary transformations such that they always yield
consistent models whenever that is possible, i.e., when an according execution
order of the transformations exists. We do, however, provide an algorithm
that is able to process transformation networks of arbitrary topology, which
follows a specific orchestration strategy: it does not necessarily find an
execution order that yields consistent models whenever it exists, but it is
defined in way that it supports the transformation developer or user in
finding the reason for the inability to find such an order. On the one hand,
this gives transformation developers systematic knowledge about limitations
regarding the possibility to orchestrate transformations and, on the other
hand, gives them an algorithm for the orchestration to be readily applied.

Selected insights presented in this chapter have been developed in a scientific
internship together with Joshua Gleitze, which was supervised by the author
of this thesis, and have also been published [GKB21].
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7.1. Orchestration Goals and Problem Statement

To recapitulate, an application function AppOrct for transformation networks,
as defined in Definition 4.13, accepts models and changes to them and yields
either a tuple of models or ⊥. Whenever it returns a tuple of models, they
must be the result of applying the transformations in t of the network in
an order determined by the orchestration function Orct. We then say that
this execution order is an orchestration of the transformations and that the
execution of transformations in that order yields those models. The notion of
correctness for the application function given in Definition 4.14 additionally
requires the returned models to be consistent. We did, however, not yet define
when we expect the function to return consistent models and when we allow
it to return ⊥, as this requires a further discussion of the alternatives, which
we provide in the following.

The application function highly depends on the results of the orchestration
function. If that function does not deliver an orchestration that yields con-
sistent models, a correct application function may only return ⊥. Thus, we
are particularly concerned with ensuring that the orchestration function
finds an orchestration that yields consistent models as often as possible. We
call an orchestration that yields consistent models a consistent orchestra-

tion. Precisely, we define an orchestration and a consistent orchestration as
follows.

Definition 7.1 (Orchestration)
Let t be a transformation set. We call a sequence [𝔱1, 𝔱2, . . . ] ∈ t<N ≔⋃︁∞

𝑖=0 t
𝑖 of these transformations an orchestration of them.

For models 𝔪 ∈ 𝔐 and changes 𝛿𝔐 ∈ Δ𝔐 , we say that an orchestration
[𝔱1, . . . , 𝔱𝑛] is consistent if, and only if, the subsequent application of
the transformations to 𝔪 and 𝛿𝔐 is consistent, i.e.:

∃ 𝛿 ′
𝔐
∈ Δ𝔐 :

(︁
Gen𝔐,𝔱𝑛 ◦ . . . ◦ Gen𝔐,𝔱1 (𝔪, 𝛿𝔐) = (𝔪, 𝛿 ′

𝔐
)

∧ 𝛿 ′
𝔐
(𝔪) consistent to t

)︁
The definition of an orchestration function allows it to determine an arbi-
trarily long sequence of transformations, also including each transformation
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multiple times. We have introduced this general notion to avoid unneces-
sary restrictions. In the following, we show the necessity of having this
unrestricted notion rather than allowing each transformation to be executed
only once, as proposed in existing work [Ste20b]. From the insight that we
need to allow transformations to be executed multiple times, we derive and
discuss when we expect the application function to return consistent models
to finally come up with a notion of optimality for the orchestration function
determining the execution order. This leads to the definition of the central
orchestration problem that we want a transformation network to solve.

7.1.1. Single Transformation Execution

The possible numbers of executions for transformations of a network range
from a selected execution of a subset, e.g., in terms of an induced spanning
tree, over the execution of each transformation for one or a fixed number
of times, to an arbitrary number of executions per transformation. In the
following, we demonstrate why a single execution of each transformation is
not sufficient in practice and prove that it is not sufficient in general.

The even stronger restriction to spanning trees is obviously insufficient.
Consider the following consistency relations. For simplicity reasons, we use
model-level relations (Definition 4.1) instead of fine-grained ones:

𝐶𝑅12 = {⟨𝑚1,𝑚2⟩, ⟨𝑚1,𝑚
′
2⟩, ⟨𝑚′1,𝑚′2⟩, ⟨𝑚′1,𝑚′′2 ⟩}

𝐶𝑅13 = {⟨𝑚1,𝑚3⟩, ⟨𝑚1,𝑚
′′
3 ⟩, ⟨𝑚′1,𝑚3⟩, ⟨𝑚′1,𝑚′3⟩}

𝐶𝑅23 = {⟨𝑚2,𝑚3⟩, ⟨𝑚′2,𝑚′3⟩, ⟨𝑚′2,𝑚′′3 ⟩, ⟨𝑚′′2 ,𝑚3⟩}

This set of relations {𝐶𝑅12,𝐶𝑅13,𝐶𝑅23} is compatible according to Defini-
tion 5.3, because for each model there is a containing tuple of models that is
consistent. For the initial tuple of models ⟨𝑚1,𝑚2,𝑚3⟩, we consider a change
that changes 𝑚1 to 𝑚′1. Then we can distinguish three possible spanning
trees, each of two transformations that try to restore consistency. We denote
the transformations as 𝔱12, 𝔱13, and 𝔱23 for the according consistency relations.
Each tree consists of two transformations:

𝔱12, 𝔱13: 𝔱12 may change𝑚2 to𝑚′2. 𝔱13 does nothing, because𝑚′1 and𝑚3 are
already consistent to 𝐶𝑅13, but𝑚′2 and𝑚3 are not consistent to 𝐶𝑅23.
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𝔱12, 𝔱23: Like before, 𝔱12 may change 𝑚2 to 𝑚′2. 𝔱23 may then change 𝑚3 to
𝑚′′3 . 𝑚′1 and𝑚′′3 are, however, not consistent to 𝐶𝑅13.

𝔱13, 𝔱23: 𝔱13 may do nothing, because 𝑚′1 and 𝑚3 are already consistent to
𝐶𝑅13. 𝔱23 does also nothing, because 𝑚2 and 𝑚3 are still consistent to
𝐶𝑅23. 𝑚′1 and𝑚2 are, however, not consistent to 𝐶𝑅12.

Thus, we need to execute each transformation at least once, because each
transformation is only responsible for restoring consistency to its consistency
relations. We cannot expect the resulting models to be consistent if some
transformations were not executed, although the involved models were
changed by other transformations. However, restricting the execution to
each transformation once is not appropriate either. To show that, we consider
examples that we derived from those we have already presented in previous
work [GKB21], which use a different scenario context.

Consider the example in Figure 7.1, which depicts the introductory one of
Figure 1.4 more precisely. In the example, interfaces in the UML and Java
are related to architectural interfaces in a PCM model. PCM components
are realized by equally named classes in the UML and Java. Additionally,
when a PCM component requires an interface, this is realized by a field of the
interface type and an appropriate constructor parameter in the component
realization class in the UML and Java. Consistency is defined by transforma-
tions between PCM and UML, as well as between UML and Java.

In the scenario in Figure 7.1, we begin with a consistent state of one interface
and component, each realized by an interface and class, respectively, in both
the UML and Java. A user then introduces a change of the Java code, in which
he or she adds a field of the interface type to the component realization class.
The transformation between UML and Java propagates this change to the
UML model, such that both models are consistent again. The transformation
between PCM and UML then detects that the added field is of the type of
an architectural interface, thus representing a requires relation between
the corresponding component and the architectural interface. It adds the
appropriate requires relation to the PCM model but also adds an appropriate
parameter to the constructor of the component realization class in the UML.
This introduces a further inconsistency between the UML and the Java model,
which requires the transformation between UML and Java to be executed
again to also add that constructor parameter in the Java code.
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«interface»
I

. . .

«component»
C

«interface»
I

. . .

CImpl
CImpl()

interface I { ... }

class CImpl implements I {

CImpl() { ... }

}

interface I { ... }

class CImpl implements I {

I f;

CImpl() { ... }

}

«interface»
I

. . .

CImpl
f : I
CImpl()

«interface»
I

. . .

«component»
C

«requires»

«interface»
I

. . .

CImpl
f : I
CImpl(f : I)

interface I { ... }

class CImpl implements I {

I f;

CImpl(I f) { ... }

}

PCM UML Java

add field

add field

add
requi-

res

add
constructor
parameter

add
constructor
parameter

Figure 7.1.: Necessity of executing a transformation multiple times. For initially consistent
models, the Java code is changed, requiring the UML and PCM models to be updated accordingly.
Blue lines without arrowheads connect initially corresponding elements, and green lines with
arrowheads indicate changes performed by a user or consistency preservation.

We have simplified the example to the necessary core, although in practice
a further transformation between PCM and Java may be required, e.g., to
ensure that the field is set within the constructor. One might argue that
having such a cycle in the graph induced by the transformations between
PCM, UML, and Java resolves the problem, as the second execution of the
transformation between UML and Java is not necessary if the information
is propagated from the PCM to Java. This is, however, only true if exactly
this execution order is chosen and if the transformation between PCM and
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A
n

B
n

C
n

𝑎 𝑏

𝐶𝑅𝐴𝐵 = {⟨𝑎, 𝑏⟩ | 𝑎.𝑛, 𝑏.𝑛 ≥ 0
∧ 𝑏.𝑛 = 𝑎.𝑛 + 1 ∧ 𝑏.𝑛 ≠ 𝑥}

𝑎 𝑐

𝐶𝑅𝐴𝐶 = {⟨𝑎, 𝑐⟩ | 𝑎.𝑛 = 𝑐.𝑛}

𝑏 𝑐

𝐶𝑅𝐵𝐶 = {⟨𝑏, 𝑐⟩ | 𝑏.𝑛 = 𝑐.𝑛}

+𝑎 𝑎.𝑛 ≠ 𝑥−1−−−−−−−−→ +𝑏 (𝑛 = 𝑎.𝑛 + 1)
+𝑏 𝑏.𝑛 ≠ 𝑥−−−−−−→ +𝑎(𝑛 = 𝑏.𝑛 − 1)

+𝑎 → +𝑐 (𝑛 = 𝑎.𝑛)
+𝑐 → +𝑎(𝑛 = 𝑐.𝑛)

+𝑏 → +𝑐 (𝑛 = 𝑏.𝑛)
+𝑐 → +𝑏 (𝑛 = 𝑐.𝑛)

Figure 7.2.: Example of consistency relations and associated transformations with an arbitrary
bound of necessary transformation executions depending on the value of 𝑥 .

Java does not add further information to the Java model that must then be
propagated to the UML.

In general, it is always possible that transformations need to react to the
changes performed by other transformations if they are not in some way
aligned with each other. This is because a synchronizing transformation
may change both models. Thus, if one transformation restores consistency
between two models and another transformation reacts to this by restoring
consistency between one of these models and another one, then both these
models become changed, which requires the first transformation to process
the newly created changes again.

We can generalize the previous example to the one of Figure 7.2. It is an
extension of the example given in Figure 6.5 for the necessity to execute
the consistency preservation rules of a bidirectional transformation multiple
times. This also applies to the case in which multiple synchronizing transfor-
mations are combined. The depicted relations and the sketched consistency
preservation rules require that elements A, B, and C with the same value of
𝑛 exist, and that for each A with value 𝑛, a B and C with 𝑛 incremented by 1
exist except for the case that 𝑛 = 𝑥 −1. Thus, for an A with 𝑛 = 𝑖 , all A, B, and
C with 𝑖 ≤ 𝑛 < 𝑥 must exist. This, obviously, requires the transformations to
be executed 𝑥 − 1 − 𝑖 times.
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We prove the informally given statement with the following precise definition
of the transformations for a fixed but arbitrary value of 𝑥 . Let A, B, and C be
the classes depicted in Figure 7.1.

𝐼𝑀1 ≔ P(𝐼𝐴 ), 𝐼𝑀2 ≔ P(𝐼𝐵 ), 𝐼𝑀3 ≔ P(𝐼𝐶 )

𝐶𝑅12 ≔ {⟨𝑎, 𝑏⟩ ∈ 𝐼𝐴 × 𝐼𝐵 | 𝑎.𝑛, 𝑏.𝑛 ≥ 0 ∧ 𝑏.𝑛 = 𝑎.𝑛 + 1 ≠ 𝑥}
CR12 ≔ {𝐶𝑅12,𝐶𝑅

𝑇
12}

Cpr→
CR12
(𝑚1,𝑚2, 𝛿𝑀1 ) ≔ 𝛿𝑀2

with 𝛿𝑀2 (𝑚2) ≔ {𝑏 ∈ 𝐼𝐵 | ∃𝑎 ∈ 𝛿𝑀1 (𝑚1) : 𝑏.𝑛 = 𝑎.𝑛 + 1 ≠ 𝑥}
Cpr←

CR12
(𝑚2,𝑚1, 𝛿𝑀2 ) ≔ 𝛿𝑀1

with 𝛿𝑀1 (𝑚1) ≔ {𝑎 ∈ 𝐼𝐴 | ∃𝑏 ∈ 𝛿𝑀2 (𝑚2) : 𝑏.𝑛 = 𝑎.𝑛 + 1 ≠ 𝑥 ∧ 𝑎 ≥ 0}
𝔱12 ≔ ⟨CR12,Cpr→CR12

,Cpr←
CR12
⟩

𝐶𝑅13 ≔ {⟨𝑎, 𝑐⟩ ∈ 𝐼𝐴 × 𝐼𝐶 | 𝑎.𝑛 = 𝑐.𝑛}, CR13 ≔ {𝐶𝑅13,𝐶𝑅
𝑇
13}

Cpr→
CR13
(𝑚1,𝑚3, 𝛿𝑀1 ) ≔ 𝛿𝑀3

with 𝛿𝑀3 (𝑚3) ≔ {𝑐 ∈ 𝐼𝐶 | ∃𝑎 ∈ 𝛿𝑀1 (𝑚1) : 𝑎.𝑛 = 𝑐.𝑛}
Cpr←

CR13
(𝑚3,𝑚1, 𝛿𝑀3 ) ≔ 𝛿𝑀1

with 𝛿𝑀1 (𝑚1) ≔ {𝑎 ∈ 𝐼𝐴 | ∃ 𝑐 ∈ 𝛿𝑀3 (𝑚3) : 𝑎.𝑛 = 𝑐.𝑛}
𝔱13 ≔ ⟨CR13,Cpr→CR13

,Cpr←
CR13
⟩

𝐶𝑅23 ≔ {⟨𝑏, 𝑐⟩ ∈ 𝐼𝐵 × 𝐼𝐶 | 𝑏.𝑛 = 𝑐.𝑛}, CR23 ≔ {𝐶𝑅23,𝐶𝑅
𝑇
23}

Cpr→
CR23

,Cpr←
CR23

, and 𝔱23 accordingly

CR ≔ CR12 ∪CR13 ∪CR23

tinc ≔ {𝔱12, 𝔱13, 𝔱23}

For these transformations, we can show that the transformation 𝔱12 needs to
be executed a minimal number of times depending on 𝑥 for a specific input.
Thus, it is not sufficient to execute each transformation only once in this
network, and, even worse, we can enforce the necessity for an arbitrary high
number of executions by proper selection of 𝑥 .
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Lemma 7.1 (Minimal Number of Transformation Executions)
Let tinc be the previously defined transformation set, let𝑚1 =𝑚2 =𝑚3 =
∅ be empty models, and let 𝛿𝑀1 ∈ Δ𝑀1 be a change with 𝛿𝑀1 (𝑚1) =
{𝑎 ∈ 𝐼𝐴 | 𝑎.𝑛 = 0}. Then every orchestration function Orctinc

with

AppOrct
inc

(⟨𝑚1,𝑚2,𝑚3⟩, ⟨𝛿𝑀1 , 𝛿id, 𝛿id⟩) consistent to CR yields an or-

chestration that contains 𝔱12 at least 𝑥 − 1 times.

Proof. AppOrct
inc

can only return consistent models when it applies the trans-
formations in the order delivered by Orctinc by Definition 4.13. We thus
consider every orchestration, as delivered by any orchestration function, to
show that it contains 𝔱12 at least 𝑥 − 1 times to deliver consistent models.

Let max𝑛 (𝑚1,𝑚2,𝑚3) ≔ max{𝑒.𝑛 | 𝑒 ∈𝑚1 ∪𝑚2 ∪𝑚3} be the maximal value
of 𝑛 among all instances of A, B, and C in the given models𝑚1,𝑚2, and𝑚3.
In the following, we shortly note max𝑛 whenever the actual models are not
relevant. We show three statements that together prove the lemma.

Executing 𝔱13 and 𝔱23 does not increase max𝑛: The transformations only en-
sure that for given models the returned models contain all elements with
the same values of 𝑛 and do not introduce new elements with values of 𝑛
larger than the existing ones.

One execution of 𝔱12 increases max𝑛 by at most 1: There is no A or B with
𝑛 > max𝑛 . For every A with 𝑛 < max𝑛 , 𝔱12 creates, if necessary, a B

with value 𝑛 + 1 ≤ max𝑛 , thus not increasing max𝑛 . For every B with
𝑛 ≤ max𝑛 , it creates, if necessary, an A with value 𝑛 − 1 < max𝑛 . For
every A with 𝑛 = max𝑛 , a B with value 𝑛 + 1 = max𝑛 + 1 is created, as
long as 𝑛 ≠ 𝑥 − 1. For the newly created B, no further elements need to
be created to fulfill the relations. Thus, max𝑛 is, at most, increased by 1.

max𝑛 (𝑚1,𝑚2,𝑚3) < 𝑥 − 1⇒ ⟨𝑚1,𝑚2,𝑚3⟩ inconsistent to CR: There is at
least one element with 𝑛 = max𝑛 within the models. If the element
with 𝑛 = max𝑛 is an A, there must be a B with value 𝑛 + 1 due to CR12
and 𝑛 < 𝑥 − 1. But due to 𝑛 = max𝑛 such a B cannot exist, because
otherwise max𝑛 = 𝑛 + 1, so this is a contradiction. If the element with
𝑛 = max𝑛 is a C, CR13 requires an A with the same value of 𝑛 to exist
and the same argument as before leads to a contradiction. Finally, if the
element with 𝑛 = max𝑛 is a B, then because of CR23, a C with the same
value must exist and the same argument as before leads to a contradiction.
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In summary, we have shown that models 𝑚1, 𝑚2, and 𝑚3 are only consistent
toCRwhenmax𝑛 (𝑚1,𝑚2,𝑚3) ≥ 𝑥−1. Additionally, only 𝔱12 increasesmax𝑛

and with each execution it only increases it by at most 1. In consequence,
starting with max𝑛 = 0, we need at least 𝑥−1 executions of 𝔱12 in an arbitrary
sequence of the transformations in tinc to achieve consistent models.

We have proven that transformation networks can require an arbitrary high
number of executions of each transformation. By selecting an appropriate 𝑥
in the example network, we can force the network to perform at least 𝑥 − 1
executions of one transformation to yield a consistent tuple of models. With
this insight, it directly follows that we cannot find an approach to define
orchestration functions that deliver sequences containing each transforma-
tion only once if we want to ensure that the approach delivers a consistent
orchestration of transformations if it exists.

Theorem 7.2 (Orchestration with Single Execution)
For a set of transformations t, there can be models 𝔪 and changes 𝛿 to

them for which each possible orchestration function Orct with whom

AppOrct
(𝔪, 𝛿) is consistent delivers a sequence as Orct (𝔪, 𝛿) that con-

tains at least one transformation twice.

Proof. According to Lemma 7.1, tinc requires at least two executions of 𝔱12 for
the inputs in Lemma 7.1 and 𝑥 ≥ 3. This proves the theorem by example.

Of course, for a specific set of transformations it may be possible that there
is an orchestration for all possible models and changes to them leading to a
consistent state and only requiring each transformation to be executed once.
Theorem 7.2 shows, however, that this cannot be assumed in general. If we
execute each transformation only once, we may exclude cases for which
multiple executions of transformations would have led to a consistent tuple
of models. The example we have given in Figure 7.1 is a simplification of
a realistic transformation scenario, which we generalized to the previous
network with transformations tinc . For that reason, the insight is likely to
be relevant in realistic scenarios. We should not restrict orchestration to
execute each transformation only once, as there can be realistic scenarios
that require multiple executions to find consistent models. In the following,
we thus allow an arbitrary number of executions of each transformation.
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In addition, the examples, both the concrete one and the generalized abstract
one, demonstrate that it can be necessary to modify the model that was
originally changed by the user again. This contradicts the notion of author-
itative models as, for example, introduced by Stevens [Ste20b]. With that
notion, specific models are defined authoritative and cannot be changed, for
example, because they are immutable or because they were changed by the
user, and reverting those changes shall be avoided. While that behavior may
be a desired, forbidding the modification of a whole model is not a proper
solution as shown in the examples, which is why we do not consider a notion
of authoritative models.

7.1.2. Orchestration Function Behavior

An application function is defined to return models only when they can be
derived by applying transformations in an order delivered by the orchestra-
tion function and otherwise to return ⊥. In addition, we expect a correct

application function only to deliver consistent models. We have, however,
not yet defined under which conditions we expect the function not to return
⊥, because there are different reasons why the function may not be able to
deliver consistent models, although we could expect it to do so. In fact, with
the current definition, the function is even considered correct if it always
returns ⊥, which is obviously not practical. Thus, we need to define when
exactly we expect the function to return ⊥.

It might be intuitive to expect an application function to always return
consistent models when the input models are consistent and when there is
an execution order of the transformations, i.e., an orchestration, that delivers
consistent models. This, in consequence, would lead to the requirement that
the orchestration function delivers a sequence of transformations whose
application delivers consistent models whenever such a sequence exists for
the given models and changes to them. There can be the following reasons
why the orchestration function may not deliver such a sequence.

Incompatible Relations: If the consistency relations are incompatible, a user
change may introduce an element for which no consistent models exist.
In consequence, the transformations cannot be executed in an order
returning models that are consistent and still reflect the user change.
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No Consistent Orchestration Exists: Even if relations are compatible, trans-
formations may be defined in a way that they make contradictory de-
cisions for locally consistent solutions. Thus, for a given change the
consistency relations provide different ways of restoring consistency, of
which each transformation selects one that is not consistent to one of
the other relations. Then, no order of the transformations can restore
consistency, although consistent models exist for the given change.

No Consistent Orchestration Found: Even if an order of transformations for
given changes that delivers consistent models exists, the orchestration
function may not deliver it.

These reasons can be considered to reside at different levels, because each
of them induces the next. This means, if there is no orchestration, it cannot
be found, and having contradictory relations, there exists no orchestration
for some of the changes. In the end, all of them lead to the situation that no
orchestration can be found and, thus, the orchestration function is not able
to deliver it.

The intuitive requirement that the orchestration function delivers a consistent
orchestration whenever it exists would ensure the third level and needs to
assume fulfillment of the first two levels to avoid situations in which no
consistent orchestration is found. While we can assume compatibility of the
relations, for which we proposed an analysis in Chapter 5, we cannot assume
that an orchestration does always exists, as we see in the following.

Although compatibility reduces the chance that an orchestration function
does not deliver a consistent orchestration, as we have motivated with the
scenario depicted in Figure 5.6, it does not ensure that there is always such
a sequence of transformations that the orchestration function can find. In
general, this is always the case when consistency relations define different
options for consistency, i.e., if they allow the existence of different corre-
sponding elements to consider the models consistent. Compatibility ensures
that there is an overlap of these corresponding elements, such that for every
element, for which consistency is restricted, consistent models can be found.
If, however, the transformations always restore consistency by introducing
corresponding elements that are not in this overlap, each transformation will
restore consistency locally to its consistency relation, but they can, together,
never restore consistency to all consistency relations.
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Consider the situation that we have three metamodels 𝐴, 𝐵 , and 𝐶 with
instances 𝑎𝑖 , 𝑏𝑘 , and 𝑐𝑙 . Let us assume that these models are uniquely indexed
by 𝑖 , 𝑘 , and 𝑙 , and that we defined the following model-level consistency
relations:

𝐶𝑅𝐴𝐵 = {⟨𝑎𝑖 , 𝑏𝑘⟩ | 𝑘 = 𝑖}
𝐶𝑅𝐴𝐶 = {⟨𝑎𝑖 , 𝑐𝑙 ⟩ | 𝑙 = 𝑖 ∨ 𝑙 = 𝑖 + 1}
𝐶𝑅𝐵𝐶 = {⟨𝑏𝑘 , 𝑐𝑙 ⟩ | 𝑙 = 𝑘 + 1 ∨ 𝑙 = 𝑘 + 2}

This induces the model tuples {⟨𝑎𝑖 , 𝑏𝑘 , 𝑐𝑙 ⟩ | 𝑖 = 𝑘 = 𝑙 − 1}, which are
consistent to all three consistency relations. Thus, for any given model we
are able to find instances of the other metamodels that are consistent to all
consistency relations. If we define consistency preservation rules for these
consistency relations, the ones for 𝐶𝑅𝐴𝐶 and 𝐶𝑅𝐵𝐶 may decide between two
models to restore consistency, because their conditions define two options
for consistent models. The set of consistent models, however, contains only
those models fulfilling the first of these two conditions. If each consistency
preservation rule selects the models that fulfill the second condition, the
resulting models are locally consistent to its consistency relation, but they
will never become globally consistent to all three relations. More precisely,
if the consistency preservation rules for 𝐶𝑅𝐴𝐶 select 𝑐𝑖 for 𝑎𝑖 and vice versa,
and if the rules for 𝐶𝑅𝐵𝐶 select 𝑐𝑖+2 for 𝑎𝑖 and vice versa, no orchestration of
the transformations will yield consistent models, because they never select
those models that are in the overlap of the consistency relations.

Figure 7.3 demonstrates this situation at a derivation of the running example.
The consistency relation between employees and residents ensures that for
each resident and employee there is a corresponding other element with the
same name. The consistency relations between employees and persons, as
well as between residents and persons ensure that for each person there is a
corresponding employee and resident, respectively, but they allow different
relations of their names. While both consider elements corresponding if
the name of an employee and resident, respectively, are the concatenation
of the firstname and lastname of a person, an employee is also allowed to
have the inverse concatenation of lastname and firstname, whereas a resident
is also allowed to have this inverse concatenation but with an additional
separation of the lastname and firstname with a comma. These options
for the consistency relations provide further degrees of freedom for each
transformation on its own, as they allow, for example, employee names to
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Person
firstname
lastname

Resident
name

Employee
name

𝑝 𝑟

{⟨𝑝, 𝑟 ⟩ | r .name = p.firstname + ”␣” + p.lastname

∨r .name = p.lastname + ”, ␣” + p.firstname}𝑝

𝑒

{⟨𝑝, 𝑒⟩ | e.name = p.firstname + ”␣” + p.lastname

∨e.name = p.lastname + ”␣” + p.firstname}

𝑟

𝑒

{⟨𝑒, 𝑟 ⟩ | r .name = e.name}

+𝑝 → 𝑟 (name = p.lastname + ”, ␣” + p.firstname)
Alternative 1: + 𝑟 → 𝑝 (firstname = r .name.substringAfter (”␣”)

lastname = r .name.substringBeforeFirst (”, ”, ”␣”))
Alternative 2: + 𝑟 → if (r .name.contains(”, ”)) then Alternative 1, else

𝑝 (firstname = r .name.substringBefore(”␣”)
lastname = r .name.substringAfter (”␣”))

+𝑝 → +𝑒 (name = p.lastname + ”␣” + p.firstname)
+𝑒 → +𝑝 (firstname = e.name.substringAfter (”␣”)

lastname = e.name.substringBefore(”␣”))

+𝑒 → +𝑟 (name = e.name)
+𝑟 → +𝑒 (name = r .name)

with: x .substringBefore(separator) ≔ x .substring(0, x .indexOf (separator))
x .substringBeforeFirst (separator1, separator2) ≔

x .substring(min(x .indexOf (separator1), x .indexOf (separator2)))
x .substringAfter (separator) ≔ x .substring(x .indexOf (separator) + 1)

Figure 7.3.: Consistency relations with options for corresponding elements leading to consistency
preservation rules for which no consistent orchestration exists.

be encoded differently. This can be reasonable if the order of firstname and
lastname is not relevant in a model managing employees. In combination
with the other consistency relations, however, the only employees, residents,
and persons that are considered consistent to all of the consistency relations
are those having the same names with the concatenation of firstname and
lastname. Nevertheless, these consistency relations are compatible, because
for each possible condition element, i.e., for every possible employee, person,
and resident, consistent models exist that contain them.
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Consistency preservation rules for these consistency relations need to choose
one of the given options for the names of corresponding employees, residents,
and persons. Figure 7.3 sketches consistency preservation rules that make
such a selection. The rules with alternative 1 ensure that for each employee,
resident, and person corresponding elements exist, which fulfill those rela-
tions of the names that are conflicting. This means, the employee’s name

is the concatenation of the lastname and firstname of a person, whereas the
resident’s name contains an additional comma in that concatenation. In the
other direction, the names of employees and residents are split at the appro-
priate indices given by the whitespace and comma, respectively, to calculate
the required firstname and lastname of a person. In consequence, there is no
execution sequence of the transformations that results in consistent models,
because the execution of the transformation between employees and persons
always leads to a violation of the consistency relation between residents and
persons and vice versa. This is because the transformation between persons
and residents always introduces a comma in the resident’s name, which is
then appended to the lastname by the transformation between employees
and persons. A repeated execution of the transformation repeatedly appends
that comma. On the other hand, the execution of any of the transformations
does never lead to the introduction of a person that fulfills the non-conflicting
conditions of both consistency relations by simply containing a firstname and
lastname that is represented as a concatenation of firstname and lastname

in both an employee and a resident. This is a concrete example for the ab-
stract situation that of different options in consistency relations always the
non-overlapping ones are chosen by the consistency preservation rules.

If we consider alternative 2 for the consistency preservation rule between
persons and residents, we can always find a consistent orchestration. The
alternative rule decides how consistency is ensured based on the existence
of a comma within the resident’s name. If a comma is present, the name

relation containing a comma is used, and otherwise the simple concatena-
tion of firstname and lastname is assumed. After adding an employee, first
executing the transformation from employees to residents and afterwards
the one from residents to persons ensures that all consistency relations are
fulfilled, because the one between residents and persons sets the firstname

and lastname of a person according to the relation that is also fulfilled be-
tween the person and the employee, because the name does not contain
a comma. After adding a person, first executing the transformation from
persons to employees and then the one from employees to residents results
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in an employee and a resident with inverse firstname and lastname. Since
this resident is not consistent to the person, the transformation from resi-
dents to persons adds another person, which then also contains the swapped
firstname and lastname. Executing the same process again results in two
persons, residents, and employees with both assignments of firstname and
lastname, which may not be intended but actually represents a consistent
result. Finally, after adding a resident we can, for example, first apply the
transformation between residents and employees and then the one between
residents and persons, resulting in consistent models due to the same reasons
as above.

Although consistent orchestrations of the transformations with the consis-
tency preservation rule defined as alternative 2 exist, not every execution
order leads to consistent models. In the scenarios discussed above, we have
ensured that the transformation between residents and persons is executed
after the addition of a resident. If this transformation is executed after the
addition of a person, a comma is added, which leads to the subsequent appli-
cation of the same consistency preservation rules as with alternative 1 and
implies that no further orchestration yields consistent models.

No matter whether exactly these consistency relations and preservation rules
for them may occur in an actual transformation network, they exemplify
the general situation of having consistency preservation rules that select
one of different options provided by the consistency relations to introduce
corresponding elements to restore consistency. The example shows that
whether or not a consistent orchestration of transformations exists in such a
situation depends on whether at least one transformation selects an option
that is consistent to other consistency relations as well. It also shows that
even if a consistent orchestration exists, not all orchestrations yield consistent
models. Thus, we need to be able to find one that does.

In accordance with existing work [Ste20b], we call a given tuple of models and
changes resolvable by a transformation network if a consistent orchestration
exists. We have to accept that transformation networks may be unresolvable,
i.e., that there is no consistent orchestration of the transformations. Ensuring
that a network is resolvable for every change would lead to restrictions for
the individual transformations that would especially require different trans-
formations to be aligned with each other. Since that conflicts our assumption
of independent development and modular reuse, we accept unresolvability
and instead focus on how we can find an orchestration if it exists.
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In conclusion, we expect the application function to deliver consistent models
whenever a consistent orchestration, i.e., an execution order that yields
consistent models, exists. Thus, we want to ensure that the orchestration
function is able to always find such an orchestration if it exists. We define
this as an optimality property in the following.

7.1.3. Optimal Orchestration

To ensure that an application function delivers consistent models whenever
a consistent orchestration exists, we need to find an orchestration function
that fulfills this property. We denote this as an optimal orchestration function.
Recall thatGen𝔐,𝔱 is the generalization function that applies a transformation
to a model tuple that instantiates all metamodels in a tuple 𝔐.

Definition 7.2 (Optimal Orchestration Function)
Let t be a set of transformations for consistency relations CR and
metamodels 𝔐. We say that an orchestration function Orct for these
transformations is optimal if, and only if, it returns a consistent orches-
tration whenever it exists:

∀𝔪 ∈ 𝐼𝔐 | 𝔪 consistent to CR : ∀𝛿𝔐 ∈ Δ𝔐 :[︁
∃ 𝔱1, . . . , 𝔱𝑖 ∈ t : ∃ 𝛿 ′𝔐 ∈ Δ𝔐 :

(︁
𝛿 ′
𝔐
(𝔪) consistent to CR

∧ Gen𝔐,𝔱𝑖 ◦ . . . ◦ Gen𝔐,𝔱1 (𝔪, 𝛿𝔐) = (𝔪, 𝛿 ′
𝔐
)
)︁

⇒ ∃ 𝔱′1, . . . , 𝔱′𝑘 ∈ t : ∃ 𝛿
′′
𝔐
∈ Δ𝔐 :

(︁
𝛿 ′′
𝔐
(𝔪) consistent to CR

∧ Gen𝔐,𝔱′
𝑘
◦ . . . ◦ Gen𝔐,𝔱′1

(𝔪, 𝛿𝔐) = (𝔪, 𝛿 ′′
𝔐
)

∧ Orct (𝔪, 𝛿𝔐) = [𝔱′1, . . . , 𝔱′𝑘 ]
)︁ ]︁

Note that we allow an optimal orchestration function to return a sequence
even when there is no consistent orchestration. This is reasonable, because an
application function may also support finding the reasons when no consistent
orchestration is found by delivering a sequence of transformations that leads
to a failure, as we discuss in Section 7.4.

Finally, the result of the application function is what is relevant in the process
of consistency preservation. Thus, we apply the notion of optimality to that

245



7. Orchestrating Transformation Networks

function accordingly by requiring it to deliver consistent models whenever a
consistent orchestration exists.

Definition 7.3 (Optimal Application Function)
Let t be a set of transformations for consistency relations CR and
metamodels 𝔐. We say that an application function AppOrct for these
transformations is optimal if, and only if, it returns models that are
consistent whenever there is a consistent orchestration of the transfor-
mations:

∀𝔪 ∈ 𝐼𝔐 | 𝔪 consistent to CR : ∀𝛿𝔐 ∈ Δ𝔐 :[︁
∃ 𝔱1, . . . , 𝔱𝑖 ∈ t : ∃ 𝛿 ′𝔐 ∈ Δ𝔐 :

(︁
𝛿 ′
𝔐
(𝔪) consistent to CR

∧ Gen𝔐,𝔱𝑖 ◦ . . . ◦ Gen𝔐,𝔱1 (𝔪, 𝛿𝔐) = (𝔪, 𝛿 ′
𝔐
)
)︁

⇒ AppOrct (𝔪, 𝛿𝔐) consistent to CR
]︁

According to the defined behavior of an application function, an optimal
application function requires an optimal orchestration function.

Lemma 7.3 (Application / Orchestration Function Optimality)
An application function AppOrct

can only be optimal if Orct is optimal.

Proof. Let us assume that the condition in Definition 7.3 is fulfilled, i.e., that
the input models are consistent and that a consistent orchestration of the
transformations exists for them. Then, to be optimal, the application function
needs to return models that are consistent. According to the definition of an
application function (see Definition 4.13), the sequence of transformations
delivered by Orct for that input must yield the same model tuple as AppOrct .
Thus, the orchestration function must deliver a sequence for such inputs that
yields consistent models, which is equivalent to Orct being optimal.

7.1.4. The Orchestration Problem

The problem to find a consistent orchestration whenever it is exists, i.e., to
find an optimal orchestration function, is the central subject of the following
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sections. This is what we denote as the orchestration problem. We prove
that the problem is undecidable, discuss how we can make it decidable, and
propose strategies to deal with its undecidability. Finally, we come up with a
discussion of conservatively approximating a solution to the problem. We
define the problem as follows.

Definition 7.4 (Orchestration Problem)
The problem to find a consistent orchestration of transformations for
given inputs (models and changes to them) if it exists is called the
orchestration problem.

Often, the more general problem of deciding whether a consistent orchestra-
tion exists is sufficient.

Definition 7.5 (Orchestration Existence Problem)
The question whether a consistent orchestration of transformations
for given inputs (models and changes to them) exists is called the
orchestration existence problem.

In fact, both these problems are equivalent in the sense that having a solution
for one of them also delivers a solution for the other.

Theorem 7.4 (Orchestration / Existence Problem Equivalence)
The orchestration problem can be solved if, and only if, the orchestration

existence problem can be solved.

Proof. If a solution for the orchestration problem exists, it directly induces
a solution for the orchestration existence problem, because if we find a
consistent orchestration whenever it exists, we also know whether it exists.
If a solution for the orchestration existence problem exists and we know
that a consistent orchestration exists, we can find it by systematically testing
all orchestrations of growing size until a consistent orchestration is found,
since models are of finite size. Since we know that such an orchestration
exists, this test must terminate, even though it may take an impractically
long time.
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Since the orchestration problem is derived from the goal of finding an optimal
application function, it is obviously equivalent to find an optimal application
function or to solve the orchestration (existence) problem.

Theorem 7.5 (Optimality / Orchestration Problem Equivalence)
An optimal application function AppOrct

can be defined if, and only if, a

solution for the orchestration (existence) problem exists.

Proof. We give the proof for the orchestration existence problem, which
is, according to Theorem 7.4, equivalent to the orchestration problem. An
optimal AppOrct returns consistent models whenever there is a consistent
orchestration. With such a function, we are able to decide whether such an
orchestration exists or not.

ExistsOrc(t,𝔪, 𝛿𝔐) ≔
{︄
true, if AppOrct (𝔪, 𝛿𝔐) consistent to t
false, otherwise

ExistsOrc returns true if, and only if, a consistent orchestration exists.
Since AppOrct is optimal, it returns consistent models in exactly those cases
in which a consistent orchestration that yields them exists.

If a solution for the orchestration existence problem exists, we know whether
a consistent orchestration exists for an input. In that case, we can define
AppOrct to apply an according orchestration, which can be found by exhaus-
tively testing different orchestration as discussed in the proof for Theorem 7.4,
and otherwise to return ⊥.

7.2. Limitations of Orchestration Decidability

We have introduced the orchestration problem as the problem to find a
consistent orchestration if it exists. This is equivalent to the existence of an
optimal orchestration function. We can distinguish two approaches to ensure
that the orchestration function is optimal. Let 𝑃 be the problem space, i.e., all
possible orchestrations of given transformations, and let 𝑆𝑖 be the solution
space with those orders that yield consistent models for a specific input 𝑖 of
models and changes to them.
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Strategy Definition: Define a strategy that explores the problem space 𝑃 to
find one of the sequences in the solution space 𝑆𝑖 if 𝑆𝑖 ≠ ∅.

Transformation Restriction: Define a well-behavedness property for trans-
formations that ensures that executing the transformations in any order
often enough they yield consistent models if 𝑆𝑖 ≠ ∅. This means, for any
given input 𝑖 there is an 𝑛 ∈ N such that ∀ 𝑠 ∈ 𝑃 :

(︁
|𝑠 | > 𝑛 ⇒ 𝑠 ∈ 𝑆𝑖

)︁
.

In the latter case, the orchestration function only needs to return orders that
are longer than a specific length to be optimal. This means, performing an
iterative execution of the transformations leads to a consistent result. Since
optimality is a property of an orchestration function with respect to a set of
transformations, defining a well-behavedness property for transformations to
ease finding an optimal orchestration function will potentially not concern
a single transformation but the set of them. This can easily contradict our
assumption of independent development and reuse, or lead to restrictions of
transformations that are not practical anymore.

In the following, we first investigate the possibility to find an optimal orches-
tration function without restricting the transformations. We define a general
algorithm that realizes an application function, as in practice the function
will be realized in terms of an algorithm that dynamically selects the next
transformation to execute. We then discuss its correctness and termination
and relate it to the orchestration problem. After proving undecidability of
the orchestration problem, we discuss the possibilities to restrict transforma-
tions such that the problem becomes decidable. Finally, we shortly discuss
confluence as a considerable property of transformation networks.

7.2.1. An Algorithm for Application Functions

We have so far discussed the orchestration and application functions as math-
ematical functions. In practice, they will be implemented as algorithms. In
Algorithm 7.1, we propose an algorithm that realizes an application func-
tion. It also encodes the orchestration function, because an algorithm for the
orchestration function will not determine a complete sequence of transforma-
tions for given models and changes but dynamically select the transformation
to be executed next. As soon as the orchestration function determines no
further transformation for execution, the algorithm returns the resulting
models if they are consistent and ⊥ otherwise.
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Algorithm 7.1 Application function implementation.
1: procedure Apply(t,𝔪, 𝛿𝔐)
2: if ¬CheckConsistency(t,𝔪) then
3: return ⊥
4: end if
5: 𝔱executed [] ← []
6: 𝛿𝔐,generated [] ← []
7: 𝔱next ← Orchestratet (𝔪, 𝛿𝔐, 𝔱executed [], 𝛿𝔐,generated [])
8: while 𝔱next ≠ ⊥ do
9: (𝔪, 𝛿𝔐) ← Gen𝔐,𝔱next (𝔪, 𝛿𝔐)

10: 𝔱executed [] ← 𝔱executed [] + 𝔱next
11: 𝛿𝔐,generated [] ← 𝛿𝔐,generated [] + 𝛿𝔐
12: 𝔱next ← Orchestratet (𝔪, 𝛿𝔐, 𝔱executed [], 𝛿𝔐,generated [])
13: end while
14: 𝔪res ← 𝛿𝔐 (𝔪)
15: if ¬CheckConsistency(t,𝔪res) then
16: return ⊥
17: end if
18: return 𝔪res

19: end procedure

An application function according to Definition 4.13 is parametrized by an
orchestration function, which, in turn, is parametrized by the set of transfor-
mations t that it is supposed to be executed on. A transformation network
according to Definition 4.15 is defined to consist of a set of transformations
and an application function, which may suggest that both the application as
well as the orchestration function can be defined specific for one network.
Algorithm 7.1 reflects this by assuming an Orchestrate function that is
specific for a set of transformations. It may, however, be implemented by a
generic function that works independent from the actual transformations
and, instead, accepts them as a parameter. We do, however, focus on a gen-
eral algorithm and an Orchestrate function that can be applied to any
set of transformations. In that case, the algorithm does not realize a single
application function but actually a family of application functions for all
possible transformation sets t.
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The dynamic selection of transformations is realized by an Orchestrate
function and stops as soon as no further transformations to apply are deliv-
ered. The latter may be the case because the models are already consistent
or because no further transformations can be applied. It is essential that Or-
chestrate only returns a transformation that can be applied to the models
and current changes, because otherwise its application by the Gen function
in Line 9 would fail. The complete logic of the orchestration function is
combined with the application of the delivered sequence in Lines 7–13. Since,
in practice, the selection of transformations has to be performed dynamically
anyway, an implementation of the orchestration function always needs to
apply the transformations. Thus, a separation of the orchestration function
into a separate algorithm, which performs the same steps as in Lines 7–13,
leads to a redundancy by applying the transformations both in the separate
orchestration algorithm as well as in the application algorithm.

The Orchestrate function receives the history of executed transformations
and generated changes, because if the complete orchestration function was
implemented in a separate method, it would also be able to use that infor-
mation to determine a proper orchestration. Otherwise, its expressiveness
would be restricted with respect to the definition of an orchestration function,
because that function makes a global decision for all transformations to exe-
cute based on the original input, which is not available to the Orchestrate
function after its first execution anymore. In a practical implementation of
that function, the history may not be considered or truncated, depending on
the information necessary for the implemented orchestration strategy.

The Orchestrate function may implement different strategies for selecting
the next transformation, which we later discuss in more detail. One simple
strategy would execute the same order of transformations iteratively, thus
always executing the transformation that was not executed for the longest
time. Another reasonable strategy would be to manage a queue of transfor-
mations. After executing one transformation, all transformations that are
adjacent to the metamodels of the two models that were modified by the
transformation are enqueued if they were not enqueued yet. This ensures
that those transformations that can process changes that have just been pro-
duced by another transformation are executed next. Both these strategies are
independent from the actual transformations and could thus be implemented
in a function that can be used for any set of transformations t. In Section 7.4,
we discuss a specific orchestration strategy. Until then, the actual strategy is
not important and any of the exemplified ones can be imagined.
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Next to Orchestrate, the algorithm uses the external functions Gen and
CheckConsistency. The Gen function is the generalization function, which
simply applies the given transformation to the appropriate models of the
given tuple, as defined in Definition 4.12. The CheckConsistency function
checks whether the given models are consistent to the set of transformations,
according to Definition 4.10. This function can be implemented in two ways.
First, it may be implemented as an explicit check regarding the consistency
relations of the transformations. If the transformations are defined by their
consistency relations, from which a transformations language derives the
consistency preservation rules, such as QVT-R, the models can be checked
regarding the given relations. In case of QVT-R, the transformations can be
executed in checkonly mode [QVT, Sec. 7.9]. Second, it may be implemented
by (virtually) executing the consistency preservation rules and checking
whether their execution performs changes. If the transformations are hippo-
cratic according to Definition 4.9, i.e., if they do not perform changes when
the models are already consistent, consistency can be checked this way. This
is always necessary when the consistency relations are not explicitly given
but are implicitly defined as the fixed points of the consistency preservation
rules, such as for transformations defined in QVT-O. Due to their simplicity,
we do not provide an explicit implementation of these two functions.

7.2.2. Correctness and Termination of the Algorithm

Algorithm 7.1 is constructed to implement an application function according
to Definition 4.13. It is designed to be correct, i.e., to return models only when
they are consistent. We show that the algorithm fulfills these properties in
the following theorem.

Theorem 7.6 (Apply Algorithm Correctness)
The Apply function in Algorithm 7.1 fulfills the functional behavior of an

application function as defined in Definition 4.13 and is correct according

to Definition 4.14.

Proof. The Apply function fulfills the input and output requirements of an
application function according to Definition 4.13. It returns a model tuple
only in Line 18, which is achieved by applying the changes that the sequence
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of transformations as delivered by the orchestration function yields, which is
realized as a repeated call of the Orchestrate function in Lines 7–13. Thus,
Apply fulfills the definition of an application function.

Correctness of an application function according to Definition 4.14 requires
the output models, if not returning ⊥, to be consistent to the consistency
relations of all transformations, as long as the input models were consistent.
The algorithm returns models only in Line 18 and otherwise returns⊥ before.
The returned models are always consistent to the consistency relations of all
transformations, because Lines 15–17 ensure this.

In addition to being correct, the algorithm needs to terminate for every
input. The only source of non-termination is the loop for orchestrating
transformations, as there are no recursions and further loops. According to
the definition, an orchestration function is defined to return a finite sequence
of transformations, which would also result in a finite number of executions
of the loop for orchestrating transformations. The implementation by a
dynamic selection of the next transformation to execute can, however, lead to
an infinite sequence of transformations. The Orchestrate function receives
the list of previously executed transformations, as otherwise it would never be
able to identify that, for example, always the same transformation sequence
is executed and leads to the same changes, which means that the algorithm
performs an infinite alternation. We do, however, need to ensure that the
Orchestrate function returns ⊥ after a finite number of calls.

If we assumed that we can achieve optimality for the orchestration function,
we would have the guarantee that if a consistent orchestration exists, the
function will find it. There is, however, no restriction to what the orchestra-
tion function may return when there is no consistent orchestration. Thus,
we have the following two options to ensure termination.

1. We enable the orchestration function to identify whether a consistent
orchestration exists.

2. We find an upper bound for the number of necessary transformation
executions. Then, if a higher number of transformations was executed,
we cannot expect the algorithm to find consistent models anymore
and thus abort it.

As the simplest solution, an upper bound would restrict the number of
necessary transformation executions. We do, however, prove in the following
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that there is no such upper bound. Afterwards, we show that identifying
whether a consistent orchestration exists is not possible either. This leads to
the insight that we cannot guarantee termination of the algorithm with an
optimal orchestration function.

With the example in Figure 7.1, in which values are incremented by one dur-
ing each execution of one specific transformation until a fixed but arbitrary
value 𝑥 is reached, we were able to show Lemma 7.1. It states that there can
be transformation networks in which a transformation needs to be executed
at least 𝑥 − 1 times for a fixed but arbitrary 𝑥 until consistent models are
found. Thus, any consistent orchestration contains that transformation at
least 𝑥 − 1 times. While we have used that insight in Theorem 7.2 to show
that executing each transformation only once is, in general, insufficient, we
can also use it to show the more general statement that there is no maximal
length for the orchestration of transformation networks, independent from
the network size.

Theorem 7.7 (Shortest Consistent Orchestration Upper Bound)
For every 𝑡size ≥ 3 and every 𝑛 ≥ 0, there is a set of transformations t with

|t| > 𝑡size such that there are models𝔪 and changes 𝛿𝔐 to them for which

each possible orchestration function Orct with whom AppOrct
(𝔪, 𝛿𝔐) is

consistent delivers a transformation sequence with |Orct (𝔪, 𝛿𝔐) | > 𝑛.

Proof. We know from Lemma 7.1 that tinc requires at least 𝑥 − 1 executions
of 𝔱12 for the inputs defined in Lemma 7.1 and the fixed but arbitrary value 𝑥 .
Thus, with 𝑥 ≥ 𝑛 + 2, we know that at least 𝑥 − 1 ≥ 𝑛 + 1 executions of 𝔱12 are
necessary. Let 𝔪 and 𝛿𝔐 be the inputs defined in Lemma 7.1. Then, for every
orchestration function Orctinc that delivers a consistent orchestration for 𝔪
and 𝛿𝔐 , we know that |Orctinc (𝔪, 𝛿𝔐) | ≥ 𝑥 − 1 ≥ 𝑛 + 1 > 𝑛. Since adding
arbitrary transformations whose consistency preservation rules implement
the identity function to a set of transformations does not alter the results
of the network, we can construct a network of arbitrary size ≥ 3 with the
same behavior out of tinc by adding such transformations. This proves the
theorem by example.

In consequence, there is no fixed value and no value depending on the
transformation network size that defines an upper bound for the necessary
number of transformation executions to yield consistent models, i.e., there is
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Figure 7.4.: Principles to eliminate cycles of length ≤ 2 in the transition function of a Turing
machine. 𝑖 and 𝑜 are placeholders for all incoming and outgoing transitions of a state.

no upper bound for the shortest consistent orchestration. Thus, we cannot
abort the execution of the Apply function after a fixed number of loop
iterations without the possibility that consistent models would have been
found if the execution had proceeded and thus not ensuring optimality.

7.2.3. Undecidability of the Orchestration Problem

To ensure termination of the Apply algorithm with an optimal orchestration
function, we need to identify the case that no consistent orchestration exists,
because that is the only situation in which otherwise an infinite number
of transformation executions is possible. Unfortunately, we can show that
this orchestration existence problem is undecidable. We reduce the halting
problem for Turing machines to the orchestration problem. Thus, solving the
orchestration problem would solve the halting problem. We have published
a simplified version of this proof, based on a more concise formalism, in
previous work [GKB21].

Given a Turing machine tm over some alphabet Σ, we construct metamodels
𝔐tm and a transformation network with a set of transformations ttm, as
well as initial models 𝔪tm,𝑥 ∈ 𝐼𝔐TM and changes 𝛿𝔐,tm,𝑥 , for them for which
a consistent orchestration exists if, and only if, tm halts on input 𝑥 ∈ Σ∗.
Without loss of generality, we assume that the graph of the transition function
of tm contains no cycles of length ≤ 2. This means that it contains no self-
loops, i.e., that the transition function always changes the state, and that there
is no cycle between two states. This is without loss of generality, because
cycles of these two lengths can be eliminated by replicating states. A self-loop
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can be eliminated by duplicating the state with a cycle of length 2 between
the duplicated states, replicating all outgoing transitions for both states,
and letting all incoming transitions go to one of these two states. Likewise,
eliminating cycles of length 2 can be achieved by duplicating both involved
states and replacing the cycle of length 2 by one of length 4, replicating
all outgoing transitions for all states, and letting all incoming transitions
go to one of the two states of each replicated one. Inductively applying
these duplication principles can eliminate all cycles of length ≤ 2. The two
principles are depicted in Figure 7.4.

We construct models that consist of a timestamp, the tape content, and
the tape position. We encode this into a metamodel 𝑀tm, whose instances
represent exactly these contents. In a simplified notation, which considers a
model as a tuple of these three elements rather than a set of elements, the
instances of such a metamodel are given by 𝐼𝑀tm ≔ N0 × Σ∗ × N0. A model
𝑚 ≔ ⟨time, cont, pos⟩ ∈ 𝐼𝑀tm then represents a tuple of timestamp, tape
content, and tape position. To represent the states of the Turing machine, we
consider one such metamodel for each state of the Turing machine, although
they are all equal. Thus, 𝔐tm ≔ ⟨𝑀1,tm, . . . , 𝑀𝑛,tm⟩ with 𝑛 = |𝑄tm | if we
assume 𝑄tm = {𝑞1, . . . , 𝑞𝑛} to be the set of states of tm. We define the
following function that returns the state of the Turing machine represented
by a metamodel:

Q : 𝑀𝑖,tm ↦→ 𝑞𝑖

We consider a transformation between each pair of metamodels whose repre-
sented states in the Turing machine have a transition between them. Finally,
we consider models instantiating each of the metamodels to be kept consis-
tent by an appropriate definition of these transformations representing the
transitions of the Turing machine.

The transformations increment the timestamp, change the tape content, and
update the tape position according to the transitions of tm if, and only if, the
timestamp of one model is higher than the one of the other. More formally,
let Tr(𝑞1, 𝑞2) ⊆ Σ×{−1, 0, 1}×Σ be the transitions defined between the states
𝑞1 ∈ 𝑄tm and 𝑞2 ∈ 𝑄tm, with −1, 0, and 1 indicating the head movements
“left”, “stay”, and “right”, respectively. We define a consistency preservation
rule for the transformation between the metamodels 𝑀𝑖,tm and 𝑀𝑘,tm, which
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realizes the transition between the represented states of the Turing machine,
as follows.

Cpr𝑖,𝑘 (𝑚𝑖 ,𝑚𝑘 , 𝛿𝑀𝑖,tm , 𝛿𝑀𝑘,tm ) ≔ (𝛿 ′𝑀𝑖,tm
, 𝛿 ′𝑀𝑘,tm

) with:

𝑚′𝑖 ≔ ⟨time𝑚′
𝑖
, cont𝑚′

𝑖
[], pos𝑚′

𝑖
⟩ ≔ 𝛿𝑀𝑖,tm (𝑚𝑖 )

𝑚′
𝑘
≔ ⟨time𝑚′

𝑘
, cont𝑚′

𝑘
[], pos𝑚′

𝑘
⟩ ≔ 𝛿𝑀𝑘,tm (𝑚𝑘 )

𝛿 ′𝑀𝑖,tm
(𝑚𝑖 ) ≔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⟨time𝑚′

𝑘
+ 1, cont𝑚′

𝑘
|pos𝑚′

𝑘
←repl, pos𝑚′

𝑘
+ dir⟩,

if time𝑚′
𝑘
> time𝑚′

𝑖
∧

∃⟨cont𝑚′
𝑘
[pos𝑚′

𝑘
], dir, repl⟩ ∈ Tr(𝑄 (𝑀𝑘,tm), 𝑄 (𝑀𝑖,tm))

𝑚′𝑖 , otherwise

𝛿 ′𝑀𝑘,tm
(𝑚𝑘 ) ≔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
⟨time𝑚′

𝑖
+ 1, cont𝑚′

𝑖
|pos𝑚′

𝑖
←repl, pos𝑚′

𝑖
+ dir⟩,

if time𝑚′
𝑖
> time𝑚′

𝑘
∧

∃⟨cont𝑚′
𝑖
[pos𝑚′

𝑖
], dir, repl⟩ ∈ Tr(𝑄 (𝑀𝑖,tm), 𝑄 (𝑀𝑘,tm))

𝑚′
𝑘
, otherwise

where cont |pos←repl ≔ cont [0 . . . pos − 1] · repl · cont [pos + 1 . . . |cont | − 1].

The model-level consistency relations are implicitly given by the fixed points
of the consistency preservation rules. For a consistency preservation rule
Cpr𝑖,𝑘 , we define:

𝐶𝑅𝑖,𝑘 ≔ {⟨𝑚𝑖 ,𝑚𝑘⟩ ∈ 𝐼𝑀𝑖,tm × 𝐼𝑀𝑘,tm | ∃𝑚′𝑖 ,𝑚′𝑘 , 𝛿𝑀𝑖,tm , 𝛿𝑀𝑘,tm :
Cpr𝑖,𝑘 (𝑚′𝑖 ,𝑚′𝑘 , 𝛿𝑀𝑖,tm , 𝛿𝑀𝑘,tm ) (𝑚′𝑖 ,𝑚′𝑘 ) = ⟨𝑚𝑖 ,𝑚𝑘⟩}

With this definition, each consistency preservation rule is correct, i.e., one
application of it yields models that are consistent to its defined consistency
relation. This is because due to the assumption that the graph induced by
the transition function of tm does not contain cycles of length ≤ 2, there
may be no cyclic transitions between the states which are represented by the
models kept consistent by a single transformation.

We denote the set of all transformations realizing the transitions of tm as
ttm, containing transformations 𝔱𝑖,𝑘 = ⟨𝐶𝑅𝑖,𝑘 ,Cpr𝑖,𝑘⟩ for all metamodel pairs
⟨𝑀𝑖,tm, 𝑀𝑘,tm⟩ for which a transition between the represented states in 𝑄tm
exists, i.e., Tr(𝑄 (𝑀𝑖,tm), 𝑄 (𝑀𝑘,tm)) ≠ ∅.
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Let 𝑠 ∈ 𝑄tm be the initial state of tm. We set

𝔪tm,𝑥 ≔ ⟨𝑚1,tm,𝑥 , . . . ,𝑚𝑛,tm,𝑥 ⟩
with𝑚𝑖,tm,𝑥 ≔ ⟨0, 𝜀, 0⟩

𝛿𝔐,tm,𝑥 ≔ ⟨𝛿𝑀1,tm,𝑥 , . . . , 𝛿𝑀𝑛,tm,𝑥 ⟩

with 𝛿𝑀𝑖 ,tm,𝑥 (𝑚𝑖 ) ≔
{︄
⟨1, 𝑥, 0⟩, if 𝑄 (𝑀𝑖 ) = 𝑠

𝑚𝑖 , otherwise

We can show that for every Turing machine, this construction of a transfor-
mation network out of it solves the halting problem if we are able to solve
the orchestration problem. First, we show an auxiliary lemma that proves
that executing the transformations until all models are consistent terminates
if, and only if, the according Turing machine halts.

Lemma 7.8 (Halting to Orchestration Problem Reduction)
Executing the transformations of ttm for the models 𝔪tm,𝑥 and changes

𝛿𝔐,tm,𝑥 until all models are consistent terminates if, and only if, tm halts

on input 𝑥 . If executing the transformations terminates with the final

changes 𝛿𝔐,𝑓 , then the model in 𝔪𝑓 ≔ 𝛿𝔐,𝑓 (𝔪tm,𝑥 ) with the highest

timestamp contains tm(𝑥) as tape content.

Proof. Let 𝛿𝑠 , 𝑠 ∈ N0 be the tuple of changes created after executing 𝑠 transfor-
mations and let 𝔪𝑠 = ⟨𝑚1,𝑠 , . . . ,𝑚𝑛,𝑠⟩ ≔ 𝛿𝑠 (𝔪tm,𝑥 ) be the state of the models
after applying that change. Then we can see the following per induction
over the model states 𝔪𝑠 :

1. There is at most one transformation 𝔱𝑖,𝑘 ∈ ttm such that ⟨𝑚𝑖,𝑠 ,𝑚𝑘,𝑠⟩
is not consistent to 𝔱𝑖,𝑘 , i.e., ⟨𝑚𝑖,𝑠 ,𝑚𝑘,𝑠⟩ ∉ 𝐶𝑅𝑖,𝑘 . This follows from
the definition of tm and the last executed transformation. Let us, in
contrary, assume that there was a second transformation that could
be executed, because the models are inconsistent. We can distinguish
whether the transformation involves any of 𝑚𝑖,𝑠 ,𝑚𝑘,𝑠 or not. If that
transformation involves any of these two models, then tm would
have been non-deterministic, because each transformation realizes
a transition between the associated states of tm. If that transforma-
tion involves none of these models, then one them must have been
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changed before, because otherwise they are consistent by construc-
tion of 𝔪tm,𝑥 . Let that changed model be𝑚′. The transformation to
which𝑚′ and another model are inconsistent cannot be the one that
was executed after𝑚′ was changed, because its correctness ensures
that the two are consistent afterwards. Again, due to tm being deter-
ministic, there cannot be another transformation that needed to be
executed after𝑚′ was changed. Thus, another model must have been
changed later, which led to the inconsistency. Then, however, the
transformation would have needed to be applied, because the other
model was changed. Since another transformation was executed and,
again, because of tm being deterministic, that inconsistency cannot
occur, thus being a contradiction to the assumption.

2. There is exactly one model (timeℎ,𝑠 , contℎ,𝑠 , posℎ,𝑠 ) ≔ 𝑚ℎ,𝑠 ∈ 𝔪𝑠 that
has the highest timestamp timeℎ,𝑠 of all models in 𝔪𝑠 . This follows
from the previous insight that there is always at most one transforma-
tion to which the models are not consistent and which can thus per-
form changes, and that this transformation involves the just changed
model, which, per induction, has the highest timestamp of all models.
Thus, this model must be 𝑚𝑖,𝑠 or 𝑚𝑘,𝑠 . We assume without loss of
generality𝑚ℎ,𝑠 =𝑚𝑖,𝑠 .

3. If a 𝔱𝑖,𝑘 exists to which ⟨𝑚𝑖,𝑠 ,𝑚𝑘,𝑠⟩ is not consistent, then𝑚𝑘,𝑠+1 con-
tains the same tape content and the same tape position as would result
if tm was executed one step from the state encoded in 𝑚𝑖,𝑠 with tape
content cont𝑖,𝑠 and tape position pos𝑖,𝑠 . Additionally, 𝑚𝑘,𝑠+1 is the
model with the highest timestamp of all models in 𝔪𝑠+1.

4. 𝔪𝑠 is consistent to ttm and thus no further transformation can produce
changes if, and only if, tm would halt in state𝑚𝑖,𝑠 with tape content
cont𝑖,𝑠 and tape position pos𝑖,𝑠 . This is given by construction of the
transformations, because a transformation can be executed if, and
only if, the timestamp of the model is lower than the timestamp of a
model to which a transformation is defined and if there is an according
transition in Tr of tm. Since the timestamp of𝑚𝑖,𝑠 is higher than the
timestamp of all other models, a transformation can be executed if,
and only if, there is an according transition of tm, thus the execution
of transformations terminates exactly when tm halts.
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With this lemma, it is easy to see that we could decide the halting problem
if we can decide whether a consistent orchestration for the transformation
network constructed from a Turing machine exists. In consequence, the
orchestration problem is undecidable.

Theorem 7.9 (Orchestration Problem Undecidability)
The orchestration (existence) problem is undecidable.

Proof. We have given the constructive proof for Lemma 7.8 that any Turing
machine can be simulated by a transformation network such that a repeated
execution of transformations finds consistent models of which one contains
the resulting tape content of the Turing machine if, and only if, the Turing
machine halts. Thus, if we could decide the orchestration problem, we could
decide whether a consistent orchestration exists. The consistent orchestration
for the given transformations is unique, as in each step there is always only
one transformation that can be executed. In consequence, knowing that a
consistent orchestration exists means, according to Lemma 7.8, that we can
decide whether tm halts, i.e., we could decide the halting problem. Due to
equivalence of the orchestration problem and the orchestration existence
problem, according to Theorem 7.4, this also applies to the orchestration
existence problem.

According to Theorem 7.5, we can only find an optimal application function
if the orchestration problem is decidable. Thus, we know that we cannot find
such a function.

Corollary 7.10 (Application Function Non-Optimality)
Let AppOrct

be an application function. Then AppOrct
cannot be optimal.

Proof. According to Theorem 7.5, an optimal application function can only be
defined if a solution for the orchestration problem exists. Due to Theorem 7.9,
we know that the problem is undecidable and thus an optimal application
function cannot be defined.
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From this corollary, it also follows that we cannot implement the Apply
function of the proposed algorithm in a way that it realizes an optimal
application function and terminates for every possible input.

Corollary 7.11 (Apply Algorithm Non-Optimality)
Apply according to Algorithm 7.1 cannot terminate and return consistent

models whenever an orchestration exists that yields them exists for every

possible input.

Proof. If Apply always terminated and returned consistent models whenever
there is an orchestration that yields them, it would implement an optimal
application function. According to Corollary 7.10 an application function
cannot be optimal.

In consequence, we only have the two options to either restrict the expres-
siveness of the transformations such that they cannot be used to simulate a
Turing machine anymore or to accept the situation that Apply may either
not terminate in some cases or return ⊥ although a consistent orchestration
exists. We call this behavior conservative, because the algorithm never re-
turns consistent models when there is no orchestration that yields them, but
it may also not return consistent models in some cases in which actually an
orchestration that yields them exists.

Finally, undecidability of the orchestration problem does not mean that this
must be an essential problem for executing practical transformation networks.
Most programming languages are Turing-complete and thus termination of
programs written in them is generally undecidable due to the halting problem,
but still they are used to develop functional and usable software. Thus, it
is important to know that, in general, the expressiveness of transformation
networks makes the orchestration problem undecidable, but this does not
have to mean that we cannot practically apply these networks, as we will
also see in the evaluation. We thus especially focus on how to deal with
undecidability and approximate the problem conservatively.

In the following, we discuss options to restrict transformations to make the
orchestration problem solvable and finally conclude that this is not an option
for solving the discussed problem. Afterwards, we discuss how we can realize
Apply in a way that it always terminates and produces reasonable outputs.
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7.2.4. Restriction of Transformation Networks

We have discussed the necessity to restrict transformations as an input of the
application function to avoid undecidability of whether a consistent orches-
tration exists. The following two kinds of restrictions can be distinguished.

Transformation: Restrictions only concern the single transformations. Thus,
if each transformation fulfills a specific property, the application function
is able to decide whether a consistent orchestration exists.

Network: Restrictions concern the complete network. Only the combination
of transformations can fulfill an appropriate property that enables the
application function to decide the orchestration problem but not each
transformation on its own.

Since we assume transformations to be developed and reused independently,
restrictions to single transformations are of special interest. It is, however,
easy to see that it will unlikely be possible to define practical restrictions to
single transformations that make the orchestration problem decidable. We
show that even impractical restrictions do not make the problem decidable.

We have seen in the examples and the discussion in Subsection 7.1.2 that
an essential reason for the non-existence of a consistent orchestration is
the existence of different options within consistency relations. This means
that a condition element is allowed to correspond to different condition
elements to be considered consistent, like we have seen for the mapping
of names in Figure 7.3. Different transformations can define different such
options for specific elements, such that some of these options can never exist
in globally consistent models, but only the ones that overlap between the
consistency relations of all transformations can occur there. Compatibility
of the consistency relations ensures that there is at least one such element in
the overlap of the consistency relations, because if there was no consistent
tuple of models containing the condition element, the relations would be
considered incompatible. Unfortunately, each transformation can only select
one of these options to restore consistency when a condition element is added,
and if all transformations choose an element that is not in the overlap of the
consistency relations, they will never find a consistent tuple of models.

In consequence, an obvious option to reduce expressiveness of transforma-
tions in order to make the orchestration problem decidable by ensuring that
a consistent orchestration always exists would be an according restriction of
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consistency relations. Such a restriction would require that each condition
element is only allowed to occur in a single consistency relation pair of a con-
sistency relation. Thus, each condition element has a unique corresponding
element to which it is considered consistent. Then, the consistency preserva-
tion rules cannot select between different options to restore consistency, and
if the consistency relations are compatible, all of them relate elements in an
equal way. Thus, the transformations find exactly those elements.

Although that approach will at least reduce the number of cases in which no
consistent orchestration is found by our algorithm, there are still inputs for
which no consistent orchestration exists. Since we do not restrict what trans-
formations are allowed to do, they can perform arbitrary changes to restore
consistency. This especially includes that they may always return changes
that yield the same two models being consistent to that transformation but
not to any models that can be delivered by the other transformations.

Let 𝐴, 𝐵 , and 𝐶 be three classes, each with an integer attribute 𝑛. We define
three metamodels, each consisting of one of these classes, and consistency
relations that require for each element in one model a corresponding one in
another with the same value 𝑛. Additionally, we define consistency preserva-
tion rules, which deliver changes that yield the same models independent
from the input. The resulting models are chosen to be consistent to the
according consistency relation but not to any of the others.

𝐼𝑀1 ≔ P(𝐼𝐴 ), 𝐼𝑀2 ≔ P(𝐼𝐵 ), 𝐼𝑀3 ≔ P(𝐼𝐶 )

𝐶𝑅12 ≔ {⟨𝑎, 𝑏⟩ ∈ 𝐼𝐴 × 𝐼𝐵 | 𝑎.𝑛 = 𝑏.𝑛}, CR12 ≔ {𝐶𝑅12,𝐶𝑅
𝑇
12}

CprCR12 (𝑚1,𝑚2, 𝛿𝑀1 , 𝛿𝑀2 ) ≔ (𝛿 ′𝑀1
, 𝛿 ′𝑀2
)

with 𝛿 ′𝑀1
(𝑚1) ≔ {𝑎 ∈ 𝐼𝐴 | 𝑎.𝑛 = 1} ∧ 𝛿 ′𝑀2

(𝑚2) ≔ {𝑏 ∈ 𝐼𝐵 | 𝑏.𝑛 = 1}

𝐶𝑅13 ≔ {⟨𝑎, 𝑐⟩ ∈ 𝐼𝐴 × 𝐼𝐶 | 𝑎.𝑛 = 𝑐.𝑛}, CR13 ≔ {𝐶𝑅13,𝐶𝑅
𝑇
13}

CprCR13 (𝑚1,𝑚3, 𝛿𝑀1 , 𝛿𝑀3 ) ≔ (𝛿 ′𝑀1
, 𝛿 ′𝑀3
)

with 𝛿 ′𝑀1
(𝑚1) ≔ {𝑎 ∈ 𝐼𝐴 | 𝑎.𝑛 = 2} ∧ 𝛿 ′𝑀3

(𝑚3) ≔ {𝑐 ∈ 𝐼𝐶 | 𝑐.𝑛 = 2}

𝐶𝑅23 ≔ {⟨𝑏, 𝑐⟩ ∈ 𝐼𝐵 × 𝐼𝐶 | 𝑏.𝑛 = 𝑐.𝑛}, CR23 ≔ {𝐶𝑅23,𝐶𝑅
𝑇
23}

CprCR23 (𝑚2,𝑚3, 𝛿𝑀2 , 𝛿𝑀3 ) ≔ (𝛿 ′𝑀2
, 𝛿 ′𝑀3
)

with 𝛿 ′𝑀2
(𝑚2) ≔ {𝑏 ∈ 𝐼𝐵 | 𝑏.𝑛 = 3} ∧ 𝛿 ′𝑀3

(𝑚3) ≔ {𝑐 ∈ 𝐼𝐶 | 𝑐.𝑛 = 3}
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The example is a further simplification of our running example. Its con-
sistency relations are compatible, as for each condition element, i.e., each
instance of one of the classes, a consistent model tuple is given by that object
together with instances of the other two classes having the same value of 𝑛.
The consistency preservation rules are correct, as their result is consistent to
the relation. Still, there is no consistent orchestration for any input that is
not already consistent, because the consistency preservation rules always
produce models that are inconsistent to the other consistency relations.

One might argue that the defined consistency preservation rules are highly
unreasonable and will not occur in that way in practice. We may assume
consistency preservation rules to preserve the input models and changes
in some way instead of returning models that are completely unrelated to
the input. We have, however, not defined an appropriate notion for that,
because it is prone to be impractically restrictive. Some work on transfor-
mations [Che+17; MC16] proposes a notion of least change to ensure that
transformations do not perform arbitrary unrelated changes, which could
exclude those situations.

Although the given example is rather artificial and although there might
be the additional property of least change that could further reduce the
cases in which no consistent orchestration exists, the essential drawback
is that these restrictions are not reasonable. Allowing a condition element
to occur in multiple consistency relation pairs is essential, because options
for corresponding elements are necessary, especially if there is a gap in the
abstraction of two related metamodels. For example, a UML class needs to be
able to correspond to all Java classes that provide different implementations
of that class. Requiring exactly one Java class that is considered consistent
to a UML class is obviously not applicable in practice. Thus, the restriction
would make the consistency notion useless.

If we, instead, only require some notion of least change, like that only ele-
ments are changed which are involved in a violated consistency relation, this
does also not solve the problem. In the example in Figure 7.3, relating the
names of employees, residents, and persons, we have defined consistency
preservation rules that only require changes to elements that actually violate
consistency. Nevertheless, we have shown that for these consistency preser-
vation rules only specific orchestrations are consistent and that with some
modifications even no consistent orchestration exists.
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Person
name

Employee
name

Resident
name

𝑝 𝑒

{⟨𝑝, 𝑒⟩ | e.name = p.name

∨ e.name = p.name.toLower}
𝑝

𝑟

{⟨𝑝, 𝑟 ⟩ |
r .name = p.name}

𝑒

𝑟

{⟨𝑟, 𝑒⟩ | e.name = r .name

∨ e.name = r .name.toLower}

+𝑝 → 𝑒 (name = p.name)

+𝑝 → +𝑟 (name = p.name) +𝑟 → +𝑒 (name = r .name.toLower)

Figure 7.5.: Consistency relations and transformations representing a counterexample for the
practicality of confluence in transformation networks.

In consequence, we found that even a well-defined restriction that is too
strong to be applied in practice still cannot ensure that a consistent orches-
tration exists for every input, even though the examples at which we have
shown that are rather artificial. Although this does not prove the impos-
sibility to find a suitable restriction that solves the orchestration problem,
which is even impossible because there is no unique notion of what an ac-
ceptable restriction would be, the investigated case shows that it is unlikely
to find practical restrictions that solve the problem, because even impractical
restrictions do not solve it.

7.2.5. Confluence in Transformation Networks

Confluence is an even stronger requirement than the existence of an optimal
orchestration. In literature [Ste20b], confluence in a transformation network
is described as the property that for given models and changes a consistent
orchestration exists, and that two consistent orchestrations for the same
input always yield the same models. Thus, executing transformations in
any order such that the result is consistent will deliver the same result. It is,
however, easy to see that this is an impractical requirement.

In the example depicted in Figure 7.5, derived from the running example,
three consistency relations expect for each person, employee, and resident
the two corresponding others to exist. They need to have the same name
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or, in case of the relations between persons and employees as well as be-
tween residents and employees, the employee may have the same name in
lowercase. The consistency preservation rule between persons and employ-
ees ensures that an employee with the same name exists, whereas the one
between residents and employees ensures that an employee with the name

in lowercase exists. Whenever a person is added, two consistent orchestra-
tions can be distinguished. First, the transformation between persons and
employees can be executed, either followed or preceded by the one between
persons and residents. Then, all elements have the same name. The models
are also consistent to the relation between residents and employees, because
the relation allows the names to be equal. Alternatively, the transformation
between persons and residents can be executed, followed by the one between
residents and employees. Then the employee has the name in lowercase, but
still this is consistent to the relation between persons and employees.

Apart from that artificial example, such a situation can always occur if
transformations have different options for elements to be consistent. If the
overlap of consistent elements between all transformations does not contain
a single element, the result may be any of the elements in the overlap. And
the result may depend on which transformation made the first selection that
fell into the overlap. This behavior is actually desired, thus preventing it by
requiring confluence is not practical. Finally, Stevens [Ste20b, p. 14] also states
that a network will only be confluent under very specific circumstances.

7.3. Conservatively Approaching the Orchestration
Problem

In the preceding section, we have proven undecidability of the orchestration
problem, and we have discussed that it is unlikely to find a practical restriction
of the problem such that it becomes decidable. In consequence, we cannot
achieve optimality of an orchestration and application function, which results
in an algorithm that does not return optimal results and, depending on its
implementation, may even not terminate. Since the algorithm cannot return
optimal results anyway, termination can at least be achieved by introducing
an artificial upper bound for the number of executed transformation. This
potentially prevents the algorithm from finding consistent orchestrations in
even more cases.
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Based on those insights, we assume in this section that the orchestration
problem cannot be restricted such that it becomes decidable. We accept that
any application function and any algorithm that realizes it will only realize a
conservative approximation of the orchestration problem. This means that it
may only return consistent models delivered by a consistent orchestration,
but it may not find a consistent orchestration although it exists. Considering
consistent orchestrations as positives, we say that the function or algorithm,
respectively, may deliver false negatives but no false positives and call it
conservative. We investigate how we can define optimality of the application
function in a gradual rather than a binary way, which is supposed to indicate
how likely it is that it finds a consistent orchestration. We then follow the
goal of finding means to systematically improve optimality. Since there are
always cases in which the algorithm does not find a consistent orchestration,
we propose an algorithm that is supposed to help identifying the reasons for
failing in such cases in the subsequent section.

7.3.1. Systematic Improvement of Optimality

Although no optimal application function can be achieved, we can at least
define a gradual notion of optimality. It indicates for how many input models
and changes the application function returns consistent models compared to
the number of cases in which a consistent orchestration exists at all. This can
be seen as a fitness function for optimality Opt of an application function:

Opt(AppOrct )

≔
|{⟨𝔪, 𝛿𝔐⟩ | AppOrct (𝔪, 𝛿𝔐) is consistent to t}|

|{⟨𝔪, 𝛿𝔐⟩ | consistent orchestration of t exists for ⟨𝔪, 𝛿𝔐⟩}|

In fact, the numerator and denominator will usually both have infinite values,
as there is an infinite number of possible models and changes to them. It
does, however, not matter for us what the actual optimality value of an
application function is. The purpose of the formula is only to explicitly state
the influencing factors of optimality to discuss its systematic improvement.

Obviously, we may only improve the numerator to improve optimality, be-
cause the denominator, i.e., the number of cases in which consistent orches-
trations exist, depends only on the transformations and not the application
function. How to improve the numerator highly depends on the actually
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implemented application and orchestration functions. For the most general
case, let us assume that we have an application function AppOrct whose
orchestration function randomly determines any orchestration, i.e., it selects
one of all possible orchestrations according to an equal distribution. So we
consider the following event 𝐸𝔪,𝛿𝔐 :

𝐸𝔪,𝛿𝔐 : AppOrct (𝔪, 𝛿𝔐) is consistent to t

The probability that this event occurs is given by the ratio between the
number of consistent orchestrations for that input and the number of all
orchestrations:

𝑃 (𝐸𝔪,𝛿𝔐 ) =
|{𝔱[] ∈ t<N | 𝔱[] is consistent orchestration for ⟨𝔪, 𝛿𝔐⟩}|

|t<N |

Here, the denominator is the size of what we introduced as the problem space
𝑃 = t<N containing all possible orchestrations, and the numerator is the
size of what we introduced as the solution space 𝑆𝔪,𝛿𝔐 = {𝔱[] ∈ t<N |
𝔱[] is consistent orchestration for ⟨𝔪, 𝛿𝔐⟩}, which contains all consistent
orchestrations for an input of models and changes.

We can introduce a stochastic variableAppCons𝔪,𝛿𝔐
, which assigns the values

0 and 1 to the events 𝐸𝔪,𝛿𝔐 and its complementary:

AppCons𝔪,𝛿𝔐
(𝜔) ≔

{︄
0, if 𝜔 = AppOrct (𝔪, 𝛿𝔐) is not consistent to t
1, if 𝜔 = AppOrct (𝔪, 𝛿𝔐) is consistent to t

Its expected value is equal to the probability of event 𝐸𝔪,𝛿𝔐 to occur:

𝜇 (AppCons𝔪,𝛿𝔐
) = 𝑃 (AppCons𝔪,𝛿𝔐

= 1) = 𝑃 (𝐸𝔪,𝛿𝔐 )

For an application function that chooses a random orchestration, we can
thus express the numerator of Opt(AppOrct ) as the sum of expected values
of the stochastic variables for all possible inputs.

|{⟨𝔪, 𝛿𝔐⟩ | AppOrct (𝔪, 𝛿𝔐) is consistent to t}| =
∑︂
𝔪,𝛿𝔐

𝜇 (AppCons𝔪,𝛿𝔐
)

=

∑︁
𝔪,𝛿𝔐
|{𝔱[] ∈ t<N | 𝔱[] is consistent orchestration for ⟨𝔪, 𝛿𝔐⟩}|

|t<N |
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Figure 7.6.: Screenshot of a network for an architecture specification, its implementation, and
an API specification in OpenAPI [OAPI], which requires multiple execution of the same trans-
formation, developed in the transformation network simulator [GitSim].

Thus, if we can increase 𝑃 (𝐸𝔪,𝛿𝔐 ), we also improve optimality, even if or-
chestrations are chosen randomly. We can increase this probability by either
improving the number of consistent orchestrations or by reducing the number
of possibly considered orchestrations. The number of consistent orchestra-
tions can only be influenced by requirements to the transformations. For
example, the requirement of consistency relations to be compatible improves
these values, as we have shown by example in Chapter 5. In the following, we
discuss how we can reduce the number of possibly considered orchestrations
while not reducing the number of consistent orchestrations, thus improving
the probability of the application function to find a consistent orchestration
and thus improving optimality.

The application function can, of course, contain more intelligent logic to
determine an orchestration beyond random selection to improve the number
of cases in which it finds a consistent orchestration. Implementing further
mechanisms to make a reasonable selection may further improve the possibil-
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ity to find a consistent orchestration. We investigated different orchestration
strategies, such as the depth-first or breadth-first selection of transforma-
tions in the induced graph, and analyzed them with a simulator, which we
developed for that purpose and which is available at GitHub [GitSim]. An
example of the simulator for a scenario showing the necessity to execute
a transformation more than once is depicted in Figure 7.6. For each strat-
egy, however, we found categories of transformation networks for which it
performed worse than some other strategy.

Another strategy could be to try different orchestrations as soon as it turns
out that one orchestration cannot yield consistent models. This can, for
example, be achieved by performing backtracking. Algorithm 7.1 dynam-
ically selects transformations to execute. Thus, as soon as the algorithm
detects that no further transformation executions can lead to a consistent
orchestration, it can revert the last transformation execution and proceed
with another transformation. This means that it resets the state of gener-
ated changes and executed transformations to the one before the current
execution of the orchestration loop and proceeds again with another transfor-
mation. If all transformations as continuations of one sequence of executed
transformations have been tried out, the algorithm recursively steps back the
iterations of the loop. While this approach, in theory, allows us to explore
the complete problem space 𝑃 = t<N, it is impractical, because the problem
space is infinitely large. It may, however, be used to try different options in a
subset of the problem space, such as those with a limited length.

Since we did not find a strategy that is, in general, superior to other investi-
gated strategies, we did not proceed in that direction. This does not imply
that such a strategy cannot be found, but we instead focused on finding
orchestrations that should be generally avoided. To this end, we consider
alternation as a possibility to reduce the number of cases in which non-
termination can occur. Thus, it can improve optimality by both its dynamic
detection and its avoidance.

7.3.2. Dynamic Detection of Alternation

The proposed Algorithm 7.1, like any algorithm, is supposed to terminate in
a specific state to be considered correct. In our case, such a correct state, as
required by an application function it implements, is the return of consistent
models or ⊥, which the algorithm fulfills by construction. In particular, the
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algorithm does never return models that are inconsistent, neither because
it does not detect that they are inconsistent nor because it detects that they
are inconsistent but still returns them. From our previous findings regarding
decidability, we know that we cannot expect the algorithm to realize an opti-
mal application function. Thus, we either need to implement Orchestrate
such that it always returns ⊥ after a finite number of executions to ensure
termination, which results in returning ⊥ although an order of transforma-
tions that yields consistent models exists, or we allow an arbitrary number
of executions to improve the ability to find consistent results but accept that
the algorithm may not terminate.

We have discussed that non-termination of the algorithm can occur because
no consistent orchestration exists at all or because the algorithm is not able
to find it. A special case of non-termination is alternation, which means that
the same states are passed repeatedly. In case of transformation networks,
alternation means that from some point in time the subsequent executions
of the transformations in Line 9 of Algorithm 7.1 repeatedly produce the
same sequence of results, i.e., of changes. In contrast to non-termination in
general, the scenario of alternation can at least be avoided by construction.

Definition 7.6 (Alternation of Apply Algorithm)
During an execution of Algorithm 7.1, let there be a number 𝑛 of ex-
ecutions of the transformation execution loop in Lines 7–13 of Algo-
rithm 7.1, such that for all numbers of loop executions > 𝑛 there is a
sequence of executed transformations and generated changes that occur
repeatedly at the end of the current states of 𝔱executed [] and 𝛿𝔐,generated []
at least two times. Then we call the execution of the algorithm alter-

nating. If the execution of the algorithm does not terminate and is not
alternating, we call it diverging.

The Orchestrate function receives the history of transformations and
already generated changes and is thus able to identify the situation that the
same sequence of transformations was already executed and produced equal
changes with each application. This allows to implement the function in
a way that it does not return the same sequence of transformations when
it was already passed and produced the same changes, e.g., by performing
backtracking if such a situation is detected. If a concrete realization of the
Orchestrate function is not implemented in a way that it can react to the
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detection of alternation and produce a different sequence of transformations,
it can at least return ⊥ to ensure termination of Apply, because repeated
execution of the same transformations will still return the same changes if
Orchestrate behaves deterministically.

Alternation produces orchestrations that never yield consistent models. In
consequence, they are, of course, contained in the problem space 𝑃 = t<N con-
sisting of all possible orchestrations, but they are never contained in the solu-
tion space 𝑆𝔪,𝛿𝔐 = |{𝔱[] ∈ t<N | 𝔱[] is consistent orchestration for ⟨𝔪, 𝛿𝔐⟩}|
containing the consistent orchestrations, independent from the actual mod-
els and changes. Avoiding alternation thus reduces the size of the problem
space without the possibility of affecting the solution space as well and thus
improves the possibility to find a consistent orchestration, as shown in the
previous subsection.

7.3.3. Monotony for Avoiding Alternation

We have discussed that alternation of Algorithm 7.1, as a specific kind of non-
termination scenario, can be avoided by construction of the Orchestrate
function or can at least be detected by theApply function. Instead of detecting
alternation during orchestration and thus execution of transformations, we
may also restrict the transformation network such that no alternation can
occur by construction. We can achieve this by defining a notion of monotony
for the transformations.

For the construction of synchronizing bidirectional transformations by unidi-
rectional consistency preservation rules in Subsection 6.3.2, we have defined
the property of partial consistency improvement, which is a monotony notion
for the two unidirectional consistency preservation rules of a synchroniz-
ing bidirectional transformation, as each execution of them improves that
property. We can, however, not define monotony in a similar way for the
whole transformation network for two reasons. First, the notion of par-
tial consistency is not applicable to transformation networks, because each
transformation needs to completely restore consistency between two mod-
els. Second, since each transformation is developed independently from all
others, we cannot apply the notion of partial consistent improvement to the
other models by restricting how far a transformation may violate consistency
to the other transformations. We thus define the following, different notion
of monotony for transformations.
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Definition 7.7 (Monotone Synchronizing Transformation)
Let 𝔐 be metamodels, and let 𝔱 be a synchronizing transformation. We
call 𝔱 monotone if, and only if, it does not change elements that were
already changed:

∀𝔪 = ⟨𝑚1, . . . ,𝑚𝑛⟩ ∈ 𝔐, 𝛿𝔐 = ⟨𝛿𝑀1 , . . . , 𝛿𝑀𝑛
⟩ ∈ Δ𝔐 :

∀𝛿 ′
𝔐

= ⟨𝛿 ′𝑀1
, . . . , 𝛿 ′𝑀𝑛

⟩ ∈ Δ𝔐 :
[︁
Gen𝔐,𝔱 (𝔪, 𝛿𝔐) = (𝔪, 𝛿 ′

𝔐
)

⇒ ∀ 𝑖 ∈ {1, . . . , 𝑛} :
(︁
(𝛿𝑀𝑖
(𝑚𝑖 ) \𝑚𝑖 ) ⊆ 𝛿 ′𝑀𝑖

(𝑚𝑖 )
∧ (𝑚𝑖 \ 𝛿𝑀𝑖

(𝑚𝑖 )) ∩ 𝛿 ′𝑀𝑖
(𝑚𝑖 ) = ∅

)︁ ]︁
The definition is based on the idea that transformations are only supposed
to append changes but not to revert previous changes. This means that
elements that were introduced by previous changes still need to be present
after applying the transformation. Additionally, elements that were removed
are not allowed to be added by the transformation again. Thus, all elements
of the originally changed models were either contained in the original models
or are contained in the models yielded by the transformation execution.

Having only monotone transformations ensures that the application of each
orchestration that does not apply a transformation to already consistent
models yields a sequence of pairwise different model states.

Lemma 7.12 (Monotone Transformation Orchestration Prefixes)
Let t be a set of correct, monotone synchronizing transformations for

metamodels𝔐. Then for all models and changes as well as any orches-

tration [𝔱1, . . . , 𝔱𝑚] ∈ t<N that does not contain a transformation to be

executed when its models are already consistent while other models are

not, the prefixes of that orchestration yield the same models only if these

prefixes are consistent orchestrations:

∀𝔪 ∈ 𝐼𝔐, 𝛿𝔐 ∈ Δ𝔐 : ∀ 𝑖, 𝑘 ∈ {1, . . . ,𝑚}, 𝑖 ≠ 𝑘 :[︁
Gen𝔐,𝔱𝑖 ◦ . . . ◦ Gen𝔐,𝔱1 (𝔪, 𝛿𝔐) = Gen𝔐,𝔱𝑘 ◦ . . . ◦ Gen𝔐,𝔱1 (𝔪, 𝛿𝔐)
⇒ ∃ 𝛿 ′

𝔐
∈ Δ𝔐 :

(︁
Gen𝔐,𝔱𝑘 ◦ . . . ◦ Gen𝔐,𝔱1 (𝔪, 𝛿𝔐) = (𝔪, 𝛿 ′

𝔐
)

∧ 𝛿 ′
𝔐
(𝔪) consistent to t

)︁ ]︁
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Proof. Assume that there are two prefixes [𝔱1, . . . , 𝔱𝑖 ] and [𝔱1, . . . , 𝔱𝑘 ] of an
orchestration, 𝑖 < 𝑘 without loss of generality, such that they yield the same
inconsistent models, i.e., Gen𝔐,𝔱𝑖 ◦ . . . ◦ Gen𝔐,𝔱1 (𝔪, 𝛿𝔐) = Gen𝔐,𝔱𝑘 ◦ . . . ◦
Gen𝔐,𝔱1 (𝔪, 𝛿𝔐) although Gen𝔐,𝔱𝑘 ◦ . . . ◦ Gen𝔐,𝔱1 (𝔪, 𝛿𝔐) is not consistent
to t. We denote the change tuple delivered by any prefixes of length ℎ as
𝛿𝔐,ℎ = ⟨𝛿𝑀1,ℎ, . . . , 𝛿𝑀𝑛,ℎ⟩ with (𝔪, 𝛿𝔐,ℎ) = Gen𝔐,𝔱ℎ ◦ . . . ◦ Gen𝔐,𝔱1 (𝔪, 𝛿𝔐).
We know that the sequence of changes between the two prefixes does not
perform any changes, i.e., 𝛿𝔐,𝑖 (𝔪) = 𝛿𝔐,𝑘 (𝔪). We also know that all the
transformations between the prefixes, i.e., all transformations 𝔱ℎ with 𝑖 <

ℎ ≤ 𝑘 , perform changes, i.e., Gen𝔐,𝔱ℎ (𝔪, 𝛿𝔐,ℎ−1) ≠ (𝔪, 𝛿𝔐,ℎ−1). Otherwise,
the models affected by the transformation would either have been consistent
before, which conflicts with the assumption that the orchestration does not
contain a transformation when its models are already consistent while other
models are not, or they would not be consistent afterwards, which conflicts
with the assumed correctness of the transformations.

Thus, each transformation 𝔱ℎ (𝑖 < ℎ ≤ 𝑘) performs modifications to the
change tuple, i.e., adds or removes further elements. This especially applies
to 𝔱𝑖+1. Let us assume that 𝔱𝑖+1 adds an element. Then there is a model that
contains the element after applying the change generated by the transfor-
mation, i.e., ∃ 𝑠 ∈ {1, . . . , 𝑛} : ∃ e : e ∈ 𝛿𝑀𝑠 ,𝑖+1 (𝑚𝑠 ) \ 𝛿𝑀𝑠 ,𝑖 (𝑚𝑠 ). Due to
the transformations being monotone, we know that this element was not
contained before, especially not in𝑚𝑠 , as otherwise e ∈ 𝑚𝑠 \ 𝛿𝑀𝑠 ,𝑖 (𝑚𝑠 ) and
thus (𝑚𝑠 \ 𝛿𝑀𝑠 ,𝑖 (𝑚𝑠 )) ∩ 𝛿𝑀𝑠 ,𝑖+1 (𝑚𝑠 ) ≠ ∅, which conflicts the definition of
monotone transformations for 𝔱𝑖+1. Since 𝛿𝑀𝑠 ,𝑘 (𝑚𝑠 ) = 𝛿𝑀𝑠 ,𝑖 (𝑚𝑠 ), we know
that e ∉ 𝛿𝑀𝑠 ,𝑘 (𝑚𝑠 ). Thus, there must be a transformation 𝔱ℎ with 𝑖+1 < ℎ ≤ 𝑘

which, in turn, removes this element, i.e., e ∈ 𝛿𝑀𝑠 ,ℎ−1 (𝑚𝑠 ) \ 𝛿𝑀𝑠 ,ℎ (𝑚𝑠 ). Then
e ∈ 𝛿𝑀𝑠 ,ℎ−1 (𝑚𝑠 ) \𝑚𝑠 and thus 𝛿𝑀𝑠 ,ℎ−1 (𝑚𝑠 ) \𝑚𝑠 ⊈ 𝛿𝑀𝑠 ,ℎ (𝑚𝑠 ), which conflicts
the definition of monotone transformations for 𝔱ℎ . The analogous argumen-
tation applies for an element removal followed by its re-addition.

In consequence, each transformation 𝔱ℎ (𝑖 < ℎ ≤ 𝑘) could neither add
nor remove an element, which conflicts with the definition of monotone
transformations. Thus, our assumption that there are two prefixes that yield
the same inconsistent models does not hold, which proves the lemma.

With that insight, it is easy to see that given only monotone transformations,
no alternation can occur in Algorithm 7.1.
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Theorem 7.13 (Monotone Transformations Alternation Prevention)
Let t be a set of correct, monotone synchronizing transformations. Then

the execution of Algorithm 7.1 cannot be alternating according to Defini-

tion 7.6, as long as Orchestrate does not return a transformation whose

models are already consistent.

Proof. According to Lemma 7.12, monotone transformations ensure that in
an orchestration that does not contain transformations that need to be applied
to already consistent models, the application of two prefixes never yields the
same changes. In consequence, the sequence 𝛿𝔐,generated [] in the transfor-
mation execution loop (Lines 7–13) of Algorithm 7.1 can never contain the
same two changes, which conflicts Definition 7.6 for alternation.

In fact, the guarantee of not producing the same state twice is even stronger
than non-alternation, because alternation allows to pass the same state
multiple times, as long as the same sequence of states is not passed repeatedly
and infinitely. It does, however, only make sense to pass the same state twice
if the orchestration algorithm, which selects the next transformation to
execute, is able to process that situation by trying different execution orders
if an alternation occurs. Thus, the less strict requirement for alternation is
suited to make statements about the orchestration strategy but not about the
individual transformations, as it is unlikely to find a property for a single
transformation that gives a guarantee that depends on the execution order
of transformations, like alternation does.

Monotone transformations guarantee non-alternation, but monotony accord-
ing to Definition 7.7 is not a property that we can assume to be fulfilled by
all transformations. Although it seems intuitive that a transformation should
not remove elements that were added before and vice versa, this does also
mean that, for example, an attribute value may only be changed once by the
transformations. This would, however, require the transformations to always
make a choice for attributes that fits for all other transformations as well.
We have seen in different examples, such as the one depicted in Figure 7.2
and Figure 7.3, that it may be necessary to change elements multiple times,
because the transformations select values with which the models only fulfill
their own consistency relation but not those of the other transformations. It
may take several executions to find a value selection with which the models
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are consistent to all transformations. We might say that the transformations
need to negotiate a consistent solution.

Still, the given examples were rather artificial and are not an indicator for
monotony to be practically unachievable. It may, at least in some cases, be
possible to specify monotone transformations. Even if only some of the
transformations or only specific rules of them are monotone, it improves
the chance that an orchestration strategy finds a consistent orchestration.
Having the knowledge about the benefits of monotony gives a transformation
developer the ability to implement it as often as possible.

Finally, the possibility to avoid alternation by construction can be combined
with the ability of an orchestration strategy to react to alternation. We
have discussed in Subsection 7.3.2 that an orchestration strategy can detect
alternation and adapt its strategy of selecting the next transformation in that
case. In addition, if monotony is given at least for some transformations, the
orchestration strategy needs to try less execution orders and thus improves
the chance of finding a consistent orchestration.

7.4. A Conservative Application Algorithm

We have argued why it is inevitable that any algorithm realizing an applica-
tion function cannot be optimal and thus will not be able to find a consistent
orchestration although it exists and, in that case, either return ⊥ or not even
terminate at all. Apart from minor improvements, such as the avoidance
or detection of alternations, to improve the probability to find a consistent
orchestration, or general strategies like backtracking for trying different
orchestrations, we did not find systematic ways to improve optimality of
the application function. Nevertheless, we want to find an algorithm that is
at least correct and does always terminate, even if it does not implement a
systematic way to improve optimality. Thus, it operates conservatively.

It is possible that Algorithm 7.1 does not terminate, because it generates
an infinitely long orchestration, thus never leaving the loop in Lines 7–
13. To ensure termination, we need to introduce an upper bound for the
number of executed transformations. We have shown in Theorem 7.7 that no
natural upper bound exists, thus even the shortest consistent orchestration
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for specific inputs can be arbitrarily long. Any arbitrary bound can prevent
the algorithm from finding consistent orchestrations.

From an engineer’s perspective, we may, however, consider the behavior
that an arbitrary high number of transformation executions is required to
yield consistent models as unwanted. Although the examples we have given
are valid, they are rather artificial. We claim that a transformation network
that requires a rather high number of executions compared to the number
of contained transformations to find consistent models does not operate as
expected. In particular, if such a high number of executions is required to
find a consistent orchestration, it will be difficult to identify the reason for
not finding a consistent execution in case the algorithm returns ⊥. Thus,
we introduce an artificial upper bound for the number of transformation
executions. This bound will be well-defined, such that we can reasonably
assume that no more executions are practically necessary.

In the following, we propose design goals for a conservative application algo-
rithm. We derive the so called provenance algorithm as a practical realization
and finally prove its correctness and termination properties. The algorithm
was developed together with Joshua Gleitze in a scientific internship and
also published in an article [GKB21].

7.4.1. Design Goals

An adapted version of Algorithm 7.1 that always terminates has two degrees
of freedom. First, the execution order of transformations needs to be de-
termined by defining the function Orchestrate. Second, an upper bound
for the number of executions of transformations, thus the number of loop
executions in Lines 7–13, needs to be defined.

We have discussed that improving optimality is not an achievable goal when
determining the transformation execution order by the Orchestrate func-
tion. Since we know that the algorithm will always produce false negatives,
i.e., it will not find a consistent orchestration although it exists, it is important
for a transformation developer or user to be able to identify the reasons in
case of such a failure. The algorithm can support them in this regard by
delivering the final state of the models when the orchestration aborted. The
execution order that was chosen until that state was reached is of central
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importance for identifying the reasons for failing. Consider that transforma-
tions are executed in an arbitrary order and then only some of the models of
the final state are actually consistent. Apart from investigating the complete
sequence of executed transformations, there is no clue for the user to find the
reasons for the algorithm to fail, thus about provenance of the error. We have
introduced this goal as the comprehensibility property in Subsection 1.1.3.

To improve identifying the reason whenever the algorithm fails, we propose
the following principle for determining an orchestration:

“Ensure consistency among the transformations that have already
been executed before executing a transformation that has not been
executed yet.” [GKB21]

The principle requires that consistency is ensured incrementally for subsets
of the transformations and thus the models. As long as the models are not
consistent to all already executed transformations, only these transformations
instead of other ones may be executed until the models are consistent to
all of them. This ensures that consistency is preserved after each change
in an incremental way, iteratively improving the number of models and
transformations for which consistency is restored.

This approach helps to identify provenance of a failure of the algorithm,
because it restricts the potentially causal transformations to consider. If the
algorithm fails after executing a subset of the transformations texec ⊆ t, then
there is some transformation 𝔱 ∈ texec that is the last of those transformation
that was executed for its first time. Thus, the algorithm found an orchestra-
tion of texec \ {𝔱} such that the models were consistent to texec , but it was
not able to execute 𝔱 and the transformations in texec afterwards such that
the models become consistent to texec ∪ {𝔱}. This helps the transformation
developer or user to understand and find the reason for failing in different
ways. First, he or she can ignore any transformation in t \ texec , as the
algorithm already failed to preserve consistency according to the other trans-
formations, which can significantly reduce the number of transformations
to consider. Second, the realization of 𝔱 is somehow conflicting with the
other transformations in texec . This does not necessarily mean that there is
something wrong with 𝔱 but that also considering this transformation either
induces the situation that no consistent orchestration exists anymore or that
it cannot be found. Third, having a state of the models that is consistent
to texec \ 𝔱 can be used as a starting point to either identify the reasons for
failing or to manually restore consistency of the models.
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If the algorithm operates according to the introduced principle and is not
able to preserve consistency after it considers an additional transformation
𝔱 anymore, the selected execution order provides the discussed benefits for
identifying the reasons for failing. There may, however, be another orches-
tration that is able to ensure consistency to texec . Executing 𝔱 earlier or
integrating further transformations in t before ensuring consistency to all
transformations in texec can, of course, result in the algorithm finding a con-
sistent orchestration. This can reduce optimality of the realized orchestration
function, but we claim the discussed benefits to outweigh that.

We have shown that there is no inherent upper bound for the necessary
number of transformation executions. Rather than specifying a concrete
number, be it fixed or depending on the network size, we derive a reason-
able artificial bound for the number of executions from a property that we
assume reasonable for possible orchestrations of a transformation set. The
idea of that property is that each transformation should be allowed to react
to the execution of each possible sequence of all other transformations. If
a transformation reacted to all these execution sequences of other trans-
formations and if then other transformations are executed again, it should
not be necessary that the transformation must be executed again to restore
consistent. Thus, if a transformation was executed after applying the other
transformations in any possible order, we expect the models to be consistent
to that transformation. We define this in the following property.

Definition 7.8 (Reactive Converging Transformations)
A set of synchronizing transformations t is reactive converging with
respect to models 𝔪 and changes 𝛿𝔐 if every orchestration of every
subset t𝑝 ⊆ t in which a transformation 𝔱 ∈ t𝑃 has been executed after
a sequence of transformations in t𝑝 that contains each permutation of
those transformations as a (not necessarily continuous) subsequence
yields models that are consistent to 𝔱.

The property does not require that the other transformations were executed
in each order consecutively, but only that the orchestration contains each
permutation of those transformations, but potentially with other transforma-
tions in between. As an example, assume a set of transformations {𝔱1, 𝔱2, 𝔱3},
which is reactive converging for some input of models and changes. After
executing them for these models and changes in the order [𝔱1, 𝔱2, 𝔱3, 𝔱1, 𝔱2, 𝔱3],
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the models yielded by that orchestration may still be inconsistent to 𝔱1, be-
cause it was not executed after the order of the transformations [𝔱3, 𝔱2]. After
executing 𝔱1 once more, the orchestration must yield consistent models,
because 𝔱1 was executed after the two orders of the other transformations
[𝔱2, 𝔱3] and [𝔱3, 𝔱2]. Likewise, 𝔱2 was executed after [𝔱1, 𝔱3] and [𝔱3, 𝔱1], and 𝔱3
was executed after [𝔱1, 𝔱2] and [𝔱2, 𝔱1].

7.4.2. The Provenance Algorithm

We propose an algorithm that realizes the discussed design goal with the
function ProvenanceApply in Algorithm 7.2. The algorithm is a derivation
of the general algorithm implementing an application function depicted
in Algorithm 7.1. It first checks for consistency of the given models as a
prerequisite for executing the transformations. Then the algorithm calls
the recursive function Propagate, which implements the orchestration of
transformations and returns a change tuple that is yielded by the determined
orchestration, which delivers consistent models if applied to the input models.
While this behavior is equal to the one in Algorithm 7.1, the orchestration
itself is implemented differently in a recursive rather than an iterative manner,
which implicitly ensures termination.

The function Propagate implementing the orchestration in a recursive man-
ner acts as follows. It selects one of the transformations as a candidate to
execute next. This selection ensures that a transformation is selected whose
models are affected by any already performed change, such that the transfor-
mation may need to perform changes. Models are affected by a change if any
of the two changes in 𝛿𝔐 for either of the models that are kept consistent by
the selected transformation is not the identity function 𝛿id . It then applies
the transformation using the generalization function Gen. If the selected
transformation is not defined for the given models and changes, the function
may return ⊥, so that the complete algorithm terminates with ⊥. Afterwards,
it recursively executes the function Propagate with the subnetwork given
by the transformations that have already been executed and are stored in
texecuted . After that recursive execution, the selected transformation is exe-
cuted again, and it is checked whether the models yielded by the resulting
changes are still consistent to the executed transformations. If this consis-
tency check fails, the transformations do not fulfill the definition of being
reactive converging according to Definition 7.8, as we prove later. If the
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Algorithm 7.2 The provenance algorithm. Adapted from [GKB21, Alg. 1].
1: procedure ProvenanceApply(t,𝔪, 𝛿𝔐)
2: if ¬CheckConsistency(t,𝔪) then
3: return ⊥
4: end if
5: 𝛿𝔐,res ← Propagate(t,𝔪, 𝛿𝔐)
6: if 𝛿𝔐,res = ⊥ then
7: return ⊥
8: end if
9: return 𝛿𝔐,res (𝔪)

10: end procedure

11: procedure Propagate(t,𝔪, 𝛿𝔐)
12: texecuted ← ∅
13: for 𝔱candidate ∈ t \ texecuted | 𝛿𝔐 .affects(𝔱candidate) do
14: (𝔪, 𝛿𝔐,candidate) ← Gen𝔐,𝔱candidate (𝔪, 𝛿𝔐)
15: if (𝔪, 𝛿𝔐,candidate) = ⊥ then
16: return ⊥
17: end if
18: 𝛿𝔐,propagation ← Propagate(texecuted,𝔪, 𝛿𝔐,candidate)
19: if 𝛿𝔐,propagation = ⊥ then
20: return ⊥
21: end if
22: (𝔪, 𝛿𝔐,candidate) ← Gen𝔐,𝔱candidate (𝔪, 𝛿𝔐,propagation)
23: if (𝔪, 𝛿𝔐,candidate) = ⊥ then
24: return ⊥
25: end if
26: if ¬CheckConsistency(texecuted, 𝛿𝔐,candidate (𝔪)) then
27: return ⊥
28: end if
29: 𝛿𝔐 ← 𝛿𝔐,candidate

30: texecuted ← texecuted ∪ {𝔱candidate}
31: end for
32: return 𝛿𝔐

33: end procedure
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Figure 7.7.: Exemplary execution of the provenance algorithm for a change in the topmost model.
The transformations present to the current execution of Propagate, as well as the executed
and candidate transformations t

executed
and 𝔱

candidate
are depicted for each iteration (horizontal)

and recursion step (vertical). Adapted from [GKB21, Fig. 4].

models are consistent to the transformation, the next candidate is picked. In
effect, the strategy realizes the defined principle in a recursive manner, be-
cause after executing a new transformation, the recursive execution ensures
consistency to all already executed transformations by applying all already
executed transformations again.

Figure 7.7 depicts an exemplary execution of the ProvenanceApply algo-
rithm for a set of four transformations between four metamodels. We assume
that the algorithm receives four initially consistent models and a change to
the topmost one. The example shows that in each recursion step only the
subnetwork of the already executed transformations in texecuted is considered.
Thus, the set of transformations becomes smaller in each recursive call of
ProvenanceApply.

7.4.3. Correctness, Termination and Goal Fulfillment

The provenance algorithm is intended to implement a correct application
function and to always terminate. Additionally, it is supposed to deliver
consistent models whenever the given transformations fulfill Definition 7.8
for being reactive converging. In the following, we prove that the algorithm
actually fulfills these properties.
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First, it is easy to see that the algorithm always terminates and always
either returns consistent models yielded by an orchestration of the given
transformations or ⊥, which realizes a correct application function according
to Definition 4.13 and Definition 4.14.

Theorem 7.14 (Provenance Algorithm Termination)
Algorithm 7.2 terminates for every possible input.

Proof. The algorithm terminates if CheckConsistency,Gen and Propagate
terminate. We assume termination for the external function CheckConsis-
tency, because it only validates consistency of the given models. Propagate
contains a loop with a recursive call and the external calls of CheckConsis-
tency as well as Gen. Since CheckConsistency and Gen terminate, it may
only be non-terminating because of the loop in Line 13 and the recursive call
in Line 18. The number of loop executions is limited by the number of given
transformations, i.e., |t|, as each iteration selects another transformation
and adds it to texecuted . Thus, after selecting each transformation once, all
transformations are in texecuted and the loop condition is not fulfilled. The
recursive call receives a set of transformations that is at least one element
smaller than the set of transformations given to the calling method, because
if texecuted = t the loop condition is not fulfilled. If the given set of trans-
formations is empty, the loop is not entered and thus no recursive call is
performed. Thus, the recursion depth never exceeds |t|.

Theorem 7.15 (Provenance Algorithm Correctness)
Algorithm 7.2 realizes a correct application function.

Proof. The algorithm receives models and changes to them and it returns
models being instances of the same metamodels, thus it fulfills the signature
of an application function. Additionally, if it returns models, they are the
result of a consecutive application of transformations in t, as Propagate
calculates the changes that are applied to the input models to calculate the
result by a repeated application of the generalization function Gen to trans-
formations in t. Thus, Propagate implicitly implements an orchestration
function according to Definition 4.11 and applies the transformations in the
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determined order to calculate the result delivered by ProvenanceApply.
Thus, ProvenanceApply fulfills Definition 4.13 for an application function.

Let us assume that Algorithm 7.2 does not realize a correct application
function. ProvenanceApply may return ⊥ in Line 3 or Line 7, or it may
return models in Line 9. Correctness requires the function to either return
⊥ or consistent models, which may only be violated by ProvenanceApply
returning inconsistent models. This means that for some input models and
changes, ProvenanceApply returns models 𝔪res ≔ 𝛿𝔐,res (𝔪), such that
there is a transformation 𝔱 ∈ t to which 𝔪res , or more specifically two
contained models 𝑚𝑖 and 𝑚𝑘 , whose metamodels are related by 𝔱, are not
consistent. We distinguish the following three cases.

1. 𝔱 was never executed by Propagate. This means that the changes 𝛿𝑀𝑖

and 𝛿𝑀𝑘
in 𝛿𝔐 of the two models that are kept consistent by 𝔱 were

always empty, i.e., 𝛿id , because otherwise 𝔱 would have been selected
in the loop header. Since the initial models𝑚𝑖 and𝑚𝑘 were consistent
to 𝔱, the returned models are still consistent, because only the identity
function is applied to them.

2. 𝔱 was executed producing changes 𝛿𝑀𝑖
and 𝛿𝑀𝑘

, and no other trans-
formation that affects 𝑚𝑖 or 𝑚𝑘 was executed afterwards. Then the
returned models, i.e., 𝛿𝑀𝑖

(𝑚𝑖 ) and 𝛿𝑀𝑘
(𝑚𝑘 ) are consistent by definition

of correctness for 𝔱.

3. 𝔱 was executed, and another transformation 𝔱′ ∈ t that involves 𝑚𝑖

or𝑚𝑘 was executed afterwards. Since 𝔱′ was executed after 𝔱, 𝔱 was
in texecuted when 𝔱′ was the candidate 𝔱candidate. After executing the
transformations in texecuted , the candidate 𝔱′ is applied again in Line 22.
Additionally, consistency to all transformations in texecuted is ensured
by the check in Line 26 after returning from the recursion in which 𝔱

was executed. Thus, the returned models are consistent to 𝔱 and 𝔱′.

The third case can be applied inductively if a transformation is followed by
multiple transformations that involve the same models. Thus, all cases lead
to a contradiction.

In addition to these essential properties, we can also derive the upper bound
for the number of transformation executions by the algorithm.
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Theorem 7.16 (Provenance Algorithm Complexity)
Algorithm 7.2 executes transformations at most O(2 |t | ) times.

Proof. Let 𝑇 (𝑚) denote the number of transformation executions the algo-
rithm invokes for a set of transformations t with 𝑚 = |t|. The set texecuted
is initialized to be empty (Line 12) and grows by one transformation every
iteration of the loop (Line 30). It follows that the recursive call in Line 18
receives a set of transformations that contains one more transformation in
each iteration. Thus, given𝑚 transformations, Propagate executes each of
them in the loop and then makes recursive calls for 0 to𝑚−1 transformations:

𝑇 (𝑚) = 2𝑚 +
𝑚−1∑︂
𝑖=0

𝑇 (𝑖) = 2 + 2𝑇 (𝑚 − 1) = 2(2𝑚 − 1) ∈ O(2𝑚)

𝑇 (0) = 0

Finally, the algorithm shall implement the principle to ensure consistency
among the transformations that have already been executed before executing
a transformation that has not been executed yet, defined in Subsection 7.4.1.

Theorem 7.17 (Provenance Algorithm Design Principle)
Algorithm 7.2 ensures consistency among the transformations that have

already been executed before executing a transformation that has not been

executed yet.

Proof. After the recursive call in Line 18, the model tuple yielded by applying
the current changes 𝛿𝔐,candidate to the initial model tuple 𝔪 is consistent
to all executed transformations in texecuted according to the proof given for
Theorem 7.15.

We have given Definition 7.8 for the property of a transformation set to be
reactive converging. This property defines that we do not want transforma-
tions to be required to react to changes they performed themselves after all
other transformations have been executed in all possible permutations, as
we assume this to be a reasonable property that induces an upper bound for
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the number of transformation executions. We have used this property as a
design goal for the proposed algorithm and can now show that the algorithm
always returns consistent models if the transformations fulfill that property,
which means that the algorithm implements an optimal application function
for these kinds of transformations.

Theorem 7.18 (Provenance Algorithm Optimality)
If the transformation set t passed to Algorithm 7.2 is reactive converging

according to Definition 7.8 and if the consistency preservation rules of all

transformations in t are total functions, then the algorithm implements

an optimal application function.

Proof. We show that the algorithm does not return ⊥ when the input models
are consistent, thus an orchestration is always found. This is even stronger
than optimality, because it means that for every input with consistent models
a consistent orchestration exists.

Since optimality allows the algorithm to return ⊥ when the input models are
inconsistent, returning ⊥ in Line 3 is valid. The algorithm returns ⊥ in Line 7
if Propagate returns ⊥, thus we show that Propagate does not return ⊥.
Propagate returns ⊥ in Line 16 and Line 24 if the application of a 𝔱candidate
in Line 14 or Line 22, respectively, returns ⊥, which cannot occur because
transformations are total by assumption. Propagate returns ⊥ in Line 20 if
a recursive call returns ⊥. If the loop in that recursive call is executed, the
arguments for not returning ⊥ apply recursively. If the loop is not executed
in the recursion, the input changes are returned, thus not yielding ⊥.

Finally, Propagate returns⊥ in Line 27 if the models yielded by applying the
changes after the recursive call and reapplying 𝔱candidate are not consistent
with the already executed transformations in texecuted ∪ {𝔱candidate}. Since
the transformation set is reactive converging, this can only be the case if
not all permutations of the transformations in texecuted ∪ {𝔱candidate} have
been executed yet. We first note that applying the Propagate function to
transformations twith |t| =𝑚, the result after the first 𝑛 ≤ 𝑚 loop iterations
is the same as when executing Propagate to the𝑛 transformations in texecuted
after 𝑛 loop iterations. We thus show that when reaching Line 26 in the last
iteration of the loop, i.e., when the algorithm returns consistent models if the
check in that line does not fail, every permutation of transformations in t,
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and thus in texecuted ∪ {𝔱candidate}, has been executed by induction. Applying
Propagation to a transformation set with |t| = 1, the statement is trivially
true, because the single transformation is executed in Line 14. Let us assume
that the statement is true for a transformation set with |t| < 𝑖 , but that
it is not true for a set with |t| = 𝑖 . Since the execution of the first 𝑖 − 1
iterations is equal to executing the algorithm on the 𝑖 − 1 transformations
selected in these iterations, the algorithm cannot return ⊥ in Line 27 in the
first 𝑖 − 1 iterations by induction assumption. Thus, only in the last iteration
not all permutations of transformations may have been executed and thus
the check in Line 26 may only fail in that last iteration. This means that there
is a permutation [𝔱1, . . . , 𝔱𝑖 ] of the transformations in t after the last loop
iteration in which they have not been executed yet. Let 𝔱 be the candidate
𝔱candidate of the last loop iteration, and let 𝑘 be the index of 𝔱 in that sequence,
i.e., 𝔱 = 𝔱𝑘 . Then per induction assumption, the sequence [𝔱1, . . . , 𝔱𝑘−1] has
been executed in one of the previous iterations of the loop. Afterwards 𝔱
was executed in Line 14. Then, the sequence [𝔱𝑘+1, . . . , 𝔱𝑖 ] has been executed
in the recursive call in Line 18 by induction assumption. Since during the
last iteration the recursive call is performed with texecuted = t \ {𝔱} and thus
|texecuted | = |t| − 1, all permutations of transformations in texecuted , including
[𝔱𝑘+1, . . . , 𝔱𝑖 ], are executed in the recursive call by induction assumption. This
is a contradiction.

In consequence, Propagate and thus ProvenanceApply do never return ⊥,
except for inconsistent input models. Since we have already proven that the
algorithm terminates always and implements a correct application function,
this shows that it implements an optimal application function.

Optimality can, however, only be guaranteed under specific conditions. Apart
from the necessity to be reactive converging, the transformations need to be
able to handle every input, i.e., every combination of models and changes, as
otherwise selecting a transformation may lead to Propagate returning ⊥,
because the transformation cannot be applied. In practice, this assumption
may not be fulfilled. Nevertheless, it is theoretically possible to define such
transformations and, at least, it leads to well-defined conditions for when we
can assume the algorithm to realize an optimal orchestration function.

Although this means that under such specific conditions the algorithm is able
to decide the orchestration problem, the problem is actually trivially solved
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in that case, because for every input there is a consistent orchestration. Thus,
the problem is actually non-existent under these assumptions.

Finally, it is an open question how far we can assume sets of transformations
to be reactive converging in practice. We have, however, not introduced this
as a property that should be fulfilled by transformations, as it is obviously
hard to ensure or even analyze this property. In fact, it is only supposed to be
a well-defined property that allows us to define a reasonable upper bound for
the execution of transformations and thus to allow us to define an algorithm
that always terminates without using a completely arbitrary upper bound
for determining when to terminate.

7.4.4. Provenance Identification Improvement

We have motivated the provenance algorithm with the idea to improve the
ability of a transformation developer or user to find the reason for the al-
gorithm not to yield consistent models for certain inputs. The proposed
Algorithm 7.2 only returns ⊥ in these situations and does thus not directly
support that process. The necessary information for improving the identi-
fication of provenance for the failure is, however, present in the algorithm
and can be retrieved easily.

The algorithm may fail, because it is, at some point, not able to execute a
candidate transformation (Line 16 or Line 24), or because after executing a
new transformation consistency to the previously executed transformations
cannot be achieved without letting one of the transformations react to the
reaction of all other transformations to its own changes (Line 26), which
we defined as the property of reactive convergence. In this case, we at least
know that after the previous loop iteration consistency to all transformations
that have been executed so far could be achieved.

Whenever the Propagate function fails and returns ⊥, we know that for
the current transformations in texecuted an orchestration exists that yields
the current changes in 𝛿𝔐 , for which we know that when applied to the
original models the result 𝛿𝔐 (𝔪) is at least consistent to texecuted . We also
know that the algorithm was not able to ensure consistency to the current
candidate transformation 𝔱candidate . This is exactly the information for which
we already discussed in Subsection 7.4.1 the benefits with respect to the
underlying design principle of recursively ensuring consistency for subsets
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of the transformations for the ability to identify the reasons for not finding a
consistent orchestration. Thus, implementing the algorithm such that it also
delivers 𝔱candidate , texecuted , and the current changes 𝛿𝔐 reduces the necessary
model states and transformations to consider for a transformation user or
developer to identify why no consistent orchestration was found.

The algorithm and the ability to identify reasons for the algorithm to fail may
be further improved by determining a reasonable order for the execution of
transformations in the loop of the Propagate function. The loop at least
ensures that no transformations are executed that are not yet affected by
any change and thus would not produce changes. It can, however, also be
reasonable to first select transformations for which both models have already
been modified before selecting transformations for which only one model has
been modified. This can further improve locality of the changes performed
until the algorithm fails, because less models may have been modified until
the algorithm fails. We also discuss these benefits as results of the evaluation
in Section 9.3.

7.5. Summary

In this chapter, we have discussed how we can realize an application function
for transformation networks. We have motivated optimality as a desired
property, which ensures that an application function always delivers consis-
tent models if there is an order of the transformations that yields them. From
this optimality notion, we have derived the central orchestration problem,
for which we haven proven undecidability even when restricting transfor-
mation networks. Finally, we have proposed strategies to reduce the cases
in which no consistent models are found and an algorithm that executes
transformations with a well-defined order and bound. Rather than improving
optimality, it ensures that in cases in which no consistent models can be
derived at least some information can be provided that helps developers or
users of transformations to identify why no consistent models were found.
We conclude this chapter with the following central insight.
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Insight II.4 (Orchestration)
The orchestration problem, whether an orchestration of modular and in-
dependently developed transformations exists that restores consistency
for given models and changes, is undecidable. We have shown that
the problem stays undecidable even with impractical restrictions to the
individual transformations, such that we need to accept undecidability
of the problem. In consequence, every algorithm that realizes an appli-
cation function for transformations can only implement a conservative
approach to the orchestration problem. Due to this conservativeness,
every algorithm will fail in cases in which actually an orchestration
of the transformations exists that leads to consistent models. Thus, it
is useful to find an algorithm that orchestrates the transformations in
a way such that the state of executed transformations and generated
changes can help the transformation developer or user to identify why
the algorithm failed. This can be achieved with a strategy of iteratively
restoring consistency, such that always a subset of the transforma-
tions for which consistency could be restored and a transformation for
which it could not be restored anymore can be provided to ease reason-
ing about the cause for failing. We have proposed an algorithm that
implements this strategy and is proven to fulfill the desired property.
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Transformation Networks

In the previous chapters, we have introduced a notion of correctness for
transformation networks and discussed how we can achieve or analyze
different kinds of correctness for the different artifacts of a transformation
network, namely consistency relations, consistency preservation rules, and
the application function. It may, however, easily occur that transformation
developers define transformations that do not adhere to all these kinds of
correctness, be it because of missing knowledge about them or by accident.

In this chapter, we discuss what may happen if correctness was not achieved.
The possible types of errors that can occur depend on the abstraction level at
which the specification is performed. This depends on existing knowledge,
i.e., whether the transformation is to be used in a transformation network or
even in which network it is to be used, but also on the abstraction provided
by the formalism or language to specify a transformation or transformation
network in. We first propose a distinction of such knowledge levels for the
specification of transformation networks. We then systematically derive a
categorization of potential failures, i.e., the unwanted results the application
algorithm may yield, the faults that led to the failures, i.e., the errors in the
implementation of the transformation, and finally the causing mistakes, i.e.,
the errors made by a developer due to his or her knowledge that led to an
implementation fault. Finally, we discuss how the possible types of mistakes,
faults, and failures can be detected or avoided and how this relates to the
correctness notions and the introduced approaches to achieve correctness.

This chapter thus constitutes our contribution C 1.5, which consists of three
subordinate contributions: a separation of knowledge-dependent specifica-
tion levels for transformation networks; a categorization of potential errors
in transformation networks; and a discussion of the possibilities to detect and
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avoid errors with respect to the discussed correctness notions and measures
to achieve them. It answers the following research question:

RQ 1.5: Which errors can occur in transformation networks, how can they
be classified regarding their avoidability, and how severe are they?

As the central goal of this chapter, we categorize the possible types of errors
to derive systematic knowledge about mistakes that can be made and failures
that can arise from them. First, this helps transformations developers to
identify the reasons for arising failures. Second, it allows us to identify which
relevant errors we can avoid or detect with the approaches proposed in the
previous chapters and how relevant the problems that we solve with them
are. The latter will be part of our subsequent evaluation at case studies.

Several of the insights regarding errors in transformation networks are
results of the two Master’s theses by Syma [Sym18] and Sağlam [Sağ20], who
investigated errors that occurred when combining independently developed
transformations in two case studies. Essential results from the former thesis
were published in previous work [Kla+19b] and will be presented in the
following sections in revised form.

8.1. Knowledge Levels in Transformation
Specifications

The process of specifying a transformation network can be considered at
different conceptual levels depending on the knowledge a developer must
have to ensure correctness at that level. For example, at the lowest level
a developer may only know that a transformation shall be used within a
network without knowing the actual network, which only allows to avoid
specific errors, whereas further errors are relevant and need to be considered
when having knowledge about the other transformations to combine it
with. In addition, depending on the level of abstraction that a specification
formalism, such as a transformation language, provides, the developer must
only deal with some of these levels as the language abstracts from the others,
which determines the resulting challenges a developer has to deal with.
In consequence, these levels are supposed to mean that specific kinds of
mistakes can be made at each of them and that a formalism may ensure
correctness with respect to one of those levels and the ones below, whereas
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Level Name Correctness Knowledge

1 Transfor-
mation

Synchronizing
transformations Individual transformation

2 Network
Relation

Compatible consistency
relations

Consistency relations of
complete network

3 Network
Rule

Interoperable consistency
preservation rules

Transformations of
complete network

Table 8.1.: Distinguished levels in the transformation network specification process with their
correctness criteria and required knowledge.

the transformation developer is still responsible for avoiding mistakes at the
levels above.

We distinguish three such levels, which we summarize in Table 8.1 together
with their properties and discuss them in the following. At the transformation

level, we consider the specific properties of a single transformation to be used
in a, or more precisely any transformation network, especially involving
synchronization. At the network relation level, we consider the interplay of
the binary consistency relations of a concrete set of transformations. At the
network rule level, we consider the interplay of the consistency preservation
rules of a concrete set of transformations. These levels depend on each other,
because, for example, consistency preservation rules cannot properly work
together if each on its own is not at least synchronizing and thus correct at
the transformation level. Nevertheless, a transformation can be correct at
the transformation level without being correct at the network relation and
network rule level.

These levels especially differ in what knowledge they require to be able to
deal with and even avoid potential errors. For the transformation level, it is
sufficient to know that a transformation may be used in a transformation
network without knowing the actual network. For the network relation
level, at least the relations of the other transformations in the network must
be known. Finally, for the network rule level, the transformations of the
complete network must be known. This influences how far errors at the
different levels can be avoided, first, because of the required knowledge to
do so and, second, because of the possibility to ensure correctness at all.
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8.1.1. Knowledge-Dependent Specification Levels

In the following, we introduce the three mentioned levels more precisely.
They represent a revised version of the three levels we have presented in
previous work [Kla+19b]. In that work, we have discussed the global level,
which considers the global knowledge in terms of the overall, multiary
relation between all involved models. We have, however, discussed different
correctness notions in Section 4.2 and argued why we do not consider a
monolithic notion of consistency, which conforms to the global specification
level, as we do not assume this global knowledge to be represented explicitly,
such that it would not make sense to explicitly consider correctness according
to it.

Level 1 (Transformation): At the first level, we only consider the knowledge
that a transformation shall be used within a transformation network.
According to our formalism presented in Section 4.3, this means that the
transformation needs to be synchronizing. We have discussed in Chap-
ter 6 how synchronization can be achieved with ordinary transformation
languages. Correctness at this level is given by the fulfillment of the
synchronization property for a transformation.

Level 2 (Network Relation): At the second level, we consider the knowledge
about the actual network in which the transformations shall be used,
but restricted to their relations. In consequence, it would be possible
that the relations between all models are known, e.g., because there is a
common understanding of the relations, which may also be documented.
We have discussed in Chapter 5 that compatibility is a relevant property
of the consistency relations in a transformation network to ensure that
the transformations are able to find consistent models after changes.
Correctness at this level is thus given by compatibility of the consistency
relations.

Level 3 (Network Rule): At the third level, we consider the knowledge about
the complete transformations of an actual network, thus especially also
the consistency preservation rules that preserve consistency. In Chapter 7,
we have discussed the problem of orchestrating these rules and also
discussed several issues that may prevent an algorithm from finding a
consistent orchestration, such as the selection of different, conflicting
options provided by a consistency relation to restore consistency.
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8.1.2. Abstraction to Specification Levels

All three levels are relevant during the specification process of a transfor-
mation network, and potential mistakes that can be made at each of them
need to be avoided. As mentioned before, a specification formalism, usually
a transformation language, provides a specific level of abstraction associated
with one of the conceptual levels introduced above, which relieves the de-
veloper from dealing with potential problems of the lower levels. He or she
must, however, still ensure correctness with respect to all higher levels.

At the lowest level, a transformation language may not ensure correctness
regarding any of the levels. For example, an imperative, unidirectional trans-
formation language requires the developer to ensure synchronization of
transformations at the transformation level, compatibility of the relations
at the network relation level, as well as interoperability of the consistency
preservation rules at the network rule level. Some declarative, bidirectional
transformation languages already relieve the developer from specifying con-
sistency preservation rules and lift the abstraction to consistency relations,
from which consistency preservation rules are automatically derived. Some
languages even relieve the developer from manually ensuring synchroniza-
tion, for example, by using keys for matching existing elements in QVT-R. In
this case, the transformation engine ensures correctness at the transforma-
tion level, but the developer still has to ensure it for the other levels. Then, the
developer only needs to deal with problems at the higher levels. Integrating
an analysis for compatibility, such as the one proposed in Chapter 5, into
QVT-R could thus also abstract from the network relation level.

To the best of the author’s knowledge, languages that ensure correctness at
higher levels than the transformation level are currently uncommon. This
would either require the specification of multidirectional transformations,
i.e., a less modular or even monolithic notion of consistency (see Section 4.2),
or at least additional analysis functionality integrated into the languages
to, for example, ensure compatibility and thus correctness at the network
rule level. Multidirectional QVT-R [MCP14] or extensions of TGGs to mul-
tiple models [KS06; TA15; TA16] provide means to define rules between
multiple models, from which then consistency preservation rules between
two models are derived, thus abstracting from the problems of ensuring rule
compatibility and interoperability of consistency preservation rules. The
Commonalities language [Gle17], which we present in detail in Chapter 11,
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lifts the abstraction such that the network relation and network rule levels do
not have to be considered by the transformation developer. This is, however,
achieved by a specific network topology induced by that language, which
avoids several of the problems that we discussed for networks of arbitrary
topologies.

Correctness at the higher conceptual levels always requires correctness at
the lower levels. Especially the interoperability of transformations at the
network rule level requires the transformations to be synchronizing, i.e.,
correct at the transformation level, and the relations to be compatible, i.e., to
be correct at the network relation level. In fact, compatibility of the relations
does not require the transformations to be synchronizing, thus the network
relation level does, theoretically, not require correctness at the transformation
level. From a knowledge perspective, it does, however, not make sense to
ensure compatibility of relations when their transformations are not even
synchronizing, because synchronization of a transformation can already be
ensured independent from the other transformations to combine it with,
whereas this knowledge is required for ensuring compatibility.

8.2. Categorization of Errors in Transformation
Networks

In this section, we identify and categorize potential failures that can occur
when executing transformation networks, which are derived from the failure
cases of the application algorithm discussed in Chapter 7. We consider the
mistakes and the resulting faults in the transformation specifications, which
a transformation developer can make. The mistakes are specific for the
introduced knowledge levels, thus we derive them from those levels. We
finally relate mistakes to the failures that can occur when transformation
networks containing faults caused by those mistakes are still executed.

8.2.1. Mistakes, Faults and Failures

Errors in transformation networks can occur in different contexts, for exam-
ple in terms of the transformation networks, more precisely the application
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algorithm, producing an incorrect result, or in terms of a transformation de-
veloper defining an erroneous transformation. To be able to distinguish these
contexts, we have already used the terms mistakes, fault and failure with a
short introduction of their distinction, as specializations of the general term
error. They are supposed to describe erroneous or inappropriate knowledge
of a developer (mistakes), erroneous implementations (faults) and erroneous
execution results (failures). These different types of errors depend on each
other, as a mistake can lead to a fault, which can then lead to a failure.

Mistake: A mistake is made by a transformation developer. It is based on
missing or erroneous knowledge about either the actual transformation
or the necessity to ensure certain properties. For example, the missing
knowledge that transformations must be synchronizing leads to a mistake
in the conceptualization of transformations, as they do not ensure this
required property. The missing knowledge that compatibility is required
as well as the missing knowledge about the other transformations of a
network can lead to the mistake that incompatible transformations are
realized. If a transformation language abstracts from a conceptual level
and relieves the developer from ensuring that no mistakes at that level
are made, such mistakes can also be made by the transformation language
developer and then manifest in a faulty implementation of the language.
We do, however, not consider that case explicitly.

Fault: A fault is the manifestation of a mistake in the implementation of
transformations. For example, the missing knowledge about the necessity
to have synchronizing transformations can lead to the fault that the
implementation does not properly identify existing elements instead of
creating new ones. A fault is, thus, always the consequence of a mistake.
It is also made by a transformation developer but can be seen within the
implementation explicitly, whereas a mistake can only be detected by the
fault in the implementation to which it led.

Failure: A failure occurs at execution time of transformations and is the man-
ifestation of a fault when executing a faulty transformation network. A
failure is the incorrect result of the execution of transformations. When-
ever the transformations in a network have a faulty implementation,
failures such as the termination in inconsistent states or non-termination
of the application algorithm can occur. Since the occurrence of a failure
depends on the scenario in which the transformations are executed, not
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every fault leads to a failure. On the other hand, a fault can also lead to
several failures, e.g., because a transformation is executed multiple times.

Several similar terms like errors, mistakes, faults, bugs, defects, and so on
are used in software engineering and especially in software testing. They are
sometimes used interchangeably and sometimes with specific meanings. One
common notion is the distinction of faults, errors, and failures in software
testing, however also with different meanings, of which at least one is com-
parable to ours using the term error for what we call mistake. We decided to
avoid the overloaded term error and make the human mistake explicit.

8.2.2. Possible Failure Types

Failures are the manifestation of faults during transformation execution and
thus the final result of mistakes made by a transformation developer. A failure
means that the execution of the transformation network, or more precisely
the application algorithm, reached an unwanted state. We have already
discussed in Subsection 7.2.2 that the application algorithm can fail by not
implementing a correct application function, thus either returning models
that are inconsistent or not terminating at all. Additionally, the algorithm may
fail to deliver consistent models and return⊥ instead. Returning⊥ is actually
desired behavior to deal with the undecidability of the orchestration problem.
It can, however, mask that the transformations in the network contain faults
that lead to the algorithm not being able to find an orchestration that yields
consistent models.

Termination in an inconsistent state, non-termination, and returning ⊥ al-
ready form the three general failure types that can occur when executing
faulty transformations. They can be further specialized in different dimen-
sions, e.g., regarding determinism of inconsistent termination or regarding
whether too many or too few elements (or combinations of them) exist for
being consistent. The latter could manifest in missing corresponding condi-
tion elements or the existence of too many condition elements for which no
consistent models can be found by adding further ones. We have, however,
found in previous work [Sağ20, Tab. 5.7] that this distinction regarding ele-
ments does not provide any insights and benefits when tracing the failures
back to the causal mistakes. We do, however, consider duplications as one
specific additional failure type, which can finally lead to any of the other
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Mistakes Faults Failures

Level 1:
Transfor-

mation

Level 2:
Network

Relation

Level 3:
Network

Rule

missing
synchronization

incompatible
constraint
knowledge

contradicting
options

selection

missing
element

matching

contradicting
element

generation /
change

duplications
• multiple instantiation
• multiple insertion

inconsistent termination
• deterministic

• non-deterministic

non-termination
• alternation
• divergence

returning ⊥

Figure 8.1.: Categorization of mistakes, faults and failures. Adapted from [Kla+19b, Fig. 3].

failures, depending on whether the application algorithm aborts or not. Du-
plications of elements are of particular importance, because they are the
essential manifestation of missing synchronization in transformations, as we
have discussed in Section 6.4.

In Figure 8.1, we depict the different failure types with their specializations,
which we discuss in the following. Note that we do not assume a specific
application algorithm when discussing failures. Whether a potential failure
occurs or not highly depends on the used algorithm. For example, using
the provenance algorithm proposed in Section 7.4 will neither lead to non-
termination nor to inconsistent models, at least if the consistency check is
implemented properly, but may only lead to returning ⊥. Having an artificial
upper bound for the number of transformation executions, of course, always
prevents from non-termination. Only if transformations are executed without
checking consistency afterwards or without defining an execution bound,
the discussed failures can actually occur. Whenever an algorithm returns ⊥,
this can, however, be an indicator whether the algorithm fails because an
artificial execution bound was reached or because a transformation cannot
be applied anymore as it is not able to process the given changes. We will
discuss that in Section 8.3.
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We further distinguish the already discussed failure types as follows.

Inconsistent Termination: Inconsistent termination means that the applica-
tion algorithm terminates and the models it returns are inconsistent. This
can only occur if the algorithm does not check the models, which the
application of the transformations yields, for consistency. Furthermore it
can terminate deterministically or non-deterministically, depending on
whether each execution delivers the same inconsistent models or differ-
ent ones, because different execution orders of the transformations are
selected.

Non-Termination: Non-termination means that the application algorithm
does not terminate but executes transformations indefinitely without
achieving a consistent state of the models. We can further distinguish
between alternation and divergence as defined in Definition 7.6. Alterna-
tion means that the same model states are produced repeatedly, which
can, for example, be because a feature, such as an attribute or reference,
alternates between two or more values. In other cases, divergence occurs,
which means that some feature values are changed indefinitely, such as a
number counting up, a string being appended repeatedly, or an infinite
number of elements being created. While an alternating algorithm can
easily run endlessly, a diverging algorithm will abort at some point in time
in many cases, because endless element creation or string concatenation
can lead to an overflow of available memory.

Returning⊥: The application algorithm may terminate and return ⊥ to in-
dicate that it was not able to find an orchestration that yields consistent
models. This may either be because no such orchestration exists or can
be found even though no mistakes were made, or because the transfor-
mation network actually contains faults that prevents the algorithm from
finding a consistent orchestration. For example, if transformations are
not synchronizing, the application algorithm will, in general, not be able
to execute them in a way that they deliver consistent models. This kind
of failure is different from the others, as it is intended behavior of the
algorithm to return ⊥ rather than returning inconsistent models or not
terminating at all, but it is still not the intended result as it is caused by
an actual fault.

Duplications: As a more specific failure case, we have introduced element
duplications, which can especially arise if transformations are not syn-
chronizing and thus do not match existing elements rather than creating
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new ones. We can further separate this into multiple instantiation and
multiple insertion. Multiple instantiation can occur because different
consistency preservation rules instantiate an element multiple times,
although all of them represent the same one. Multiple insertion can occur
because an element is inserted into a reference or attribute list several
times, although it should be inserted only once. In fact, such duplications
can ultimately lead to inconsistent termination, non-termination, or re-
turning ⊥, either because the algorithm returns after a finite number of
transformation executions without checking consistency or returning ⊥,
or because the transformations are not able to restore consistency and
the algorithm does thus not terminate. Duplications, however, represent
a special case, which, as we will see in the evaluation in Chapter 9, is one
of the most important error cases for transformation networks. Thus,
identifying such duplications in the generated models can ease finding
the causal mistake in terms of missing synchronization.

We have discussed that if an application algorithm checks consistency and
has an artificial execution bound, it will only return ⊥ rather than producing
any other type of failure, especially not the more specific duplications. Know-
ing the other failure types and their relation to the causal mistakes is still
important. First, when a transformation network with such an application al-
gorithm yields⊥ in most execution scenarios, there will likely be a fault in the
transformation implementations. Temporarily replacing the algorithm with
a less restrictive one can help to find the reasons, because then, for example,
duplications may be detectable that help to identify missing synchronization.
Second, in many transformation languages consistency relations are not
represented explicitly, thus consistency checks are performed by executing
the transformation and checking whether changes were performed. Then, if
transformations are non-synchronizing, they return an actually inconsistent
state, which may, however, not be identified by the transformation as such.
This is due to the fact that these transformations do not expect to be used in
the synchronization scenario and thus assume that consistency is achieved
by construction, i.e., that only changes for one model are given and must
be processed and, thus, that the models are consistent after executing the
consistency preservation rules.
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8.2.3. Mistake and Fault Types

Developers can make different kinds of mistakes at each of the specification
levels, which lead to faults in the implementation of transformations and
eventually to different kinds of failures during transformation execution. In
the following, we derive mistakes and faults from the specification levels, as
depicted in Figure 8.1.

We explicitly focus on conceptual mistakes and faults concerned with the
development of transformation networks. This especially excludes the fol-
lowing two types of mistakes.

Technical Mistakes: We do not consider technical and careless mistakes that
are due to misuse of the transformation language, a coding error such as
a missing handling of null values, or comparable mistakes.

Transformation Incorrectness: We do not consider any kinds of mistakes
that lead to incorrect transformations. We assume that transformations
are correct, i.e., that the consistency preservation rules produce results
that are consistent to their consistency relations. Thus any mistake
related to the transformations handling changes in only one of the models
are out of scope, as these scenarios are part of research regarding the
individual bidirectional transformations on their own. However, mistakes
regarding synchronization of transformations, i.e., the case that changes
were performed to both models, are relevant.

In fact, technical mistakes eventually lead to incorrectness of the transforma-
tions.

Transformation Level

Correctness at the transformation level requires each transformation to be
synchronizing. We have discussed in Section 6.4 that the essential require-
ment to make ordinary transformations synchronizing is the matching of
existing elements, because transformations that were not developed for the
synchronization case do usually not assume elements to be already existing
but to be either added by changes that are processed by the transformation
or created by the transformation itself.
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The mistake a transformation developer can make at this level is not to
consider that synchronization is necessary, potentially because he or she
does not even know that it is necessary. Then the transformation may be
correct but not synchronizing. In the implementation, this manifests as the
absence of necessary matchings of elements. We have already discussed that
this finally leads to the duplicate creation or insertion of model elements
when executing such transformations.

Network Relation Level

The network relation level concerns correctness of the consistency relations
in a transformation network. In general, we can distinguish two notions of
correctness for them, as discussed in Section 4.2. First, relations must reflect
an intended, probably informal notion of consistency. If the relations miss
to reflect constraints of that notion or if they reflect additional constraints
that are not part of that notion, the relations may be considered incorrect.
Second, the relations must be compatible. As discussed in Chapter 5, this
is necessary to enable the consistency preservation rules to find consistent
models at all. In the worst case, there may not be a single tuple of models
that is consistent to all consistency relations when they are incompatible.

The first correctness notion, however, only concerns a single consistency
relation rather than the combination of them. We thus assume it to be cor-
rect, as we assume each transformation to already be correct. Finally, such
incorrectness would not even be interesting. Defining additional constraints
does not lead to failures but, in the worst case, only to not finding consistent
models although they exist, and missing constraints simply leads to incon-
sistent models, as the result does not fulfill the constraints of the existing,
informal notion of consistency.

The relevant correctness notion is the one of compatibility. One or more
transformation developers can make the mistake of having incompatible
knowledge about the consistency constraints encoded into the transfor-
mations. This, in consequence, leads to a fault in the implementation of
transformations, which may perform a contradicting generation or modifica-
tion of model elements, for which no orchestration of the transformations
may yield consistent models. Depending on the operation of the application
algorithm, this can lead to different types of failures. If the transformations
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are executed with an artificial execution bound, the algorithm will termi-
nate with inconsistent models, which may be returned or not depending on
whether it checks consistency. The inconsistency will be deterministic or not,
according to whether the execution order of transformations is fixed or not.
If the algorithm does not implement such an artificial bound, such a fault
can also lead to non-termination of the algorithm, because the execution of
transformations will never lead to consistent models. Finally, if the algorithm
implements an artificial execution bound and consistency checks, it may also
return ⊥ in this case.

Network Rule Level

The network rule level concerns correctness of the complete transformations
of a network. We did not give a precise definition of what this correctness
means. In Chapter 7, we have discussed assumptions to transformations to
enable an application function to solve the orchestration problem, which
could be a reasonable correctness measure. We have, however, also discussed
that we cannot make any practical assumptions to the transformations such
that they improve the ability of the application algorithm to find a consistent
orchestration if it exists.

We only know from Subsection 7.2.4 that consistency relations providing
multiple options for corresponding elements to consider models consistent
can lead to consistency preservation rules that always select elements that
are not in the overlap of these options between different transformations. In
consequence, if transformation developers decide to implement consistency
preservation rules that make such contradicting selections or generations of
elements, the transformations may fail due to the same reasons as discussed
for the network relation level. In this case, the causing mistake is that the
transformation developers make contradicting selections of available options
to restore consistency.

We did not find a property that a transformation set and especially its consis-
tency preservation rules have to fulfill and instead concluded to deal with
the orchestration problem by means of a conservative application algorithm.
Thus, we cannot give a reasonable or even complete overview of potential
mistakes developers can make at this level.
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Person
firstname
lastname

Employee
name

Resident
name

𝑝

𝐶𝑅𝑃𝐸 𝑒 𝑒 𝐶𝑅𝐸𝑅 / 𝐶𝑅′
𝐸𝑅

𝑟

𝑟𝐶𝑅𝑃𝑅 / 𝐶𝑅′
𝑃𝑅

𝑝

𝐶𝑅𝑃𝐸 = {⟨𝑝, 𝑒⟩ | p.firstname + ”␣” + p.lastname = e.name}

𝐶𝑅𝑃𝑅 = {⟨𝑝, 𝑟 ⟩ | p.firstname + ”␣” + p.lastname = r .name}
𝐶𝑅′𝑃𝑅 = {⟨𝑝, 𝑟 ⟩ | p.lastname + ”␣” + p.firstname = r .name}

𝐶𝑅𝐸𝑅 = {⟨𝑒, 𝑟 ⟩ | e.name = r .name}
𝐶𝑅′𝐸𝑅 = {⟨𝑒, 𝑟 ⟩ | e.name.toLower = r .name}

Figure 8.2.: Adaptation of consistency relations from the extended running example in Figure 5.1.
Adapted from [Kla+19b, Fig. 5].

8.2.4. Causal Chains

We have already discussed the relevant causal chains between mistakes,
faults, and failures when introducing the relevant mistake types. The full
overview of these dependencies is given in Figure 8.1. Mistakes at the network
relation and network rule levels can always lead to any kind of failure, namely
non-termination, inconsistent termination, or returning ⊥, depending on
how the application algorithm operates. Thus, these dependencies do not
give any insights regarding which mistakes may have caused an occurring
failure. Mistakes at the transformation level, however, produce a specific
kind of failure that can be distinguished from the general failure types. Thus,
knowing these causal chains is especially useful for identifying mistakes at
the transformation level. We further discuss the detection and avoidance of
mistakes in the subsequent section.

In Figure 8.2, we depict slightly modified consistency relations from the
running example. Based on these consistency relations, Figure 8.3 depicts
three scenarios of transformation executions with mistakes at each of the
three introduced levels. Each scenario assumes a person to be introduced
by a user change. Then transformations are executed and produce changes
in the order depicted by the numbers at the transformation executions. The
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Transformation Level Mistake (𝐶𝑅𝑃𝐸 ,𝐶𝑅𝑃𝑅,𝐶𝑅𝐸𝑅 )

: Employee
name="Alice Avid": Person

firstname="Alice"
lastname="Avid"

: Resident
name="Alice Avid"

: Resident
name="Alice Avid"

1. + 2. +
3. +

4. +

Network Relation Level Mistake (𝐶𝑅𝑃𝐸 ,𝐶𝑅𝑃𝑅,𝐶𝑅′𝐸𝑅 )

: Employee
name="Alice Avid"

: Employee
name="alice avid"

: Person
firstname="Alice"
lastname="Avid"

: Person
firstname="alice"
lastname="avid"

: Resident
name="alice avid"

1. + 2. + 3. +

4. +

5. +

Network Rule Level Mistake (𝐶𝑅𝑃𝐸 ,𝐶𝑅′𝑃𝑅,𝐶𝑅𝐸𝑅 )

: Employee
name="Alice Avid"

: Employee
name="Avid Alice"

: Person
firstname="Alice"
lastname="Avid"

: Person
firstname="Avid"
lastname="Alice"

: Resident
name="Alice Avid"

: Resident
name="Avid Alice"

1. + 2. + 3. +

4. -

4. +

5. +

5. -

6. +

6. -

7. -

7. +

Figure 8.3.: Examples for transformation executions based on the consistency relations given in
Figure 8.2 with mistakes at each of the three specification levels. Arrows denote user changes
and transformation executions with numbers indicating their order and +/- indicating element
addition and removal. Adapted from [Kla+19b, Fig. 5].
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creation and deletion of an element is denoted by a “+” and “-”, respectively.
In one transformation step, multiple elements may be created or deleted. The
arrows indicate that the change of the source element leads to the creation
or deletion of the target element.

The example for the transformation level considers the compatible consis-
tency relations 𝐶𝑅𝑃𝐸 , 𝐶𝑅𝑃𝑅 , and 𝐶𝑅𝐸𝑅 . It assumes that the transformation
developer made the mistake of not considering the necessity of synchroniza-
tion, thus not implementing a matching of existing elements. This can lead
to the depicted failure that two residents with the same name may be created
by both the transformation between employees and residents, as well as the
one between persons and residents. In consequence, the transformations
may not be able to process the occurring situation, or, as discussed before, as-
sume consistency by construction and thus identify the models as consistent
although they are not.

The example for the network relation level considers the incompatible consis-
tency relations 𝐶𝑅𝑃𝐸 , 𝐶𝑅𝑃𝑅 , and 𝐶𝑅′

𝐸𝑅
. Thus, the transformation developers

made the mistake of not having a compatible knowledge about consistency
constraints. In consequence, the developed transformations may try to re-
solve the occurring inconsistencies by adding further elements required to
fulfill the consistency relations. This results in the depicted models, which
are not consistent to 𝐶𝑅′

𝐸𝑅
, because both employees correspond to the res-

ident without the possibility to add a further resident to which one of the
employees corresponds. In fact, the transformations would need to remove
the initially added person and the first employee to restore consistency. Due
to incompatibility, there is no consistent tuple of models containing the
initially added person. The algorithm may fail at the depicted state because
the transformation between employees and residents is not able to restore
consistency.

Finally, the example for the network rule level considers the consistency
relations 𝐶𝑅𝑃𝐸 , 𝐶𝑅′

𝑃𝑅
, and 𝐶𝑅𝐸𝑅 . The relations require that for each person,

employee, and resident, one with swapped firstname and lastname exists.
Whether or not these are reasonable relations, they can be fulfilled by simply
adding the appropriate elements. If, however, the transformation developer
decides to resolve an inconsistency after adding an element to one model
by adding the corresponding one to the other model and removing other
elements in the other model for which no corresponding element exists, this
leads to the repeated insertion of persons, employees, and residents with
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firstname and lastname concatenated in one order and the removal of them
with the inverse concatenation, as depicted in Figure 8.3. In fact, the depicted
process would proceed after Step 7 from the beginning endlessly, unless the
application algorithm stops after a fixed number of transformation execu-
tions. In this case, although transformations were developed synchronizing
and relations are compatible, finding consistent models after a change fails,
because the transformations are not properly aligned with each other. This is
analogous to the example depicted in Figure 7.3, for which no orchestration
exists. In fact, this is also a problem of selecting incompatible options, as
discussed in Subsection 7.2.4, because each transformation always restores
consistency in a way that is not consistent with the other transformations,
thus selecting an option from the consistency relations that is not in the
overlap with consistency relations of the other transformations.

Whether incompatible constraints or a contradicting selection of options
to restore consistency leads to a fault and thus potential failures during
execution can often not be distinguished. This is especially the case when
consistency relations are not explicitly defined but assumed to be implied
by the image of the consistency preservation rules. If then the execution
of transformations fails because the consistency relations induced by the
consistency preservation rules are incompatible, it is unclear whether the,
only implicitly known, consistency relations according to which the trans-
formation developer defined the transformations are actually incompatible,
or whether the defined transformations only make a contradicting selection
of options for restoring consistency, which then implies such incompatible
consistency relations. This is due to the reason that even if a transformation
developer knows about different options in the consistency relations, he
or she can only express one of them in the consistency preservation rules.
Thus, the consistency relations implied by consistency preservation rules can
always only be a subset of the originally intended consistency relations. For
example, when the developers know that two options for name mappings are
actually valid and for two transformations they select different of these op-
tions, then the consistency relations implied by the implemented consistency
preservation rules are actually incompatible, because they contain incom-
patible name mappings, although in the original knowledge the consistency
relations contained both these options, but the consistency preservation rules
can only reflect one of them.

308



8.3. Detection and Avoidance of Errors

Level Name Avoidance Detection

1 Transformation By construction Duplicate element creation
2 Network Relation By analysis Any network failure
3 Network Rule - Any network failure

Table 8.2.: Avoidance and detection of mistakes at the different levels in the transformation
network specification process.

8.3. Detection and Avoidance of Errors

Two ways to deal with the possibility of errors in transformation networks
exist. First, mistakes can be avoided (a priori), which was the major goal of
the discussions and approaches presented in the previous chapters, such that
no failures can occur when executing a transformation network or at least
failures due to specific mistakes are avoided. Second, mistakes can be detected
(a posteriori) by identifying failures during transformation execution. We
have already discussed that how a mistakes manifests depends on the used
application algorithm. An algorithm without an artificial execution bound
may fail by non-termination, one without proper consistency checks may
fail by returning inconsistent models, and a conservative algorithm, such as
the provenance algorithm proposed in Section 7.4, may return ⊥.

In Table 8.2, we depict the possibilities of avoiding and detecting mistakes
at the different levels in the transformation network specification process.
Avoidability is derived from the discussions in the previous chapters, whereas
the detection is a result of the preceding categorization of mistakes and
resulting failures.

8.3.1. Error Avoidance

In the best case, no failures occur in a transformation network, which means
that no mistakes were made at all or at least none of them leads to a failure in
a specific scenario. In fact, a network without mistakes does not mean that
no failures occur, because the application algorithm can always fail because
of undecidability of the orchestration problem. Thus, the absence of failures
indicates the absence of mistakes but not vice versa.
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To avoid mistakes, we have already discussed different approaches in the
previous chapters. Associated with the identified specification levels, we can
identify at which levels mistakes can be avoided by construction, by analysis,
or not at all. At the transformation level, correctness requires transformations
to be synchronizing. As discussed in Chapter 6, this property can be achieved
by construction, because it is a property of a single transformation and does
not depend on the other transformations to be combined with. We have also
proposed techniques, especially the matching of existing elements, to achieve
this correctness by construction. At the network relation level, correctness
requires consistency relations to be compatible. As discussed in Chapter 5,
this property can be validated by analysis of the transformations and their
consistency relations. It can, however, not be avoided by construction. Finally,
at the network rule level, we do not have a precise notion of correctness,
which makes it impossible to define criteria for avoidance.

Since we assume transformations to be developed independently and reused
modularly, it is especially relevant that mistakes at the transformation level,
for which the required knowledge exists, can be avoided by construction.
The necessary knowledge for avoiding mistakes at the network relation level
does actually not exist with that assumption, thus we may not even consider
them as actual mistakes. Finally, the mistakes that cannot be avoided by
construction are handled by the proposed use of a conservative application
algorithm anyway. As we have discussed before, consistency checks of
transformations may be based on the assumption that consistency is achieved
by construction. Thus, it is important that correctness at the transformation
level is achieved by construction, as otherwise the application algorithm may
apply non-synchronizing transformation without detecting that the yielded
models are inconsistent, thus returning inconsistent models.

In Chapter 10, we will discuss how network topologies affect how prone a
transformation network is to the possibility of containing faults. We will
show that an appropriate topology excludes faults such that transformation
developers cannot make mistakes at the network levels. Thus, it is also pos-
sible to avoid such mistakes by construction, but this limits the networks we
can define to specific topologies. We also discuss in Chapter 11 an approach
to construct networks of such a topology, which mitigates the restrictions in-
duced by the necessity of having a specific topology by introducing auxiliary
models.
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8.3.2. Error Detection

Whenever mistakes are not avoided by construction or analysis, they can
be detected by failures of the application algorithm. The insights regarding
relations between mistake and failure types may at first not sound interesting,
because all mistakes at the two network levels can lead to any kind of failure.
And even if a duplication occurs, which is in particular the result of a mistake
at the transformation level, this can also be a consequence of a mistake at the
two network levels. Additionally, the algorithm may not only fail because
of mistakes but also because of undecidability of the orchestration problem.
Still, we can make some relevant conclusions for the detection of errors.

Insights about the causing mistakes can especially be derived from an incon-
sistent state of the models that the algorithm produced, e.g., by investigating
whether this inconsistent state contains duplications of elements. This is why
we proposed the provenance algorithm in Section 7.4, which is supposed to
support the identification of problems in the transformations that lead to the
application algorithm not being able to find a consistent orchestration. Thus,
in case the algorithm fails for specific inputs, it is up to the transformation
developer to investigate the state of the models in which the algorithm failed
to identify the reason for that.

Whenever the application algorithm fails, it can be useful to exchange it
with one with different properties. If the algorithm does not terminate, intro-
ducing an artificial execution bound can produce an insightful inconsistent
state of the models. These inconsistent models can also be retrieved from a
conservative algorithm as proposed in Section 7.4.

The occurrence of duplications is a specific indicator for missing synchro-
nization. They can occur in inconsistent returned models produced by the
algorithm and will most likely occur because of missing synchronization. In
our evaluation in Chapter 9, we will see that in the investigated case study
duplications occurred because of missing synchronization in most cases or
can at least be distinguished from duplications caused by other mistakes.

If the algorithm fails for most inputs in any way, this may be an indicator
that the algorithm is not only unable to yield consistent models because
of the orchestration problem but because some essential mistakes prevent
it from from finding consistent models, such that, in the worst case, no
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consistent orchestration exists at all. Thus, an often failing algorithm may
be an indicator for, among others, incompatibilities.

It may make a difference whether a conservative algorithm fails returning
⊥ because the maximal number of executions was reached or because a
transformation could not be applied anymore. While the inability to apply a
transformation can be seen as an indicator for an actual mistake within the
transformations (such as the network relation level error in Figure 8.3), the
abortion because of reaching the execution bound can also just result from
the conservative behavior to avoid non-termination.

Finally, in the best case errors are avoided by construction, especially po-
tential mistakes at the transformation level. At the network levels, mistakes
cannot be avoided but, in the best case, analyzed. Since we need a conser-
vative application algorithm anyway, it also ensures that such mistakes do
not lead to unwanted results. In the worst case, the algorithm will only be
able to yield consistent models in few or even no cases. Then the transfor-
mation developer must investigate the state of the models with which the
algorithm fails to identify the reasons. Although there are several indicators
for the existence of faults, it cannot be uniquely distinguished whether the
application algorithm fails because of undecidability of the orchestration
problem or because actually the transformations contain a fault. Since we
assume independent development and reuse of transformations, the focus on
avoiding mistakes at the transformation level and the handling of mistakes
at the network levels by a conservative algorithm fits well to that context
assumption.

8.4. Summary

In this chapter, we have discussed the separation of the transformation
network specification process into three levels, we have categorized the
possible mistakes, faults, and failures that can occur in such a network, and
we have discussed which of them can be avoided or detected. We have
considered the avoidance and detection of errors at a rather conceptual
level, emphasizing what a transformation developer has to do to achieve
correctness by construction and what he or she has to do if a transformation
fails. We did, however, not propose a concrete process for the resolution
of errors when they occur in a productive environment. This involves a
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system developer, who uses the transformations to keep models consistent
and faces failing transformations, as well as the transformation developer,
who is responsible for correcting potential faults in the implementation. Such
a process discussion is out of the scope of this thesis and referred to as future
work (see Subsection 9.3.4). We conclude this chapter with the following
central insight.

Insight II.5 (Errors)
Errors in transformation networks can be classified regarding mistakes
made by the transformation developers when thinking about consis-
tency and its preservation, faults made during their implementation
in transformations, and failures, which are the manifestation of faults
when executing the transformations. We found that we can assign
different kinds of mistakes to three different conceptual levels in the
specification process, depending on the necessary knowledge about
the transformation network. We derived that mistakes regarding a
single transformation cover missing synchronization, which can and
has to be avoided by construction. This is particularly necessary if
transformations assume consistency to be achieved by construction,
because then non-synchronizing transformations produce faulty results
that they assume to be consistent. All other types of mistakes concern
the network of transformations, either restricted to the relations or
also concerning the consistency preservation rules. While consistency
relations can at least be analyzed for compatibility, further mistakes
cannot be avoided but only be detected by the application algorithm
failing in specific scenarios. Due to the assumption of independent
transformation development and modular reuse, it fits well that a con-
servative application algorithm is necessary anyway and also covers
mistakes concerned with the network of transformations. Only if the
transformation network fails in many scenarios, e.g., because of trans-
formations with incompatible consistency relations, the transformation
developers need to investigate the reasons for the algorithm to fail.
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In the preceding chapters 4–8, we have discussed several aspects of a well-
defined notion of consistency and correctness of its preservation in transfor-
mation networks. Based on the assumptions we made, we were able to prove
several statements regarding decidability of problems, correctness, and the
properties and effects of approaches we proposed, such as the analysis of
compatibility or the construction of synchronizing transformations. Thus,
several insights presented so far have been validated by proof. Still, there are
several interesting and relevant questions that we will validate by empirical
evaluation at case studies. These especially concern the applicability of our
approaches and also, at least implicitly, the appropriateness of our formalism,
which we evaluate in case studies.

We do not provide an evaluation of the consistency and correctness notions
proposed in Chapter 4. That formal foundation was derived from our moti-
vation and assumptions by argumentation. Thus, a meaningful evaluation
would be a user study in which the reasonability of the assumptions we made
regarding the process of defining consistency in transformations networks is
validated. Since we have based our work on well-motivated assumptions and
since such an evaluation would be overly complex, we have decided not to
perform it as part of this thesis and focus on statements that we can derive
from the assumptions in Chapters 5–8.

The compatibility notion and the formal approach to validate consistency
relations for compatibility that we have proposed in Chapter 5 is proven
correct. The practical approach was derived from the formal one such that
it is also supposed to be correct, although this is not formally proven. We
apply the approach to a case study of several sets of consistency relations
to first evaluate correctness, which especially concerns correctness of the
implementation but also validates the construction of the practical out of the
formal approach. Second, we evaluate applicability in terms of the degree of
conservativeness, i.e., how often the approach does not prove compatibility
although compatibility is given.
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The properties of a bidirectional transformation to be synchronizing were
proven to be correct in Chapter 6. The approach to achieve these properties
was, however, derived by argumentation. In a second case study, we thus
combine existing transformations, which were not supposed to be used in a
transformation network and thus are neither synchronizing nor fulfill other
correctness notions of transformation networks. We use this case study
to evaluate completeness and correctness of the categorization of errors
presented in Chapter 8 and also identify the relevance of the different mistake
types regarding how often they occur and thus how prone they are to be
made by transformation developers. We also evaluate practical relevance of
the orchestration problem by investigating how often the orchestration fails
because of that problem instead of actual mistakes in the transformations.
Additionally, we apply our approach for making ordinary transformation
synchronizing, depicted in Chapter 6, regarding correctness, i.e., whether it
actually resolves failures due to transformations not being synchronizing.
We validate its applicability regarding whether it is able to resolve all faults
due to missing synchronizing. We will especially find that transformations
not being synchronizing is the most relevant mistake type, that most other
mistakes are due to incompatibilities, and that, at least in the considered case
studies, the orchestration problem is not practically relevant. Finally, our
approach for achieving synchronization of ordinary transformations is able
to resolve most of the issues, at least in the considered case studies.

Finally, we haven proven several statements regarding the orchestration of
transformations in Chapter 7, especially the undecidability of the orchestra-
tion problem. We have also proven correctness of the proposed conservative
application algorithm. The fulfillment of the motivational property of the
algorithm to support the process of finding errors when the algorithm fails to
find consistent models is, however, only argued. We thus provide a scenario-
based discussion to evaluate the usefulness of the strategy.

For each of these topics, we provide a plan according to the Goal Question
Metric (GQM) approach, for which the original idea was presented by Basili
et al. [BW84]. We define goals that we want to achieve with our evaluation,
derive questions that we answer to identify whether we have achieved the
underlying goal, and define metrics whose results we use to get a quantitative
measure for answering the questions.

We have published parts of these evaluations in previous work [Kla+19b;
Kla+20; GKB21]. The case studies for our error categorization and achieve-

316



9.1. Compatibility

ment of synchronization have been conducted in two Master’s theses [Sym18;
Sağ20]. The case study for validating the approach to prove compatibility
has been conducted in another Master’s thesis [Pep19]. We will explicitly
refer to the according publications in the individual evaluations.

9.1. Compatibility

In Chapter 5, we have presented a formal notion of compatibility, a formal
approach to prove it, and a practical realization of this approach for consis-
tency relations defined in QVT-R. The compatibility notion is well-defined,
based on our formalization of transformation networks and a correctness
notion for them. The formal approach to validate compatibility of consis-
tency relations of a transformation network is based on the insights that
specific consistency relation trees are inherently compatible and that the
addition and removal of consistency relations fulfilling a specific notion of
redundancy preserve compatibility, thus removing redundant relations until
a tree remains validates compatibility. We have proven correctness of this
formal approach with Theorem 5.11, Theorem 5.6, and Corollary 5.12, such
that we do not need to evaluate it. We thus focus on correctness of the
practical realization of the approach as well as its applicability. The pre-
sented evaluation is based on and in parts taken from the evaluation that we
presented in previous work [Kla+20] and that was developed in the Master’s
thesis of Pepin [Pep19].

9.1.1. Goals and Methodology

A tool for proving compatibility could be easily integrated into the process of
developing a transformation network in order to assist transformation devel-
opers, as it operates fully automated and thus introduces no further developer
effort, and it improves the ability of the transformation network to find con-
sistent models after changes. Thus, the correctness and the applicability of
the approach are of particular importance.

In the subsequently presented empirical evaluation in terms of a case study,
we apply the practical realization of the approach to several sets of consis-
tency relations, which are designed to be compatible or not according to
Definition 5.3. We then apply the algorithm to prove compatibility to these
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Goal 1:
(Compatibility)

Show that the analysis can be used by transformation
developers to find incompatibilities in consistency
relations of a transformation network.

Question 1.1:
(Correctness) Is compatibility always given if the analysis finds it?

Metric 1.1.1:

Precision: Ratio between true positives and the sum of true

and false positives

Question 1.2:
(Applicability)

How often does the analysis not prove compatibility
although it is given?

Metric 1.2.1:

Recall: Ratio between true positives and the sum of true

positives and false negatives

Table 9.1.: Goals, questions, and metrics for compatibility evaluation.

consistency relation sets and analyze whether it properly identifies them to
be compatible or not. We denote the cases in which the algorithm proves
compatibility as positives and the ones in which it is not able to do so as
negatives. Since the algorithm operates conservatively, a negative result does
not mean that incompatibility is proven but only that compatibility could
not be proven. The goal of this evaluation, the answered questions, and the
evaluated metrics are summarized in Table 9.1.

First, the application of the algorithm to multiple scenarios allows us to
validate correctness of the practical realization of the approach according to
Question 1.1. Correctness of our approach means that it is able to classify a
given set of consistency relations as compatible or otherwise does not reveal
a result. This especially means that it operates conservatively and does not
classify a set of consistency relations as compatible although it is not. The
algorithm is thus not allowed to produce false positives, which is why we
consider the precision metric:

precision =
true positives

true positives + false positives

This metric needs to be 1, as otherwise the algorithm produces false positives
and would be incorrect per definition. In consequence, correctness of the
algorithm directly correlates with this metric. Analyzing this metric serves
as an indicator that the mapping of our formal approach and the underlying
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formalism to the practical approach realization and the used QVT-R language
is correct, and especially that it operates conservatively.

Second, the application of the algorithm to multiple scenarios allows us to
validate its applicability according to Question 1.2. The approach uses a
fully automated algorithm, thus it does not require any inputs apart from
the QVT-R relations to check. Applicability may thus be restricted if the
algorithm operates too conservatively, i.e., if it produces false negatives
too often. In those cases, the algorithm operates actually correctly, but if
it was not able to prove compatibility in most cases in which it is actually
given, applicability would be reduced, as the usefulness of the results for a
transformation developer is limited. For that reason, we analyze the recall

metric:

recall =
true positives

true positives + false negatives

The higher the number of false positives, the more consistency relations could
not be identified as compatible by the algorithm although they actually are,
thus reducing the usefulness of the algorithm. In consequence, applicability
of the algorithm directly correlates with the recall metric. For that reason, we
analyze this metric and the reasons for the cases in which the algorithm was
not able to prove compatibility, i.e., in which it produced false negatives. In
particular, it is relevant whether they are caused by conceptual issues of the
formal approach, such as a too restricted notion of redundancy, or a limitation
of the practical approach that may be fixed by a different implementation or
a different realization approach.

9.1.2. Prototypical Implementation

The approach that we have presented in Section 5.4 resulted in the implemen-
tation of a prototype, which is available in a GitHub repository [GitDec]. The
prototypical implementation is specific to QVT-R and OCL expressions used
in that language. It expects a set of QVT-R transformations and returns a
list of redundant QVT-R relations. Thus, if removing the returned redundant
relations from the initial set of transformations yields a set of transformations
whose relations do not contain any cycles, i.e., if they form a consistency
relation tree, compatibility is proven. If cycles within the relations remain,
compatibility could not be proven either because of an actual incompatibility
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or because of the algorithm not being able to find redundancies to prove
compatibility.

Additionally, the implementation validates the given inputs. They may be
invalid because of two reasons. First, they can contain transformations that
are not well-formed, i.e., they are syntactically incorrect. In that case, the
transformation cannot be processed by the compatibility analysis algorithm
at all. Second, transformations can be well-formed but invalid, e.g., because
two transformations have the same name or a QVT-R domain pattern uses
a nonexistent class. Although the algorithm can still be applied to such an
input, it may not produce appropriate results, which is why such errors are
displayed to the transformation developer when applying the algorithm in
the parsing step. Some errors, such as two transformations having the same
name, could even be mitigated by automatically renaming them if such a clash
occurs. In the evaluation, we, however, only consider valid inputs anyway.
Finally, the implementation operates non-intrusively, thus not altering the
transformations in any way.

The selection of QVT-R for the practical realization and implementation
of the approach was, on the one hand, driven by the recommendation of
the MDA [MDA] to use QVT-R for defining transformations, and, on the
other hand, by the fact that consistency relations are explicitly defined in
QVT-R, especially in comparison to imperative languages. We have based
the implementation on the EMF and its Ecore meta-metamodel (see Sub-
section 2.2.2) as one of the most common and technically mature modeling
frameworks. Within the EMF, implementations of transformation languages
are provided through the Eclipse MMT [EcMMT] project. In particular, the
contained QVT Declarative (QVTd) [EcQVT] language provides a parser
for QVT-R transformations, which, in turn, uses Eclipse OCL [EcOCL] as an
implementation of OCL.

For finding redundant relations, their OCL constraints are transformed into
logic formulae, whose satisfiability is then to be validated by an SMT solver.
Many such solvers are based on SMT-LIB [BFT17], which is an initiative
that provides a common input and output language for SMT solvers. Our
prototype uses the Z3 theorem prover [dB08], which is an SMT solver that
can be used in Java code and supports a large number of theories.
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# Scenario Description Compatible

1 Three equal string attributes of three metamodels yes
2 Six equal string attributes of three metamodels yes
3 Concatenation of two string attributes yes
4 Double concatenation of four string attributes yes
5 Substring in a string attribute yes
6 Substring in a string attribute with precondition yes
7 Precondition with all primitive data types yes
8 Absolute value of integer attribute with precondition yes
9 Transitive equality for three integer attributes yes
10 Inequalities for three integer attributes yes
11 Contradictory equations for three integer attributes no
12 Contradictory inequalities for three integer attributes no
13 Constant property template items yes
14 Linear equations with three integer attributes yes
15 Contradictory linear equations for three int. attributes no
16 Emptiness of various OCL sequence and set literals no
17 Equal string attributes for four metamodels yes
18 Transitive inclusions in sequences yes
19 Comparison of role names in three metamodels yes

Table 9.2.: Consistency relation scenarios and their compatibility. Taken from [Kla+20, Tab. 3].

9.1.3. Case Study

We have applied our prototypical implementation in a case study to 19 sce-
narios, which are also available at GitHub [GitDec]. Each of these scenarios
consists of three or four metamodels and comprises especially primitive data
types and operations. They contain pairwise transformations between the
metamodels defined in QVT-R, more specifically its implementation QVTd.

The scenarios are listed in Table 9.2. It also depicts whether the relations
of the transformations in these scenarios are compatible or not. In total,
15 of these scenarios contain compatible consistency relations according
to Definition 5.3, whereas the other four are incompatible. Thus, we know
for each of the scenarios by construction whether it is compatible or not,
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which constitutes the ground truth for our evaluations. The application of
the prototypical implementation to these scenarios yields the results positive
if it considers the relations compatible, or negative if it was not able to prove
compatibility. Comparing these results with the ground truth in Table 9.2
allows us to identify them as true or false positives or negatives.

The scenarios were specifically developed for the evaluation of the approach,
thus reflecting as many kinds of relations as possible that can be expressed
with QVT-R and also reflecting edge cases. The implemented QVT-R relations
used for the case study are also available in the GitHub repository containing
the prototypical implementation [GitDec].

9.1.4. Results and Interpretation

We have applied the prototypical implementation of our practical approach
introduced in Subsection 9.1.2 to the case study explained in Subsection 9.1.3.
The results of the scenario classification as compatible or not by the imple-
mentation are summarized in Table 9.3.

9.1.4.1. Correctness

Correctness for the formal approach has been proven. Since the practical
approach is derived from this formal approach, correctness is also given by
construction as long as the following requirements are fulfilled.

1. All relevant QVT-R relations are considered as consistency relations
to be checked, i.e., all relations are represented in the property graph.

2. All constructs referring to expressions in QVT-R relations have to
be considered. QVT-R relations are defined using variables, so all
constructs referring to these variables have to be considered. In partic-
ular, all template expressions need to be represented, namely property
template items, preconditions, and invariants.

The construction of the approach presented in Section 5.4 ensures that these
relevant elements are considered. Additionally, the results of the case study
further validate that we did not miss any relevant parts of QVT-R relations.

The results depicted in Table 9.3 show that the implementation did not yield
any false positives. Thus, the implementation operates conservatively as
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Classified Compatible Unclassified

Compatible 12 3
Incompatible 0 4

Table 9.3.: Compatibility classification of scenarios depicted in Table 9.2 by our approach.
Corrected from [Kla+20, Tab. 4].

intended and does not identify consistency relations as compatible although
they are not. This results in a precision value of 1:

precision =
true positives

true positives + false positives

=
12

12 + 0 = 1

On the one hand, this indicates that the practical approach actually conforms
to the formal approach, so that the correctness proof applies as well. On the
other hand, this indicates that the implementation is correct and does not miss
any relevant QVT-R constructs. If this were the case, constraints would have
been missed, which could have resulted in identifying consistency relations
as compatible although they are not. Thus, as an answer to Question 1.1, the
results indicate that we can expect the analysis to operate correctly.

9.1.4.2. Applicability

We have discussed that applicability of the approach especially depends on
how often it fails in terms of not proving compatibility although the given
consistency relations are compatible. In particular, conservative behavior of
the approach can occur for the following two reasons.

Redundancy Notion: Compatibility of consistency relations is proven by
identifying relations that follow the definition of left-equal redundancy
(see Definition 5.9). Since this redundancy notion is not the weakest one
that is compatibility-preserving, it may be a too strong requirement for
identifying compatibility-preserving consistency relations.

Redundancy Undecidability: Definition 4.18 for consistency relations relies
on an extensional specification of consistency, which enumerates usually
infinite sets of elements. Since such sets cannot be compared program-
matically, our practical approach relies on intensional specifications in
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OCL as used by QVT-R, which describe how consistent element pairs
can be derived. OCL is, however, in general undecidable, because it can
be transformed into first-order logic [BKS02].

In particular, the higher the number of quantifiers within a formula, the more
likely its satisfiability will be undecidable. Since variables in consistency
relations are translated to existentially quantified formulae, the number
of variables in a consistency relation is crucial for deciding satisfiability.
Not all available OCL constructs may be necessary to describe relevant
consistency relations, still constructs involving operations on collections,
which are transformed into quantified formulae, and strings are especially
problematic. For example, toUpper and toLower , which we have also used
in our running example, cannot be transformed into formulae for state-of-
the-art SMT solvers like Z3 and thus cannot be considered for detecting
redundancies. Additionally, SMT solvers use heuristics, which prevents
a systematic evaluation of the kinds of consistency relations that can be
analyzed by the approach.

According to the results in Table 9.3 from applying our prototypical imple-
mentation to the scenarios introduced in Table 9.2, consistency relations were
correctly classified as compatible in twelve out of the 15 scenarios, whereas
the implementation was not able to prove compatibility in the remaining
three scenarios, thus delivering three false negatives. This leads to a recall
value of 80 %.

recall =
true positives

true positives + false negatives

=
12

12 + 3 = 0.8

This is a first indicator for high applicability of the approach, as it could prove
compatibility in most of the cases in which the relations were compatible.

The Scenarios 8, 18, and 19 introduced in Table 9.2 were not identified as
compatible although they actually are. In all cases, the SMT solver should
have returned unsatisfiable but instead returned unknown. In each scenario
an actually redundant consistency relation was not removed, thus not iden-
tifying the relations as compatible. In detail, in Scenario 8 a precondition
ensures that an element is included in the intersection of two set literals, but
the solver was not able to check that properly. In Scenario 18, the transitive
inclusion of sets was defined, and in Scenario 19, role names of classes with
equivalent identifiers were considered, which the solver was both not able
to check properly as well. In summary, all observed false negatives were
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caused by undecidability of satisfiability of the first-order formulae that were
derived from the OCL constructs.

In conclusion, the evaluation has shown that basic operations on primitive
data types, even with non-trivial constraints involving integer equations and
string operations, were treated correctly. This led to a success rate of 80 %. As
an answer to Question 1.2, the approach was unable to prove compatibility
in only 20 % of the cases, in which more complex operations and structures
requiring many quantifiers were involved, for which satisfiability could not be
proven by the used SMT solver. Most importantly, however, this limitation
only concerns the chosen SMT solver approach but neither the general
concept of the formal framework and approach nor the practical realization
itself. In particular, we did not find a scenario in which our redundancy notion
was too strict for proving compatibility. Using a different SMT solver or, more
generally, even a different approach to validate redundancy of consistency
relations can even improve the applicability results.

9.1.5. Discussion and Validity

The evaluation of our compatibility analysis approach has shown that in the
scenarios considered in the case study it operates correctly and shows a low
degree of conservativeness, i.e., it is able to validate compatibility in most
cases. This indicates correctness and high applicability of the approach. Still,
there are some threats to the validity of these results, which we discuss after
general conclusions on the benefits of the proposed approach.

9.1.5.1. Benefits

In general, the approach is supposed to support transformation developers
in designing transformation networks by checking compatibility of trans-
formations during their individual development or when combining them
to a network. With the example depicted in Figure 5.6, we have shown that
incompatible consistency relations can prevent the transformations from
finding consistent models. Thus, incompatibilities eventually lead to failing
executions of transformation networks, which, in turn, require transforma-
tion developers to find the reasons for that. Our approach provides a benefit
by preventing such issues or at least by supporting the developer in find-
ing their causes when running the analysis after a failure occurs. Due to
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its full automation, it requires no further effort than running the analysis.
Additionally, a manual process of ensuring compatibility or finding incom-
patibilities requires manual alignment of transformations or the definition of
test cases, which only validate but do not verify compatibility. Thus, such
manual techniques can only make existentially quantified statements about
the existence of incompatibilities, whereas our approach makes universally
quantified statements about their absence.

Finally, even if the proposed approach had a high degree of conservativeness,
i.e., if it produced a higher number of false negatives in other scenarios than in
our evaluation, the approach still provides benefits. First, the approach would
still be able to prove compatibility at least in few cases. Second, even if the
approach cannot prove compatibility, it may at least detect some redundant
relations and thus reduces the effort for the transformation developer to find
incompatible relations. It would even be possible to define an interactive
approach in which the removal of redundant relations by proof and by user
decision is combined, which we propose as future work in the subsequent
section. In such a process, the user could be asked to manually declare
redundant relations when the automated approach does not find further ones.
Afterwards, the automated approach can proceed.

9.1.5.2. Threats to Validity

We have designed the evaluation carefully, such that it gives appropriate
insights regarding correctness and applicability of the approach. Still, due to
limited complexity of the considered scenarios, threats especially regarding
external validity of the results exist.

The evaluation scenarios of the case study were developed specifically for
the evaluation of the approach. Thus, they may potentially not sufficiently
represent actual transformation networks. On the other hand, the scenarios
were designed to test different aspects of the approach and thus represent an
extensive set of consistency relations and also consider edge cases. Scenarios
not developed for the evaluation may not or only rarely cover specific and
edge cases. In fact, most meaningful results could potentially be achieved
with a combination of externally developed scenarios and evaluation-specific
scenarios. However, the limited availability of scenarios, especially of sce-
narios developed with the tools we have used for the prototype and contain
incompatibilities, prevents this.
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The defined scenarios only contain OCL constructs that the approach cur-
rently supports. Thus, unsupported constructs are not covered by the eval-
uation, which may be a bias. The algorithm would, however, not yield a
result in such scenarios anyway, thus this would not give further insights.
Additionally, this is only a limitation of the implementation and not a con-
ceptual limitation of the approach. The actual threat is that more complex
relations, which are currently not supported by the implementation, may
not be covered by our definition of redundancy. That would be an actual
limitation also of the formal approach. In consequence, this has to be further
evaluated in subsequent evaluations.

The considered scenarios only contain up to four metamodels with pairwise
consistency relations. Actual transformation networks will probably contain
more and larger metamodels and consistency relations. This is, however, not
a threat to validity regarding correctness, because the inductive definition
of the approach makes it independent from the number of metamodels and
relations to consider. It may only affect applicability, as increasing size may
lead to logic formulae which the SMT solver is not able to resolve. The size
of scenarios may especially affect the performance and scalability of the
approach, which we did not analyze in our evaluation and discuss in the
subsequent limitations.

In consequence, our evaluation gives an initial indicator for the correctness
and applicability of our approach based on well-selected evaluation scenarios
but is potentially restricted in external validity due to the limited set and com-
plexity of scenarios. To improve evidence in external validity, applying the
approach to further and larger transformation networks would be beneficial.
However, acquiring such networks is difficult. Especially, transformations in
existing networks can be expected to be aligned with each other, thus not
containing incompatibilities and limiting the evaluation to positive cases. A
possibility to reduce that problem would be the manual extension of such
networks by adding transformations with redundant or incompatible consis-
tency relations. This would directly deliver a ground truth against which the
results of the approach on these modified networks can be validated.

9.1.6. Limitations and Future Work

We discuss two types of limitations of our approach. First, we consider limi-
tations of the current state of implementation. Second, we discuss limitations
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of the current state of evaluation, which may have masked limitations of the
current concept. In addition, we discuss the opportunities for future work
that these limitations as well as the conceptual core of the idea to prove
compatibility and processes to use it provide.

Practical Approach Realization The proposed practical approach for QVT-R
has fundamental as well as technical limitations. First, SMT solvers are limited
such that they cannot analyze all kinds of formulae regarding satisfiability.
Thus, even if we can transform all kinds of QVT-R and OCL constructs into
logic formulae, they cannot necessarily be checked for satisfiability, as we
have shown in the applicability evaluation. Second, we do not yet support
all kinds of QVT-R relations, as we do not yet provide a transformation for
all kinds of OCL constructs into logic formulae. This is, however, only a
technical limitation that can be solved by additional implementation effort.

In future work, we will thus extend the operations for which translations
to logic formulae are defined, so that we can apply the approach to more
sophisticated case studies. This will provide further indicators for the gen-
eral applicability of the approach. In addition, we will consider alternative
realizations of the approach that circumvent the limitations of SMT solvers
in general. The limitation of cases that a theorem prover can analyze can
restrict applicability of our approach, and in the scenarios considered in our
evaluation in Section 9.1, it was even the only limitation regarding applica-
bility. To circumvent or mitigate this limitation, it is possible to implement
the approach in Section 5.4 by means of other formal methods. For example,
interactive theorem provers can potentially prove redundancy of consistency
relations in more cases. Another possibility is the use of multiple formal
methods next to SMT solvers, as some formal methods can provide proofs in
cases in which others can not. Although this improves the effort for develop-
ing the translations, the simultaneous use of different symbolic computation
tools can increase the chance of finding redundancy proofs. Additionally, it
may even be beneficial to simplify the OCL statements transformed into logic
formulae where possible, like discussed by Cuadrado [Cua19]. On the one
hand, this can improve the chance of success of the SMT solver. On the other
hand, it can make it easier for a transformation developer to understand the
reasons why the algorithm failed if the checked expressions are simpler.
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Benefits Evaluation and Development Process We have not provided an
evaluation for the benefits that we claim for our approach. First, to the best of
our knowledge, there are no competitive approaches to compare our one with.
Second, it automates a manual process without requiring additional effort,
thus compared to the baseline of performing the process manually, it provides
an inherent and essential benefit. Thus, further empirical evaluation in a
user study could only provide a quantitative measure of the benefits rather
than the qualitative one we gave by argumentation. Such an evaluation could
especially consider a development process in which the approach is used and
evaluate whether that whole process improves by using our approach.

Such a process specification and evaluation should be part of future work.
Our approach is only able to prove compatibility but not to prove incompati-
bility. If the approach does not identify a network as compatible, it may be
incompatible or not. For that reason, we aim to define a holistic process for
applying the approach, which integrates further information given by the
user into the process of proving compatibility. Since the approach operates
inductively, it can simply allow the transformation developer to perform
single induction steps. If the algorithm is not able to prove compatibility,
i.e., if it does not find further redundant relations, it can present the net-
work, in which the algorithm already removed some redundant relations,
to the transformation developer. He or she is then asked to declare a cycle
of consistency relations as compatible, for which the algorithm is not able
to prove it or which are even not compatible intentionally. Afterwards, the
algorithm could proceed with finding further redundant relations to prove
compatibility, based on the decision of the user. As a result, the approach
would be applicable to more scenarios in which compatibility is intentionally
not given or in which the algorithm on its own is not able to prove it.

Compatibility Notion and its Effects The notion of compatibility was de-
rived from the goal of finding contradictory consistency relations that can
prevent transformations from finding consistent models after changes. Addi-
tionally, it prevents the specification of contradictory and thus unintended
consistency relations. Although we have shown at examples that our notion
of compatibility fulfills both these notions, it is unclear whether this notion
is kind of optimal in the sense that there exists no other notion that covers
even more unwanted cases.
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Evaluating the central purpose of the approach to improve the ability of
transformations to find consistent models, i.e., to improve dealing with the
orchestration problem, is part of our future work. In fact, compatibility
ensures that the ability of not finding a consistent orchestration due to the or-
chestration problem decreases, thus reducing the ability that transformation
networks fail or do not terminate. While we have shown this at examples
in this work, we will empirically evaluate in future work how compatibility
affects the ability of transformation networks to find consistent models and,
if possible, even formally prove and analyze that effect.

Relaxation of Redundancy Notion We have defined the notion of left-equal
redundancy (see Definition 5.9), which is proven to preserve compatibility.
It is, however, unclear whether a more relaxed notion of redundancy exists
that is still compatibility-preserving. Our implementation follows an even
stricter notion of redundancy and still no limitations of applicability occurred
in the case study. If, however, other case studies reveal the necessity of a
weaker redundancy notion to be able to prove compatibility in more cases,
either the notion used in the implementation needs to be relaxed or even
the formal foundation needs to be adapted. Thus, we still aim to find the
weakest possible notion of redundancy that is still compatibility-preserving,
if it exists, in future work. This especially involves finding scenarios in which
our notion of left-equal redundancy is too restrictive.

Performance and Scalability We have neither measured nor formally eval-
uated the performance and scalability of our approach and especially its
practical realization. Applicability may be affected if the approach required
too much time to be executed. SMT solvers, such as the used Z3 solver, de-
pend on heuristics, which makes their performance hardly predictable. Thus,
it would be important to evaluate performance of the approach in a case
study. In our case study, we did not observe any time-consuming scenarios.
However, transformation networks with more and larger transformations
and especially many cycles of consistency relations need to be investigated
to make generalizable statements on the performance and especially the scal-
ability of the approach. Since the approach is applied as an offline analysis,
which does not require instant feedback, it does not have to fulfill real-time
requirements. Results should, however, still be delivered in an acceptable
amount of time to achieve acceptance of the approach.
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9.2. Errors, Orchestration and Synchronization

In Chapter 8, we have presented and discussed a categorization of errors in
transformation networks. Such errors can occur when different kinds of mis-
takes are made when developing transformation networks, especially involv-
ing missing synchronization of the individual transformations as discussed
in Chapter 6, but also because an algorithm that applies the transformations
is not able to find consistent models because of the orchestration problem as
discussed in Chapter 7.

We empirically evaluate different aspects of errors, their categorization, and
their avoidability as well as resolvability by the proposed approaches in a
case study. In that case study, we utilize a set of independently developed
transformations, which were not supposed to be used in a transformation
network. In consequence, executing them in a network leads to several
failures. We analyze these failures and their causes to improve evidence of
correctness and completeness of our categorization and to make statements
about the relevance of the different failures and causing mistakes by their
numbers of occurrences. Additionally, we apply our proposed approach for
developing synchronizing transformations to resolve the failures to evaluate
the correctness and applicability of that approach.

Since the orchestration problem can always lead to the situation that an
application algorithm for a transformation network cannot find consistent
models, we also utilize this case study to investigate how problematic the
orchestration problem actually is in practice. We know from the halting
problem that undecidability of an essential problem in software engineering
does not have to be that relevant in practice.

9.2.1. Goals and Methodology

To evaluate both our proposed categorization of errors as well as our pre-
sented approach to avoid or find errors, we have conducted two case studies
in which we combined existing transformations, of which two were not de-
veloped to be used in transformation networks, whereas one was designed to
be synchronizing to be used in networks. In consequence, their combination
revealed several errors to evaluate our categorization with, and by applying
our approaches for constructing correct transformation networks, we were
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able to evaluate the approach for synchronizing transformation construction
and the relevance of the orchestration problem as a source of errors.

The general process we followed in these case studies looks as follows. We
combined independently developed transformations and executed existing
test cases developed for the individual transformations, which we extended by
validations of the further models generated by the additional transformations.
We then validated the failures occurring in the test case execution. We used
the information about the failures to trace back to the causing faults and
mistakes, such as missing matchings of elements when multiple instantiations
occur. For each identified failure, we fixed the causing fault and re-executed
the test cases to validate whether the failure was resolved by the fix.

The process was applied iteratively until no more failures occurred. Since
failures due to one mistake can hide failures caused by another, it was possible
that after fixing all faults that led to the failures in one iteration still failures
occurred afterwards. For example, incompatible consistency relations may
not lead to any failure because the scenario fails earlier due to missing element
matchings. Then, after adding the element matchings, the scenario may
still fail, now because of the incompatible consistency relation. We explain
in more detail which transformations we combined in which order in the
subsequent section about the case studies. In the following, we discuss which
evaluation goals we aimed to achieve with this process and which metrics
we employed to answer different questions for achieving these goals.

9.2.1.1. Categorization and Orchestration

For the evaluation of our error categorization and the relevance of the or-
chestration problem, we depict the evaluation plan in Table 9.4. We evaluate
completeness of the categorization in Question 2.1, i.e., that we did not miss
any relevant mistakes in the categorization. This is covered by measuring
how many occurring failures could be classified, i.e., traced back to mistakes
they were caused by according to the categorization. The following according
metric relates the number of classified to the number of totally identified
failures, thus indicating a higher degree of completeness with a higher value
with a maximum of 1:

classified failure ratio =
# of classified failures

# of total failures

332



9.2. Errors, Orchestration and Synchronization

Goal 2:
(Categorization)

Show that the categorization of mistakes, faults and
failures covers all relevant cases and identify relevance of
the individual mistake types.

Question 2.1:
(Completeness)

Can all failures be traced back to mistakes according to
the categorization?

Metric 2.1.1:

Classified failure ratio: Ratio between classified failures

and identified failures

Question 2.2:
(Correctness)

Are identified failures caused by mistakes to which they
are related according to the categorization?

Metric 2.2.1:

Resolved failure ratio: Ratio between resolved failures and

total number of failures

Question 2.3:
(Relevance)

How relevant is each type of mistake, i.e., how likely is it
to be made?

Metric 2.3.1:

Mistake type occurrence ratio: Ratio between occurrences

of faults due to each type of mistake and total occurrences

of faults

Goal 3:
(Orchestration)

Determine how relevant undecidability of the
orchestration problem is in practice.

Question 3.1:
(Relevance)

How often does an algorithm for orchestration fail due to
the orchestration problem?

Metric 3.1.1:

Fail ratio: Ratio between algorithm failures due to the

orchestration problem and all failures

Table 9.4.: Goals, questions, and metrics for categorization and orchestration evaluation.

Correctness of the categorization, i.e., that failures are actually caused by
mistakes they are traced back to in the categorization, is identified by vali-
dating whether there are further mistakes that caused the failures in the case
study, denoted as Question 2.2. This is covered by measuring the number
of failures that were resolved by fixing the implementation fault as a conse-
quence of the mistake it was traced back to according to the categorization.
For example, when a failure of multiple instantiations occurs, we search for
missing element matchings that are the fault caused by the mistake of miss-
ing synchronization, to which such a failure can be traced back according to
our categorization. We then measure whether the failure was resolved when
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we fix the fault in the implementation, e.g., by adding the missing element
matching. This is reflected by the following metric, again indicating a higher
degree of correctness with a higher value with a maximum of 1:

resolved failure ratio =
# of resolved failures

# of total failures

While we actually expect correctness and completeness to be given by con-
struction of the categorization, it is unclear without empirical evaluation
how relevant the different types of mistakes are, i.e., how often they lead to
faults in actual projects, as defined in Question 2.3. This especially influences
how important it is to avoid or identify specific mistake types. Therefore, we
measure how often each type of mistake leads to a fault in the transformation
implementations and compare it to the total number of faults to evaluate
their ratio of occurrence. We reflect this in a metric for each mistake type
representing the percentage of all faults it caused in the case study:

mistake type occurrence ratio =
# of faults due to mistake type

# of total faults

Finally, directly related to completeness of our categorization is the relevance
of the orchestration problem, discussed in Chapter 7. We have seen that
a transformation network cannot only fail in delivering consistent models
after a change because mistakes led to faults in the single transformations or
their combination to a network, but also because the problem of finding a
consistent orchestration is, in general, undecidable. Since our categorization
only considers actual mistakes made during network specification and does
not reflect the orchestration problem, some failures may not be traceable
to such mistakes, leading to a reduction of completeness as analyzed for
Question 2.1. We have, however, already discussed in Chapter 7 that it is
still unclear how relevant the orchestration problem is in practice. Thus,
we use the results of our case study to evaluate this relevance, as asked in
Question 3.1. We measure how often the application algorithm fails to yield
consistent models only due to the orchestration problem. To identify that
case, we validate whether an alternative orchestration would yield consistent
models whenever the algorithm fails. In fact, not finding such an order would
not prove that it does not exist, but we will see that this situation does not
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occur anyway. We thus measure the following metric for the ratio of failures
due to the orchestration problem:

fail ratio =
# of failures due to orchestration problem

# of total failures

9.2.1.2. Synchronization

In addition to the evaluation of our categorization, we also used the case
studies to evaluate our approaches for constructing correct transformation
networks. We traced all failures back to the causing mistakes and fixed them
according to our proposed approaches. The analysis of compatibility was
already evaluated independently in Section 9.1. Since incompatibilities were
obvious in all cases in which they occurred, we fixed them without running
an explicit analysis. For all failures that could be traced back to missing
synchronization, however, we applied our approach presented in Subsec-
tion 6.4.2 for making the transformations synchronizing. This enabled us to
evaluate correctness and applicability of our approach to make transforma-
tions synchronizing and thus to fix or avoid mistakes at the transformation
level, which we summarize in Table 9.5.

We have first measured whether the proposed approach for matching existing
elements is correct, i.e., whether it leads to synchronizing transformations.
This is covered by Question 4.1. To measure this, we counted the test cases
in which failures occurred because of faults that were made at the transfor-
mation level in terms of missing synchronization and that we could fix by
adding missing element matching. We applied our approach, i.e., we added
the missing element matchings, and counted in how many cases this resolved
all failures due to faults at the transformation level. This is covered by a
metric that represents the success rate of the approach:

success ratio =
# of tests with resolved failures after approach application

# of tests due to which approach was applied

In fact, we only count the test cases after applying the approach that failed
before due to faults at the transformation level, because we are only interested
in test cases that failed before. Otherwise the metrics might exceed 1.

In the correctness evaluation, we only count the tests in which we were able
to apply our approach. This was on purpose, because it may be possible
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Goal 4:
(Synchronization)

Show that the approach for matching elements avoids
failures due to transformation level mistakes by
construction.

Question 4.1:
(Correctness)

In how many cases does the approach lead to correct
synchronizing transformations?

Metric 4.1.1:

Success ratio: Ratio between changes for which no

failure due to faults at the transformation level occurs

after applying the approach to all changes for which

consistency was not preserved before applying the

approach because of faults at transformation level

Question 4.2:
(Completeness) In how many cases can the approach be applied?

Metric 4.2.1:

Application ratio: Ratio of faults at transformation level

that can be resolved by the approach to all faults at that

level

Table 9.5.: Goals, questions, and metrics for synchronization evaluation.

that the approach cannot be applied in all cases. First, this can be due to
the fact that there is no unique information to match existing elements (see
Subsection 6.4.2). Second, we may have missed further reasons than missing
matching of existing elements preventing the transformations from being
synchronizing. Both cases would restrict completeness of our approach, as
considered by Question 4.2, because it would not be possible to resolve or
avoid all possible failures due to missing synchronization by adding match-
ings for existing elements. To measure this, we counted the number of faults
at the transformation level that we could resolve to the total number of
faults:

application ratio =
# of resolved faults at transformation level

# of total faults at transformation level

Although we applied the approach for achieving synchronizing transforma-
tions after identifying them as non-synchronizing rather than applying the
approach to specify transformations that are synchronizing by construction,
the results regarding correctness and completeness still apply if the approach
is applied during transformation construction.
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9.2.2. Prototypical Implementation

For conducting the case studies presented in the subsequent section, we have
used a prototypical implementation in the Vitruvius framework (see Sub-
section 2.3.2) [Kla+21]. It supports the view-based development of consistent
systems by managing a consistent representation of all information about a
software system, from which views can be derived to be modified by the users.
Internally, the system is represented as a set of models of existing or newly
defined languages, which are kept consistent by means of bidirectional model
transformations. The transformations operate in an incremental and delta-
based way. They are incremental, because they update the existing models
rather than creating new ones upon changes. They operate delta-based, as
they do not receive the modified state of a model but a delta between the old
and the new state. This conforms to our notion of changes (see Definition 4.3).
To achieve this, the framework records atomic changes to the models, i.e.,
element creations and deletions as well as attribute and references changes,
as discussed in Subsection 6.4.3 and depicted in Figure 6.7, and passes them
to the transformations. Currently, it lacks support for the combination of
multiple transformations for keeping multiple models consistent, which is
why we implemented our approaches in a case study with that framework.

In our case studies, we use the Reactions language defined for the Vitruvius
framework, which we have already introduced in Subsection 2.4.3. It allows
to define unidirectional consistency preservation rules according to Defi-
nition 6.1. Defining such unidirectional rules for both directions between
two metamodels yields a bidirectional transformation according to Defini-
tion 6.3. These transformations only have an explicit representation of the
consistency preservation rules, whereas the consistency relations are only
implicitly defined as the fixed points of the application of the consistency
preservation rules.

The Reactions language uses the so called correspondence model of the Vit-
ruvius framework to identify corresponding elements according to the
implicitly defined consistency relations and thus implements a witness struc-
ture according to Definition 4.19. It consists of correspondences, of which
each relates two sets of elements. It enables to trace when elements were
changed to update the corresponding elements rather than deleting and
creating them. We have discussed in Subsection 4.4.1 that this still conforms
to our formalism, although we omitted any kind of trace model there.
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1 reaction {

2 after element pcm::Component inserted in

3 pcm::Repository[components]

4 call {

5 val component = newValue

6 createClass(component)

7 }

8 }

9
10 routine createClass(pcm::Component component) {

11 match {

12 require absence of uml:Class corresponding to component

13 val componentsPkg = retrieve uml::Package

14 corresponding to component.repository

15 tagged with "componentsPackage"

16 }

17 action {

18 val class = create uml::Class and initialize {

19 class.package = componentsPkg

20 class.name = component.name + "Impl"

21 }

22 add correspondence between component and class

23 }

24 }

Listing 9.1: Reaction creating a UML class for a PCM component. Adapted from [Kla+21, Lst. 2]
and extended from Listing 2.1.

In Listing 9.1, we depict an extension of the example in Listing 2.1, which we
have explained in Subsection 2.4.3. The extended Reaction is also triggered by
the insertion of a PCM component and calls a routine that is responsible for
restoring consistency for a consistency relation between PCM components
and UML classes. It thus checks in the match block whether the change
affects that consistency relation and in that case, in addition to the original
implementation, checks that no corresponding class already exists to avoid
multiple instantiation for the synchronization scenario. It then creates a
corresponding UML class in a retrieved package for components.

In Chapter 7, we have discussed different options for the orchestration of
transformations in an application algorithm. In the Vitruvius framework,
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we have implemented a simple depth-first execution of transformations
without an artificial execution bound. This means, for a given change all
transformations involving that changed model are executed consecutively.
After the execution of each transformation, this approach is recursively ap-
plied to the model changed by that transformation, which implements the
depth-first execution. If the model is not changed, i.e., if the models are
already consistent, the recursion aborts. Finally, this leads to termination of
the algorithm. This results in an algorithm comparable to the provenance
algorithm proposed in Section 7.4, as it implements a similar recursion strat-
egy. In contrast, the implemented strategy does not only consider already
executed transformations in the recursion and does not define an execution
bound. In consequence, the implementation may not terminate.

Since the transformations defined in the Reactions language only contain
implicit consistency relations by the fixed points of their consistency preser-
vation rules, checking consistency for the recursion to abort is conducted by
checking whether the transformation performed any changes. If this is not
the case, the models are considered consistent by construction. We have dis-
cussed this as an option for the realization of a CheckConsistency function
within an application algorithm in Subsection 7.2.1. The implementation of
the framework with the Reactions language is available at GitHub [GitVit].

9.2.3. Case Studies

We have performed two case studies based on one set of metamodels and
transformations between them defined in the Reactions language. The case
studies employ the metamodels PCM for component-based software archi-
tecture descriptions, UML for object-oriented software design, and Java for
source code development, as introduced in Section 2.5. Transformations
are defined between each pair of these metamodels, based on two sets of
consistency relations that we have also introduced in Section 2.5. This covers
relations between PCM and object-oriented design, applied to both Java and
UML, and relations between UML and Java.

We haven chosen these metamodels and transformations for our case studies
because except for one transformation they were explicitly developed inde-
pendently without the goal of using them within a transformation network,
yielding the possibility to evaluate our categorization and error resolution
approaches. The transformations even assumed that they are only executed
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in one direction after a user change. It is difficult to find further comparable
examples, because we require transformations whose induced graph contains
cycles, as otherwise most of the discussed problems do not occur at all. If
such transformations exist, however, they were usually defined in a way that
they properly work together, as otherwise they would not be usable at all.
They would have to be developed in a scheme similar to the one proposed
by Kramer et al. [Kra+16] to exclude different types of possible biases.

The preservation of consistency between PCM and Java according to these
relations (see Table 2.1) using the Reactions language was implemented in
the Master’s thesis of this thesis’ author [Kla16] in the context of the disser-
tation of Langhammer [Lan17]. At that point in time, the transformation
was only defined to be executed once in one direction and, in particular,
not to be used in a transformation network. In addition, Syma defined the
bidirectional transformation between PCM and UML in his Master’s the-
sis [Sym18]. He also proposed a formal specification of those relations and
their preservation [Sym18, Sec. 5]. This transformation was defined to be
used in a transformation network and therefore implements the matching of
existing elements according to Subsection 6.4.2 to achieve synchronization
of the transformation.

PCM models can also contain service effect specifications as abstract specifi-
cations of the behavior of services provided by a component. Consistency
between behavior specifications in PCM and their implementation in Java
is one of the reasons why, in general, consistency between PCM and Java
cannot only be expressed across UML class models. We do, however, not
consider that consistency relation in this case study, because we focus on
structural consistency relations, as motivated in Subsection 3.1.2. Since these
behavioral descriptions share an isolated relation between PCM and Java, it
is not relevant for our considerations on transformation networks anyway.

The preservation of consistency between UML and Java according to these
relations (see Table 2.2) was implemented using the Reactions language
within a Bachelor’s thesis supervised by the author of this thesis [Che17].
Like for the transformation between PCM and Java, this one was implemented
to be used in one only direction and was, thus, especially not intended to be
used in a transformation network.

The implementations of all transformations are available in a corresponding
GitHub repository of the Vitruvius project [GitApp]. Each of them also
contains a sophisticated set of test cases, which were supposed to test each

340



9.2. Errors, Orchestration and Synchronization

↓ From / To→ PCM UML Java

PCM - 57 40
UML 68 - 63
Java 16 49 -

Table 9.6.: Complexity of the case study transformations in terms of the numbers of Reactions
in each consistency preservation rule, i.e., the number of change types it is able to react to.

transformation only executed in one direction after changes to one model.
We reused and extended these test cases for our case study. This setup of
independently developed transformations and test cases ensures that there
is only low risk of the transformations and test cases to be initially aligned
with each other, which could result in a bias of the results.

To give an impression of the complexity of the transformations, we depict
the numbers of Reactions in each of the six unidirectional consistency preser-
vation rules in Table 9.6. They conform to the numbers of change types
each of these consistency preservation rules reacts to. The lower number of
Reactions between Java and PCM is mainly caused by several elements of the
PCM being mapped to the same elements in Java. For example, components
and all kinds of data types are mapped to classes in Java, such that the Reac-
tions in Java react to less change types and instead make more distinctions
within the routines to separate the affected consistency relations.

The scenarios used for our case study, i.e., the changes to which we applied
the transformations for preserving consistency, are twofold. They consist of
existing test cases for the implemented bidirectional transformations and of
the simulated construction of an existing, comprehensive system model.

We have reused the test cases that were already implemented for the existing
bidirectional transformations between PCM and UML as well as between
UML and Java. These test cases implement fine-grained tests for all possible
types of changes according to the consistency relations, i.e., all kinds of rele-
vant insertions, removals, and modifications of involved elements. They set
up minimal models and then perform the changes to be tested. Afterwards,
they validate that the expected models exist. The according test cases are
summarized in Table 9.7, expressing the number of test cases for each under-
lying consistency relation. We have split the test cases between PCM and
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Consistency Relation Test Cases

PCM↔ UML Core

Repository 4
Interface 2
System 2
Composite data type 4
Repository component 2
Provided role 2
Assembly context 2

Total 18

PCM↔ UML Additional

Signature 6
Parameter 6
Attribute 5
Required role 3

Total 20

Consistency Relation Test Cases

UML↔ Java

Package 8
Class 25
Class method +
parameters 29

Field + association 19
Enumeration 14
Interface 10
Interface method 9

Total 114

Table 9.7.: Numbers of test cases for the different consistency relations in the case studies.

UML into two categories, because the second case study only uses the first
of these categories. In total, we used 38 existing test cases between PCM and
UML, as well as 114 test cases between UML and Java. The gap between these
number has two reasons. First, UML and Java share more information, such
as visibilities and modifiers of fields and methods. Second, the granularity
of the test cases differs, because they were developed by different persons,
thus a test case between PCM and UML validates more scenarios than one
between UML and Java.

In addition, we have used the Media Store system model [SK16], which is a
comprehensive case study system for the PCM. It represents the architectural
description of a system for managing different types of media files, i.e.,
uploading and downloading them to a database via a web server. It consists
of several components, data types, and interfaces, which are provided and
required by the components. For this system, representations as a PCM
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model as well as in Java code exist. We have simulated the construction of
that system model by producing a change sequence as if the system was
developed from scratch and applied the transformation network to these
changes to create the other two models. This conforms to the Reconstructive

Integration Strategy (RIS) proposed by Langhammer [Kla+21; Lan17] and
implemented in the Vitruvius framework. Afterwards, we have validated
that the expected models, conforming to the consistency relations, were
created. This is covered by two additional test cases.

Based on these test cases, we have performed two case studies. In the first
linear network study, we have realized a linear network by combining two
bidirectional transformations. This network does not contain any cycles
of bidirectional transformations. This study was conducted in the Master’s
thesis of Syma [Sym18] and published in previous work [Kla+19b]. In the
second circular network study, we have realized the network of all three
bidirectional transformations, thus also containing a cycle of transforma-
tions. This study was conducted in the Master’s thesis of Sağlam [Sağ20].
Both studies were conducted in the previously explained iterative process
of identifying failures and resolving them by fixing the causing faults. We
have tagged the states before and after the iterations of these studies in the
according GitHub repository [GitApp].

Linear Network Study

In the first study, we restricted ourselves to a linear network by combining
the transformations between PCM and UML as well as between UML and
Java. In this situation, no synchronization of transformations would be
necessary, because there is always only one path of transformations between
two models across which changes can be propagated. Thus, it would be
sufficient to execute both transformations in one direction after changes
in one model to achieve consistency, as long as the transformations are
correct. A synchronizing bidirectional transformation, however, can require
its consistency preservation rules to be executed multiple times, as discussed
in Subsection 6.3.4, to let them react to changes in both models and achieve
a fixed point by improving partial consistency in each step. This means,
executing a synchronizing bidirectional transformation in a linear network
should terminate after executing one consistency preservation rule once, as
the one in the other direction should not react to the generated changes and
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no further changes that need to be synchronized can exist. Since the existing
transformations were not developed to be synchronizing, we could expect
errors to occur here, although no synchronization would be necessary at all.
For example, if the consistency preservation rule in one direction creates an
element and the one in the opposite direction processes this creation without
considering that this may not be a user change that needs to be processed,
it will create another corresponding element, due to missing matching of
existing elements.

The transformation between PCM and UML was developed in the context of
this case study and, purposely, designed to be synchronizing. This allowed
us to get an impression of whether it is possible to develop a transformation
that is synchronizing by construction. The transformation between UML and
Java pre-existed and was designed to be executed in only one direction. Thus,
it neither matched existing elements using implicit unique information to be
synchronizing nor using explicit unique information, i.e., correspondences,
to be executed in both directions without duplicating elements.

Based on these transformations, we conducted the already depicted process
of executing the scenarios of existing test cases and case study system, iden-
tifying the occurring failures, tracing them back to the causing mistakes and
then fixing the faults in the implementation to resolve the failures. We em-
ployed all test cases summarized in Table 9.7 without further modifications
and, in addition, the construction simulation of the Media Store system.

Circular Network Study

In the second study, we started with the results of the first one, i.e., we
employed the transformations that were already improved due to the identi-
fied faults in the first study. In addition, we considered the transformation
between PCM and Java to induce a cycle in the graph of the transforma-
tions. Consequently, in this study a synchronization scenario occurs, because
changes can be propagated across multiple paths of transformations.

Again, we reused existing test cases, but in this study we extended them to
validate consistency of all three models rather than only the two they were
developed for. We used the PCM↔ UML Core tests depicted in Table 9.7,
which perform different types of changes in PCM and UML models, and
extended them to also validate the Java models.
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PCM UML

Java
1.

2.
3.

4.

Figure 9.1.: Phases of the circular network study by depicting the transformations that are
incrementally added in each of the phases.

Instead of a big bang integration of all transformations, we incrementally
added the unidirectional consistency preservation rules to the network to
evaluate and resolve the occurring failures in multiple phases. These phases
are depicted in Figure 9.1. We started with a network of the transformation
between PCM and UML as well as the unidirectional consistency preserva-
tion rule between UML and Java. In the further phases, we completed the
bidirectional transformation between UML and Java by adding the consis-
tency preservation rule in the reverse direction, then first added the rule
between PCM and Java, and finally added the one in the opposite direction.
This also allowed us to evaluate how the topology of the network affects the
types of mistakes that lead to failures. Although the first two phases were
already covered by the linear network study, we still conducted them again
because of the extension of the test cases to the third model, which revealed
further errors that were not detected before.

9.2.4. Results and Interpretation

We present the results of the introduced iterative process of identifying
failures and the causing faults and mistakes, as well as of fixing the faults
to resolve the failures. In Table 9.8 we summarize the numbers of faults we
found in each case study because of the different mistake types, as well as the
numbers of failures they resulted in when executing the test scenarios. The
detailed analyses can be found in the theses of Syma [Sym18] and Sağlam
[Sağ20]. In the following, we discuss the aggregated and interpreted results
and only go into the details where relevant.

The presented numbers of faults represent the actual parts of transformations
that needed to be fixed. For example, each fault due to missing synchroniza-
tion manifests as a missing matching of existing elements, which needs to
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Case Study Mistake Type Faults Number / Type of Failures

Linear
network
study

Missing
synchronization 25 154 Multiple instantiations

Incompatible
constraints 1 3 Non-terminations

(divergence)
Contradicting
options selection 1 2 Non-terminations

(alternation)

Total 27 159 Failures

Circular
network
study

Incorrect
transformation 12 37 Inconsistent terminations

Missing
synchronization 13 57 Multiple instantiations

Incompatible
constraints 4 24 Multiple instantiations

Contradicting
options selection 0 0 -

Total 29 118 Failures

Table 9.8.: Mistakes, numbers of faults, and number and type of faults in the case studies.

be added at one place within the transformations. The counted numbers of
failures are not that meaningful but are only supposed to give an impres-
sion of the extent of failures. This is due to the fact that these numbers are
highly dependent on the kind and number of the used test scenarios, as they
determine how often a fault manifests in terms of a failure. Additionally,
faults interfere, as one fault may hide another one when it leads to a failure
before the transformation with the other fault was applied. This does also
explain why there are more failures than there are test cases, especially in
the circular network study. There, some missing element matchings only led
to failures after another was fixed, thus leading to the same test failing twice
because of two faults. In consequence, the types of failures in the overview
are more relevant than the actual numbers of occurrences.
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Linear Network Study

We performed two iterations in the linear network study. In each iteration, we
fixed all faults that we could identify because of the test scenario failures. Af-
ter two iterations, no further failures occurred. In total 159 failures occurred,
of which 154 occurred in the first iteration in terms of multiple instantiations
due to missing element matchings. These 154 failures correspond to all test
scenarios, as we had in total 152 existing test cases and two scenarios with the
Media Store case study system. These failures did, in fact, only occur because
the transformations between UML and Java did not even contain element
matchings using explicit unique information, i.e., correspondences. Thus,
when Java elements were created by the transformation execution from UML
to Java, the execution in the reverse direction treated the creation changes
as if they were performed by a user and created elements in the UML model
again. This could already be fixed by checking the correspondence model for
the existence of correspondences, i.e., by applying element matching based
on explicit unique information according to Subsection 6.4.2.

In the second iteration, five further failures occurred. In all cases, the exe-
cution did not terminate, which was because of divergence in three cases
and because of alternation in two cases. The reasons for these failures were
incompatible constraints and contradicting options selections by the trans-
formations. The Java model contains the fully qualified name of a class,
whereas the UML model only contains the simple name, which was correctly
propagated from UML to Java, but the namespace prefix was not removed in
the opposite direction. Thus, the considered consistency relations for both
directions were incompatible, leading to a repeated addition of the namespace
and thus divergence due to an endless extension of the class name. This
shows that already within a single bidirectional transformation the unidirec-
tional consistency relations can be incompatible. The alternation occurred in
terms of endlessly swapping visibilities of methods between UML and Java,
because different options for mapping default visibilities exist, for which the
consistency preservation rules in both directions chose contradicting ones.

Most importantly, all faults occurred in the transformation between UML and
Java. Thus, the transformation between PCM and UML, which was developed
to be synchronizing with our proposed approach to match existing elements,
operated properly by construction.
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Circular Network Study

In the circular network study, we performed 29 iterations, which conforms
to the 29 identified faults. This is because we decided to fix one fault in each
iteration. We investigated the failures, traced one of them back to a fault,
fixed that fault, and validated how many failures this resolved. Finally, we
were able to resolve all failures by fixing the identified faults, such that all test
scenarios can be executed successfully. Details about the failures resolved by
the fix for each fault are described in the Master’s thesis of Sağlam [Sağ20].

Across these iterations, 118 failures occurred. In contrast to the first study,
we also counted incorrectness of the transformations in this study, which
is actually out of the scope of our evaluation, because we assumed the
transformations to be correct, as correctness of individual transformations is
a separate and well-researched topic. It was, however, interesting to see that
some faults because of incorrect transformations are only detected when
using a transformation within a network rather than using it in an isolated
way. This is due to the reason that other transformations produce edge
cases that were not covered by the transformations and their test cases
before. For example, the transformations implicitly assumed specific naming
schemes within the models, which are not guaranteed to be followed. If other
transformations then produce models that do not follow this naming scheme,
this leads to failures that reveal incorrectness of the transformation. In total,
twelve faults within incorrect transformations were revealed by 37 failures
during their execution in a network. Seven of these faults were revealed in
the first two phases of the case study, in which the transformation between
UML and Java was added (see Figure 9.1). They were first revealed in this
case study, and especially not in the linear network study, because of further
validations added to the test cases.

The majority of 57 failures were multiple instantiations of elements due to
missing synchronization. In 13 cases, matchings of existing elements were
missing. Additionally, four faults because of incompatible constraints led to
24 failures in terms of multiple instantiation. This is particularly interesting
because in this case multiple instantiation was not caused by missing synchro-
nization, which we expected to be the main reason for multiple instantiation.
In this case, the incompatible constraints were caused by different, incompat-
ible naming schemes. For example, all transformations assume a single UML
model to exist, but they assume it to have different names, which results
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in multiple UML models being instantiated. In practice, such cases can be
distinguished from multiple instantiation due to missing synchronization,
because although there are multiple elements where there should only be
one, they can be distinguished by differences in their names or other key
information used to identify them.

In the following, we use these results to evaluate the defined metrics for
answering our evaluation questions depicted in Table 9.4 and Table 9.5.

9.2.4.1. Categorization and Orchestration

All failures that we identified in the test scenarios were covered by our
categorization and could thus be traced back to potential mistakes and faults
they were caused by. Additionally, we were able to fix all faults to which
the occurring failures were traced back. We achieved that all test scenarios
can be executed successfully after fixing the causing faults. Although not
part of our categorization and contributions, we also fixed the incorrect
transformations, as they could otherwise hide other failures due to further
faults. Finally, whether we also count these failures or not, we were able to
classify and resolve all occurring failures, thus leading to:

classified failure ratio = resolved failure ratio = 1

We introduced these metrics as indicators for the completeness and correct-
ness of our categorization in Question 2.1 and Question 2.2. Since none of
the occurring failures was caused by any other mistake than we expected
according to our categorization, we assume this a valuable indicator for its
completeness and correctness.

Most importantly, we aimed to identify the relevance of the different types
of mistakes according to Question 2.3 by counting the numbers of faults they
caused. We summarize the results of this analysis, depicting the according
metrics values, in Figure 9.2. We found that most faults were caused by
missing synchronization. Across both studies, more than 85% of the faults
were caused by missing synchronization, and even if only considering the cir-
cular network study they made up more than 75 % of all faults. Incompatible
constraints led to the second highest numbers of faults, namely about 10%
when considering both case studies and about 25% when only considering
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Figure 9.2.: Absolute numbers of faults due to different mistake types in both case studies.
Percentages are relative to total number of faults in the particular case study.

the circular network study. Finally, the contradicting selection of options
only led to a single fault in the linear network study.

The actual numbers must be assumed to be rather imprecise due to the
low numbers of faults. For example, only five faults due to incompatible
constraints were detected in total. Nevertheless, the relations between the
numbers of fault occurrences show that missing synchronization was by
far the most important reason for faults in transformation networks. Since
synchronization can be achieved by construction without knowing about
the other transformations in a network, this indicates that most errors in
transformation networks can already be avoided by construction of the
individual transformations. Incompatibilities, as the reason for the second
highest number of faults, can at least be analyzed when developing the
network, which means that it can at least be detected at design time without
and before productively executing the transformations.

Finally, we also aimed to evaluate the relevance of the orchestration problem
in practice. We have discussed that its evaluation is directly related to com-
pleteness of our categorization, because if we are able to classify each failure
and trace it back to a fault covered by our categorization, there are no failures
actually caused by the orchestration problem. Since we were able to resolve
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all failures by fixing mistakes covered by our categorization, undecidability
of the orchestration problem did not lead to the situation that the Vitruvius
framework was no able to find a consistent orchestration in any scenario.
Consequently, the according metric measuring the fail ratio evaluates to 0:

fail ratio = 0

In particular, we selected a simple recursive strategy for the orchestration,
which was still able to always find a consistent orchestration. In answer
to Question 3.1, this indicates that the order in which transformations are
executed may not be that relevant in practice, thus leading to the orchestra-
tion problem not being particularly relevant in practice. We must, however,
consider that the orchestration problem is especially relevant if multiple
options for preserving consistency exist, like we have discussed as a possible
restriction in Subsection 7.2.4. We have, however, seen that contradicting
selection of options to restore consistency was not even a relevant fault in
the case study, which may indicate that it is either not that problematic in
practice or that the case study does not contain many cases in which multiple
options for restoring consistency exist.

9.2.4.2. Synchronization

Most faults in both case studies were caused by missing synchronization. In
total, 38 faults led to 214 failures, and even if only considering the circular
network study, still 13 faults could be identified. We were able to fix all these
faults by adding matchings for existing elements by explicit and implicit
unique information, i.e., using correspondences as well as key information, as
proposed in Subsection 6.4.2. Thus, all 214 scenarios that failed due to missing
synchronization, i.e., mistakes at the transformation level, and in which we
could apply our approach, succeeded after applying the proposed approach
for constructing a synchronizing transformation by matching elements. Thus,
our approach operates correctly according to Question 4.1, as its application
always leads to correct synchronizing transformations in the case studies, as
reflected by the success ratio metric:

success ratio = 1
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In addition, we were able to apply our approach in all cases in which faults
at the transformation level led to failures during execution. More precisely,
there we no cases in which we were not able to perform matching of elements
due to unique information, thus requiring us to use heuristics and having
the possibility to fail. Additionally, there were no failures due to missing
synchronization that occurred for other reasons than missing element match-
ings. This indicates completeness of our approach according to Question 4.2,
as there are no cases in which the approach could not be applied and resolve
failures due to faults at the transformation level, which is also reflected by
the according metric:

application ratio = 1

We have used the transformation between PCM and UML, which already
applied our approach for matching existing elements to achieve a synchro-
nizing transformation by construction. Since we detected no failures due to
missing synchronization of that transformation in either of the case studies,
it serves as an additional indicator for the correctness and completeness of
the approach, in addition to the measured metrics.

In conclusion, we found the proposed approach for constructing synchroniz-
ing transformations to be correct and complete in the considered case studies.
This serves as an indicator for its general correctness and completeness and
thus the possibility to use it as a constructive approach for achieving synchro-
nizing transformations. Since we found missing synchronization to be the
most important reason for failures in transformation networks, concluding
that we can achieve synchronization by construction means that we are able
to avoid most of these failures by construction.

9.2.4.3. Topology Effects

We have performed the circular network case study in a four-phase process,
as explained at Figure 9.1, adding a unidirectional consistency preservation
rule in each phase to analyze how the topology affects the types of faults that
are revealed by failures when applying our test scenarios to the network of
each phase. We depict the numbers of faults as consequences of the different
mistakes types in the different phases in Table 9.9.
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Phase→

↓Mistake Type

PCM

UML

Java

PCM

UML

Java

PCM

UML

Java

PCM

UML

Java

Incorrect
transformation 5 2 4 1

Missing
synchronization 0 0 6 7

Incompatible
constraints 0 0 2 2

Incompatible options
selection 0 0 0 0

Table 9.9.: Numbers of faults due to different mistake types by the phase of the circular network
case study with the stepwise addition of unidirectional consistency preservation rules.

In the first two phases, the consistency preservation rules of the transforma-
tions between UML and Java are added. Since these two phases were already
covered by the linear network study, it was likely that only few further faults
are found by extending the test cases. In this case study, we extended the
test cases to also validate the generated Java model, whereas in the linear
network case study the test cases validated only the PCM and UML, or the
UML and Java models, respectively, but not the third model. Interestingly,
in these phases only faults due to incorrect transformations were found as
reasons for failing test scenario executions. On the one hand, this shows
that it seems to be difficult to construct correct transformations that consider
all possible scenarios. In this case, the combination of transformations to a
network revealed incorrectness due to cases that were not considered for
a transformation on its own before. On the other hand, this indicates that
it may already be sufficient to validate pairwise consistency of models in
multiple scenarios when executing a transformation network rather than
validating consistency of all models, since no faults due to the combination
of transformations to a network could be found in these phases. As we have
seen in the linear network study, such faults can actually occur already in a
linear network.
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As expected, in the last two phases especially faults due to missing synchro-
nization are revealed by the occurring failures. This is due to the reason that
these phases introduce a cycle in the transformations, which leads to the
situation that transformation need to synchronize changes, as both models
may have been changed across two paths of transformation executions. Even
in these phases, failures occur due to incorrect transformations.

As the essential takeaway, it is important to not only consider mistakes
specific to the combination of transformations to a network but also to
consider correctness of the individual transformations. The results of our
case study indicate that assuming transformations to be correct may not
be reasonable in practice, thus transformations may fail when combined to
a network because of faults that they already contained before, but which
never led to failures when executing them in an isolated way.

9.2.5. Discussion and Validity

From the two discussed case studies, we can derive several important in-
sights. This covers correctness of our categorization and our synchronization
approach as well as, and in particular, regarding the relevance of different
mistake types and the relevance of the orchestration problem.

9.2.5.1. Insights

We found that most faults in the case study were due to missing synchroniza-
tion. Synchronization is, however, achievable by construction, as we have
also validated in the case study. The proposed approach for synchronizing
transformations can be applied to a single transformation without know-
ing about the other transformations to combine it with. In consequence, a
high number of faults in transformation networks can already be avoided by
construction of the single transformations.

In the iterative process of the case studies, we found that the first occurring
failures were multiple instantiations because of missing synchronization.
Adding the element matchings for synchronization then revealed further
faults, for example, because of incompatible relations. First, this is not
surprising, because multiple instantiation occurs upon creation of elements,
which is the first step in consistency preservation. Thus, faults due to missing
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synchronization lead to early failures. Second, this shows that faults due
to missing synchronization can hide further faults. Thus, it is important to
resolve errors at the transformation level first, or, in the best case, to avoid
them by construction.

In the circular network study, we detected multiple instantiations due to
incompatible consistency relations rather than missing synchronization. We
have discussed in Chapter 8 that this can, theoretically, be the case, but
still multiple instantiations are expected to be the consequence of missing
synchronization in most cases. While this is still given in the case studies,
we also found that two kinds of multiple instantiation can be distinguished
to identify their cause. In case of missing synchronization, an element with
the same key information, such as the name or other information, is created.
For matching existing elements, we proposed to use unique key information,
such as names, to identify the existence of an element. On the contrary, if the
elements differ in their key information but still should be the same, there is
a fault in the transformations in terms of incompatible consistency relations,
as they use different ways of relating the key information although it should
actually be the same.

Finally, we found undecidability of the orchestration problem not to be
relevant in our case studies. This does not validate that it is not relevant
in practice at all but at least serves as an indicator that it is not such a
central problem that transformation networks are unlikely to ever work
properly. Still, external validity of that statement has to be improved by
further studies.

9.2.5.2. Threats to Validity

In the following, we discuss different threats to the validity of the discussed
results. The limited set of case studies especially limits external validity. We
discuss how we have mitigated validity threats and for which reasons validity
of the statements may be actually restricted, distinguished by construct,
internal, conclusion, and external validity [Woh+12].

Construct Validity If transformations are in some way aligned with each
other a priori, certain errors would not occur at all, thus reducing the number
of faults and influencing their distribution. We have mitigated this threat by
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developing each transformation in an isolated project without knowing that
it is supposed to be combined with other transformations and by giving the
development tasks to different students. The only bias may be that the author
of this thesis supervised the students that developed the different transfor-
mations. Still, this is a situation comparable to practice, because developers
may also exchange information but not have an explicit representation of
common knowledge.

We employed the Reactions language to implement the transformations.
The language may affect how likely specific faults are to be made. For
example, the language and the Vitruvius framework it is embedded into
use a delta-based approach to consistency preservation, which may already
prevent problems that may occur with a state-based approach to consistency
preservation. We did, however, purposely use a language that provides a
rather low level of abstraction to reduce the chance that this influences how
prone the implementations are to specific faults. For example, using QVT-
R, which already provides the ability to define keys for matching existing
elements, would have prevented specific faults already by construction.

Internal Validity Using transformations that were not initially synchroniz-
ing and fixing them during the case studies leads to two threats to validity.
First, this process obviously leads to a high number of faults and failures due
to missing synchronizing, which would not have been the case when using
transformations that are synchronizing a priori. Since we wanted to evaluate
how important it is to have synchronizing transformations, this setup was
reasonable. Still and second, it would be valuable to conduct a case study in
which transformations are already synchronizing. This can give further and
more precise insights regarding the relevance of the other types of faults and,
more importantly, the process of fixing faults rather than avoiding them may
introduce a bias. When fixing the faults, additional fixes beyond the applica-
tion of our synchronization approach may have been performed until the
test scenarios succeeded, which cannot occur if transformations are already
developed to be synchronizing. We mitigated this threat by constructing at
least one of the transformations to be synchronizing and found that it did
actually not lead to any failures because of missing synchronization. Still, we
plan to perform a case study to further validate how well synchronization
can be achieved by construction and how this influences the relevance of
other mistakes, as we discuss in Subsection 9.2.6.
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Conclusion Validity The central threat to conclusion validity is the low
amount of data. Some fault types occurred only once in the case studies, thus
potentially reducing the significance of the results. This especially means
that the actual values, especially for the relevance of the mistake types,
cannot be considered representative. Still, we expect the general conclusions
regarding relevance to be correct, because the number of test scenarios was
high enough and led to a significant number of failures.

External Validity External validity in terms of generalizability of the results
is especially affected by the representativeness of the case studies. To this end,
a threat may be the low number of performed case studies. Our results are,
however, not highly dependent on the actual contents of a case study, i.e., the
contents of the models and the transformations. They rather depend on the
existence of specific patterns, such as the possibility for transformations to
select from multiple options to restore consistency, and potentially on the size
of a transformation network. Especially the evidence of our results regarding
the relevance of faults at the network rule level needs to be further validated
in additional case studies. This is, however, difficult due to the limited
availability of evaluation scenarios. Regarding the size of transformation
networks, we do not expect larger networks to reveal further problems,
because the problematic situations are those in which changes to the same
models are performed across two paths of transformation executions, which
already exist with a cycle of three transformations. In addition, only the
number of case studies is rather low, but the number of considered scenarios
within the case studies represents a comprehensive set of scenarios.

The selection of scenarios for the case studies may have influenced whether
specific kinds of mistakes can occur at all. In particular, the used transfor-
mations can all rely on unique key information for identifying matching
elements. Thus, we may have identified the synchronization approach to
be correct and complete, because the case study scenarios do not reflect
problematic cases. This is, however, essential complexity that cannot be
solved with any comparable approach, because if no unique key information
exists, only heuristics to identify elements can be applied. To circumvent that
problem, it would only be possible that transformations know each other and
use trace links generated by the other transformations, such that they can
rely on meta data attached to these links to uniquely identify elements. This
does, however, break the assumption of independent development and thus
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cannot be achieved by construction of a single transformation but essentially
requires transformations to be aligned with each other or to be defined as
multidirectional transformations.

Finally, the consistency relations in the case studies do not provide many
different options for models to be consistent. Thus, the chance that transfor-
mations decide to use different, contradictory options to restore consistency
may be unlikely. This may have led to only few faults at the network rule
level and may thus have biased the results. It does especially also influence
the ability that undecidability of the orchestration problem leads to a failure.
It is, however, also a consequence of using a transformation language that
does not explicitly define consistency relations that led to this result. Since
consistency relations are only implicitly defined by the consistency preserva-
tion rules, a contradictory selection of options manifests as an incompatibility
of the implicit consistency relations, as the options to select from are not
documented anywhere. Thus, to mitigate this issue, consistency relations
would have to be defined explicitly.

9.2.6. Limitations and Future Work

In addition to the discussed results, the case studies revealed limitations of
our approaches and insights, which represent our starting points for future
work in terms of practical application improvements, conceptual progress,
and additional necessary evaluations.

Element Matching Implementation Within the case studies, we have imple-
mented the matching of existing elements manually, i.e., using the existing
constructs provided by the transformation language. This is a costly and
cumbersome task, which is also prone to errors in the accidental complexity
of the mechanism due to repetitions of the same logic. Since the mechanism
is always similar and only differentiates in the key information used to search
for, it could be embedded into an API or language construct to be reusable.

In future work, we thus want to investigate how we can integrate the patterns
for constructing synchronizing transformations into existing transformation
languages, such as the Reactions language used in the evaluation. In particu-
lar, we want to investigate how well QVT-R fits for that purpose, as it already
allows to define keys for matching existing elements [QVT, Sec. 7.10.2.].
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Semantic Element Matching In the evaluation, we have detected cases that
may be expected to be consequences of incompatibilities but are actually not.
For example, the transformation between UML and PCM creates a repository
with a name starting lowercase, whereas the transformation between Java
and PCM generates a repository with a name starting uppercase. Then the
repository created by one transformation is not matched by the other, which
is correct as the transformations define consistency relations with different
capitalizations of the repository. Thus, having two repositories is correct in
this case, although it may not be expected but would intuitively be assumed
to be incompatible. It is expected that both repositories are supposed to
represent the same element (see [Sağ20, Fig. 6.4]), thus having the same
semantics although their uniquely identifying information, the name, is not
equal. In this case, however, a different notion of correctness is violated that
we explicitly excluded for this thesis in Subsection 4.2.3. This notion assumes
a common global knowledge to which the transformations must be correct,
thus requiring knowledge about the semantics of the elements, for example,
in terms of a global specification of consistency or a mapping to a common,
verifiable formalism.

In future work, we want to consider how such a matching in terms of element
semantics rather than plain syntactic matching can be performed. Although
it requires the transformation developer to know about the semantics of
the elements to define that they have to be syntactically matched, this pro-
cess would be even more valuable if the matching was performed on more
semantic information. One such example that we have considered in Chap-
ter 5 was the swap of first name and last name by one consistency relation,
which does not represent an incompatibility according to our definition but
may intuitively be undesired. Mapping all elements to a common semantic
representation could improve such a matching process. In Chapter 11, we
present an approach that proposes to describe transformations in terms of
descriptions of the common elements of the metamodels, thus representing
their common semantics.

Interaction with Users In our assumptions in Subsection 1.3.2, we explicitly
excluded semi-automatisms in consistency preservation from the considera-
tions in this thesis. Actual transformations can, however, be semi-automated
by integrating decisions of users. For example, a user may select whether
an added class shall represent a component or not. In terms of consistency
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relations, such decision options can be represented by multiple consistency
relation pairs that represent all options to select from. Within consistency
preservation rules, such user decisions can, however, be problematic. If both
the transformation between UML and PCM as well as the one between UML
and Java ask the user whether a class shall represent a component, this, on
the one hand, is annoying if the user is asked twice and, on the other hand,
can even lead to conflicting decisions by the user. We have already discussed
how the selection of different options by transformations can prevent the
network from finding consistent models and in such a case, even worse, only
one user decision can be correctly reflected in the result. Thus, it is part of
our future work to find out how user decisions can be aligned across multiple
transformations.

Alignment of Consistency Preservation Rules We have made important
insights regarding synchronization of transformations and compatibility,
thus correctness at the transformation and network relation levels. At the
network rule level, however, we only found the selection of contradicting
options for consistency to be problematic, but we were neither able to restrict
them without reducing expressiveness nor to define any reasonable notion
for correctness at all. Thus, it remains an open question how consistency
preservation rules need to be aligned with each other in a transformation
network such that a consistent orchestration of them always exists and, in the
best case, that it can easily be found. While finding a consistent orchestration
is difficult due to undecidability of the orchestration problem anyway, in
this thesis we focused on how to conservatively deal with this situation.
Although the evaluation indicated that the orchestration problem may not be
highly relevant in practice, having a comprehensive, systematic theoretical
understanding at that level, especially of how consistency preservation rules
influence the ability to find consistent orchestrations and whether there are
further issues except the selection of contradicting options, would still be
beneficial, which is why we consider it as important future work.

Synchronization Transformation Construction Case Study Finally, we have
discussed two case studies to validate different properties of our proposed
error categorization as well as the approach for constructing synchronizing
transformations. Although we were able to derive valuable conclusions, the
case study was biased by the fact that two of three transformations were
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not designed to be synchronizing and, as part of the case study, fixed to be
synchronizing during that study. Still, it would be valuable to perform a case
study with a focus on the construction of synchronizing transformations
to improve evidence on the ability of correctly and completely achieving
synchronizing transformations with our proposed approach.

9.3. Orchestration Algorithm

In Section 7.4, we have proposed an application algorithm for transformation
networks, which is proven correct, i.e., which returns only consistent models
and terminates for every input. Thus, it conservatively approximates the
orchestration problem. We have motivated the algorithm with its assistance
in finding the reasons whenever it fails to deliver consistent models. Since
this property is difficult to prove, we provide an evaluation in the following.

9.3.1. Goals and Methodology

The proposed provenance algorithm (see Algorithm 7.2) iteratively achieves
consistency for subsets of the transformations. This is based on the idea that
if the algorithm fails, we know that all but the last executed transformation
were executed in an order that yields consistent models and only the last
executed transformation introduced some decision such that no consistent
orchestration could be found anymore.

We define the goal of our evaluation to show that the strategy helps transfor-
mation developers in finding the cause for a transformation network not to
be able to find a consistent orchestration together with an according evalua-
tion question and metric in Table 9.10. For meaningful results, evaluation
scenarios need to comprise more than three metamodels. Failures especially
occur due to cycles in the graph of transformations, and since a setting with
three metamodels contains at most one cycle, there is no real value in the
proposed orchestration strategy. Like we have discussed for the case studies
in Section 9.2, such scenarios are difficult to find.

Most meaningful results for this goal and question could be achieved with
a controlled experiment, in which participants are confronted with the in-
formation provided by the proposed strategy for a set of scenarios in which
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Goal 5:
(Orchestration)

Show that the orchestration strategy helps transformation
developers to find the cause for a transformation network
not being able to find a consistent orchestration.

Question 5.1:
(Usefulness)

How far does the provenance algorithm improve the
ability of identifying the reasons for a network not being
able to find a consistent orchestration compared to an
arbitrary strategy?

Metric 5.1.1:

Considered transformations ratio: Ratio between the

number of transformations to consider for finding a fault

and the total number of transformations

Table 9.10.: Goals, questions and metrics for orchestration evaluation.

it fails, as well as a control group to which the information delivered by
other orchestration strategies is provided. Then, metrics like the time or the
number of steps required to find the reasons for the transformation networks
to fail could be measured and compared. Additionally, qualitative statements
from interviews could be evaluated.

Since such an empirical evaluation requires high effort and, in particular, due
to the absence of transformation networks to base the evaluation one, we
decided not to perform such an empirical evaluation. Instead, we provide a
scenario-based discussion that exemplarily shows the benefits of the proposed
strategy in two defined but not yet implemented scenarios. We discuss two
transformation networks with exemplary changes and how failures manifest
with the proposed as well as alternative strategies and how this relates to the
ability of identifying the reason for the failure. This allows us to evaluate the
usefulness of the strategy in terms of Question 5.1 by measuring how many
transformations have to be considered to identify a fault, according to the
following metric:

considered transformations ratio =
# of transformations to consider

# of total transformations

9.3.2. Scenarios

We consider two scenarios of transformations and changes to existing mod-
els that are to be kept consistent by the transformations. They represent
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Figure 9.3.: Consistency relations between basic components in PCM models, components in
UML component models, classes in UML class models and classes in Java models.

extensions of scenarios that we already considered within the last chapters.
In both scenarios, our proposed strategy fails. In one scenario, no consistent
orchestration can be found because of incompatible consistency relations.
The other scenario contains a consistent orchestration. It may, however, take
an arbitrarily long time to find it and no algorithm that is guaranteed to
terminate can find it.

Incompatible Consistency Relations

We depict the first scenario in Figure 9.3. It consists of consistency relations
between different representations of software components and their realizing
classes. It comprises components in the PCM and in the UML as well as
classes in the UML and Java. The consistency relations between them describe
a simple one-to-one mapping of their names, such that for each class and
component the according other elements with the same name need to exist.
This is a simplification of the scenario that components have to be represented
by classes but not vice versa. The only derivation from this mapping is the
relation between UML class and UML component models, in which the class
is specified to have the component name with an “Impl” suffix, according to
the pattern proposed by Langhammer [Lan17].
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Independent from the actual realization of consistency preservation rules
that try to preserve consistency according to these relations, any applica-
tion algorithm for those transformations will fail, because the relations are
incompatible. In fact, the induced set of consistent model tuples contains
only the empty models, as the relations cannot be fulfilled by any instances
of the depicted classes. In consequence, adding any of the elements to a
model will lead to an application algorithm that fails by either returning ⊥,
by returning inconsistent models, or by non-termination. While not termi-
nating, either the “Impl” suffix is repeatedly added and removed from the
elements to locally fulfill the individual consistency relations, or the suffix
is repeatedly appended to newly created elements, leading to an infinite
number of elements with arbitrary long names.

When failing, an application algorithm can be in an arbitrary execution state,
in which any of the models can be inconsistent. The states in which the
proposed provenance algorithm can fail can be divided into the following
two categories.

1. If the first execution of the transformation between UML class and
UML component models closes a cycle, i.e., two of the other transfor-
mations have already been executed such that the three form a cycle,
the algorithm fails when adding that transformation. All transforma-
tions that were executed in advance are able to preserve consistency
between all models, as they fulfill the consistency relations by adding
the appropriate elements. When adding the transformation between
UML class and component models, the transformations cannot find a
consistent tuple of models anymore, which is due to the incompatibil-
ity of their consistency relations.

2. If the first execution of the transformation between UML class and
component models does not close a cycle, e.g., because after adding
a UML component it is the first transformation to be executed or
because only the transformation between UML component models
and PCM component models and/or the one between UML component
models and Java code has been executed yet. Then the algorithm fails
as soon as another transformation is executed that closes a cycle, such
as the transformation between PCM component models and UML
class model.

In either case, the algorithm fails as soon as the execution of transformations
closes a cycle involving the transformation between UML class and com-
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ponent models. This does not necessarily mean that there is a fault in that
transformation but that there is a fault within one of the transformations
in the cycle closed by the added transformation, as consistency to all other
transformations could be preserved. In fact, it is even impossible to say which
transformation contains a fault, because it is unclear whether the consistency
relation between UML class and component models is actually the one that
should be adapted or whether, for example, the ones between PCM compo-
nent models and UML class models and between UML component models
and Java code should be adapted.

When the algorithm fails, the developer receives the information which
addition of a transformation led to the failure together with the current state
of the models. There is at least one consistency relation that is violated, which
led to the abortion of the algorithm, and this relation must belong to one of
the transformations within the cycle containing the fault. In consequence,
the transformation developer only needs to consider the transformations in
that cycle for finding the fault and, since he or she knows which consistency
relation was violated, can restrict his- or herself to the elements concerned
with the violated consistency relation. While in the example each metamodel
pair only shares one consistency relation, in larger transformations more
relations may be involved.

Regarding the number of transformations to consider for finding the fault,
this means that at most three transformations need to be considered, as this
is the largest simple cycle of transformations containing an incompatibility
in its consistency relations:

considered transformations ratio =
3
5

Even if the transformation between UML class and component models is
the last to be executed, still only three transformations must be considered.
Although there is an incompatibility in both simple cycles in which that trans-
formation is contained, investigating one is sufficient, because the fault must
be visible in both of the simple cycles involving the last executed transfor-
mation. Otherwise, the symmetric difference of the transformations in both
cycles, which again forms a simple cycle, would also contain incompatible
relations. This can not be the case, as consistency to these transformations
was already achieved. In the example, if the cycle of transformations between
UML component models, UML class models, and Java code did not contain
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𝑎 𝑏

𝐶𝑅𝐴𝐵 = {⟨𝑎, 𝑏⟩ | 𝑎.𝑛, 𝑏.𝑛 ≥ 0
∧ 𝑏.𝑛 = 𝑎.𝑛 + 1 ∧ 𝑏.𝑛 ≠ 𝑥}

𝑎 𝑐

𝐶𝑅𝐴𝐶 = {⟨𝑎, 𝑐⟩ | 𝑎.𝑛 = 𝑐.𝑛}

𝑎

𝑑

𝐶𝑅𝐴𝐷 = {⟨𝑎, 𝑑⟩ | 𝑎.𝑛 = 𝑑.𝑛}

𝑏 𝑐

𝐶𝑅𝐵𝐶 = {⟨𝑏, 𝑐⟩ | 𝑏.𝑛 = 𝑐.𝑛} 𝑐

𝑑

𝐶𝑅𝐶𝐷 = {⟨𝑐, 𝑑⟩ | 𝑐.𝑛 = 𝑑.𝑛}

+𝑎 𝑎.𝑛 ≠ 𝑥−1−−−−−−−−→ +𝑏 (𝑛 = 𝑎.𝑛 + 1)
+𝑏 𝑏.𝑛 ≠ 𝑥−−−−−−→ +𝑎(𝑛 = 𝑏.𝑛 − 1)

+𝑎 → +𝑐 (𝑛 = 𝑎.𝑛)
+𝑐 → +𝑎(𝑛 = 𝑐.𝑛)

+𝑎 → +𝑑 (𝑛 = 𝑎.𝑛)
+𝑑 → +𝑎(𝑛 = 𝑑.𝑛)

+𝑏 → +𝑐 (𝑛 = 𝑏.𝑛)
+𝑐 → +𝑏 (𝑛 = 𝑐.𝑛)

+𝑐 → +𝑑 (𝑛 = 𝑐.𝑛)
+𝑑 → +𝑐 (𝑛 = 𝑑.𝑛)

Figure 9.4.: Extension of the example in Figure 7.2 with consistency relations and associated
transformations that require an arbitrary number of executions, depending on value 𝑥 .

an incompatibility, either the consistency relation between UML component
models and Java code or the one between UML class models and Java code
would need to assume the “Impl” suffix as well. Then, however, the cycle of
relations between all four metamodels would contain an incompatibility.

Orchestration Problem

Figure 9.4 depicts the second scenario. It is an extension of the abstract
example depicted in Figure 7.2 as a demonstration for the non-existence of
an upper bound for the number of necessary transformation executions in a
transformation network. The extended example contains an additional meta-
model, thus consisting of four metamodels, each containing one metaclass.
Apart from that, it also contains consistency relations that require for each of
the abstract elements 𝐴, 𝐵,𝐶 , and 𝐷 other elements with the same value of 𝑛
to exist. Only the relation between 𝐴 and 𝐵 requires the value 𝑛 of 𝐵 to be
higher by one than the one of𝐴, except for some value 𝑥 of 𝑛, for which there
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must be no such element 𝐵 for an existing 𝐴. Although these constraints
make it difficult to find consistent models, they are actually compatible, as
for each element there is a consistent model tuple containing it.

The depicted consistency preservation rules try to resolve this issue by adding
elements to fulfill the consistency relations. This leads to the situation that
adding an element 𝐴 with value 1 at least 𝑥 − 1 transformation executions
are necessary (see Lemma 7.1). Thus, any application algorithm must either
perform that many executions or fail returning ⊥ or inconsistent models.
When an algorithm performs that many executions, it can actually not be
allowed to define any arbitrary execution bound, because the value of 𝑥 can
be arbitrarily high. Thus due to the orchestration problem, as discussed in
Subsection 7.2.1, such a behavior leads to non-termination in other scenarios,
which is not a competitive behavior compared to our proposed algorithm,
since we want to avoid non-termination. In consequence, any useful applica-
tion algorithm will fail in that example.

While an arbitrary application algorithm with an artificial termination crite-
rion will fail in an unexpected state without any guarantee for usefulness of
the state in which it fails to identify the reason for the failure, the provenance
algorithm fails in the same cases and in the same way that we have already
discussed for the first scenario. As soon as a transformation is executed that
induces a cycles with the executed ones and contains the transformation
between 𝐴 and 𝐵, the algorithm will fail. In that case, the developer knows
that the problem arises from the transformations in the cycle that was closed
by the last executed transformation. This improves the process of finding the
cause for the failure in the way as in the first example. In the worst case, the
first cycle closed during execution containing the transformation between 𝐴

and 𝐵 is the one of length 4 between all metamodels. Thus, we have:

considered transformations ratio =
4
5

9.3.3. Discussion and Validity

The discussed scenarios give us specific insights about the usefulness of the
proposed provenance algorithm, which we summarize in the following. In
addition, we discuss threats to the validity of the results that especially arise
from the construction of our scenario-based evaluation.
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9.3.3.1. Insights

In the discussed scenarios, we have seen that using the provenance algorithm
the number of transformations to consider for finding a fault that leads to a
failure during execution is restricted by the length of the largest simple cycle
of transformations that contains the faulty transformation. By construction
of the algorithm, it fails as soon as a cycle of executed transformations is
closed that contains a faulty one. In addition, by construction the fault can
be found in each of the simple cycles of the already executed transformations
that contain the last executed one. Thus, in the worst case the transforma-
tions in the largest simple cycle of transformations containing the faulty one
need to be considered to find it. In consequence, as long as the transforma-
tion network does not only consist of one simple cycle of transformations,
the algorithm does always ensure that not all transformations need to be
considered in case of a failure. In fact, it ensures that in a network of 𝑛
metamodels at most 𝑛 transformations need to be considered.

This also shows that we can further improve the algorithm by determining a
reasonable selection order for the transformations. Instead of choosing an
arbitrary one to be executed next, cycles should be closed first, because this
ensures that smaller simple cycles are closed early. As an example, consider
the second scenario. If we first execute the transformation between 𝐴 and
𝐵 and then the one between 𝐵 and 𝐶 , it is better to then execute the one
between 𝐴 and𝐶 to close the cycle, as the algorithm then already fails. If the
transformations to 𝐷 are executed before closing that cycle, we first close a
cycle of length 4 rather than one of length 3. Both lead to a failure, but we
expect the effort to find the fault in the latter case to be lower.

Since we did not perform an empirical evaluation but only a scenario-based
discussion, our finding only serve as an initial indicator for the usefulness
of the provenance algorithm in terms of improving the ability to identify
reasons for failing as asked by Question 5.1. Still, we found a criterion in the
scenarios, which is induced by the construction of the algorithm, that limits
the number of transformations that need to be considered to identify a fault.
This is an improvement regarding any arbitrary other strategy, which, in the
worst case, can require the investigation of all transformations. Whether or
not this metric reasonably reflects usefulness of the approach does, however,
remain a threat to validity until its validation in an experiment.

368



9.3. Orchestration Algorithm

9.3.3.2. Threats to Validity

In the evaluation, we found a criterion that shows that the proposed algo-
rithm improves the investigated metric in all cases. Still, there are threats to
construct and external validity that need to be mitigated by further studies.

We assumed the number of transformations to consider to be related to the
usefulness of the strategy in terms of the ability to find a fault. Whether this
assumption holds is a threat to construct validity. To mitigate this threat, we
did not only focus on the evaluation of that metric, but we also presented
qualitative arguments and discussed further quantifiable improvements, such
as the restriction of consistency relations to consider in case of a failure to
identify the cause.

Finally, we have compared our proposed approach with an arbitrary strategy
for transformation orchestration. In this comparison, we always guarantee
an improvement in worst-case performance. There may, however, be another
strategy that performs better or at least equal to the proposed approach
in all cases. This can limit external validity of the results. We tried to
mitigate this issue by systematically deriving a strategy for orchestration
that performs better than other strategies in all cases with respect to a well-
defined criterion. As discussed in Subsection 7.3.1, we have developed a
simulator for evaluating different strategies, but unfortunately we found
each strategy to be outperformed by at least one other strategy regarding
their ability to find a consistent orchestration in at least one scenario. Thus,
we do not expect another strategy to be systematically better than the one we
proposed, but, in the best case, only to perform better in specific situations.

9.3.4. Limitations and Future Work

Limitations of the provenance algorithm especially arise from its focus on
theoretic properties and the missing discussion and evaluation of its practical
application. We discuss specific limitations in the following and derive
opportunities for future work.

Evidence for Generalizability The most relevant limitation of the proposed
algorithm concerns the validity of the evaluation results regarding the pro-
posed properties of the approach. While statements on the correctness and
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well-definedness of the approach have been proven, its usefulness was only
validated in a scenario-based discussion, which especially suffers from po-
tential threats to construct validity, as it is unclear whether the metric we
have investigated actually reflect usefulness of the strategy in terms of reduc-
ing the time and effort when identifying faults in transformation networks.
Thus, we plan to perform a controlled experiment in which the information
delivered by our approach and by other strategies are presented to different
groups of developers. Evaluating how long they take to find and fix faults and
how successful they are in both situations helps us to validate the expected
properties and improve evidence of the results.

Well-Defined Design Property The provenance algorithm gives the guar-
antee of finding a consistent orchestration as long as the transformations
fulfill the property of being reactive converging (see Definition 7.8). This
property can, however, neither be easily guaranteed nor analyzed. We have
argued why this is still a reasonable property, but a property that can at least
be analyzed at design time to avoid failures during execution would still be
beneficial. Such a property can, however, easily restrict expressiveness of
transformations, as we have discussed in Subsection 7.2.4. Still, finding such
a property would be a valuable contribution and thus serves as a starting
point for future work.

Transformation Selection Order In the evaluation, we found that selecting
transformations in an order such that smaller cycles of executed transfor-
mations are closed first may be beneficial, because it reduces the number
of transformations that need to be investigated to find a fault whenever the
algorithm fails. While the considerations in the evaluation scenarios indicate
it to be reasonable, we want to systematically investigate such an order and,
in the best case, prove its improvement in future work.

Holistic Application Process Finally, we have only discussed how our pro-
posed approach supports a transformation developer in identifying faults
in transformations. In practice, a failure may however not occur when a
transformation developer tests a transformation network, which allows him
to directly identify and fix the fault. Instead, a transformation network may
be in productive use, thus a failure occurs when a user of that network ap-
plies the transformations to preserve consistency. Then, a holistic process
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is required for reporting and fixing such errors, which needs to define the
responsibilities. Additionally, such a process will not be just-in-time, thus
the project in which the transformation network is applied needs to be able
to deal with the fact that consistency cannot be preserved for some time.
Such a process is, for example, also part of the research in the Vitruvius
project (see [Kla+21]), to which the results of this thesis contribute, and thus
constitutes a general topic of future work. The author of this thesis also
contributed to a group discussion in a Dagstuhl seminar that considered that
topic [TK19].

9.4. Conclusions

In the presented evaluation, we have discussed and provided empirical evi-
dence for several statements regarding the categorization of errors in trans-
formation networks and our approaches for synchronization, analyzing com-
patibility, and orchestration to avoid such errors, which we could not prove.
Arising from the assumptions that we made for this thesis and discussed in
Subsection 1.3.2, our contributions and their evaluation have some general
limitations, which we shortly discuss in the following together with a deriva-
tion of general topics for future work. We finally summarize the results of
our evaluation.

9.4.1. Overall Limitations and Future Work

For the correctness of transformation networks, we have presented a formal
notion based on a well-defined formalism and derived different properties of
correct transformation networks. This thesis especially provides a general
formalization of the overall problem and a division into smaller sub-problems,
for which it provides individual contributions and insights. While we made
some initial assumptions that lead to general limitations of our contributions,
they also provide space for future work.

Binary Consistency As discussed in Subsection 1.3.2, we assume a develop-
ment process in which modular transformations are developed and reused
independently. In Chapter 4, we have then introduced our central formalism
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based on a modular notion of consistency, for which we defined correctness
of transformation networks. We decided to focus on transformations that rely
on a binary notion of consistency. While this is a limitation, since not every
multiary consistency relation can be decomposed into binary ones [Ste20b],
for most considerations we made this limitation is actually only for ease of
understanding but without loss of generality. Thus most of our considera-
tions and contributions also apply to networks of transformations of which
each relates more than two models. Since we did not explicitly consider that
case, however, we currently need to accept it as a limitation, until we validate
whether and which statements generalize in future work. This also resolves
the issue that our approaches can currently only be applied to relations that
are denoted as binary-definable by Stevens [Ste20b].

Structural Consistency In addition, we restricted ourselves to structural
consistency relations (see Subsection 3.1.2). We need to investigate how
far our insights and approaches apply to behavioral and extra-functional
consistency relations as well. In fact, there is no conceptual limitation in
our formalism that prevents it from being applied to behavioral relations. A
hypothesis from a Dagstuhl seminar [Cle+19] states that behavioral relations
may be more likely to be multiary, whereas structural relations are more
likely to be binary. That would reduce this limitation to the one regarding the
restriction to a binary consistency notion and thus imply the same necessity
for future work.

Concurrent Editing Finally, we assumed that a user only changes one model,
for which consistency then has to be preserved. Thus, we do not consider
concurrent edits to multiple models by one or more users. Although, from a
conceptual point of view, networks of synchronizing transformations can
also handle concurrent edits in multiple models, as the transformations need
to be synchronizing anyway, the process of dealing with problems must be
different. While failures that occur without concurrent user edits in different
models indicate faults within the transformations, concurrent edits can also
lead to failures just because conflicting changes were made and are thus
invalid. These cases must at least be distinguished and potentially lead to the
necessity of different processing. This topic requires further investigation
in future work, also incorporating existing work on considering concurrent
updates in single transformations [Xio+09; Xio+13].
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9.4.2. Summary

In the preceding chapters, we have introduced a notion for correctness of
transformation networks and identified three specific problems to be dis-
cussed in detail. We have proposed an approach to analyze compatibility
of consistency relations, whose formal representation is proven correct and
for whose practical realization we empirically validated correctness and
completeness. Transformations must be synchronizing to be used in trans-
formation network. We have derived properties that transformations which
are specified in existing languages for bidirectional transformations need to
fulfill, for which we haven proven that they ensure synchronization. In an
empirical evaluation, we have shown that the proposed approach to fulfill
these properties is correct and complete. Finally, we have discussed the or-
chestration problem of finding consistent orchestrations for transformations,
for which we have proven undecidability. We have proposed an algorithm
that conservatively approximates a solution to that problem, for which we
have also proven correctness and completeness and validated usefulness in a
scenario-based discussion.

In addition, we have analyzed what happens if correctness notions are not
fulfilled. We have proposed a categorization of mistakes, faults, and failures,
which assigns mistakes to different conceptual levels in the specification
process of transformation networks and shows that specific failures can be
avoided if certain mistake types are avoided. We found that mistakes due to
missing synchronization can be avoided by construction of a single trans-
formation without knowledge about the other transformations to combine
it with. Mistakes due to incompatible consistency relations can be found
by analysis, and other mistakes are only found by failures during execution.
An empirical evaluation has shown that this categorization is correct. In
particular, the evaluation has also revealed that most of the faults that are
likely to occur in practice are due to missing synchronization and can thus
be avoided by construction. Of the remaining faults, most are due to incom-
patible constraints and can thus at least be found by analysis at design time.
This is a promising insight, because it fosters the independent development
of transformations, as most failures can already be avoided without knowing
about other transformations to combine it with. Thus, as a central takeaway,
it is particularly important to ensure that transformations are synchronizing
by construction.
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10. Classifying Transformation
Networks

In the previous chapters, we have discussed how correctness of transfor-
mation networks can be achieved under the assumption of independent
development and modular reuse of the individual transformations. Artifacts
of the software development process, and thus also transformation networks,
have, however, further relevant properties than functional correctness. Other
properties especially concern the quality of artifacts regarding several di-
mensions, as also defined by ISO standard 25010 [I25010]. For the operation
of a piece of software, besides functionality also its performance, usability,
reliability, and security are relevant, whereas for its development especially
its maintainability and portability are of interest [I25010, Tab. 2].

These dimensions of quality properties are directly related to the stakeholders
for which they are relevant. While most property dimensions are related to
the operation of a system, which in our case is the transformation network,
and are thus relevant for users, i.e., for the people developing a system whose
artifacts are kept consistent with transformations (see Section 3.2), especially
maintainability is important for those who develop and maintain a transfor-
mation network [I25010, Tab. 2]. Although all these properties are relevant
and have to be considered when developing transformation networks, we
explicitly put the focus on those that are relevant for developers of transfor-
mations and transformation networks (see Subsection 1.3.4). Thus, in the
following, we particularly focus on properties regarding maintainability of a
transformation network in addition to its functionality.

In our motivation in Chapter 1, we have derived several assumptions re-
garding the process of transformation network construction. In particular,
we have identified independent development and modular reuse of transfor-
mations to be essential assumptions, which directly imply that consistency
relations may be defined and preserved transitively and repeatedly across
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different paths of transformations, thus inducing a dense graph of transfor-
mations. Since different qualities properties highly depend on the topology
of a transformation network, we aim to identify these dependencies and thus
discuss which topologies of transformation networks should be distinguished,
independent from the initial assumptions that we have made. We then dis-
cuss how these topologies influence quality properties and identify trade-offs
between these properties, especially concerning functional correctness and
reusability. Instead of assuming modular reuse and then deriving how to
achieve functional correctness, as it was the goal of the previous chapters,
we consider topologies with inherent correctness properties and investigate
how to improve quality properties, such as their independent reuse.

This chapter thus constitutes our contribution C 2.1, which consists of two
subordinate contributions: a discussion of quality properties and their mani-
festation in transformation networks; and a classification of transformation
network topologies with a discussion about their impact on properties. It
answers the following research question:

RQ 2.1: What are relevant properties and topologies of transformation
networks and how are they related?

With the insights in this chapter, transformation developers and users be-
come aware of further quality properties of transformation networks besides
correctness. They understand how the topology of a network affects these
properties and, thus, between which of them trade-off decisions for their
improvement have to be made.

Parts of the contributions in this chapter have been published in previous
work [Kla18]. This especially concerns the identification of general relations
between topologies and quality properties of transformation networks as
well as the implication of trade-offs between these properties.

10.1. Properties of Transformation Networks

The most essential property of transformation networks, which we have also
considered in the last chapters, is correctness, or more precisely functional

correctness according to ISO standard 25010 [I25010, p. 11]. In addition to
its correctness, functionality can be regarded in terms of completeness and
appropriateness [I25010, p. 11]. While completeness concerns the degree to
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which functions cover all intended objectives, appropriateness is the degree
to which functions facilitate the conduction of tasks to achieve the intended
objectives. In terms of a transformation network, completeness represents
whether the network is able to preserve all consistency relations, which
requires transformations for all existing relations to keep consistent to be
defined. Since appropriateness especially concerns manual effort, it is not as
relevant in a fully automated process. Appropriateness would especially be
of interest if the user is involved in the consistency preservation process by
clarifying its intent or making necessary decisions to adapt models for being
consistent, which can influence how far the automation facilitates the process
of consistency preservation. Thus, in addition to functional correctness, we
also discuss functional completeness as a relevant property and relate it to
our requirement of universality, as defined in Chapter 1.

In our work, we focus on properties of transformation networks that are rele-
vant for their developers (see Subsection 1.3.4). Thus, in addition to functional
properties of such networks, we especially consider properties regarding
their maintainability [I25010, Tab. 2], which describe the “degree of effective-
ness and efficiency with which a product or system can be modified by the
intended maintainers” [I25010, p. 14]. Maintainability includes the properties
modularity, reusability, analyzability, modifiability, and testability [I25010,
pp. 14]. We have already covered the former two properties of modularity
and reusability implicitly in our assumption of modular reuse as well as ana-
lyzability in the goal of comprehensibility. In previous work [Kla18], we have
also discussed properties of transformation networks but without basing
them on a common understanding defined by the mentioned ISO standard.

10.1.1. Correctness

According to ISO standard 25010 [I25010], functional correctness denotes to
which degree a system, in our case a transformation network, provides correct
results. We have intensively discussed this property in the previous chapters,
starting with a definition of correct results in Chapter 4 and discussing how
to achieve transformation networks that fulfill such a correctness notion
in Chapter 5 to Chapter 7. Thus, we do not discuss this property again
but emphasize its central importance for a transformation network to be
useful, as an incorrect transformation network leading to models of a system
description that are inconsistent will hardly provide relevant benefits.
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10.1.2. Completeness

According to ISO standard 25010 [I25010], functional completeness describes
to which degree provided functions cover all objectives. Applied to transfor-
mation networks, this means to which degree such a network can preserve
consistency according to consistency relations, be they explicitly defined
or only intended by a transformation developer. Completeness of the indi-
vidual transformations as well as of the transformations are both covered
by their notions of correctness (see Definition 4.8 and Definition 4.16). It
does, however, assume an even broader notion of what we introduced as
universality in Chapter 1. While we have introduced universality as the
ability to process transformation networks of arbitrary topology, an even
broader notion would require the applicability of transformation network to
every project in which artifacts need to be kept consistent. Thus, it would
first require that the artifacts to keep consistent are represented in a form
that is required to define transformations between them. More precisely,
the artifacts to keep consistent need to conform to some kind of modeling
formalism, such as the one we have proposed in Section 3.3 based on the
EMOF standard [MOF].

If the artifacts or, more generally, the models to keep consistent are not rep-
resented in a format conforming to such a modeling formalism, a metamodel
for them needs to be defined, and their representation may need to be trans-
formed into an instance of such a metamodel. This is especially the case for
proprietary tools that do not use a common format to represent their artifacts.
For many popular tools, however, metamodels based on the EMOF or Ecore
have already been reverse-engineered, such as MATLAB/Simulink [HB13;
Son+12; Arm+11]. In addition, the EMF as a popular modeling framework
provides an importer for XML-based specifications of metamodels [Ste+09,
pp. 86]. Tools, especially from engineering domains, often provide XML-
based representations of their artifacts, such as the electronic circuit design
tool EPLAN [Gis16] or the exchange format for automation system design
in AutomationML [I62714]. Defining a metamodel for a specific modeling
formalism, such as Ecore, and representing artifacts as models of it is always
necessary when modeling tools for that formalism shall be applied, for which
transformations are only one example. Frameworks for generating graphical
editors or model analyses could be further tools to be applied [Kla+17]. Thus,
such an integration of artifacts into model-driven processes is part of separate
research.
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In our research, we have also developed and proposed such an approach
to integrate artifacts into model-driven processes [Kla+17; Kla+19a]. It is
based on the insight that code often contains models implicitly. The tools,
whose artifacts we want to keep consistent, usually have definitions of
metamodels of their artifacts defined within their source code, but they
are only represented as a simple structure of classes instead of am explicit
metamodel according to some modeling formalisms. For example, Java graph
libraries need to contain a metamodel for representing graphs, but this is
usually just represented by a set of classes and not an explicit metamodel
according to some modeling framework. This also applies to programming
languages, for which parsers contain metamodels for their Abstract Syntax
Tree (AST) representations. We have proposed an approach that makes these
implicit metamodels explicit to apply modeling tools, such as transformations
for consistency preservation, to them [Kla+17; Kla+19a]. Since this topic and
especially the proposed approach is important for applying transformation
networks but also has further, broader application areas, we do not further
discuss it in this thesis but refer to our previous work for details about it.

10.1.3. Maintainability

We have identified maintainability as a dimension of quality properties with
central importance for developers of transformations and transformation
networks. According to ISO standard 25010 [I25010], maintainability in-
cludes modularity, reusability, analyzability, modifiability, and testability. We
discuss for these properties how they manifest in transformation networks
and especially how they are related to each other. We do not aim to measure
these properties, which is why we do not propose specific metrics for them.
For source code, it has been shown that it is hard to assess its quality, e.g.,
to measure modifiability in terms of a correlation with the number of de-
fects [GFS05; PSM02], and that only few metrics provide a correlation to, for
example, the number of defects. We only aim at identifying the influencing
factors for these properties instead of a measure for them anyway, especially
with respect to topologies of the transformation network.

Modularity: Modularity is the degree to which a program, and thus also a
transformation network, is composed of components such that changes
only influence a part of it [I25010, p. 14]. This property degrades when
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having multiple paths of transformations expressing the same consis-
tency relations, as then these paths depend on each other and may be
contradictory. Having such multiple paths can lead to incompatibilities
(see Chapter 5) or situations in which no consistent orchestration of the
transformations exists (see Chapter 7), and thus degrade modularity.

Reusability: Reusability is the degree to which assets, such as the single
transformations of a transformation network, can be used in more than
one system [I25010, p. 15]. In terms of a transformation network, reusabil-
ity of a transformation is given if it is independent from the other trans-
formations and can be used together with others in a different context.
This conforms to our notion of independent development and modular
reuse, given as assumptions in Chapter 1. Reusability profits from having
all relations between the involved metamodels expressed explicitly, i.e.,
directly between each pair of metamodels and not only transitively across
others. This leads to multiple expressions of the same relations transi-
tively across different paths of transformations, but it allows subsets of
the transformations to be used in a different context in which only a sub-
set of the metamodels is used. For example, having the relation between
PCM and Java expressed directly instead of only expressing it transitively
across the UML enables its reuse in other system development scenarios
in which the UML is not used at all. Thus, reusability degrades when
modularity improves.

Analyzability: Analyzability is the degree to which the impact of a change
can be assessed effectively and efficiently or to which defects can be
identified afterwards [I25010, p. 15]. On the one hand, this is important
for the single transformations, as analyzing the impact of a change espe-
cially concerns the intended change of the behavior of a transformation.
That is, however, also a topic of dedicated research about transforma-
tion validation and verification [Cab+10; AW15; AZK17; Val+12]. On
the other hand, this is important for the interplay of transformations,
thus how a change to one transformation affects interoperability with
the others. This is, again, directly related to the existence of multiple
paths of transformations preserving consistency to the same relations,
as it influences how many other transformations may be affected and
potentially need to be updated due to the modification to one of them.
Consequently, the more relations are preserved across multiple paths
of transformations, the more transformations may be affected by a sin-
gle change and introduce interoperability problems that may be hard
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to analyze (see Chapter 7). Analyzability is also related to the notion
of comprehensibility that we have introduced in Chapter 1. The lower
analyzability is, the harder it becomes for a transformation developer to
comprehend what the combination of transformations actually does, how
an intended change can be performed, and what its impact is. We have
also used comprehensibility to motivate the design of our orchestration
algorithm in Section 7.4, which is driven by the goal of easing the analy-
sis of failures of the transformation network, analogous to analyzability.
Thus, analyzability improves with modularity.

Modifiability: Modifiability is the degree to which a system can be modified
without introducing defects or degrading quality [I25010, p. 15]. It is
directly influenced by modularity and analyzability, as also stated by the
ISO standard [I25010, p. 15]. In terms of a transformation network, this
can include the adaptation of existing transformations or the extension of
an existing network with further metamodels and transformations. The
same arguments as for modularity and analyzability apply, and thus mod-
ifiability improves and degrades with modularity of the transformation
network. For example, the complexity of adding a new transformation,
which is covered by modifiability, depends on the number of transfor-
mations that already, and in particular transitively, preserve relations
between the two metamodels related by the new transformation.

Testability: Testability is the degree with which test criteria can be effec-
tively and efficiently established and evaluated by test cases for a prod-
uct [I25010, p. 15], such as a transformation network. While there are
many influencing factors for testability, such as encapsulation and cou-
pling within the implementation, it is, again, also influenced by the
number of transformation paths across which consistency relations are
preserved. The more paths of transformations preserving the same con-
sistency relations exist, the larger is the set of models to be considered
and transformations to be executed for testing correctness of preserving
consistency according to a certain relation. This increases complexity
of the tests to perform. Testability is also highly related to the notion of
comprehensibility that we have introduced in Chapter 1, as we have also
discussed for analyzability. The higher the number of transformations
that need to be executed to detect a failure, the more complex we can
expect the process of identifying the causing mistake to be (see Chapter 8).
Testability, just like analyzability and modifiability, thus improves with
modularity.
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The discussion shows that the existence of multiple paths of transformations
preserving consistency to the same consistency relations reduces modularity,
modifiability, analyzability, and testability, while it improves reusability. This
is because multiple representations of the same consistency relations induce
dependencies, which reduce modularity, and can contain conflicts, which
reduces modifiability. The increased complexity reduces analyzability and
testability. Reusability is, however, improved, because relations are not only
represented transitively. In the following, we identify relevant topologies
of transformation networks that reflect the effects on properties of having
multiple transformation paths preserving consistency to the same relations
and discuss their impact on properties.

10.2. Topologies of Transformation Networks

Due to our assumption of universality (see Chapter 1), we have allowed arbi-
trary topologies of transformation networks in our approaches for achieving
correctness of transformation networks. The topology of a transformation
network does, however, directly influence how prone it is to incorrectness
and also to the fulfillment of other quality properties, which we have in-
troduced in the previous section. We consider the effects of a topology to
different properties of transformation networks, for which we first discuss
the extreme cases of topologies that have extreme effects on its properties.

10.2.1. Topology Categories

Transformation networks induce a graph of metamodels as nodes and trans-
formations as edges. In general, this graph has an arbitrary topology, as there
can be transformations between any pair of metamodels, and, in particular,
there can be multiple paths of transformations between two metamodels in
this graph. As we have discussed in the previous section, properties of trans-
formation networks are especially influenced by the presence of multiple
paths of transformations between the same metamodels. Thus, the density
of the graph has gradual influence on the quality properties of the network.
Two extremes of topologies contain the minimum and maximum numbers
of paths between each pair of metamodels. They are given by complete
graphs and trees, as exemplarily depicted in Figure 10.1. While complete
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(a) Complete graph (b) Tree

Figure 10.1.: Examples for extreme topologies of transformation networks with five metamodels.
Nodes depict metamodels and edges depict transformations. Adapted from [Kla18, Fig. 2].

graphs contain an edge between each pair of nodes, i.e., one transformation
between each pair of metamodels, a tree contains only one path between
each pair of nodes, i.e., only one sequence of transformations between two
metamodels. We have already discussed the effects of these extremes in
previous work [Kla18].

In a complete graph (see Figure 10.1a), each node is connected to each other
by an edge. In consequence, each of the 𝑛 nodes has 𝑛 − 1 edges to the other
nodes, leading to a total of 𝑛∗(𝑛−1)

2 edges. This conforms to the number of
transformations defined in a transformation network that induces a complete
graph. In addition, the paths of transformations between two metamodels are
given by paths of all lengths between 1 and 𝑛−2 involving all permutations of
the remaining 𝑛 − 2 metamodels. This leads to

∑︁𝑛−2
𝑖=0

(𝑛−2)!
(𝑛−2−𝑖 )! =

∑︁𝑛−2
𝑖=0

(︁
𝑛−2
𝑖

)︁
𝑖!

transformation paths between each pair of metamodels.

In practice, the induced graph of a transformation network will, of course,
usually not be complete but a graph of arbitrary density, in which there may
be clusters of complete subgraphs. Imagine the development of an automobile,
in which models from different domains, such as electrical engineering,
mechanical engineering, and software engineering, are involved. While
models within one domain may all be related by transformations, there may
be specific interface models that are used to relate the models of one domain
to those of the others, which avoids the necessity to have knowledge about
the relations between all models across existing domain borders.

In a tree (see Figure 10.1b), there is only one path between each pair of nodes.
Thus, a tree of 𝑛 nodes has 𝑛 − 1 edges. A transformation network that
induces a tree thus has a number of transformations reduced by a factor
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Category Property Complete Graph Tree

Functionality Correctness - ++
Completeness ++ -

Maintainability

Modularity - +
Reusability ++ -
Analyzability - +
Modifiability - +
Testability - +

Table 10.1.: Effects of topology extremes on quality properties. “+” and “-” indicate whether a
topology improves or degrades a property, “++” denotes inherent optimization of the property.

of 𝑛
2 in comparison to a complete graph and an even greater reduction in

the number of transformation paths between two metamodels. This leads
to significant advantages regarding interoperability of the transformations,
which we categorize in more detail in the following.

A transformation network inducing a complete graph can naturally be
achieved by expressing each consistency relation in a transformation. If two
metamodels are not related at all, the according transformation does nothing.
Defining a tree is, however, more complex, as it imposes severe restriction
regarding the transformations in which relations have to be preserved to
avoid having two paths of transformations between the same metamodels. In
the following, we discuss the effects of these extreme topologies and derive
which inherent property guarantees a specific topology can give.

10.2.2. Effects on Properties

We have discussed in Section 10.1 how the existence of multiple transforma-
tion paths between two metamodels affects quality properties of transforma-
tion networks. In the previous subsection, we have identified complete graphs
and trees as two extremes of topologies of transformation networks that have
particular effects on the existence of such multiple paths. These topology
extremes have extreme effects on the quality properties of a network.
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𝐶𝑅2

𝐶𝑅1 𝐶𝑅3

𝐶𝑅4 𝐶𝑅5

𝐶𝑅2

𝐶𝑅4 𝐶𝑅5

𝐶𝑅2 ⊗ 𝐶𝑅4 ⊆ 𝐶𝑅1

𝐶𝑅2 ⊗ 𝐶𝑅5 ⊆ 𝐶𝑅3

Figure 10.2.: Example for consistency relations in a graph that can be equally represented by
consistency relations in a tree. Adapted from [Kla18, Fig. 3].

Table 10.1 summarizes the impact of topologies on quality properties. The
classification is only based on the existence of multiple transformation paths
between the same pairs of metamodels, as we have discussed in Section 10.1.
There are, of course, more influencing factors that can improve or degrade
these properties. In fact, we are particularly interested in properties that are
inherently optimized by specific topologies, which are functional correctness
and completeness as well as reusability.

Modularity, analyzability, modifiability, and testability all benefit from the
absence of multiple transformation paths between the same metamodels,
because the information about one relation is only located at one place,
which can be a single transformation or a single sequence of them. But the
information is not duplicated across several transformation paths. Since we
expect a benefit from the absence of duplications for the mentioned properties,
we classify them as improved by tree topologies and degraded by complete
graphs. There are, however, further influencing factors that may mitigate
this classification. For example, to achieve a tree it is necessary to express
at least some of the relations indirectly across multiple transformations, as
not each relation can be expressed directly. This can degrade properties like
modifiability, as it gets more complicated to comprehend relations if they are
defined across multiple transformations rather than in a single one.

Completeness and reusability are inherently given in networks inducing a
complete graph. A complete graph of transformations allows to preserve
consistency to any set of binary consistency relations, as the topology does
not restrict between which metamodels transformations are allowed to be
expressed. Trees, on the other hand, do not allow to express every set of
relations, as we have already motivated in Section 1.2.2. If, for example, the
PCM, the UML, and Java all share information pairwise, which cannot be
expressed in instances of the third metamodel, there is no tree of transforma-
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tions that preserves consistency for all this information. In general, of three
metamodels there must always be one that is able to express the information
shared between the other two to encode their consistency preservation in
a tree of transformations. Transferred to model-level consistency relations
(see Definition 4.1), this means that between three metamodels there must be
a concatenation of two consistency relations that is a subset of the third. In
that case, the third relation is subsumed by the concatenation of the others
anyway and can thus be omitted. This situation is depicted in Figure 10.2.

In addition, reusability is given by complete graphs, because preserving
consistency between two metamodels is always represented in a direct trans-
formation between them, which can readily be reused. From a transformation
network inducing a tree, only subtrees of transformations can be reused with-
out loosing guarantees for consistency preservation. If, for example, PCM
and Java models are kept consistent via the UML, it is not possible to reuse
the (indirectly expressed) transformation between Java and PCM without
reusing the UML. This significantly restricts reusability in tree topologies.

Correctness, on the other hand, is inherently given in networks inducing
a tree topology. Between each pair of metamodel there is only one path of
transformations. In consequence, there cannot be any incompatibility (see
Chapter 5), as this requires multiple contradicting sequences of consistency
relations encoded into transformations. In addition, transformations do not
need to be synchronizing (see Chapter 6), as the situation that both mod-
els involved in a transformation have been modified is never given due to
the missing situation of multiple transformation paths modifying the same
models. Finally, only the orchestration of transformations (see Chapter 7)
remains a challenge in such trees. Although there are no cycles of trans-
formations that need to be orchestrated, and thus any topological order of
transformations starting with the node representing the metamodel of the
changed model may be selected, we have identified in Chapter 7 that it can
be necessary to execute transformations multiple times, as they need to react
to the changes performed by other transformations. This already occurs
when two transformations are chained. Since this challenge does always
occur when a transformation is able to change both involved models rather
than only one of them, the only solution is to enforce transformations to
only change one model, which may prevent relevant scenarios, as discussed
in Chapter 7. The evaluation of our approaches for achieving correctness
in Chapter 9, however, indicates that issues due to orchestration of trans-
formations may not be that relevant in practice. Summarizing, apart from
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the discussed restrictions, this leads to inherent functional correctness as
defined in Chapter 4. Thus, in a network that induces a tree, several severe
challenges for correctness of transformation networks do not occur.

An actual transformation network will usually neither induce a complete
graph nor a tree, although we have already discussed that complete graphs
are at least easier to achieve. Thus, a network will not inherently optimize
any of these properties but gradually optimize some of them, depending on
the number of duplications of preservation for consistency relations within
the transformations. This leads to a trade-off between different proper-
ties depending on the achieved topology. More duplications lead to higher
completeness and reusability, whereas less duplications improve inherent
correctness and also likely improve further discussed quality properties.

Although trees are not easy to achieve in practice due to the missing ability
of transformation networks with such a topology to express all possible con-
sistency relations, their inherent correctness guarantee is still interesting, as
we have seen how difficult correctness is to achieve in networks of arbitrary
topology in the previous chapters. In the following chapter, we thus iden-
tify and discuss how we can use this essential benefit of trees to construct
networks that still provide a high level of completeness and reusability.

In fact, we have up to now discussed the topology of transformation net-
works at the level of complete metamodels and transformations between
them. Transformations are, however, composed of rules that preserve consis-
tency according to fine-grained consistency relations, such as the ones we
have specified in Definition 4.18. Thus, we can even generalize the insights
regarding topologies from complete metamodels and transformations to
metamodel elements and fine-grained consistency relations, which then miti-
gates some of the drawbacks regarding completeness of trees. This conforms
to the notion of non-interference defined by Stevens [Ste20b], which consid-
ers transformations to be non-interfering as long as they affect independent
subsets of the metamodels and then can be executed in any order.

10.3. Summary

In this chapter, we have discussed which software quality properties, as
defined in ISO standard 25010 [I25010], are relevant for developers of trans-
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formation networks. In addition, we have identified two extremes of transfor-
mation network topologies and discussed their impacts on quality properties.
From this discussion, we were are able to derive necessary trade-offs between
the properties induced by the topology of the network. We conclude this
chapter with the following central insight.

Insight III.1 (Property Classification)
In addition to functional correctness of transformation networks, fur-
ther quality properties can be relevant for developers and users of such
networks. For developers of transformations networks, in particular
functional completeness, i.e., the ability to apply transformation net-
works to any situation in which consistency between models needs to be
preserved, and different aspects of maintainability, such as modularity,
reusability, analyzability, modifiability, and testability, are important.
Transformation networks induce a graph of metamodels and transfor-
mations between them that can, at one extreme, be a complete graph, in
which each pair of metamodels is directly related by a transformation,
and, at the other extreme, be a tree, in which each pair of metamodels is
only related by one path of transformations. While networks inducing
a complete graph inherently optimize completeness and reusability,
those inducing a tree inherently optimize correctness. Although trees
are particularly restrictive regarding completeness, and although in
practice networks inducing a tree are thus hard to achieve, their inher-
ent correctness guarantee makes them still interesting, as they avoid
multiple challenges to achieve correctness.
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We have identified in the previous chapter that the topology of the graph
induced by the metamodels and transformations of a transformation net-
work directly influences several of its quality properties, such as functional
correctness and completeness as well as maintainability in terms of modu-
larity and reusability. The extreme topologies of complete graphs and trees
imply extremes in the optimization or degradation of these properties, which
induces a trade-off between these properties by means of the topology.

In Part II, we have focused on achieving correctness for networks of arbitrary
topology, thus in general not inducing a tree but any graph topology that
can be extended to a complete graph, which inherently optimizes reusability
and completeness but requires high effort for achieving completeness. On
the contrary, a tree structure, although not that easy to achieve, provides
inherent correctness guarantees while reducing reusability and completeness
(see Subsection 10.2.2). In this chapter, we discuss how a network having a
tree topology can be constructed by introducing additional metamodels, such
that correctness is still given but reusability and completeness is improved.

The idea of adding metamodels is not only a conceptual necessity to improve
quality properties but also motivated by practical benefits. Since consistency
relations define how common information is represented in several metamod-
els redundantly, we propose to represent this common information explicitly
by means of additional metamodels. Then, only the manifestation of this
information in the models to keep consistent has to be defined rather than
an implicit encoding of common information in the consistency relations.
These manifestation relations can, of course, again be represented by trans-
formations. This way of specifying consistency with explicit metamodels
representing common information can inherently lead to a transformation
network with a tree topology.
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This chapter constitutes our contribution C 2.2, which consists of four sub-
ordinate contributions: a discussion of how common information can be
represented explicitly in dedicated metamodels and under which conditions
this is reasonable; a proposal of the Commonalities approach to construct
such metamodels and transformations for describing the manifestations of
common information in the original metamodels; a discussion of the ex-
pected benefits of the approach, especially in terms of mitigating trade-offs
between quality properties; and finally an outlook to processes of applying
the approach and of combining it with other transformations. It answers the
following research question:

RQ 2.2: How can topologies of transformation networks improve quality
properties of transformation networks?

The insights in this chapter support transformation developers in construct-
ing networks of correct, complete, and reusable transformations. It gives
a different view on consistency and the possibilities to describe it besides
consistency relations, which we expect to improve comprehensibility due to
common concepts being represented explicitly rather than encoding them
in consistency relations implicitly. The proposed construction approach for
transformation networks inherently improves several quality properties by
reducing the effort to achieve correctness of transformation networks as dis-
cussed in Part II and mitigating necessary trade-offs. It especially improves
reusability and completeness in comparison to an ordinary construction of a
network having a tree topology.

The initial idea for the contributions in this chapter has already been pub-
lished [Kla18] as well as the proposed Commonalities approach with its
expected benefits [KG19]. The approach along with a language that supports
it, which we present in the subsequent chapter, has originally been devel-
oped in the Bachelor’s thesis of Gleitze [Gle17], which was supervised by
the author of this thesis.

11.1. Consistency of Common Concepts

In Chapter 1, we have motivated that models describing the same system
share an overlap of information that leads to dependencies or, in particular,
redundancies between the models. We have made these dependencies explicit
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Class
name

Class
name
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name

Java

UML

PCM

co

{⟨co, cl⟩ | cl.name = co.name + ”Impl”}
cl

jcl

{⟨jcl, ucl⟩ | jcl.name = ucl.name}

uclco

{⟨co, cl⟩ | cl.name = co.name + ”Impl”}
cl

Figure 11.1.: Simple metamodel extracts for Java, the UML, and the PCM and consistency relations
between them. Adapted from [KG19, Fig. 1].

by means of consistency relations. In the following, we discuss an alternative
consideration of redundancies, as a special case of dependencies, by means
of common concepts. We therefore provide an introductory example to
be extended throughout the following considerations, explain the idea of
Commonalities, and discuss in which cases it can be reasonably applied.

11.1.1. Introductory Example

We employ a running example from the case study introduced in Section 2.5
involving the PCM, the UML and Java. Consistency relations comprise the
common and mostly one-to-one mappings between UML and Java as well
as the mappings proposed by Langhammer et al. [LK15] to represent PCM
architecture models in Java code and in UML class models.

In the following, we start with limited subsets of the metamodels, namely
the one-to-one mapping between components in the PCM and classes in
Java, whereby each component is mapped to a class but not vice versa, as
depicted in Figure 11.1. Consistency relations require the existence of a class
in the UML and Java for each PCM component having the component name
with an “Impl” suffix by an according unidirectional consistency relation.
In addition, the consistency relations require an equally-named UML class
for each Java class and vice versa. We extend the example in the following
sections to explain the introduced concepts.
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11.1.2. Explicit Commonalities

In the given example, classes are redundantly represented in Java and the
UML. This requires them to be kept consistent, which can, for example,
specified by means of an according consistency relation. As an alternative,
redundant classes in a Java and a UML model can also be considered rep-
resentations of a common concept, more precisely the common concept of
a class in general object-oriented design. Thus, rather than expressing this
redundancy implicitly by means of a consistency relation and a transfor-
mation that preserves consistency to it, we propose to make the common
concept explicit in an according metamodel and descriptions of how this
concept manifests in Java and the UML. Then, instead of saying that each
UML class should corresponding to a Java class and vice versa, we would
say that classes in the UML and Java are both representations of the same
concept of a class in object-oriented design.

We denote the actual metamodels that developers instantiate and want to
keep consistent as concrete metamodels, whereas we denote metamodels
that describe the concepts that such concrete metamodels have in common
as concept metamodels. Figure 11.2 depicts the concrete metamodels UML
and Java with their representations of classes. In addition, it contains a
concept metamodel for object-oriented design, which contains the common
concept of a class, shared by the UML and Java. We denote a single common
concept, such as a class, as a Commonality. Further Commonalities in object-
oriented design would be interfaces or methods. In general, a Commonality
can be considered a metaclass with the specific semantics of describing the
commonalities between elements of concrete metamodels. We say that an
element in a concrete metamodel, such as a class in the UML and Java, is a
manifestation of a common concept. The relation of a Commonality to these
manifestations is denoted by a manifestation relation («manifests»). In the
example, the relations would especially define that each class manifestation
conforms to a common class concept having the same name and vice versa,
according to the relations in Figure 11.1.

In fact, these manifestation relations can be considered consistency relations
that are preserved by ordinary transformations. Thus, in a first place the
representation of common concepts in terms of explicit Commonalities in-
troduces further effort, because it requires the definition of one metamodel
and two transformations instead of a single transformation that relates the
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Figure 11.2.: Concept metamodel for object-oriented design with a Class Commonality and its
relations to the concrete metamodels UML and Java. Adapted from [KG19, Fig. 2].

metaclasses directly. This drawback is, however, reduced by several benefits,
which we discuss in Section 11.3, such as mitigating trade-offs between cor-
rectness and reusability as well as improving comprehensibility. Finally, such
a specification can even reduce effort due to better scalability when adding
further concrete metamodels to keep consistent. For example, if another
object-oriented language such as C++ shall be kept consistent, no matter
whether only with the UML or indeed even with Java, only the manifes-
tation relation from Commonalities in the object-oriented design concept
metamodel to C++ has to be added. This may only come along with some
extensions of the concept metamodel for information shared between C++

and the UML as well as between C++ and Java that was not already shared
between Java and the UML. This reduces the effort in comparison to defining
both relations from C++ to the UML and to Java.

In general, a concept metamodel must contain Commonalities for all redun-
dancies between the concrete metamodels to keep consistent. In a mathemat-
ical sense, this can be considered as the union of all pairwise intersections of
the concrete metamodels. It can, however, not be precisely expressed as such,
because elements may be similarly represented in the concrete metamodels,
but they are not the same. One manifestation of the same Commonality
may contain different information or encode it differently, such as using
other units, than the others. This already illustrates the essential difference
to approaches in which one central model unifies all information about a
system, called a SUM (see Subsection 2.3.1), from which the models used by
different tools are derived by projections. Such a SUM can be seen as the
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Figure 11.3.: Sketched comparison for the scope of contents of concept metamodels and SUMs.

union of all concrete metamodels, whereas concept metamodels represent
the union of their pairwise intersections, as illustrated in Figure 11.3.

11.1.3. Consistency Specification Types

In Subsection 3.1.1, we have discussed the distinction of descriptive and nor-
mative specifications of consistency, which can be summarized as follows.

Descriptive Specification: Descriptive specifications describe consistency
relations that are “naturally” given when two metamodels represent
common concepts redundantly or with common or dependent properties.
In that case, a notion of consistency already exists, formally or informally,
to which the given specification must conform. This is, for example, the
case for UML class models and Java realizing object-oriented design.

Normative Specification: Normative specifications prescribe consistency for
metamodels for which no existing or common notion for consistency
exists. This is especially the case if metamodels represent different ab-
stractions or domains of a system, which have no implicit relations and for
which different possibilities to relate them exist, such as an architecture
description in the PCM and its implementation in Java.

While descriptive consistency relations between two metamodels are usually
definite, such as those for object-oriented design between the UML and
Java, normative consistency relations may vary depending on the project
context. For example, several possible relations can be defined between an
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architecture description in the PCM and object-oriented design, such as the
realization of each component as a class, as a bean in Enterprise Java Beans
(EJBs), or as a complete project [Lan17].

Describing consistency by means of Commonalities and concept metamodels
especially promises to be useful for descriptive consistency specifications,
where a “natural” relation exists due to elements representing common
concepts. It can, however, also be used to normatively define Commonalities
in terms of a normative specification. A component Commonality can, for
example, define that a component manifests as a component in the PCM
and as a class in the UML and in Java, or, more generally, in an object-
oriented design concept metamodel. This will, however, unlikely fit well
for rather complex dependencies, such as a consistency relation requiring
an implementation to fulfill some performance requirement. In such a case,
the complexity is in the specification of the relation anyway, which would
have to be replicated when defining a Commonality between performance
requirement and the implementation. Finally, this conforms to our distinction
of structural and behavioral consistency relations given in Subsection 3.1.2,
in which the Commonalities fit well for structural relations, on which we
focus in this thesis anyway.

In the following, we do not distinguish whether Commonalities are defined
for common concepts that exist naturally or for those which are prescribed
by the definition of concept metamodels and their Commonalities. We will
see that even for normative specifications Commonalities can be reasonably
defined. In Section 11.4, we also discuss how to combine ordinary transfor-
mations with the idea of concept metamodels.

11.2. The Commonalities Approach

We have motivated the idea of representing common concepts of different
metamodels in terms of Commonalities in explicit concept metamodels rather
than implicitly encoding them in direct consistency relations between the
concrete metamodels. In the following, we discuss the specification of con-
cept metamodels and the notion of manifestation relations in more detail.
We also depict how further benefits can be generated by composing concept
metamodels in terms of defining a hierarchy of them. We call this approach
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of defining and composing concept metamodels of Commonalities the Com-

monalities approach. The mitigation of trade-offs between quality properties
as the central benefit of the approach is given by the inherent possibility to
achieve a specific kind of tree topology, which we derive from the approach
before discussing different options for its operationalization.

11.2.1. Concept Metamodels

The inherent benefits of the Commonalities approach are given by the defi-
nition of additional concept metamodels, across which consistency relations
are expressed instead of defining consistency relations between the concrete
metamodels. Conceptually, it is not that relevant how the structure of these
concept metamodels and of the manifestation relations to the concrete meta-
models actually is. Still, we discuss how elements can be represented as
Commonalities in a concept metamodel and which relations beyond pure
redundancies representing exactly the same information they may express.

Figure 11.4 depicts an extension of the example given in Figure 11.2. In
addition to classes, it contains the representation of packages and associa-
tions. A package is represented as a dedicated metaclass in the UML, which
references the classes contained in that package. Java, however, does not
have an explicit representation of packages but encodes them into the pack-
age names specified within classes and, additionally, represents them in a
folder structure in which the source code files of the classes are persisted. A
concept metamodel used to preserve consistency between packages repre-
sented in the UML and Java must represent this information in any way such
that changes in Java code can be propagated into a UML model to preserve
their consistency and vice versa. To sketch an extreme, this could even be
achieved with some string attribute in the concept metamodel that encodes
this information in such a unique way that the necessary information for
both instances of the concrete metamodels can be generated. Actually, a
concept metamodel should represent such information in a reasonable struc-
ture, whose concrete characteristics have to be defined by the transformation
developer. For packages, either the representation of Java as attributes of
classes or the representation of the UML as a dedicated metaclass can be
chosen. In the given example, we define packages in the concept metamodel
as explicit metaclasses, as this makes the containment structure of classes in
packages explicit. In addition, in the complete UML and Java metamodels
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Figure 11.4.: Concept metamodel for object-oriented design with a Class, an Association and
a Package Commonality and its relations to the concrete metamodels UML and Java with a
different representation of associations as fields and packages as attributes of classes in Java.

packages are represented hierarchically, which is also easier to express as a
relation between dedicated elements rather than their implicit encoding in
the package names of classes.

Associations in the UML are used to define relations between classes. Each
association references two classes, denoting from which class to which class
the association is defined. Java does not provide an explicit representation
of associations, which usually results in their implicit representation as
fields of the class from which the association is defined and having the
type of the class to which it is defined. In the example, we have chosen to
represent an association in the concept metamodel explicitly. Fields can be
related to further elements than associations in the complete Java and UML
metamodels. Thus, having this distinction within the concept metamodel
gives it more semantics. In addition, we have chosen that the class from
which the association is defined references the association instead of having
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this reference in the opposite direction as in the UML metamodel. No matter
whether this is beneficial or not, all information that is necessary to keep
Java fields and UML associations consistent is represented by the concept
metamodel. It shows that for a concept metamodel even a representation
that differs from all its manifestations can be chosen.

As mentioned before, the only requirement to a concept metamodel is that
it must be able to represent all information that is necessary for defining
manifestation relations to the concrete metamodels, such that they are able
to preserve consistency according to some consistency relation between the
concrete metamodels. A general but rather informal rule, which has shown
to be beneficial in the implementation of a case study for our evaluation, is
to select the semantically richest among different representation options. In
the example, we have thus chosen to represent packages explicitly instead
of implicitly encoding them in package names of classes. This improves
expressiveness of the concept metamodel and makes its information easier
to use for defining manifestation relations without interpreting implicitly
encoded information in each of these relations.

Instead of defining a new concept metamodel, it is, of course, also possible to
use an existing metamodels as a concept metamodel. For example, the UML
may be considered a suitable concept metamodel for object-oriented design.
Doing so does not conflict in any way with the goals of the Commonalities
approach. Such a metamodel can then either only be considered a concept
metamodel whose instances are, by accident, also used by developers, or it
can be considered both a concept metamodel and a concrete metamodel with
a one-to-one manifestation relation between them. This is only a conceptual
differentiation with no practical impact. Only for the approach operational-
ization, which we discuss later, it has to be considered whether instances of a
concept metamodel may actually be relevant during productive use or not.

11.2.2. Composition of Concepts

We have so far discussed the idea of defining an additional concept metamodel
to represent the common concepts of two or more concrete metamodels. For
the depicted example for Java and the UML, it seems reasonable to group
the common concepts in object-oriented design in such a metamodel. In
Figure 11.1, we have also considered PCM components and their consistency
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relations to classes in the UML and Java. Although we could define a compo-
nent Commonality for PCM components and classes in the UML and Java and
consider this Commonality next to the class Commonality for UML and Java
classes, we will likely not do so because of several drawbacks. First, a com-
ponent Commonality does, semantically, not fit into the discussed concept
metamodel for object-oriented design. Thus, the concept metamodel would
have to be considered broader, potentially as one generic concept metamodel.
Second, and more importantly, such a construction would introduce further
redundancies, as the relation between classes in the UML and Java would be
expressed via the two Commonalities for classes and components.

To solve the problem of a redundant specification of the relation between
classes in the UML and Java via a class and a component Commonality,
we could combine these two Commonalities to a single one, representing
all necessary common information. If, however, further elements share
information with classes and components, they also have to be merged into
the same Commonality. In the extreme case, this could result in only having
one large Commonality that is able to represent all related information. The
manifestation relations would then have to make all kinds of distinctions
based on the information given in such a monolithic Commonality.

An intuitive solution for the example scenario is to not consider classes in the
UML and Java as manifestations of a component Commonality but to consider
the class Commonality as a manifestation of the component Commonality.
Then the relation between classes in the UML and Java is still represented
across one specific class Commonality, whereas the manifestation relation
of the component Commonality only has to be defined for the concept of
classes instead of their concrete manifestations.

Abstracting from this concrete example, we propose to define hierarchies
of Commonalities and concept metamodels, such that a manifestation of a
Commonality does not have to be some classes of a concrete metamodel
but can also be Commonalities of other concept metamodels. We depict
such a structure for the example of classes and components in Figure 11.5.
This allows to define one concept metamodel for each kind of concept, such
as object-oriented design or component-based design, and then compose
these concepts hierarchically. In consequence, it avoids the specification
of a single concept metamodel that may become unmanageably large and
again suffers from bad modularity, as it needs to combine information from
as many concrete metamodels as have to be kept consistent.
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Figure 11.5.: Concept metamodels for component-based and object-oriented design and their
manifestation relations between each other and to concrete metamodels for the example intro-
duced in Figure 11.1. Adapted from [KG19, Fig. 3].

Since constructing such hierarchies induces a tree topology between the
concrete and the concept metamodels, this construction suffers from the
drawbacks regarding completeness, which we have already discussed in
Subsection 10.2.2. Given two concrete or concept metamodels, there must
be one that can be considered the manifestation of the other, or it must be
possible to define a concept metamodel for them such that finally a tree of
concrete and concept metamodels is achieved. First, this is an assumption
and thus a limitation of the approach, for which we provide preliminary
results regarding applicability in our evaluation in Chapter 13. Second, we
further discuss these requirements regarding a tree structure in the following
subsection to relax the restriction currently defined at the level of metamodels
and consider a more fine-grained restriction at the level of metaclasses.

11.2.3. Tree Topology

In Subsection 10.2.2, we have discussed the benefits of a tree topology in-
duced by the metamodels and transformations of a transformation network,
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Figure 11.6.: Concept metamodels for component-based and object-oriented design and their
manifestation relations between each other and to concrete metamodels for the example intro-
duced in Figure 11.1 and extended with components in the UML. Adapted from [KG19, Fig. 3].

especially concerning inherent correctness. We have proposed the hierarchic
composition of concept metamodels in the previous subsection to achieve
a tree structure of manifestation relations in the Commonalities approach,
which leads to a transformation network having a tree topology when realiz-
ing the manifestation relations as transformations.

This approach does, however, assume that such a tree topology of concept
metamodels can always be achieved. Since we have up to now discussed the
topology at the level of complete metamodels and transformations between
them, it is easy to see that a tree cannot be achieved in many situations.
This is always the case if one concrete metamodel contains concepts that are
to be represented in multiple concept metamodels. For example, the UML
contains concepts both from object-oriented design and component-based
design, which easily conflicts with the goal of achieving a tree topology.
Figure 11.6 depicts this example for classes and components in the UML.
UML classes have a common concept with the concrete metamodels Java
in object-oriented design, and UML components have a common concept
with the concrete metamodel PCM in component-based design, which both,
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in turn, share a manifestation relation. This breaks the tree topology at the
level of metamodels and transformations between them.

Although the bounds of metamodels are usually motivated by their neces-
sity to fit for a specific purpose (see Subsection 2.1.1) and thus to represent
specific concepts, metamodel bounds are, in general, arbitrary. Especially
if metamodels have a rather general purpose, such as the UML or program-
ming languages like Java, they may contain elements representing multiple
different concepts, or the same elements may even be considered manifesta-
tions of multiple concepts. The former case leads to the situation that the
elements of a metamodel may be separated by the different concepts they
represent, thus virtually forming multiple metamodels. Usually, however,
even elements representing concepts from different domains are still related,
for example, by having the same super types like NamedElement, which makes
their separation into different metamodels impossible.

The benefit of inherent correctness guarantees of transformation networks
with tree topology arises from the fact that there are no two paths of trans-
formations between the same metamodels, as discussed in Section 10.1. This
is, however, already given if two paths of transformations affect disjoint sets
of elements and thus do not interfere. Such a notion of non-interference has
already been defined by Stevens [Ste20b], which specifies that two transfor-
mations changing the same model do not interfere if changing their execution
order does not change the result. Since each transformation ensures consis-
tency to its consistency relations and since the result is independent from the
execution order of non-interfering transformations, it is guaranteed that the
resulting models are consistent to both non-interfering transformations.

This informally stated notion of having all pairs of paths of transformations
affect disjoint sets of elements, given, for example, by non-interference, con-
forms to our notion of consistency relation trees as specified in Definition 5.6
for proving compatibility of consistency relations. It defines that for each
pair of concatenations of consistency relations either the left class tuples or
the right class tuples must be disjoint, such that sequences of transformations
preserving consistency to these relations affect disjoint sets of objects. In
consequence, it is sufficient to ensure that the graph of consistency relations
defined by the manifestation relations is a consistency relation tree to ensure
compatibility of the network. Since Definition 5.6 assumes the consistency
relations to be connected according to Definition 5.5, we may actually have
multiple independent consistency relation trees, whereby independent means
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that the relations affect disjoint sets of classes. For reasons of simplicity, we
relax that definition in our further discussions and consider multiple inde-
pendent consistency relation trees as consistency relation trees as well. Due
to the lack of multiple transformation paths affecting the same elements, it is
also not necessary to ensure that transformations are synchronizing. Thus,
even for this relaxed notion in comparison to trees at the level of metamodels
and transformations, as depicted in Subsection 10.2.2, correctness guarantees
for the transformation network are given.

Still, this relaxed notion represents a requirement for the Commonalities
approach to provide specific benefits. We show at a case study in our evalua-
tion in Chapter 13 that it is actually possible to achieve such a structure in
practical scenarios, which serves as an indicator for its general achievability
and thus the possibility to have inherent correctness guarantees when ap-
plying the Commonalities approach for preserving consistency of multiple
models. Finally, the notion could even be further relaxed, as it must finally
only be ensured that only one transformation path between two elements
exists at runtime. Even if there are two possible relations defined in the trans-
formations, it can be the case that further constraints ensure that at runtime
only one path is relevant, because the constraints are mutually exclusive.

11.2.4. Operationalization

Up to now, we have discussed how to express consistency by means of
concept metamodels with Commonalities and manifestation relations in the
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Commonalities approach. To actually preserve consistency of instances of the
concrete metamodels, such a specification must also be operationalized, such
that executable transformations that can be applied after changes to these
models are present or derived. We can distinguish the following two basic
options for this operationalization, which are also depicted in Figure 11.7.

Concept Metamodels as Additional Metamodels: The concept metamodels
are considered as ordinary metamodels and manifestation relations as
ordinary transformations. Thus, we consider a transformation network
of concrete and concept metamodels, whose instances are kept consistent
by transformations for the manifestation relations.

Transformations between Concrete Metamodels: Concept metamodels and
manifestation relations are only used as auxiliary specification artifacts
from which direct transformations between the concrete metamodels are
derived. For example, from the object-oriented design concept metamodel
in Figure 11.2, a transformation between Java and the UML is derived.

The benefit of treating concept metamodels as ordinary, additional metamod-
els and the manifestation relations as transformations is easy achievability.
No specific languages or generators are required to derive the necessary
artifacts, but existing tools for defining metamodels and transformations can
be used to define concept metamodels and manifestation relations that can
be readily used to preserve consistency of their instances. A drawback of this
approach is that it requires the management and persistence of additional
artifacts, namely the instances of the concept metamodels, which are only
auxiliary artifacts that should not be visible to the user. Hiding these artifacts
can be achieved with an according framework, such that developers are still
only confronted with the models of the tools they use. Such functionality is
provided by tools like Vitruvius [Kla+21] (see Subsection 2.3.2) providing
only views on instances of concrete metamodels.

Deriving transformations between concrete metamodels from a specifica-
tion of concept metamodels and manifestation relations benefits from not
introducing further artifacts, such that a developer still only has to deal
with instances of the concrete metamodels he or she is concerned with.
This approach, however, suffers from reduced expressiveness, because not
all multiary relations as expressed across additional concept metamodels
(see [DKL18]) can be expressed by sets of binary relations and transforma-
tions preserving them [Ste20b]. In addition, it requires the implementation
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of generators that derive transformations from specifications of concept
metamodels and manifestation relations.

Although with the second approach of deriving ordinary transformations the
resulting transformation network contains cycles and does thus not provide
correctness guarantees due to its topology, it still provides the guarantee due
to the transformations being generated from a specification that ensures cor-
rectness. For example, since a specification of Commonalities cannot contain
incompatibilities, the derived transformations cannot contain them either,
as long as the generator produces transformations that actually preserve
consistency conforming to the defined manifestation relations.

For the orchestration of the generated transformations, no matter whether
they are defined between concept metamodels or derived between the con-
crete metamodels, it is still necessary to allow the execution of each trans-
formation multiple times. Due to the situations identified in Chapter 7, in
which it is necessary to execute transformations multiple times to “negotiate”
a result and repeatedly react to the changes of other transformations, such
a behavior is still relevant for the Commonalities approach. For example,
propagating a class from Java across the object-oriented design concept meta-
model and the component-based design concept metamodel to a component
in the PCM can lead to further additions to the class as soon as it is identified
as a representation of a component, which then needs to be propagated back
to the class representation in Java. To support this, transformations should
still be synchronizing and thus allowed to modify both involved models to
support such situations that require this backpropagation of changes.

11.3. Expected Benefits

We expect several benefits from the Commonalities approach in compari-
son to defining ordinary networks of transformations. First, we claim to
achieve better comprehensibility by making common concept explicit rather
than implicitly encoding them in consistency relations. Second, we mitigate
trade-offs between specific quality properties, in particular correctness and
reusability, of the defined transformation network. Finally, it promises to
reduce the specification effort at least in specific scenarios. While the im-
provement in comprehensibility is only a claim, we discuss the benefits of
mitigating trade-offs and reducing specification effort in the following.
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(a) Complete Graph (b) Commonalities Tree

Figure 11.8.: Complete graphs as an extreme of transformation network topologies in comparison
to the tree topology of a Commonalities specification. Nodes depict metamodels and edges
depict transformations. In a Commonalities specification, leaves represent concrete metamodels
whereas inner nodes represent concept metamodels. Adapted from [KG19, Fig. 4].

11.3.1. Improving Correctness and Reusability

We have discussed the benefits of the Commonalities approach regarding cor-
rectness guarantees in Subsection 11.2.3. This results from a transformation
network defined with the Commonalities approach being intended to induce
a tree topology. At the same time, a network defined by Commonalities also
improves reusability, although the network forms a tree and reusability is
actually a benefit of dense graphs as discussed in Subsection 10.2.2.

Figure 11.8 depicts the topology extremes of complete graphs and trees. In
the tree topology of a Commonalities specification, the concrete metamodels
are represented by leaves of the tree, whereas the inner nodes represent
concept metamodels. This depiction is reduced to metamodels rather than
metaclasses and Commonalities, as discussed in Subsection 11.2.3 for the tree
structure, but would be the same if considered at the level of metaclasses.

In Subsection 10.2.2, we have discussed that reusability is improved in trans-
formation networks inducing a dense or even complete graph, as a transfor-
mation exists for each metamodel pair and thus the transformations for any
subset of the metamodels can be reused in other transformation networks
relating a different set of metamodels. Having a tree topology, only subtrees
can be reused, as otherwise consistency between some of the metamodels
cannot be preserved because it was expressed transitively via transformations
across metamodels that are not part of the subset to be reused.

This is, however, different for a network defined with the Commonalities
approach. Although it forms a tree, the concrete metamodels to be reused in

408



11.3. Expected Benefits

other networks are only leaves of that tree. Any subset of them can be reused
without loosing transformations that preserve consistency between them
by also reusing all concept metamodels on each path between two of the
concrete metamodels to reuse. Since concept metamodels and their instances
only represent auxiliary artifacts for describing consistency relations and
their preservation, it is not a drawback that they have to be reused.

For these reasons, defining consistency with the Commonalities approach
has the same benefits regarding correctness (and also other maintainability
properties as discussed in Subsection 10.2.2) as defining a transformation net-
work with tree topology, but at the same it improves reusability by allowing
any subset of the concrete metamodels and the specification of consistency
between them to be reused. The central limitation of the approach is regard-
ing completeness, since the manifestation relations between metaclasses and
Commonalities must induce a specific tree structure, namely a consistency
relation tree according to Definition 5.6, to actually provide the benefits
regarding correctness. It is part of our evaluation in Chapter 13 to validate
the achievability of that property in practical scenarios.

11.3.2. Reducing Specification Effort

While the mitigation of the trade-off between correctness and reusability of
a transformation network through the use of the Commonalities approach
represents its major benefit, it can also reduce specification effort. This is
achieved by the fact that each consistency relation must, in the best case,
only be defined once, whereas in a transformation network inducing a dense
or even a complete graph, there need to be redundant representations of the
same relations if arbitrary parts of the network are supposed to be reusable.

Figure 11.9 depicts an the extension of the introductory example given in
Figure 11.1, in which in addition to classes in the UML and Java a represen-
tation in C++ is added. In case of a transformation network, the relation
between C++ and both Java and the UML needs to be defined. Using the
Commonalities approach, only an additional manifestation relation to the
concepts already defined in the object-oriented design concept metamodels
has to be specified. In general, if 𝑛 metamodels share common concepts,
adding an 𝑛-1-th metamodel requires 𝑛 transformations to be defined in
ordinary networks, whereas the Commonalities approach, in the best case,
only requires one addition manifestation relation to be defined.
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Figure 11.9.: Example for the number of defined relations with ordinary transformation networks
and the usage of concept metamodels with the Commonalities approach.

The best case is, however, only achieved if the concept metamodel already
contains all information shared between the concrete metamodel to be added
and the ones for which the manifestation of the Commonalities in the concept
metamodel is already defined. This is due to the already discussed fact that,
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informally speaking, the concept metamodel needs to represent the union of
all pairwise intersections of the concrete metamodels. Thus, it will usually
be necessary to also extend or adapt the concept metamodel and define or
modify manifestations in the other concrete metamodels as well. For this
scenario, a language that combines the specification of each Commonality
with its manifestation relations, as we propose in Chapter 12, provides further
benefits, as a modification or extension of a Commonality can be performed
along with adaptations of the existing manifestation relations at one place.

In addition, applying the Commonalities approach may produce higher ini-
tial effort for the first consistency relations. For two metamodels to keep
consistent, one concept metamodel and two manifestation relations have to
be defined instead of only a single transformation in case of directly relating
the two metamodels. This initial effort amortizes only if enough further
concrete metamodels are kept consistent via the same concept metamodel.

The initial specification effort can, however, also be reduced by providing a
specific language to define Commonalities that combines the definition of
manifestation relations with the definition of its Commonality, such that the
specification becomes nearly as concise as it would be if defined as a direct
consistency relation between two metamodels. We propose such a language
in Chapter 12 and discuss this benefit in Subsection 12.2.7.

11.4. Application Processes

The application of the Commonalities approach requires a process for defin-
ing them as well a concept for combining them with other specifications
of transformations. In a specification using the Commonalities approach,
the concept metamodels and manifestation relations are not as independent
as they are supposed to be in the definition of an ordinary transformation
network forming a dense or even a complete graph. Due to the necessity to
relate all elements only via one transformation path, even if Commonalities
are separated into concept metamodels by concerns and composed hierarchi-
cally, the developers must ensure that such a structure is achieved. We thus
subsequently discuss different options how Commonalities can be defined.

We have identified in Subsection 11.1.3 that the Commonalities approach
is well-suited for structural and “natural” consistency relations rather than
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arbitrarily complex and, in particular, behavioral dependencies. We thus
discuss options for combining a Commonalities specification with other
specifications, in particular ordinary transformations.

11.4.1. Defining Commonalities

We have discussed in Subsection 11.2.2 how Commonalities and the concept
metamodels encapsulating them can be composed hierarchically. This allows
to separate Commonalities by concerns, i.e., by the concepts they belong to,
and fosters independent development and reuse of concept metamodels.

The Commonalities approach does, however, only provide an essential bene-
fit regarding guaranteed correctness of the resulting transformation network
if the manifestation relations specify consistency relations that form a con-
sistency relation tree (see Subsection 11.2.3). Thus, Commonalities and their
concept metamodels must be composed in a way that such a structure is
achieved. This can, in the worst case, require all concrete metamodels to
define consistency between and the according relations to be elicited a priori
and thus conflict with our independent development assumption.

An intuitive process to define Commonalities is a bottom-up approach. De-
velopers select concrete metamodels that share common concepts and are,
by custom definition, most related among the concrete metamodels to define
consistency between, and they define a concept metamodel of Common-
alities between them. Then, they iteratively choose concept metamodels,
and potentially also concrete metamodels, that share further higher-level
commonalities and define an according concept metamodel for them. This
ends up in a hierarchy of concept metamodels.

Since finally instances of the concrete metamodels shall be kept consistent, it
is important to always consider the information represented in the concrete
metamodels, even if consistency is defined between concept metamodels,
i.e., at a higher level in the hierarchy of concept metamodels. Consider the
running example of classes in the UML and Java as well as components in
the PCM. We may define an object-oriented design concept metamodel with
Commonalities between the UML and Java as well as a component-based
design concept metamodel with Commonalities between object-oriented de-
sign and the PCM, as depicted in Figure 11.5. If these concept metamodels are
defined in a bottom-up manner, i.e., first defining the object-oriented design
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concept metamodel and afterwards the component-based design concept
metamodels, it is not sufficient to only consider the information represented
in the object-oriented design concept metamodels for defining their Common-
alities. This metamodel only contains the Commonalities that are relevant
for object-oriented design, but for the relation to component-based design,
further information that is only present in one of the concrete metamodels
may be relevant. For example, Java contains a definition of behavior in terms
of method bodies, which is not represented in the purely structural UML
class models. Thus, the object-oriented design concept metamodel does not
represent this behavioral information, as it does represent a Commonality.
The PCM, however, also has an abstract representation of behavior used for
predicting the system’s performance, which needs to be kept consistent with
the precise behavior specification in Java. Thus, the component-based design
concept metamodel must either have an additional manifestation relation to
Java for the behavioral information, or the object-oriented design concept
metamodel must also contain behavioral information although not being a
Commonality between the concrete metamodels it represents.

In general, this problem occurs because concept metamodels are supposed to
represent the unions of all pairwise intersections of their concrete metamod-
els, as those represent the Commonalities that have to be kept consistent.
Information that is unique to one of the concrete metamodels is not repre-
sented in the concept metamodel but may be relevant for further concepts
and thus the relations to define to them. A first general solution would
require a concept metamodel to contain the union of all information in the
concrete metamodels rather than the union of their pairwise intersections.
This does, however, not conform to the purpose of concept metamodels to
only describe Commonalities. It leads to large and complex concept meta-
models and thus also to high effort, because for each concrete metamodel a
transformation, in terms of a manifestation relation, of all its information
to a concept metamodel would have to be defined. In addition, the topmost
concept metamodel of the hierarchy would inherently contain the union of
information defined in all concrete metamodels, thus representing a SUM
metamodel, i.e., a single metamodel that is capable of representing all infor-
mation to define one system (see Section 2.3). In consequence, it would be
sufficient to only manage an instance of that topmost concept metamodel,
representing the SUM metamodel, and to consider the instances of all other
concept and concrete metamodels as projections from the instance of that
central metamodel, according to Atkinson et al. [ASB10].
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Figure 11.10.: Example for a hierarchy of concept metamodels and their Commonalities, in which
concept metamodels represent the union of information in their manifestations. Behavior of
classes and components is considered any, not further specified kind of behavioral information.

For the example in Figure 11.5 depicting hierarchic concept metamodels for
classes and components, we derive an extension according to the discussed
scheme in Figure 11.10. It additionally contains visibilities for classes and
any kind of not further specified behavior description in Java classes and
PCM components. Both concept metamodels contain the union of informa-
tion in their manifestations, such that the component-based design concept
metamodel contains all information represented in all metamodels. In con-
sequence, the component-based design concept metamodel represents the
visibility of classes in object-oriented design, although it is not relevant for
components and is not kept consistent via that concept metamodel.

The previous considerations assume a kind of strict layered architecture
(see [Bus+96]) in which the manifestation relations induce a tree between the
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metamodels. Thus, no manifestation relation bypasses a concept metamodel
to whose Commonalities additional manifestation relations are defined. Re-
ferring to a non-strict layered architecture, another solution would be to
allow manifestation relations to the manifestations of concept metamod-
els to which further manifestation relations are defined. For example, the
component-based design Commonalities may have manifestation relations
to elements in Java and the UML in addition to manifestation relations to the
object-oriented design concept metamodels, which in turn has manifestation
relations to those concrete metamodels. A drawback of this solution is that it
can likely prevent achieving a tree structure. Considering a class in Java as a
manifestation of a component in component-based design as well as a class
in object-oriented design, which in turn is a manifestation of a component
in component-based design, would violate the definition of a consistency
relation tree, thus not giving guarantees regarding compatibility.

Figure 11.11 depicts this solution for the already discussed example. The
concept metamodels contain only the information relevant for the Com-
monalities they represent. The additional manifestation relation between
components of the component-based design concept metamodel and classes
in Java induce a violation of a tree structure. Although behavior may ac-
tually be represented in terms of method bodies represented as separate
metaclasses in Java, still consistency relations defined by the manifestation
relations between Java and the object-oriented design concept metamodel
would include both classes and methods, as methods do not share an isolated
consistency relation but only in the context of the class they belong to.

A third option is to construct a concept metamodel not only driven by the
Commonalities shared between its manifestations but also by its Common-
alities with other metamodels. Thus, whenever a concept metamodel is
used as a manifestation of another concept metamodel, it may be extended
by the information from its manifestations required for the Commonalities
in another concept with other metamodels. For example, as soon as the
object-oriented design concept metamodel is considered as a manifestation
of component-based design, its manifestations, namely Java and the UML,
are checked for Commonalities with component-based design that are not
yet considered Commonalities regarding object-oriented design. This could
be a description of method bodies in Java to keep consistent with the behav-
ior specification in the PCM. If consequently followed, such an approach
would result in concept metamodels not only representing the union of the
pairwise intersections of the manifestations, but the union of the pairwise
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Figure 11.11.: Example for a hierarchy of concept metamodels and their Commonalities, in which
Commonalities may have several manifestations inducing consistency relations that do not form
a tree structure. Behavior of classes and components is considered any, not further specified
kind of behavioral information.

intersections of their manifestations with all other concrete metamodels to
be kept consistent. This promises to lead to concept metamodels that are
significantly smaller and more precise than the union of all metamodels as
in the first option, but it would still allow to achieve a tree structure, which
is why we propose to use this option. This approach is comparable to the
situation in which a further manifestation shall be added, like we exemplarily
discussed for adding C++ as a manifestation of the object-oriented design
concept metamodel in Subsection 11.3.2.

The application of this option to the already discussed example is depicted in
Figure 11.12. In this solution, still a tree structure between the metaclasses
and Commonalities is given and the concept metamodels are still restricted
to the information in the manifestations and, in addition, the information of
the manifestations necessary for the concept metamodels of which they are
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Figure 11.12.: Example for a hierarchy of concept metamodels and their Commonalities, in which
Commonalities represent information necessary for the concepts they are manifestations of in
addition to the information shared by their manifestations. Behavior of classes and components
is considered any, not further specified kind of behavioral information.

manifestations. This is why the object-oriented design concept metamodel
contains information about the behavior of classes and components although
the UML and Java do not share behavioral concepts, but the component
Commonality for component-based design does not contain the visibilities
of classes as in the first option of representing the union of all information
in the manifestations.

Finally, it is still an open question how problematic the actual dependencies
in practical scenarios are. Potentially, only subsets of few metamodels are
highly related and share large parts of one or more concepts, and the relation
to other such subsets is only given across one metamodel or one concept. This
could be seen as a graph of cliques, in which some metamodels are highly
related whereas the relation to others is rather loose. In that case, it can be
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reasonable to define relations in these cliques by means of Commonalities
and then define the loose relations to other cliques by means of an ordinary
transformation, as we discuss in the subsequent section. We derive first
insights on the achievability of the required tree structure for Commonalities
in our evaluation in Chapter 13, but further evidence if one of the previously
discussed strategies can be reasonably applied has to be gained in larger
studies in practical scenarios with more metamodels of more tools.

11.4.2. Combining Commonalities

We have up to now discussed how to construct concept metamodels and
manifestation relations in terms of the Commonalities approach such that
the topology of the defined relations fulfills the definition of a consistency
relation tree to achieve inherent guarantees regarding correctness of the trans-
formation network. We have also derived how the Commonalities approach
improves reusability in comparison to the construction of a transformation
network with tree topology out of the concrete metamodels. Nevertheless,
the approach has at least two limitations, which we have already identified.
First, it lacks completeness, as it requires a specific topology of consistency
relations to be achievable, which is likely to become more complex the more
metamodels are involved. Second, it only fits well for structural relations in
which commonalities can be described or prescribed.

In consequence, to improve applicability of the approach, it should be applied
for subsets of metamodels that inherently share commonalities, comparable
to the cliques mentioned before, which are suited to be described with the
proposed approach. These specifications should then be combined with other
consistency specifications, be they defined with the Commonalities approach
or with ordinary transformations. Such a combination would restrict the
size and complexity of a hierarchy of Commonalities and could foster reuse
of consistency specifications for specific concepts in different context, as
motivated by our assumptions of independent development and modular
reuse as well as the process proposed in Section 3.2.

To preserve the benefits of a Commonalities specification, it can be combined
with other specifications, be they ordinary transformations or another Com-
monalities specification, by considering any of the other metamodels as a
manifestation or a concept metamodel of one of the concept metamodels of
the Commonalities specifications. This preserves the tree structures of the
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Figure 11.13.: Example for a concept metamodel 𝐴𝐵Concepts to replace a consistency relation, and
the replacement of ordinary consistency relations to the concrete metamodels with one to the
concept metamodel. Adapted from [Kla18, Fig. 5].

Commonalities specification and its benefits. Consider the generic example
in Figure 11.13 with three metamodels, a concept metamodel for two of them,
and consistency relations between them, which are considered model-level
consistency relations according to Definition 4.1 for reasons of simplicity.
The consistency relation𝐶𝑅𝐴𝐵 between metamodels 𝐴 and 𝐵 is expressed by
a concept metamodel 𝐴𝐵Concepts and consistency relations for the according
manifestation relations 𝐶𝑅𝐴 and 𝐶𝑅𝐵 . In addition, the metamodel 𝐶 shares
consistency relations with both other metamodels. To preserve reusability
and the necessary tree structure, these consistency relations𝐶𝑅𝐴𝐶 and𝐶𝑅𝐵𝐶

should be described in terms of a consistency relation 𝐶𝑅𝐶 to the concept
metamodel. This does, however, require the concept metamodel to contain
all information that is necessary to preserve consistency between 𝐶 and
the two others, as described with the required relations in Figure 11.13. In
contrast to the scenarios discussed in the previous section for how to define
concept metamodels and which information to put into them, if 𝐶 is a part
of a different consistency specification to combine the Commonalities spec-
ification with or if the Commonalities specification covers more than two
concrete and one concept metamodel, this can require an arbitrarily complex
adaptation, which may not even be possible if modular reuse is desired.

To improve such a combination of specifications, virtualization concepts
as known from OSM [ASB10] (see Subsection 2.3.1) and the Vitruvius
approach [Kla+21] (see Subsection 2.3.2) can be applied. Their idea is to
encapsulate metamodels and their instances behind a facet of views and to
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Figure 11.14.: Example for the combination of a Commonalities specification for object-oriented
design (OOD) with PCM by encapsulation into a V-SUM metamodel.

enable access to the actual models only via these views. Views are projections
of the encapsulated models, i.e., they derive all information from the models
and potentially aggregate them or arrange them differently. The metamodels
of these views are called view types. While those approaches were originally
designed to provide a well-defined interface through views for developers and
internally ensure consistency of the persisted artifacts by either avoiding or
managing redundancy, they can also be used as an interface for consistency
preservation. In the Vitruvius approach, a so called V-SUM is composed
of models and rules for preserving their consistency, whose contents are
exposed by views to be modified by developers.

Consider the example depicted in Figure 11.14. It comprises the Commonali-
ties specification for Java and the UML using a single concept metamodel
for object-oriented design. This consistency specification by means of Com-
monalities is encapsulated into a V-SUM, which exposes the Java code via
a Java view and the object-oriented structure represented in instances of
the concept metamodel as an object-oriented design view. These two views
are then related to the PCM by means of ordinary consistency relations and
transformations preserving them. The relations between metamodels and
view types can, again, be considered ordinary transformations. Thus, the
defined transformation network would actually contain cycles, such that it
does not benefit from the Commonalities specification within the V-SUM in
terms of correctness. If we only consider the V-SUM itself, it does, however,
still have a tree structure, so if only one of the views is modified at the same
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time, it provides the benefits that we have discussed for a Commonalities
specification in Section 11.3. In addition, views of a V-SUM by now assume
that only one of them is changed at a time [Kla+21], as a developer is sup-
posed to work on one view at a time. Thus, if the transformations outside the
V-SUM ensure that only one of the views is changed at a time, the V-SUM
provides the discussed benefits of the Commonalities approach.

This approach does, of course, not solve possible issues regarding synchro-
nization and orchestration in the transformation network defined outside the
V-SUM, but it only moves the problem of avoiding these issues away from
the Commonalities specification by making according assumptions in terms
of allowing only modifications of one view of a V-SUM. It does, however, clar-
ify responsibilities, as there are precisely defined views across which other
metamodels can be combined with those for which consistency is defined by
means of Commonalities rather than defining consistency to the metamodels
within the Commonalities specification directly and thus breaking the neces-
sary assumption for the intended benefits of the approach. In the example,
we have a clear separation into views for the structure of the object-oriented
representation in Java, the UML, and potentially more metamodels and views
for its behavior. It is up to the developer of the transformation network
outside the V-SUM to ensure that no problems like execution loops occur by
assigning clear non-conflicting responsibilities to the two transformations
for structure and behavior of the V-SUM to the PCM.

Instead of only the PCM, there could be a more complex transformation
network or another Commonalities specification, which may again be encap-
sulated in a V-SUM and provide its own views, across which both V-SUMs can
be combined. Figure 11.15 depicts such an example, in which PCM and UML
component models are related by a concept metamodel for component-based
design, encapsulated in a second V-SUM. This V-SUM provides separate view
types for the object-oriented structure, which is represented by both the PCM
and the UML and is thus reflected in the concept metamodels, and for the
behavior only represented in the PCM. These view types can be combined
by means of ordinary transformations with those of the V-SUM for object-
oriented design. Again, this approach does not prevent the occurrence of
correctness issues due to the transformations outside the V-SUM as discussed
in Part II, but at least it guarantees correctness within each V-SUM.

This approach can even be hierarchically composed, such that several kinds of
specifications, including Commonalities encapsulated in V-SUMs, are again
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Figure 11.15.: Example for the combination of two Commonalities specifications for object-
oriented (OOD) and component-based design (CBD) by encapsulation into V-SUM metamodels.

encapsulated into another V-SUM. For example, the V-SUMs in Figure 11.15
could be encapsulated in a V-SUM for object-oriented and component-based
design to be reused together. If the transformation network between the inner
V-SUMs is correct, which can also be achieved by defining Commonalities
between the views of these V-SUMs again, the composed V-SUM again
guarantees correctness and can provide well-defined views for different
concerns of component-based and object-oriented design.

The sketched approaches for combining Commonalities specifications with
other kinds of consistency specifications have to be considered as conceptual
ideas which promise to provide the benefits of specifying modular, reusable
specifications that ease the achievement of correctness. They have, however,
not been applied yet and need to be practically evaluated in case studies.

11.5. Summary

In this section, we have discussed how the insights regarding effects of differ-
ent network topologies on the quality properties of a transformation network
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can be used to mitigate trade-offs between them. We have motivated a differ-
ent way of considering consistency in terms of making common concepts
explicit as Commonalities instead of implicitly encoding them into consis-
tency relations. We have used this way of specifying consistency to propose
a construction approach for transformation networks that results in a tree
topology providing inherent benefits regarding correctness but also provid-
ing high reusability due to the actual metamodels, whose instances are used
to describe a system, being leaves of the tree induced by the transformation
network. We conclude this chapter with the following central insight.

Insight III.2 (Trade-Off Mitigation)
Quality properties of transformation networks are influenced by the
network’s topology. Especially correctness and reusability are contrary
properties, which induce a trade-off depending on whether the network
topology is rather a dense or a sparse graph. The drawback regarding
reusability in networks with tree topology arises from the fact that
the metamodels represented by the inner nodes of the tree cannot be
easily omitted, as consistency between several other metamodels is
expressed across them. This can be mitigated by ensuring that the
metamodels represented by the inner nodes are auxiliary artifacts and
not the actual metamodels used by developers. This matches with a
different way of thinking about consistency in terms of making the
commonalities between metamodels to keep consistent explicit in addi-
tional metamodels rather than encoding them implicitly in consistency
relations. Following such a specification approach leads to a network
that improves both correctness and reusability, which are contradictory
if only considering transformations between the metamodels whose
instances are actually used by developers. Such an approach can even
be used to define consistency partially for some of the metamodels and
then combine it with other consistency specifications, such as ordinary
transformations. To still have the same guarantees regarding correct-
ness and reusability, such a specification can be encapsulated behind
views, which provide projections of the information within the actual
models and only allow one of them to be updated at a time.
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In the previous chapter, we have introduced the Commonalities approach,
which defines a methodology for constructing transformation networks by
means of auxiliary, so called concept metamodels. These concept metamodels
contain the commonalities of the metamodels whose instances are to be kept
consistent, denoted as concrete metamodels, as explicit entities rather than
encoding them implicitly in transformations between the metamodels to be
kept consistent. We have argued why this construction approach fosters
achieving a specific tree topology of the transformation network. Such a
topology improves correctness and reusability of the resulting transformation
networks, which are contradictory properties when constructing networks
only of transformations between the concrete metamodels, at least if a specific
tree topology of the network is achieved.

Although the construction methodology of the Commonalities approach
itself provides significant benefits and is thus a distinct and independently us-
able contribution on its own, the construction can be further supported with
an appropriate language. While the approach requires the specification of
concept metamodels as well as transformations realizing the manifestation re-
lations between the metamodels, a language can integrate the specification of
manifestations with those of the Commonalities. This improves conciseness
and locality of the related information to be defined. While these improve-
ments only foster usability but do not provide conceptual benefits, a language
can also ensure the achievement of an appropriate tree topology. This can
either be achieved by construction through restricting expressiveness or by
defining analyzable constructs.

In this chapter, we discuss the design of such a language. We focus on design
options and give an overview of the process and artifacts involved in such a
language. We also depict a concrete language, for which we have developed
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the prototypical Commonalities language, with a focus on the relevant ele-
ments, their relations, and their operationalization. Although we also provide
a prototypical realization of such a language, this chapter does not focus on
the specifics of that language but rather the concepts behind it. It constitutes
our contribution C 2.3, which consists of two subordinate contributions:
a discussion of design options and the resulting process and artifacts for
such a language; and a depiction of the structure of a concrete realization of
such a language with a description of its semantics, its operationalization
into transformations, and a summary of benefits that we expect from such a
language. It answers the following research question:

RQ 2.3: How can a specialized language support the specification of a
network topology that improves quality properties?

The insights in this chapter first give guidelines for developers of tools for
constructing transformation networks. It especially clarifies the available
design space for tools supporting the Commonalities approach. In addition,
the chapter makes concrete proposals for how to develop such a language,
which elements it has to contain, and how it can be operationalized. Finally,
it even provides an actual realization of such a language, which can be readily
used with the Vitruvius framework (see Subsection 2.3.2).

An overview of the prototypical realization of the Commonalities language
and relevant design options along with a proof-of-concept has already been
published [KG19]. An initial prototype of the language was developed in the
Bachelor’s thesis of Gleitze [Gle17] and extended for a case study evaluation
in the Master’s thesis of Hennig [Hen20], which have both been supervised
by the author of this thesis. Since we focus on the concepts and design
options for such a language in this thesis, we refer to those theses for details
about the realization and capabilities of the Commonalities language.

12.1. Design Options

The development of a language for realizing the Commonalities approach
offers several degrees of freedom. They range from conceptual degrees
of freedom, e.g., regarding the operationalization alternatives discussed in
Subsection 11.2.4, over notation types, such as textual or graphical represen-
tations, to the specific syntax to use or even reuse from existing languages.
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+ + + +

External Concept Definition Internal Concept Definition

Decomposition Dimension: Relations Decomposition Dimension: Commonalities

Figure 12.1.: Exemplification of alternatives to specify Commonalities by means of a separate,
external specification of complete concept metamodels and manifestation relations or an inte-
grated, internal definition of Commonalities with their manifestation relations. Circles denote
Commonalities and manifestations, arrows denote manifestation relations.

We, in particular, consider the conceptual degrees of freedom and give an
overview of how an according textual syntax can look like.

The conceptual degrees of freedom include options for operationalizing a
specification in terms of using the concept metamodels as additional meta-
models with the manifestation relations constituting ordinary transforma-
tions or in terms of generating direct transformations between the concrete
metamodels from the Commonalities specification, as both discussed in Sub-
section 11.2.4. This option selection is transparent to the developer of a
transformation network, as it only affects its operationalization.

In addition, we can distinguish internal and external specifications, depending
on whether the specification is decomposed by the Commonalities or by
the defined manifestation relations. This decision affects the developer of
a transformation network, as he or she is directly concerned with the way
in which Commonalities are specified. We discuss these two options in the
following in more detail. Furthermore, we derive an overview of the resulting
process for specifying and executing artifacts in such a language.

12.1.1. Internal and External Specification

We can distinguished two ways in which concept metamodels and manifes-
tation relations can be specified according to the Commonalities approach.
They depend on the dimension along which the specification is decomposed.
More precisely, the specification can either be decomposed along the Com-
monalities, such that each Commonality together with all its manifestations
is defined at one place, or it can be decomposed along the manifestation
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relations, such that all manifestation relations between a concept metamodel
and its manifestation are defined at one place. We refer to these specifications
as internal and external specifications, which we have already proposed in
previous work [KG19] and which we illustrate in Figure 12.1.

External Concept Definition: Concept metamodels are defined as ordinary
metamodels and each manifestation relation is defined as an individual
transformation, i.e., manifestation relations are defined externally to
concept metamodels and their Commonalities.

Internal Concept Definition: Each Commonality of each concept metamodel
is defined together with its relations to manifestations, thus manifestation
relations are defined internally with the Commonalities they belong to.

Without developing an additional language, the Commonalities approach
can be realized by developing concept metamodels as if they are ordinary
metamodels with appropriate modeling tools. The manifestation relations
can then be defined with any existing transformation language that is able to
generate incremental transformations. This conforms to an external specifi-
cation, in which concept metamodels and manifestation relations are defined
separately. It decomposes the specification along the relations, such that
there are as many separate artifacts as there are concept metamodels and
relations to be defined. For example, for Java and the UML an object-oriented
design concept metamodel as well as two manifestation relations to each of
the concrete metamodels would be defined separately.

Developing a specific language allows to integrate the definition of Com-
monalities with their manifestation relations. The relations to manifestations
of a Commonality are then defined at one place with the declaration of the
Commonality, improving locality of this related information. This conforms
to an internal specification. It decomposes the specification along the Com-
monalities, thus as many separate specifications exist as Commonalities are
defined. For example, for Java and the UML a class Commonality together
with its manifestation as classes in both Java and the UML with the according
relations of attribute values and references would be defined at one place.

Selecting one of these types of specification suffers from the “tyranny of the
dominant decomposition” [Tar+99]. Thus, decomposition is only possible
along one dimension of concerns, i.e., either the structural specification of
Commonalities or the relational specification of manifestation relations, such
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that either one suffers from lacking separation of concerns in the other di-
mension. Thus, while one approach improves locality when adding Common-
alities, the other improves locality when adding manifestation relations.

External specifications benefit from the separation of each manifestation
relation into its own specification. This reduces dependencies between the
manifestations and especially allows each developer who is responsible
for a specific concrete metamodel to define the relation to each related
concept metamodel as a whole instead of distributing this specification among
all Commonalities specifications describing a concept represented in the
concrete metamodel. In consequence, adding a new concrete metamodel only
requires the addition and potentially adaptation of manifestation relations
to concept metamodels. External specifications support this scenario well
because of high locality of all information regarding a manifestation relation
and because manifestation relations represent the largest part of the addition.
Additionally, they can be realized without developing a new language.

Internal specifications require a dedicated language enabling the integrated
specification of Commonalities and their manifestations. This improves
locality regarding the information about each Commonality, as each Com-
monality is represented along with all its manifestations. In consequence,
when initially developing Commonalities for a set of concrete metamodels,
it is easier to add each single Commonality, because all information about
the Commonality and its relations to the manifestations can be defined at
one place. This can make it easier to understand the overall relation of that
common concept among all concrete metamodels. In addition, it makes it less
likely for a developer to miss the definition of one or more manifestations
of a Commonality, as they are obviously missing in the specification of the
Commonality, whereas in an external specification it is missing somewhere
in the complete manifestation relation between the concept metamodel and
its manifestation. Finally, the approach promises to be more concise, because
the manifestation relations are defined within the Commonality they belong
to instead of referencing the Commonality within a transformation again.

To benefit from locality regarding each Commonality and a more concise
specification, we have decided to design a language that supports internal
specifications. Depending on the usage context and usual change scenarios,
an external specification may, however, be more appropriate. Then, modeling
concrete metamodels with an existing modeling framework and the manifes-
tation relations with existing transformation languages is sufficient.
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Figure 12.2.: The process for developing, compiling, and executing specifications in a language
for Commonalities. From concrete metamodels and Commonalities specifications, additional
concept metamodels and transformations are generated, which are executed at runtime for
preserving consistency of models. Commonalities specifications by domain experts are marked
orange, the generated artifacts (concept metamodels and transformations forming a network)
are marked green. Concrete systems and changes depict runtime artifacts.

12.1.2. Artifacts and Process

Regarding the design options in Subsection 11.2.4 and Subsection 12.1.1,
we have made the following, already argued decisions. First, we chose to
operationalize a specification by treating concept metamodels as ordinary
metamodels, such that instances of them are created and kept consistent. This
option does especially not restrict expressiveness of the relations, and the
generation of additional models can be hidden from the user by appropriate
tooling. Second, we chose to provide a language that supports an internal
specification of concepts to improve locality of the information regarding
each Commonality. We expect this specification to be more concise and to
better support the initial specification process for Commonalities.

The process of specifying, compiling, and executing artifacts in such a lan-
guage is depicted in Figure 12.2. It is a specialization of the general process
already depicted in Figure 1.2. A domain expert or transformation developer
defines Commonalities specifications using the language, which refers to
concrete metamodels that are to be kept consistent by the transformations
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derived from that specification. The compiler of the language takes the
concrete metamodels together with the specifications to generate a set of
concept metamodels in addition to the existing concrete metamodels, as
well as a set of bidirectional transformations, which implement consistency
preservation for the manifestation relations between the concept metamodels
and concrete metamodels. These artifacts together form a transformation
network as introduced in Definition 4.15.

A system developer specifies a system by models that instantiate the con-
crete metamodels of the Commonalities specification. The complete system
description consists of instances of these concrete metamodels but also, in
the best case hidden from developer, of instances of the concept metamod-
els for means of consistency preservation. Whenever the system developer
produces changes to the instances of the concrete metamodels, the transfor-
mation network can be applied to the changes together with the models. It
then returns a new set of instances of the concrete metamodel and concept
metamodels that are consistent again, according to the proposed correctness
notion of transformation networks in Definition 4.16.

12.2. The Commonalities Language

In this section, we present an overview of the Commonalities language. It
constitutes one possible realization of a language for the Commonalities
approach with the conceptual design choices that we have discussed in
the previous section. This especially includes an internal specification of
concepts. To give an impression of the language, we first introduce two
examples for specifications in a prototypical realization of the language with
a textual syntax, which we have already proposed in previous work [KG19]
and which was originally developed in the Bachelor’s thesis of Gleitze [Gle17]
and extended in the Master’s thesis of Hennig [Hen20]. We then give an
overview of the language elements and introduce their general semantics
before explaining the different categories of them at the given examples. Since
we focus on the language concepts, we refer for details on its realization with
a textual syntax to the theses of Gleitze [Gle17] and Hennig [Hen20].
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1 concept ObjectOrientedDesign

2
3 commonality Class {

4 with UML:(Class, single Model) {

5 Class in Model.packagedElements

6 }

7 with Java:(Class, CompilationUnit) {

8 Class in CompilationUnit.classifiers

9 }

10
11 has name {

12 = UML:Class.name

13 = Java:Class.name

14 -> suffix(Java:CompilationUnit.name,

15 Java:CompilationUnit.namespace + ".")

16 }

17
18 has methods referencing ObjectOrientedDesign:ClassMethod {

19 = UML:Class.ownedOperations

20 = Java:Class.members

21 }

22 }

Listing 12.1: Exemplary specification for an extract of the Class Commonality between the
UML and Java in the Commonalities language. Adapted from case study implementation at
GitHub [GitApp].

12.2.1. Examples in Textual Syntax

We depict two examples for specifications in our prototype of the Common-
alities language with a textual syntax in Listing 12.1 and Listing 12.2. The
specifications depict extracts of a Commonality for classes in the UML and
Java, as well as extracts of a Commonality for components in the PCM, the
UML and as classes with their containing packages in the object-oriented
design concept metamodel. The extracts are selected to reflect the different
elements of the Commonalities language without introducing unnecessary
complexity. We sketch the meaning of the examples in the following and
clarify them along with the subsequent introduction of the language elements
more precisely.
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1 concept ComponentBasedDesign

2
3 commonality Component {

4 with PCM:BasicComponent

5 with UML:Component

6 with ObjectOrientedDesign:(Class, Package) {

7 Class in Package.classes

8 <- Class.name hasSuffix "Impl"

9 }

10
11 has name {

12 = PCM:BasicComponent.name

13 = UML:Component.name

14 = prefix(ObjectOrientedDesign:Class.name, "Impl")

15 -> firstUpper(ObjectOrientedDesign:Package.name)

16 }

17 }

Listing 12.2: Exemplary specification for an extract of the Component Commonality between
the PCM, the UML, and the object-oriented design concept metamodel in the Commonalities
language. Adapted from case study implementation at GitHub [GitApp].

The class Commonality, depicted in Listing 12.1, is restricted to their names
and methods. In the UML, a class is represented by a class that is contained
in a unique instance of a UML model. In Java, a class is also represented by a
class that is contained in a compilation unit, which depicts one file consisting
of imports and class specifications as a single unit of compilation [Hei+09b].
Names are represented equally in UML and Java classes. The name of the
compilation unit is defined by the fully qualified name of the class, i.e.,
the concatenation of its namespace and the class name separated by a dot.
The specification expresses this as the class name to be the suffix of the
compilation unit name after the namespace followed by a dot. Methods are
specified in a dedicated Commonality in the object-oriented design concept
metamodel, such that they are only referenced in the class Commonality but
without any specification of the relations of their contents.

The component Commonality, depicted in Listing 12.2, is restricted to their
names. In the PCM and the UML, components are realized by explicit com-
ponent or basic component metaclasses, respectively, which share the same
name. In object-oriented design, components are defined to be represented by
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classes contained in a package. Classes are only considered to represent com-
ponents when their name has an “Impl” suffix and their name is then defined
to be the component name with an “Impl” suffix. The specification defines
this as a prefix, analogous to the suffix for the name of a compilation unit, as
it denotes that the component name is the prefix of the class name before
“Impl”. Finally, the package name is defined to be the component name but
starting with a lowercase letter whereas the component name is defined to
start with an uppercase letter. Analogous to the prefix definition for the class
name, the specification defines a firstUpper operation as the component
name shall be the package name with the first letter in uppercase.

12.2.2. Elements Overview

The Commonalities language essentially consists of three categories of el-
ements. First, at a top level, the structure of Commonalities needs to be
defined in terms of specifying for each of them the concept metamodels
they belong to as well as the features in terms of attributes and references
it describes. Second, each Commonality needs to define its manifestations,
i.e., the metaclasses of concrete metamodels or other concept metamodels
being its manifestations, along with conditions defining when instances
of metaclasses are to be considered a manifestation. This defines when a
manifestation relation between a Commonality and metaclasses of another
concept metamodel or concrete metamodel exist. Third, each Commonality
needs to define the relations of its features to those of its manifestations.
This defines the manifestation relations, i.e., the conditions that have to hold
for considering a manifestation consistent to a Commonality.

Figure 12.3 depicts the essential elements of the Commonalities language. At
the top, it depicts metamodels, metaclasses, references, and attributes as already
existing in the notion of a general modeling formalism and as specified in
concrete metamodels. The language introduces concepts, which represent the
concept metamodels, and Commonalities, of which such a concept consists.
In our realization, they can be considered specializations of metamodels and
metaclasses but with the special semantics of being only auxiliary artifacts
for the Commonalities approach. A Commonality consists of Commonality

references and attributes, which, again, can be considered specializations of
ordinary references and attributes. In the given examples, we have attributes
for names and a reference to methods. Additionally, a Commonality contains
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Figure 12.3.: Class diagram with the essential elements of the Commonalities language and their
relations. Elements that exist independently from the language are depicted in the top row.
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manifestations. Each manifestation represents the realization of the concept
represented by the Commonality in another metamodel by one or more meta-
classes and potentially further conditions for them. Such manifestation are,
for example, a class and a compilation unit in Java for the class Commonality
depicted in Listing 12.1. In preparatory work [Gle17; Hen20] as well as in the
current state of prototypical implementation of the language [GitVit], such
manifestations have also been called participations. Each Commonality refer-
ence and attribute is complemented by reference and attribute relations that
define how these features are related to information in the manifestations.

In consequence, the manifestation conditions together with the attribute and
reference relations define the consistency relations between the Commonality
and its manifestations, which we have introduced as manifestation relations.
All these relations consist of operators, which define how elements are related,
and operands, which define the involved elements to be considered by the
operator. The operators can be considered specifications of transformation
rules, which take operands providing the information necessary to check or
preserve consistency. In our language realization, operators can be specified
by implementing specific interfaces of an API and thus dynamically extending
the language with arbitrary operators. In consequence, these operators can
be treated as reusable libraries containing operators at different levels of
abstraction. They can, however, also be defined as a static part of the language
and thus without the possibility to extend them. Operators have a direction,
as they may enforce the defined relation either in both directions or only
in one of them. For example, the name of a class in Listing 12.1 is related
to the Java class name bidirectionally (denoted by “=”). In consequence, a
change of the Java class name leads to the change of the name of the class
Commonality, which then changes the UML class name. But also a change
of the class Commonality name, e.g., because of a change of the UML class
name, leads to a change of the Java class name. The name of a compilation
unit is only enforced, because it is derived from the Java class name, such that
a change is propagated because of the changed Java class name anyway.

For reasons of simplicity, we omitted several elements of the language realiza-
tion, which concerns generalizations as well as specializations of the depicted
elements. For example, manifestation conditions, reference, and attribute re-
lations represent relations between the Commonality and its manifestations,
especially comprising a direction, which can be represented in a Relation

supertype. Likewise, the three operator types for manifestations, references,
and attributes can be derived from a common Operator supertype.
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12.2.3. Language and Elements Semantics

A Commonality defines the elements that different manifestations have in
common and how they are related. For example, the class Commonality given
in Listing 12.1 denotes that classes have names and methods in common
and that they are related by specific naming schemes of name attributes and
specific references containing representations of methods. Thus, whenever
there are elements in one model that match one of the specifications for
a manifestation in terms of instantiating the defined classes and fulfilling
the defined conditions, there must be elements in other models matching
the other manifestation specifications and fulling the defined relations for
attributes and references. In theory, from such a specification consistency
relations, according to Definition 4.18, could be derived, which enumerate
the tuples of instances of the metaclasses in the manifestations that fulfill the
manifestation conditions as well as the attribute and reference relations.

We especially want to preserve consistency rather than only checking it
and thus derive consistency preservation rules from such a specification.
In Subsection 12.2.6, we discuss such an operationalization in more detail.
In general, we distinguish the instantiation, update, and deletion of a Com-
monality, according to the scenarios already depicted for Mappings in the
bidirectional Mappings language [Kla+21, Sec. 7.2.1]. The Commonalities
language specifies a bidirectional transformation between a Commonality
and each of its manifestations. Thus the behavior of each such transforma-
tion conforms to the behavior of the Mappings language, in which we could
define the transformation between a Commonality and its manifestation.

Instantiation: A Commonality is instantiated whenever elements are added
to a model such that they instantiate the metaclasses of a manifestation
of that Commonality and fulfill the defined manifestation conditions. We
say that these elements match the manifestation of the Commonality.
In that case, an instance of the metaclass realizing the Commonality is
created, and its attributes and references are initialized with values ac-
cording to the relations defined in the Commonality. Then, for each other
manifestation, instances of the metaclasses are generated and inserted
into a model according to the specified manifestation conditions and
defined relations of attributes and references. For example, according to
Listing 12.2, whenever a Java class with the suffix “Impl” is created and
inserted into a package, a component Commonality with the name of the
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class without that suffix is created, and a basic component in the PCM
and a component in the UML model with that name are created.

Deletion: A Commonality is deleted whenever the elements for which a
Commonality was instantiated do not match the manifestation anymore.
Then, the instance of the metaclass realizing the Commonality is removed
as well as the instantiations of all metaclasses of the other manifestations.
For example, whenever a Java class representing a component is removed,
or even if only the “Impl” suffix is removed, the Commonality and all
other manifestations in the PCM and UML models are removed.

Update: A Commonality is updated whenever any of the attribute or refer-
ence values of the elements of a manifestation for which a Commonality
was instantiated get changed. In that case, the values in the Commonality
and all other manifestations are updated if the changed value is used
in the according attribute or reference relations, i.e., if it is one of its
operands. The relation also defines a direction to indicate whether the
change is only checked in the manifestation, i.e., whether a change of any
value in the manifestation leads to an update of the value in the Common-
ality and the other manifestations, whether the change is only enforced,
i.e., whether a change of a value of the Commonality leads to a change
of the values in the manifestation, or whether it is bidirectional, i.e., both
checked and enforced. This ensures that consistency is preserved for the
elements for which a Commonality is instantiated.

While for the instantiation and deletion of a Commonality only the mani-
festation classes and their conditions are relevant, for an update only the
attribute and reference relations are relevant. To relate this to the Mappings
language, manifestations and their conditions conform to single-sided condi-

tions, whereas attribute and reference relations conform to bidirectionalizable

conditions of Mappings [Kla+21, Sec. 7.2.1]. Since a Commonalities specifi-
cation can be seen as a combination of defining multiple Mappings in the
Mappings language, large parts of the semantics and possibilities for the
realization are comparable. We thus focus on the structure that Commonali-
ties define on top of bidirectional mappings and explicitly refer to work on
Mappings for concepts that have already been researched and are reusable,
such as operators and methods to define and execute them bidirectionally.

In Subsection 6.1.2, we have also discussed the addition, removal, and change
of condition elements as the relevant change types to be distinguished when
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realizing consistency preservation. This conforms to the scenarios of instan-
tiation, deletion, and update of a Commonality. The addition of a condition
element of a consistency relations defined by a Commonality specification
means that the according manifestation is matched and thus the Common-
ality is instantiated. The removal and update conform to the deletion and
update of a Commonality analogously.

12.2.4. Commonalities and Manifestations

The top-level elements of the Commonalities language are Commonalities.
Each of them depicts a common concept, such as a class or a component, and
is associated with a concept metamodel, which groups common concepts that
belong together. In the given examples, each specification contains one Com-
monality and starts with a specification of the concept metamodel it belongs
to, comparable to a package specification of a class in Java. These concept
metamodels are named ObjectOrientedDesign and ComponentBasedDesign,
according to the ones we have proposed in the examples for composing
Commonalities in Subsection 11.2.2.

The specification of each Commonality starts with its manifestations, which
are metaclass tuples of the concrete metamodels or concept metamodels in
which the Commonality manifests, together with further conditions on when
instances of these metaclasses form a manifestation of a common concept.
Such a manifestation denotes which elements have to exist in a model and
which conditions they have to fulfill to consider these elements a manifes-
tation of a common concept described by the Commonality. The metaclass
tuples are represented by manifestation classes, which only reference an ordi-
nary metaclass but may also have an alias for referencing it. The metaclasses
they reference can be ordinary classes of a concrete metamodels, such as
UML components in Listing 12.2, or they may be Commonalities of a concept
metamodel, such as classes of the object-oriented design concept metamodel
referenced in the component Commonality in Listing 12.2.

Additionally, manifestation classes can be declared single to denote that they
only occur uniquely within one metamodel and do not share a Commonality
with others, comparable to a singleton, but are still relevant for the Common-
alities specification. For example, a UML model always has a root container
of the metaclass Model, which does not share a Commonality with Java in
the object-oriented design concept metamodel and exists uniquely, as there
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may only be one such UML model. An alternative representation of such
unique elements are Commonalities with only one manifestation that are
bootstrapped. This means that such a Commonality and its manifestation
would always exist and thus be created at the start of system development
rather than instantiating it when a manifestation is matched. For example, a
UML model would be created as soon as a new software development project
is started. Kramer uses such a bootstrap representation of elements in his
Mappings language for bidirectional transformations [Kra17, Sec. 7.1].

Manifestations further define manifestation conditions, which specify when
instances of the metaclasses referenced by the manifestation classes shall
be considered a manifestation of the defined Commonality. Obviously, not
every instance tuple shall be considered as such. This can further depend on
properties of the single objects or on the relation between them. For example,
for the manifestation of components in object-oriented design according
to Listing 12.2, only classes matching a specific naming scheme shall be
considered components, and only a pair of class and package in which the
class is contained in that package shall be considered a component. Any other
pair, in which the class is not even contained in the package at all, should not
be considered a manifestation of a component. Such conditions can be seen
as restrictions at the instance or model level, whereas the metaclass tuples
define a restriction at the type or metamodel level.

A manifestation condition consists of a manifestation operator, a left operand,
and a list of right operands. The left operand can be considered the reference
element of the operator. It can be any metaclass of the manifestation or
any of its attributes or references, for which a condition shall be defined.
The operator can be any Boolean-valued condition that is evaluated for the
left operand and potentially further right operands, which can, again, be
metaclasses of the manifestation or any of their features, or a literal, such as a
fixed number or string. Listing 12.2 contains the operator in, which validates
whether the value of the left operand is contained within a reference given
as the right operand. In addition, the operator hasSuffix checks whether the
value of the left operand contains the right operand as a suffix.

12.2.5. Features and Relations

In addition to manifestations, a Commonality defines features, i.e., attributes
and references, which represent the information shared by several manifesta-
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tions, as well as their relations to information defined in the manifestations.
Attributes only need to be identifiable by a name, whereas references, in
addition, need to define the type they reference. This type has to be a Com-
monality again, such as the reference for methods of a class referencing the
Commonality ObjectOrientedDesign:ClassMethod in Listing 12.1.

While these attributes and references only define the structure of the Com-
monality, the relations defined within them express how attributes and
references are represented in the manifestations. Reference and attribute
relations consist of an operator and operands. The operator defines how the
Commonality attribute or reference is related to features of the manifesta-
tions or other literal values, which are passed to the operator as operands. For
example, the name attribute of the component Commonality in Listing 12.2
is related to the name of a class in object-oriented design by a prefix operator,
which takes the class name and an “Impl” string as operands. This operator
expresses that the name of the component Commonality is the prefix of the
given class name removing “Impl”.

In comparison to manifestation conditions, attribute and reference relations
only have one set of operands, because the element for which the relation
is defined is implicitly given by the Commonality attribute or reference,
whereas a manifestation condition must explicitly define which metaclass or
feature it belongs to. Analogous to manifestation conditions, they define a
direction. For example, in Listing 12.2, the relation between the name of the
component Commonality and the name of the class in object-oriented design
is defined to be bidirectional (denoted with a “=”), which means that changes
of both elements are propagated to the other. The component name is also
related to the name of the package in which the class in object-oriented
design is contained. This relation is, however, defined as an enforce relation,
such that the package name is enforced whenever the name of the component
changes, but a modification of the package name does not lead to a change
of the component name.

Whenever a relation is defined as bidirectional, the operator needs to define
how changes are propagated in both directions, i.e., how to update the
Commonality attribute or reference among changes in any of the operands
and how to update the operands whenever the Commonality attribute or
reference is changed. Our prototypical implementation allows to define such
operators in Java code. They need to be derived from a common interface
to dynamically extend the language. Each operator needs to implement
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1 public class PrefixOperator

2 extends AbstractAttributeOperator<String, String> {

3 private final String suffix;

4
5 public PrefixOperator(final String suffix) {

6 this.suffix = suffix;

7 }

8
9 @Override

10 public String applyTowardsCommonality(final String full) {

11 String prefix = full;

12 if (full.endsWith(suffix)) {

13 prefix = full.substring(0, full.length() - suffix.length());

14 }

15 return prefix;

16 }

17
18 @Override

19 public String applyTowardsManifestation(final String prefix) {

20 return prefix + suffix;

21 }

22 }

Listing 12.3: An implementation of the prefix operator for Commonalities as used in the proto-
typical implementation of the Commonalities language. The operator is derived from an abstract
implementation for operators relating attributes to attributes. The generic type parameters
denote the attribute types in the Commonality as well as in the manifestation. Adapted from
the Vitruvius code repository [GitApp].

methods for being applied towards the Commonality as well as towards the
manifestation. Listing 12.3 depicts the implementation of the mentioned
prefix operator. It is initialized with the suffix to remove, such as the “Impl”
suffix to remove from a class name to get the component name in our example.
The operator application towards the manifestation simply concatenates the
given prefix and suffix, such that in the example “Impl” is appended to the
component name. Towards the Commonality, the operator checks whether
the given name ends with the specified suffix and then returns the according
prefix. The operator is implemented to return the given name whenever it
does not have the defined suffix. This is sufficient in the example, because in
that case the Commonality is deleted anyway because of the manifestation
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condition. In general, it may also be useful to define different behavior, such
as throwing an error, asking the user for some decision about the name, or
even mechanisms to reject the change.

Since both application directions of the operator need to be implemented
individually, a developer can implement contradicting behavior in both direc-
tions. This can result in an incorrect transformation, because the consistency
relation implied by a Commonality with an attribute or reference relation
with such a faulty operator may be empty, as the relations encoded into the
different operator directions can never be fulfilled at the same time. To avoid
this, it can be beneficial to derive the implementation of both directions from
one specification of the relation, like in declarative transformation languages
such as QVT-R or the Mappings language. Especially for the latter one,
Kramer has already proposed a methodology for defining unidirectional con-
ditions and deriving the other direction whenever possible [Kra17, Sec. 7.4].
In addition, he has proposed a set of useful operators for defining consistency
relations between elements [Kra17, Sec. 7.3].

Finally, operators should only employ information provided by their operands.
They should especially not use further features of given elements or even
traverse the model to retrieve further elements. If this is the case, the graph
induced by the relations between features of Commonalities and their mani-
festations defined through the operands represents the graph of consistency
relations, which we have employed in Chapter 5 to define and analyze com-
patibility of consistency relations. Thus, if this induced graph forms a tree,
according to Definition 5.6, the consistency relations are inherently com-
patible according to Theorem 5.6, as we have aimed to achieve with the
construction approach of Commonalities, as proposed in Subsection 11.2.3.

12.2.6. Operationalization to Transformations

In Subsection 12.1.2, we have depicted that a Commonalities specification
must be compiled to concept metamodels and transformations between them
and concrete metamodels to be used as an ordinary transformation network.
Since the semantics of relations defined between a Commonality and its man-
ifestations is analogous to the semantics of bidirectional relations defined in
the Mappings language [Kra17, Chap. 7], we refer to that detailed discussion
for operationalizing Commonalities specifications to transformations. We
still discuss essential responsibilities of the compiler process.
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The operationalization of Commonalities specifications requires the gener-
ation of transformations and, in particular, their consistency preservation
rules according to Definition 4.5. Thus, we need to derive rules that instanti-
ate, delete, or update Commonalities after changes to a manifestation such
that they are again consistent to the consistency relations implied by the
manifestation relations defined in the Commonalities specification and vice
versa. The Reactions language (see Subsection 2.4.3) allows the definition of
Reactions and routines that restore consistency after changes. Each Reaction
defines the type of change it reacts to and executes routines, which identify
whether the consistency relation to which they preserve consistency is vio-
lated by that change and then execute actions to restore it. Since that kind of
specification fits to our formalization of consistency preservation rules in
Chapter 4 and thus fits to the goals of the operationalization of Common-
alities specifications, we describe the operationalization to Reactions and
have also implemented it in our prototype. An analogous operationalization
has been developed for the Mappings language by Kramer [Kra17, Sec. 7.7],
which also compiles to Reactions.

The operationalization of Commonalities to Reactions requires that a Reac-
tion is created for each change that may require the instantiation, deletion,
or update of a Commonality. Thus, for each manifestation class and each
of its features referenced in a Commonality as well as for the metaclass
realizing a Commonality and each of its features, a Reaction for their change
is created.

The creation of an instance of each of the metaclasses in a manifestation as
well as each modification of a feature that is used within the manifestation
conditions can lead to a set of model elements that match the manifestation.
Thus, for each of these changes a Reaction needs to be derived that checks
whether such a manifestation is actually instantiated and then instantiates a
Commonality accordingly. In addition, for the creation of a Commonality, a
Reaction that creates all its manifestations has to be created. Kramer proposes
an analogous algorithm for the Mappings language [Kra17, Alg. 1].

Likewise, a deletion of an instance of any of the metaclasses in a manifestation
as well as any modification of a feature that is used within the manifestation
conditions can lead to the situation that elements that previously matched
a manifestation do not match it anymore. Thus, for each of these changes
a Reaction needs to be derived that deletes the Commonality, and for the
deletion of a Commonality a Reaction that removes all its manifestations
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has to be created. For the Mappings language, this has been defined in an
analogous algorithm [Kra17, Alg. 2].

Finally, all changes to features used within the attribute and reference rela-
tions of a Commonality can require updates of the Commonality attributes
and references, and, in consequence, of the features of the other manifesta-
tions. Thus, for each attribute and reference of both the Commonality and its
manifestations, Reactions have to be created that update the related elements
accordingly. The definition how to update the related elements is given by
the implementation of the operators, such as the prefix operator depicted in
Listing 12.3. An algorithm for updating features that are put into relation
has also been proposed for the Mappings language [Kra17, Alg. 3].

A benefit of compiling to Reactions is that they have well-defined seman-
tics [Kra17, Sec. 6.7] and that they are proven complete and correct [Kra17,
Sec. 9.2.4 and 9.3]. This means that they are able to preserve consistency ac-
cording to any possible consistency relation and that their execution actually
preserves consistency to the consistency relations that are implied by the
specified consistency preservation rules. Thus, the transformation language
with which the manifestation relations of Commonalities are operationalized
does especially not restrict expressiveness in any way.

12.2.7. Expected Benefits

The Commonalities approach proposed in Chapter 11 can provide several
benefits compared to an ordinary network of transformations, especially
in terms of mitigating the trade-off between correctness and reusability
of the transformations. While this is a conceptual benefit that is given by
construction of the approach and not only a claim that has to be validated, the
expected benefits of a dedicated Commonalities language especially concern
usability and applicability of the approach, which can be argued but also
have to be empirically evaluated to provide further evidence.

In Figure 12.4, we depict simplified consistency relations between compo-
nents in the PCM and the UML as well as classes in Java, together with a
specification of these relations in QVT-R and the Commonalities language.
In contrast to our previous examples in Listing 12.1 and Listing 12.2, the Com-
monalities specification does not define a hierarchy of Commonalities with
two concept metamodels for component-based and object-oriented design
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Class
name
packageName

Component
name

Component
name

Java UML PCM

jclass.packageName = ucomp.name

jclass.name = ucomp.name + ”Impl”

uclass

ucomp.name = pcomp.name

jclass

jclass.packageName = pcomp.name

jclass.name = pcomp.name + ”Impl”

pcomp

concept ComponentBasedDesign

commonality Component {

with uml:Component

with pcm:Component

with java:Class

has name {

= uml:Component.name

= pcm:Component.name

= prefix(java:Class.name,

"Impl")

-> firstUpper(

java:Class.packageName)

}

}

relation UMLComponent2PCMComponent {

componentName:String;

domain uml ucomp:Component {

name = componentName;

}

domain pcm pcomp:Component {

name = componentName;

}

}
relation Class2PCMComponent {

componentName:String;

domain java jclass:Class {

name = componentName + ’Impl’;

packageName = componentName;

}

domain pcm pcomp:Component {

name = componentName;

}

}
relation Class2UMLComponent {

componentName:String;

domain java jclass:Class {

name = componentName + ’Impl’;

packageName = componentName;

}

domain uml ucomp:Component {

name = componentName;

}

}

Commonalities Specification QVT-R Specification

Figure 12.4.: Example for consistency relations between classes and components expressed with
QVT-R and the Commonalities language.
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but defines the Java manifestation within the component Commonality. The
example gives an impression of the expected conciseness of Commonalities
specifications in comparison to ordinary, bidirectional specifications, due to
which we expect benefits in comprehensibility and specification effort.

As a first benefit, we expect the Commonalities language to improve compre-
hensibility. The language decomposes the specification of consistency along
the Commonalities rather than along the transformations as with ordinary
transformation languages. In consequence, the information how a single
common concept is represented in different metamodels is necessarily spread
across several transformations if each transformation only relates two meta-
models. With Commonalities, this information is located at a single place,
which is the specification of the according Commonality. We expect this to
improve the overall comprehensibility of how different elements in different
metamodels sharing a common concept are related. While a Commonalities
specification improves compatibility anyway due to its likeliness of leading
to a consistency relation tree, it can also make it easier for developers to
get a global understanding of consistency, which would be necessary to
avoid incompatibilities. This is due to the reason that incompatibilities occur
when different transformations relate the same elements in different ways,
which becomes less likely if these different transformations are defined at
one place within the Commonality, such that developers responsible for
other metamodels and thus further manifestations of that Commonality can
easily understand the notion of consistency the other developers have. Fig-
ure 12.4 demonstrates how information about a component Commonality
is represented at one place with the Commonalities language, whereas it is
spread across three QVT-R transformations relating all pairs of metamodels.
As discussed in Subsection 11.3.2, the number of transformations increases
even quadratically with the number of manifestations to keep consistent.
Finally, this is only a benefit of the Commonalities language, which realizes
an internal specification of concepts (see Subsection 12.1.1), because only
such a realization decomposes the specification along the Commonalities.

In Subsection 11.3.2, we have discussed the reduced specification effort of
the Commonalities approach in general, when considering the scenario that
a further metamodel shall be kept consistent. Especially if the information
this metamodel shares with other concrete metamodels of an existing Com-
monalities specification is already represented by Commonalities, only the
manifestation relations of the elements of the metamodel to be added to the
existing Commonalities have to be defined. In an ordinary transformation
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network, all pairwise relations between the metamodel to be added and the
existing metamodels, with whom it shares common concepts, have to be
defined, potentially leading to duplications and thus higher effort.

We have, however, also discussed that the effort for keeping instances of
two metamodels consistent or, analogously, the initial effort for defining
Commonalities for multiple metamodels by specifying the Commonalities
for the first two of them can be high and, in particular, higher than defining
ordinary transformations. Two metamodels can be kept consistent by a
single transformation, whereas a Commonalities specification requires an
additional concept metamodel and two transformations, one between each
concrete metamodel and that concept metamodel, to keep them consistent.
The Commonalities language reduces the effort for specifying these three
artifacts by the choice of an internal specification of concepts. A single trans-
formation rule for a consistency relation of a common concept is expressed
by a Commonality, its manifestations, and the specification of relevant fea-
tures and their relation to the manifestations. But instead of three places to
define this information at, it is defined at one place of the Commonalities
specification. Although Figure 12.4 only represents a single, simple example,
it indicates that a Commonalities specification, even concerning three rather
than two manifestations to keep consistent, is not less concise than the ex-
pression of the according consistency relations in QVT-R. This comparison
implicitly assumes an intuitive comparison of conciseness in terms of lines
of code. It is, of course, an open question whether the specification effort
actually correlates with such a metric and whether conciseness according to
that metric is even given in further cases than the single one depicted here.
Nevertheless, we have argued indicators for expecting the benefit of reduc-
ing specification effort by the proposed language, but we emphasize that its
validation requires empirical studies in terms of controlled experiments with
developers applying both approaches and measuring their effort in terms of
the required time to achieve an error-free solution. We provide preliminary
results of a case-study-based evaluation in Chapter 13.

12.3. Summary

In this chapter, we have introduced the Commonalities language. It supports
the Commonalities approach for constructing transformation networks as
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proposed in Chapter 11 with a dedicated language. We have made the design
choice of decomposing the specification in that language along Commonali-
ties rather than transformations, which promises to improve comprehensi-
bility of the specification and its conciseness, such that specification effort is
even reduced when only few metamodels shall be related. While we have
discussed the relevant elements of that language in more detail and explained
them at examples with a concrete textual syntax that we have developed for
our prototypical implementation in the Vitruvius framework [GitVit], we
refer to the Mappings language of Kramer [Kra17] for further details on its
operationalization. The proposed Commonalities language can be seen as an
extension of that Mappings language for the purpose of relating metamodels
to the concepts they share with each other rather than relating metamodels
with each other. We close this chapter with the following central insight.

Insight III.3 (Language)
In addition to the design options given by the Commonalities approach
as a whole, a language supporting it additionally needs to define how
to decompose the specification. This can be done along the Common-
alities, such that each Commonality is specified at one place with its
manifestations, or along the transformations, such that each concept
metamodel and each relation between a concept metamodel and one of
its manifestations is defined at one place. While depending on the usage
context either of them can be beneficial, a decomposition along the
Commonalities can only be realized with a dedicated language that de-
rives the concept metamodels and transformations between them from
a specification in that language. This approach can especially improve
conciseness and comprehensibility. Such a language consists of three
categories of elements, one for the structure of concept metamodels,
one for the manifestations, and one for the relations between both.
The operators that define how information is propagated along the
relations to keep models consistent across their Commonalities should
make their operands, i.e., the features of Commonalities and manifes-
tations, explicit and not internally acquire further information from
the models. Then, the graph induced by these operands can be used to
identify whether the specified consistency relations fulfill the definition
of a consistency relation tree, which is likely to be achieved with a
Commonalities specification and inherently guarantees compatibility.
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In the preceding chapters 10–12, we have discussed quality properties of
transformation networks and how they can be improved systematically. We
have discussed the effects of the network topology on properties, and we
have derived the Commonalities approach for constructing transformation
networks, which uses the effects of topologies to optimize specific quality
properties and to mitigate trade-off decisions between them. Finally, we
have proposed the Commonalities language, which supports the process of
applying the Commonalities approach to define a transformation network.

The central benefit of the developed Commonalities approach and the sup-
porting Commonalities language is given by construction. The way in which
the transformation network is defined inherently improves correctness, es-
pecially in terms of compatibility, and reusability. These are contradicting
quality properties in a network of transformations that are directly defined
between the metamodels whose instances shall be kept consistent. We have
argued this trade-off mitigation in Subsection 11.3.1. In addition to this cen-
tral benefit, we have discussed further benefits that we expect from both
the Commonalities approach as well as the Commonalities language in Sec-
tion 11.3 and Subsection 12.2.7. We empirically evaluate these benefits with
a case study presented in this chapter.

In the discussions of Chapter 11 and Chapter 12, two general issues affecting
the Commonalities approach remained that may only be solved by empirical
investigations. First, although consistency relations and their preservation
are only described in a different way by means of auxiliary models, it may
be possible that the approach restricts the possible consistency relations that
can be described in any way, especially under the goal of achieving a consis-
tency relation tree (see Subsection 11.2.3). Second, achieving a consistency
relation tree with the approach is important to maximize the guarantee of
compatibility while ensuring maximal reusability (see Subsection 11.2.3), but
it is unclear how far or under which conditions such a tree can be achieved
in practice.
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In addition to the benefits of the Commonalities approach, the Commonalities
language is expected to reduce the specification effort. The Commonalities ap-
proach itself can improve the specification effort in comparison to an ordinary
transformation network when the auxiliary metamodels and transformations
to them are defined with existing modeling tools (see Subsection 12.2.7). The
Commonalities language is, however, supposed to reduce this additional
effort. We have thus developed a prototype of that language, and we evaluate
its correctness as well as the goal of reducing the specification effort in a
case study that we present in this chapter.

13.1. Goals and Methodology

In this evaluation, we aim to validate relevant properties of the Commonali-
ties approach and the Commonalities language that are not given by their
construction but have to be analyzed empirically. This especially concerns
the applicability of the approach and specific benefits provided by the lan-
guage but also the general completeness of the approach, i.e., the ability to
express every desired set of consistency relations. It is an extension of the
preliminary case study that focused on validating feasibility that we have
conducted and presented in previous work [KG19].

In the following, we present an empirical evaluation based on a case study,
in which we apply a prototypical realization of the Commonalities language
to consistency relations and their preservation in the domain of component-
based software engineering, which we have introduced in Section 2.5 and
already employed for the evaluation of our contributions regarding the con-
struction of correct transformation networks in Section 9.2. We summarize
the general goals of the evaluation along with according questions and met-
rics as quantitative measures for answering them in Table 13.1.

Regarding the Commonalities approach as such, we are interested in the
possibility to be used by transformation developers to define consistency
preservation. In a first place, this comprises the validation of completeness
according to Section 10.1. We want to find out whether it is possible to define
arbitrary consistency relations with the Commonalities approach. In fact,
Stevens shows that every multiary relation can be expressed by an auxiliary
metamodel with binary relations between this auxiliary metamodel and the
metamodels to describe consistency between [Ste20b]. This means that also
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Goal 6:
(Approach)

Show that transformation developers can use the
Commonalities approach to specify consistency and its
preservation between multiple models.

Question 6.1:
(Completeness)

How far are the Commonalities approach and the
Commonalities language capable of defining arbitrary
consistency relations?

Metric 6.1.1:

Definition ratio: Ratio of consistency relations for which

consistency can successfully be defined

Question 6.2:
(Practicality)

How far can a Commonalities specification achieve a
consistency relation tree in practice?

Metric 6.2.1:

Cross-tree ratio: Number of cross-tree relations compared

to the number of relations

Goal 7:
(Language)

Show that transformation developers can define
consistency in a concise way with the Commonalities
language.

Question 7.1:
(Correctness)

Do transformations generated by specifications in the
Commonalities language preserve consistency according
to the defined relations?

Metric 7.1.1:

Preservation ratio: Ratio of scenarios in which consistency

can successfully be preserved

Question 7.2:
(Benefit)

How much more concise is a specification in the
Commonalities language compared to a specification in
the Reactions language?

Metric 7.2.1:

Code ratio: Ratio between the SLoC in a Commonalities

specification compared to the SLoC in a Reactions

specification

Table 13.1.: Goals, questions, and metrics for Commonalities approach and language evaluation.

any set of binary relations, which induce a multiary relation as discussed
in Subsection 4.1.2, can be expressed by an auxiliary metamodel and binary
relations between it and the metamodels to define consistency between.
This conforms to the general idea of the Commonalities approach and, if
recursively applied, even to the hierarchic composition of Commonalities.
Despite this theoretical insight, we investigate whether such a specification
is actually achievable in practice, especially under the specific goal of achiev-
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ing a consistency relation tree in a specification of Commonalities. Even
if the Commonalities approach itself may not be restricted in expressive-
ness, the proposed Commonalities language may be because of the selected
way in which Commonalities and their relations are defined. This leads to
Question 6.1, which we aim to answer by measuring how many consistency
relations of our case study we are able to define:

definition ratio =
# of defined consistency relations

# of total consistency relations

The more consistency relations we are able to define, the higher it is an
indicator for the completeness of the approach and the language. It does,
however, especially indicate completeness of the Commonalities language,
such that we derive by argumentation whether restrictions in expressiveness
exist only because of the language or already because of restrictions of the
Commonalities approach. The language especially serves as a means to draw
conclusions about completeness of the approach.

For the Commonalities approach to provide the benefit of inherently guaran-
teeing compatibility, it must be possible to define a consistency relation tree
by means of the additional concept metamodels and their Commonalities. In
this first place, we aim to identify whether such a tree can be defined at all.
We do not aim to systematically find conditions under which this is possible
or even how the Commonalities approach and the Commonalities language
can systematically support this. Knowing whether the specification of such
a tree is achievable at all is a prerequisite for these further investigations,
which we refer to as future work. It identifies practicality of the approach,
as considered in Question 6.2. To this end, we measure in our case study
how many of the defined relations are cross-tree relations, i.e., violate the
definition of a consistency relation tree:

cross-tree ratio = # of cross-tree consistency relations

# of defined consistency relations

In the best case, this ratio is 0, such that the relations actually form a con-
sistency relation tree. Referring to Definition 5.6 for consistency relation
trees, we consider the graph induced by the relations defined by the mani-
festation relations of a Commonalities specification between metaclasses of
the concrete metamodels and concept metamodels, in which they are called
Commonalities. We only consider the actually defined consistency relations,
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as we cannot make statements about the relations that we do not express by
Commonalities in the case study.

Regarding the Commonalities language, we are most interested in finding
indicators for improving usability of the Commonalities approach by provid-
ing a concise way of specification. First of all, this requires that the language
operates correctly, i.e., that it actually generates transformations that pre-
serve consistency according to the defined consistency relations, as defined
in Question 7.1. This actually evaluates two correctness notions. First, it
identifies whether the language implementation is correct at a technical level.
Second, it identifies whether the concepts for operationalizing Commonali-
ties into transformations defined with the Reactions language, as proposed
in Subsection 12.2.6, are correct. We measure this by executing change sce-
narios and identifying whether the results are consistent to the specified
relations:

preservation ratio =
# of successful scenarios

# of total scenarios

In the best case, this metric evaluates to 1, such that in all scenarios consis-
tency can successfully be preserved. In failure cases, we manually investigate
the cause, especially distinguishing between conceptual issues in the op-
erationalization of the Commonalities language and technical faults in the
compiler implementation.

As an essential benefit of the Commonalities language, we have motivated
the reduction of specification effort (see Subsection 12.2.7). This is of par-
ticular importance, because developing a Commonalities specification for
consistency between two metamodels by means of existing tools for meta-
model and transformation definition requires the definition of three artifacts
compared to a single artifact when defining an ordinary transformation. The
Commonalities language aims to resolve this issue. We consider the speci-
fication effort by means of conciseness, i.e., the size of a specification with
Commonalities in comparison to a specification of ordinary transformations
between the metamodels, as defined in Question 7.2. Since the Commonal-
ities language compiles to Reactions and a comparable implementation of
the case study already exists for them (see Subsection 9.2.3), we compare the
size of a Commonalities specification with the size of a specification in the
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Reactions language in terms of the Source Lines of Code (SLoC) and measure
the following metric:

code ratio =
# of SLoC with Commonalities

# of SLoC with Reactions

The lower the value of this metric, the more concise a specification in the
Commonalities language can be considered in comparison to a specification
in the Reactions language. We expect this insight in conciseness to correlate
with the required specification effort.

13.2. Prototypical Implementation

For conducting the case study, we have used a prototypical implementation
of the Commonalities language and the realization of the case study with
this language in the Vitruvius framework (see Subsection 2.3.2). We have
also employed this framework for the implementation of the our case study
for evaluating concerns and approaches regarding correctness in Section 9.2.
In addition, the Reactions language (see Subsection 2.4.3), to which the
Commonalities language compiles, is part of the Vitruvius framework.

The implementation of the Commonalities language conforms to the con-
siderations discussed in Chapter 12. It implements an internal specification
of concepts, i.e., it allows the specification of each Commonality in one file
together with all its manifestations and relations to them, according to the
elements we have introduced in Figure 12.3. The syntax conforms to the
examples we have given in Listing 12.1 and Listing 12.2 but provides even
more sophisticated specializations of the depicted language constructs. We
have also defined a set of general as well as case-study-specific operators for
manifestation conditions as well as attribute and reference relations.

The specifications in the Commonalities language are compiled to Ecore
metamodels for the concept metamodels and specifications in the Reactions
language for the manifestation relations, according to Subsection 12.2.6.
Reactions, in turn, are compiled to ordinary Java code that implements a
specific API of the Vitruvius framework. The framework orchestrates the
transformations with a simple strategy that enqueues all transformations
defined for the model that is modified by the current transformations and

456



13.3. Case Study

Element Type Total Covered

Direct Implicit Overall

Metaclass 13 7 3 10 77 %
Attribute 27 19 1 20 74 %
Containment reference 13 9 0 9 69 %
Non-containment reference 4 2 2 4 100 %
Enumeration 2 0 2 2 100 %

Total 59 37 8 45 76%

Table 13.2.: Numbers of UML metamodel elements used in the case study. Adapted from [Hen20,
Tab. 10.4].

executes them until no further changes are made. Since we aim to define
Commonalities that represent a consistency relation tree, transformations
should be inherently compatible and are thus likely to terminate with such
an orchestration strategy (see Paragraph 9.2.5.2). The implementation of the
framework with the Commonalities and Reactions language is available in a
GitHub repository [GitVit].

13.3. Case Study

We have performed a case study based on the metamodels PCM, UML and
Java, as introduced in Section 2.5. The specification of Commonalities is based
on two sets of consistency relations, one for the PCM and object-oriented
design, applying to both Java and the UML, and for the UML and Java,
which we have both also introduced in Section 2.5. We have used the same
consistency relations to implement a case study of transformations with the
Reactions language in Chapter 9 for evaluating our contributions regarding
correctness of transformation networks. Since the Commonalities language
compiles to Reactions, this allows us to compare the two realizations.

The two sets of consistency relations are motivated by the two concepts of
object-oriented design and component-based design, between which have
already distinguished in the explanation of the Commonalities approach
in Chapter 11 and for which we have especially considered a hierarchic
representation in Subsection 11.2.2. We have thus implemented the case
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Element Type Total Covered

Direct Implicit Overall

Metaclass 30 9 11 20 67 %
Attribute 13 11 0 11 85 %
Containment reference 32 19 1 20 63 %
Non-containment reference 1 0 0 0 0 %
Enumeration 0 0 0 0 100 %

Total 76 39 12 51 67%

Table 13.3.: Numbers of Java metamodel elements used in the case study. Adapted from [Hen20,
Tab. 10.5].

Element Type Total Covered

Direct Implicit Overall

Metaclass 16 7 2 9 56 %
Attribute 15 7 1 8 53 %
Containment reference 18 6 0 6 33 %
Non-containment reference 8 3 1 4 50 %
Enumeration 1 0 1 1 100 %

Total 58 23 5 28 48%

Table 13.4.: Numbers of PCM metamodel elements used in the case study. Adapted from [Hen20,
Tab. 10.3].

study with two according concept metamodels, of which the one for object-
oriented design defines Commonalities between the UML and Java, and
the one for component-based design defines Commonalities between the
object-oriented design concept metamodel and the PCM. The case study has
been implemented with the Commonalities language in the Master’s thesis
of Hennig [Hen20]. Details on the implemented consistency relations and
Commonalities can also be found there [Hen20, Sec. 3, A.2]. In the following,
we summarize the case study.

We have realized a subset of the consistency relations that we have introduced
in Section 2.5 and that we have realized with the Reactions language in the
case study presented in Chapter 9. Table 13.2, Table 13.3, and Table 13.4 give
an impression of the size of the implemented case study. They depict the
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numbers of elements by type for the three metamodels that are relevant for
the originally defined consistency relations, denoted as total, and those that
were realized in the case study, denoted as covered. We distinguish between
elements that are directly and implicitly covered, according to whether they
were actually defined as manifestation classes or features of them and passed
to the operators ensuring consistency explicitly, or whether they were only
accessed within the operators. The total case study size is reflected by the
absolute numbers of considered elements, and the coverage of the originally
presented consistency relations is reflected by the relative numbers.

The implicitly covered elements concern, for example, primitive data types
or enumeration literals, which have to be instantiated on demand but which
are not explicitly represented within the Commonalities. Implicit elements
also cover structures of elements that are only represented by one element
in the other metamodels. For example, the UML represents the realization of
an interface by a class through an indirect reference of a dedicated gener-
alization element, i.e., the class references a generalization, which, in turn,
references the implemented interface, whereas the Commonality and the
Java representation have a direct reference to the implemented interface.
In that case, the generalization element is not explicitly referenced in the
Commonality specification but only implicitly used within the operators for
the implementation relation. In Java, many metaclasses are only implicitly
covered, because primitive types, type references, and modifiers are repre-
sented as metaclasses, whereas they are represented as instances in the other
metamodels (see [Kla16, Sec. 5.7.4]) and are thus only used implicitly within
operators for attributes that represent references or modifiers.

The implementation contains 15 Commonalities, of which eight belong to
the object-oriented design and seven to the component-based design concept
metamodel. These Commonalities put 124 elements of the concrete meta-
models into relation, which represent around 64 % of the total 193 elements
that are relevant for the complete set of introduced consistency relations.
While the case study implementation covers most elements of the UML (76 %)
and Java (67 %), it only covers 48 % of the PCM elements. Most of the missing
consistency relations are due to intended restrictions of the case study size
or restrictions in expressiveness of the Commonalities language. We further
discuss the reasons in the subsequent results presentation.

The implementations of all Commonalities are available in a correspond-
ing GitHub repository of the Vitruvius project [GitApp]. It also contains
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Consistency Relation Test Cases Successful Test Cases

Package 6 6 100 %
Class 26 26 100 %
Class method 40 40 100 %
Constructor 24 22 92 %
Field + association 20 20 100 %
Interface 10 10 100 %
Interface method 28 28 100 %

Total 154 152 99%

Table 13.5.: Test case results for consistency relations in object-oriented design. Adapted
from [Hen20, Tab. 10.2].

Consistency Relation Test Cases Successful Test Cases

Repository 6 6 100 %
Interface 6 6 100 %
Signature + parameters 48 48 100 %
Composite data type 48 48 100 %
Repository component 6 6 100 %
Provided role 12 8 67 %

Total 126 122 97%

Table 13.6.: Test case results for consistency relations in component-based design. Adapted
from [Hen20, Tab. 10.1].

test cases, which we have reused from those that we have defined for the
case study with the Reactions language, as presented in Subsection 9.2.3.
Since we only want to evaluate whether results are correct regarding the
consistency relations for which we have defined consistency preservation
with Commonalities, we have reduced the tests to those for the according
consistency relations in comparison to the tests summarized in Table 9.7.
We have, however, also added further test cases such that in total more test
cases for the case study implementation with the Commonalities language
exist than for the implementation with the Reactions language. All these
test cases perform changes that lead to the violation of a specific type of
consistency relation and require the transformations to change the other
models for restoring consistency, which are then validated by the test case.
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Table 13.5 and Table 13.6 summarize the test cases together with their results
when applied to the case study implementation with the Commonalities
language, which we discuss in the subsequent section. The test cases are split
into one set only concerning consistency relations for object-oriented design,
i.e., those keeping only UML and Java models consistent, and another set
for component-based design, in which also PCM models are kept consistent.
For every change scenario, such as the addition or modification of a specific
type of element involved in a consistency relation, we consider one test case
per change direction per model pair. For object-oriented design, this results
in two test cases for each scenario, since each change can be performed in
the UML and checked in Java and vice versa. In component-based design,
each change can be performed in any of the three models and propagated to
any of the two other models, resulting in three test cases for each scenario.
In consequence, test case numbers are a multiple of two for object-oriented
design and a multiple of six in component-based design.

In total, we have executed 285 test cases. They include 154 test cases for
keeping UML and Java models consistent with the object-oriented design
Commonalities and 126 test cases for keeping PCM, UML, and Java models
consistent with Commonalities for object-oriented design and component-
based design. While these test cases use minimalist models that are sufficient
for representing the consistency relation under test, we have also used the
Media Store system model [SK16], which is a comprehensive case study
system for the PCM and which we have already used in the evaluation of our
approaches for constructing correct transformation networks in Chapter 9.
For this PCM model, we simulate its construction by producing a change
sequence that yields the models, which conforms to the Reconstructive Inte-

gration Strategy proposed by Langhammer [Kla+21; Lan17]. We have defined
five additional test cases using this construction simulation, which validate
that a UML model is created and that it is consistent to the defined consis-
tency relations, including components, interfaces, operation signatures, data
types, and provided roles.

13.4. Results and Interpretation

We use the implemented case study and the conducted tests to answer the
evaluation questions summarized in Table 13.1 or at least to find indicators
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for how their general answers are expected to be based on the data from the
case study. The questions are split into those especially concerning the Com-
monalities approach and those concerning the Commonalities language.

Commonalities Approach

We have explained that we did not implement all consistency relations with
the Commonalities language that we have realized with the Reactions lan-
guage in the evaluation for transformation network correctness in Section 9.2
but only a sufficiently complex subset. We selected consistency relations
forming a coherent set that can be realized with reasonable effort and such
that we do not expect further insights regarding applicability, practicality,
and usability of the Commonalities approach and language from the imple-
mentation of the omitted relations. To avoid a bias by defining an arbitrary
subset of the consistency relations, which, by accident, can completely or
almost completely be realized with the Commonalities language, we consider
the ratio of consistency relations realized with the Commonalities language
in comparison to the complete consistency relations depicted in Section 2.5.
It results in the following metric values, derived from the values in Table 13.2,
Table 13.3, and Table 13.4:

definition ratio
sums

= 64 %
(︁
= 45+51+28

59+76+58
)︁

definition ratio
average

= 64 %
(︁
= 76 %+67 %+48 %

3
)︁

definition ratio
UML−Java = 71 %

We counted the elements of the metamodels affected by the consistency
relations. To avoid a bias by having different numbers of elements in the
different metamodels, we have calculated the ratio both based on the sums of
the elements across all metamodels (definition ratio

sums
), as well as the equally

weighted average of the coverage of all metamodels (definition ratio
average

).
They do, however, both sum up to the same value of 64%. Since UML and
Java represent those metamodels that are kept consistent by a single concept
metamodel for object-oriented design and can thus be considered a minimal
application of the Commonalities approach for only two metamodels, we
explicitly calculated the ratio only for these two metamodels as well. Since
both ways of calculation introduced above yield the same value, we have
only depicted the single result of 71 %.
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The coverage ratios especially give an impression of how comprehensive the
realized consistency relations are. To evaluate completeness of the Common-
alities approach and the language, it is of particular importance to identify
how many of the consistency relations that we intended to implemented
could not be realized. In summary, we found that most consistency relations
that we aimed to realize could actually be achieved, except for multi-valued
types in the PCM and Java, which is due to current limitations of the language.
Multi-valued types are fields and parameters of a type with an upper bound
in its multiplicity higher than one. This can be expressed with explicit multi-
plicities in the UML and with collection data types in the PCM, whereas they
have to be rolled out as explicit implementations of collections in Java. The
current implementation of the Commonalities language lacks an operator for
that situation, which is, however, not a conceptual limitation but can be added
with some additional effort. In addition, provided and required roles in the
PCM as well as generalizations in the UML are currently not fully supported
and in parts only covered implicitly, because the current implementation of
the Commonalities language only supports explicit relations to containment
references, but roles and generalizations contain ordinary references to the
provided, required, or implemented interfaces, which can up to now only be
accessed implicitly within operators of the Commonalities language. This is
a technical limitation, which the current case study implementation avoids
by implementing complex operators to support these situations, which is
why the according test cases are actually successful, but the language lacks
sufficient support for such relations.

The remaining consistency relations were omitted on purpose and are sum-
marized in more detail in the Master’s thesis of Hennig [Hen20, Sec. 3]. They
comprise composite components in the PCM, which are comparable to ba-
sic components and only need to be distinguished by an according naming
schema or the containment of assemblies of other components, of which at
least the latter requires some implementation effort but is not expected to be
a conceptual issue. In addition, systems and subsystems are not considered,
because they are composite components with slightly different semantics.

In summary, the case study results indicate that in answer to Question 6.1
the Commonalities approach itself is complete, as we have already expected
because of the theoretical considerations by Stevens [Ste20b]. The Common-
alities language, however, currently has some limitations that prevent the
realization of some consistency relations or at least made it more difficult
than it should be. We found these to be only technical limitations that can
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be solved by extending the language, such that they do not hide actual limi-
tations of the underlying Commonalities approach. The results emphasize
the status of the Commonalities language implementation as a prototype
but still indicate possible completeness of such a language according to the
concepts for such a language proposed in Chapter 12.

The central question to evaluate for the Commonalities approach concerns
its practicality in terms of achieving a consistency relation tree with a Com-
monalities specification to benefit from the discussed guarantees in qual-
ity improvement. We have discussed in Subsection 11.2.3 that the defined
consistency relations have to form a consistency relation tree, and in Sub-
section 12.2.5 we found the graph induced by the operands of the operators
putting Commonalities and their manifestations into relations to be the
one to consider for identifying a consistency relation tree. Since in several
Commonalities of our case study elements are accessed implicitly within
the operators and not all of them are explicitly defined as operands, these
elements have to be considered as well. For that reason, we conducted the
investigation of the defined relations to identify the graph as a consistency
relation tree manually. In this manual analysis, we found that none of the de-
fined relations lead to the violation of the definition of a consistency relation
tree according to Definition 5.6:

cross-tree ratio = 0

Although restricted to a single case study, this at least serves as a first indicator
for the practicality of the approach as asked in Question 6.2, i.e., that it
actually supports or at least enables the specification of a consistency relation
tree. To mitigate the risk of mistakes performed in the manual analysis of
consistency relations, the test results also serve as a further indicator that
the relations form a tree. Violations of such a tree structure can easily
lead to incompatibilities, as discussed in Chapter 5, which can then lead
to non-termination, as discussed in Chapter 8, especially with the simple
orchestration strategy that we employed for the case study. We have, however,
not observed any non-termination in the test cases. The failing tests were
due to other reasons, which we discuss in the following. Although even
without a tree structure the consistency relations can be compatible, or even
if they are incompatible it may not lead to failures during transformation
execution, it still serves as an indicator that the consistency relations form
a tree. Even if this is not the case, the evaluation at least shows that the
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transformations behave correctly, thus no matter whether this is actually
achieved by defining a consistency relation tree or any other reason that
makes the operationalization of Commonalities specifications likely to be
correct, it is only important that correctness is achieved.

Commonalities Language

As a prerequisite for any further insights on the Commonalities language, we
first have to validate its correctness. This covers the correct implementation
of the language and its compiler as well as correctness of concepts how to
compile Commonalities into Reactions. While the former can be seen as sim-
ple bug testing, the latter gives us insights in whether the operationalization
concept is correct, which especially means that the language can be seen as
a derivation of the Mappings language, from which we have reused opera-
tionalization concepts (see Subsection 12.2.6). To validate correctness, we
consider the test case results for those consistency relations of the case study
that we have implemented with the Commonalities language. According to
Table 13.5 and Table 13.6, more than 97 % of them are successful:

preservation ratio ≥ 97 %

In addition, the five test cases for the Media Store case study system also
produce the expected results. Regarding Question 7.1, this is a high indicator
for correctness of the operationalization concept of the Commonalities lan-
guage as well as its implementation, especially because the failures of the
remaining test cases are caused by the used Vitruvius framework and by
incompleteness of the Commonalities language.

In total, six test cases fail. This concerns two tests cases for constructors in
object-oriented design, which both implement the same scenario but once
from Java to the UML and once vice versa. In this test scenario, multiple
constructors with different parameter lists are created. The Vitruvius frame-
work first executes transformations for the insertion of both constructors and
afterwards for the addition of parameters. This leads to two indistinguishable
constructors with empty parameter lists when first execution the transfor-
mation, such that when adding the parameters the two constructors cannot
be distinguished anymore. Processing the constructor additions one after an-
other in the framework would solve the problem. Anyway, the same problem
would occur when using the Reactions language. Regarding provided roles
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Reactions (omitted) Commonalities Difference

Specifications 2390 (302) 514 −1876 −78 %
Utilities 2250 (445) 2523 273 11 %

Total 4640 (747) 3037 −1603 −53%

Table 13.7.: SLoCs in the Commonalities and Reactions specification for the consistency relations
between the UML and Java. For Reactions, the numbers only cover consistency relations realized
in the Commonalities specification, whereas those in parenthesis cover the relations not realized
in the Commonalities specification. Adapted from [Hen20, Tab. 10.9].

in component-based design, four test cases fail, because the references to
provided interfaces are only implicitly covered in operators. We have already
discussed before that the Commonalities language currently only supports
relations for containment references, such that other references have to be
processed within operators. Provided roles are contained in components,
which in turn reference the provided interface. When a provided role is
added to a component, this is processed by a relation in the component
Commonality. The operator for that relation also implicitly considers the
reference to the interface within the role, but this reference may not yet be
set. When the interface of the role is set or changed later, this change is not
propagated, as no relation for it is defined in a Commonality and thus no
Reaction is generated for it, such that the according test cases fail. In con-
sequence, this is a result of technical incompleteness of the Commonalities
language as discussed before, but it is not a matter of incorrectness of its
operationalization.

The Commonalities language is supposed to support the construction of
a transformation network according to the Commonalities approach. In
comparison to applying the construction approach with ordinary modeling
and transformation tools, it is supposed to reduce the specification effort,
especially in the simple or initial case in which consistency between only
two metamodels shall be specified. The case study implementation contains
a specification for two metamodels in terms of the object-oriented design
Commonalities between the UML and Java. We had already defined their con-
sistency preservation with a direct transformation by means of the Reactions
language in previous case studies for the Vitruvius framework [Kla+21],
which we have also employed for the evaluation in Section 9.2. Table 13.7
compares the realization of consistency relations between the UML and Java
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by means of the Reactions language and the Commonalities language in
terms of SLoCs. Since there is no unique measure for SLoCs for these lan-
guages, we have decided to format the code such that each statement for
every grammar rule starts in a new line, according to the formatting used for
Reactions [Kla+21]. Since not the complete specification is defined within the
language artifacts itself but also within utilities written in Java or Java-like
code, we also counted the SLoCs in that code. Since the Reactions language
allows to define arbitrary code within the Reactions, only few utility code is
necessary, whereas the Commonalities language requires utility code already
for all use-case-specific operators. Considering all code together leads to
a reduction in SLoCs between Reactions and Commonalities of more than
50 %:

code ratio = 47 %

Drawing conclusions of this metric to the actual specification effort suffers
from several biases. First, the counted SLoCs can only be considered an
approximation, as, for example, the utilities are shared with other projects and
thus they are not tailored to consistency between the UML and Java. Second,
whether conciseness in terms of SLoCs actually leads to less specification
effort is not evaluated but only assumed as a hypothesis. In response to
Question 7.2, the case study provides an indicator for achieving conciseness
in comparison to the Reactions language. Finally, it is only necessary to
avoid an increase in specification effort, thus conciseness should at least
not decrease. Whether or not the actual value of around 50% in code size
reduction is representative, it at least shows that we may not expect a drastic
increase in code size, which would improve the specification effort.

13.5. Discussion and Validity

From the discussed case study and its results, we can derive several important
insights. They are given even though a single case study only gives indicators
for specific properties, as it suffers from potential limitations especially in
external validity. We discuss threats to the validity of our results after a
summary of important insights.
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Insights

With the empirical evaluation, we especially aimed to validate two properties.
First, we wanted to investigate practicality of the Commonalities approach in
terms of being able to express arbitrary consistency relations and especially
to achieve a tree structure that inherently guarantees certain quality proper-
ties. Second, we aimed to validate the reduction of specification effort with
the Commonalities language to ensure that in the simple case of defining
consistency between two metamodels, specification effort does not increase
in comparison to a direct transformation between them.

In the case study, we found by manual analysis of the defined Commonalities
that a tree structure inherently guaranteeing compatibility was achieved.
There are several threats to the validity of generalizing this result to achiev-
ability of a tree structure in every case, which we discuss in the following
subsection. Although a tree is what we want to achieve to have definite
guarantees for compatibility, the actual goal is to achieve correctness, which
can also be achieved without a specification inducing such a tree topology. Vi-
olations of a tree structure only introduce potential incompatibilities, which
can potentially lead to execution cycles. This does, however, not need to be
problematic, because a cycle in the relations does not have to lead to a cycle
between corresponding elements in an instance and because even if there is
such a cycle, it can be implemented properly so that execution terminates
consistently, like we aimed to achieve for ordinary transformation networks
in Part II. Thus, even if the results of our analysis of relations in the case
study was erroneous, the execution of the transformations derived from the
Commonalities specification still worked properly, i.e., it always terminated
and led to consistent results in the executed test scenarios. Thus, independent
from whether a consistency relations tree was actually achieved or not, the
approach led to a correct specification, which also provides optimal reusabil-
ity by construction of the Commonalities approach and thus mitigates the
trade-off between these properties as intended.

Regarding the Commonalities language, we were able to show a reduction in
code size of about 50% for the consistency relations between the UML and
Java in comparison to a specification with the Reactions language. Although
this evaluation also suffers from several threats to validity, which we discuss
in the following, it at least indicates that we do not have to expect a significant
improvement in code size. For two metamodels, a specification according
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to the Commonalities approach by means of the Reactions language would
require twice as many Reactions code plus the definition of the concept
metamodel in comparison to a direct Reactions specification between the
metamodels. Thus, a specification that requires at most two times the code
lines required for a Reactions specification between the metamodels provides
a benefit with respect to average realizations of the Commonalities approach.
Thus, even if specification effort and code lines are not linearly correlated,
the reduction of code lines by 50% in comparison to an improvement by
factor two will likely lead to less specification effort.

Threats to Validity

In the following, we discuss different potential threats to the validity of the
discussed results. The restriction to one case study especially limits external
validity, thus all results can only be seen as indicators for the statements
that we make. We will, however, discuss for which reasons validity of the
statements may actually be restricted, distinguished by construct, internal,
conclusion, and external validity [Woh+12].

Construct Validity There are especially two threats regarding construct
validity, which arise from the manual analysis of achieving a tree structure
with Commonalities as well as from the selection of consistency relations
to implement. The manual conduction of the analysis of the consistency
relation graph induced by the Commonalities specification is prone to faults,
as it lacks an explicit graph representation that can be analyzed automatically.
Violations of the tree structure would, however, likely have led to failures
during execution. The Reactions generated from Commonalities are not
synchronizing, as discussed as a preliminary for transformations in networks
(see Chapter 6), thus in case there are cycles of consistency relations and
thus transformations across which changes are propagated, the execution
would likely lead to failures as missing synchronization and also potential
incompatibilities prevent the transformations from finding consistent results.
In particular, in Section 9.2 we found that missing synchronization is the
most severe issue that, in the case studies, led to a failure of every test case.

The selection of consistency relations that we have realized with the Com-
monalities language may not be representative. Other relations might have

469



13. Evaluation and Discussion

led to different results regarding all evaluation questions, including complete-
ness of the approach and the language, the achievability of a tree structure,
and correctness of the compiler. We have, however, argued why we per-
formed that selection of consistency relations and why we do not expect
other relations to yield other results. In addition, even if the actually realized
relations may not be representative, at least the complete case study with
all relations represents a sophisticated scenario. It especially requires the
usage of all elements provided by the Commonalities language in contrast
to preliminary studies in which only specific elements of the language were
required and used to achieved feasibility results [KG19].

Internal Validity Internal validity may especially be affected regarding the
results for properties of the Commonalities language. First, the language
was only a proof-of-concept before implementing the case study and was
improved along with the case study realization. Thus, there is the risk of
optimizing the language for the case study. This especially affects the opera-
tors, as several of them are specific for the case study, whereas the overall
structure of the language is generic. Even if this reduces validity, it does not
affect the results for the evaluation of the Commonalities approach and the
conciseness of the language but only its completeness and correctness.

In addition, the case study was implemented by a single person, such that
the results may be affected by the performance of this person. This may
affect completeness and conciseness of the approach. Regarding complete-
ness, another person may have been able to implement more relations, thus
evaluation results may only become better when performed with a different
person. Conciseness of an implementation can vary in both directions when
performed by different persons, which induces a bias in the results regarding
conciseness. It can be the case that the average developer produces less
concise results than in our evaluation, which can affect generalizability of
the results. The goal of the language is, however, that specifications are not
less concise than an implementation with ordinary transformations, which
we have shown is at least possible and which is even given if the results are
biased due to the measured amount of improvement in conciseness.

Another threat is given by the comparison of Commonalities with Reactions
for evaluating conciseness of the language. The Reactions language allows
imperative, unidirectional specifications of transformations and provides
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high expressiveness by being rather verbose and providing only few abstrac-
tions in comparison to a general-purpose programming language. A language
at a higher abstraction language, such as the Mappings language, from which
we have reused large parts of the compiler, or QVT-R, may provide a better
baseline for comparison. We have used the Reactions language as a baseline
because the case study was already implemented and, in particular, evalu-
ated with that language. The case study implementation has already been
compared with an implementation in ordinary Java code [Kla+21], which
has shown a reduction in code size. This shows that specifications in the
Reactions language are not arbitrarily verbose, and for other languages such
an evaluation does even not exist. Since the goal of the evaluation was
especially to show that Commonalities specifications do not considerably
increase the specification effort and since the results indicate that we do not
have to expect an increase in code size by several times, such an increase in
specification effort cannot be expected.

Conclusion Validity The correlations between evaluated metrics and per-
formed statements are straightforward for completeness, correctness, and the
achievement of a tree topology. The assumed correlation between concise-
ness of the code and specification effort is, however, a threat to conclusion
validity. Code that is more concise may even be harder to specify, because it
can require more knowledge about language constructs and experience with
using them. In particular, much of the logic of a Commonalities specification
is defined in operators. We especially observed a significant improvement in
conciseness in the specification code but not in the utilities code, to which
the operators belong. Thus, if the operators are the part that is hard to
specify, the effort may even increase. As discussed before, we do, however,
not require a significant reduction in specification effort to gain a benefit
from the Commonalities language, as the central benefit is already given by
its guarantees regarding correctness and reusability. In consequence, the
language is only supposed to mitigate the increase in effort induced by the
Commonalities approach as such, which is at least twice the effort, mea-
sured in terms of SLoC, for a direct transformation between two metamodels,
whereas in the case study the language reduced it by the same factor. So
even if there is a large bias in the relation of conciseness and specification
effort, the results still indicate that specification effort does not increase with
the Commonalities language.
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External Validity The central threat regarding external validity is the limi-
tation to a single case study. This may affect generalizability if other case
studies produce different results regarding completeness, correctness, and
conciseness. We did, however, mitigate this threat by not using a toy example
but a sophisticated case study, including multiple realistic consistency rela-
tions and a hierarchic definition of them with Commonalities. In addition, we
do not expect practicality in terms of achieving a tree topology to depend on
the actual case study but only on the kinds of relations, which we expect to
be representative in the study as discussed for construct validity. Finally, the
effort for setting up a case study and to set up the baseline for a comparison
with ordinary transformation is rather high. At least, we were able to use an
independently developed baseline, which we have used for our evaluations
in Section 9.2, to evaluate conciseness of the Commonalities language.

13.6. Limitations and Future Work

The Commonalities approach as well as the Commonalities language have
been developed particularly for the specification of descriptive specifications
of consistency (see Subsection 11.1.3) and with specific goals of quality
improvement that require a tree topology of the specified relations. These
assumptions as well as the discussed evaluation results yield limitations of
the proposed approach and language. We discuss them in the following and
derive opportunities for future work.

Tree Achievement The essential benefits of the Commonalities approach
regarding correctness guarantees arise from the likeliness of defining a tree
of consistency relations. Although the evaluation indicates that such a tree
is achievable, or even if it is not achieved, it may ease the achievement of a
correct transformation network, it is finally still up to the developer to ensure
correctness. The language supports him or her in achieving it, but it would be
beneficial to finally make the language ensure correctness. We have sketched
in Subsection 12.2.5 how the graph of consistency relations can be derived
from the operands of relation operators in the Commonalities language. It
requires that operators only use model elements that were explicitly passed
to them as operands. The approach for proving compatibility, which we
have presented in Chapter 5, can then be applied to these relations. Since
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the relations are not expressed as OCL constraints but as arbitrarily complex
operators written in Java, redundancy of relations cannot be determined
easily. Thus, the approach may only be used to validate if the relations
represent a consistency relation tree, but this is sufficient as achieving a tree
is the goal anyway. Performing such an integration in future work would
further improve the benefits of the language by giving the developer explicit
feedback whether he or she defined a topology that actually guarantees the
benefits provided by the Commonalities approach.

Declarative Specification We have motivated the Commonalities approach
as a reasonable way of thinking about and specifying common concepts
of different metamodels. In Subsection 11.1.3, we have discussed that this
especially fits for descriptive specifications of consistency, i.e., those where
metamodels actually share common concepts, often in terms of redundan-
cies. Other consistency specifications, which may prescriptively define more
complex dependencies, may not fit into such a notion of common concepts,
which can make it difficult to apply the Commonalities approach to them,
or which may lead to specifications that do not inherently induce a tree
topology. We have already considered in Section 11.4 how Commonalities
specifications can be combined with other transformation networks, be they
defined with Commonalities or ordinary transformations, which allows to
combine different kinds of specifications for different purposes and to apply
Commonalities only where they fit properly. In future work, it would thus
be of particular interest to apply these ideas of combining specifications and
evaluate the feasibility of these ideas. In addition, the further application of
the approach to different case studies can reveal whether the restriction to
declarative specifications is actually relevant or whether the approach can
also be applied well to other specifications, despite our motivation.

Language Extensions The limitations we have found in the evaluation
were mostly caused by limitations of the current implementation of the
Commonalities language. Even in the Master’s thesis, in which the case
study was conducted, several language extensions had to be made to support
the parts of the case study that we have presented before [Hen20, Sec. 9]. The
current limitations concern the availability and complexity of operators, such
as missing operators for relating attributes to references, missing complex
pattern matching for indirect references that led to the test failures, and
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missing reusability, e.g., in terms of inheritance, which currently leads to
repetitions when specifying similar concepts. While these limitations should
be addressed in future work by conceptual and technical extensions of the
Commonalities language, it also induces a research question regarding the
operators. Currently, the operators are suited for the implemented case study,
but it is an open question how a reusable set of operators at an appropriate
level of abstraction can or should be defined such that relevant, recurring
cases can be realized with a predefined operator set. This is currently left
open in the language design, as we did not make any restrictions regarding
the operators (see Figure 12.3) but should be considered as a general future
research question.

Evidence Improvement A central drawback of the presented evaluation
is the limited evidence due to the restriction to a single case study, which
affects generalizability of the results. Although we have intensively argued
why the results are still valuable indicators for the properties that we have
evaluated, it still remains a threat in external validity. Thus, it is important
to provide further evidence on the results by applying the approach and
the language to further case studies. This can also be used to evaluate the
assumptions we have made for the language, as we have discussed before.
Finally, since the evaluation presented in Section 9.2 lacks similar drawbacks
in external validity, case studies in future work can be combined for both,
such that consistency relations are elicited and validated by test cases only
once. This also allows to compare the results, for example, to further validate
the specification effort of the Commonalities language.

13.7. Summary

In the preceding chapters, we have presented the Commonalities approach
and the Commonalities language for mitigating trade-off decisions between
quality properties of transformation networks induced by the topology of
that network. We have discussed how this mitigation can be achieved by an
appropriate construction approach for transformation networks and how it
can be supported by a proper language under the assumption of achieving a
specific kind of tree topology.
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To evaluate whether this assumption is achievable and thus how complete
and practicable the approach is, and to evaluate how far the language actually
supports the specification, we have conducted an empirical evaluation at
a case study. The evaluation indicates that the approach is actually appli-
cable in scenarios in which metamodels share common concepts and that
the language provides a concise way of specifying consistency. Since the
approach is only supposed to be applied in specific situations, it is, however,
necessary to combine such a specification with other ordinary specifications
of transformation networks. In consequence, the Commonalities approach
depicts a solution for specific consistency relations, for which it provides
more guarantees regarding certain quality properties than ordinary transfor-
mation networks. In general, it must be combined with other transformations,
such that correctness of the combination must again be ensured by means
discussed in Part II.
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14. Related Work

Collaboration is a key factor in software engineering processes and especially
MDSD, but it also represents a key challenge, in particular due to the necessity
of consistency preservation [Fra+18]. This thesis contributes to the goal of
preserving consistency of different engineering artifacts or models, and it
especially uses and extends the methodology of model transformations to
achieve that goal. We relate our research to existing work separated into
two categories given by the general goal of consistency preservation, which
primarily comprises different approaches to solve the underlying problem
but with potentially different methodologies, and the methodology of using
transformations for consistency preservation and specific topics regarding
transformations, their properties, and their composition.

Figure 14.1 depicts an overview of the topics and research areas that we
relate our work to and sketches how they are related to each other and to
our contributions, indicated by overlaps of the ellipses representing them.
The figure is neither complete nor do the sizes of the areas and overlaps
have a specific meaning. We do also not depict the relation of each of our
contributions to related topics in that figure, but we do so in the subsequent
sections. Several research topics are cross-cutting, such that some work fits
into multiple categories. We discuss these works in the areas to which they
are mostly related. Parts of the discussions in this chapter have already been
published in previous work [Kla18; Kla+19b; KG19; Kla+20; Kla+21].

14.1. Consistency and its Preservation

Checking and preserving consistency of software artifacts, i.e., models, has
been researched in several contexts. It covers a broad topic and is often traced
back to the view-update problem, which considers the backpropagation of
changes within a view to the original source and is especially known from
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Goal:
Consistency and its Preservation

Methodology:
Consistency by Transformation

View-Update
Problem

Traceability /
Model Merging
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Model Finding

Commonalities
Approaches

Transformation
Composition and Chains

Transformation
Networks

Multidirectional
Transformations

Bidirectional
Transformations

Synchronizing
Transformations

Figure 14.1.: Sketch of different research areas (circles) related to the work of this thesis, their
overlaps, and the relation to contributions of this thesis (shaded red in the center).

database engineering [BS81]. Consistency has been considered for different
development artifacts, including the common scenario of roundtrip engineer-
ing between UML models and code [DMW05], and especially rose with the
definition of a general methodology defined by the MDA process [MDA].
Depending on the scenario, the kinds of dependencies and inconsistencies
between multiple models can vary and have been discussed by Kolovos
et al. [KPP08]. Several approaches provide domain-specific solutions for
consistency problems, such as for consistency between SysML [SysML] and
AUTOSAR [Sch15] in the automotive domain [GHN10].
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The development of modeling frameworks, such as the EMF [Ste+09], have
enabled the definition of tools, such as transformation languages, that are
independent from the actual metamodels to consider consistency between.
General methods and approaches regarding model consistency have been
based on such modeling frameworks and can be separated into approaches
that are only able to check consistency of models [RE12b] and those that are
also able to preserve or enforce it. Consistency-preserving approaches range
from providing recommendations for repair [Ohr+18] over generation and
classifications of repair options [KKE18] to approaches that actually perform
model repair, which have been subject to intensive research and surveyed by
Macedo et al. [MJC17]. The survey also classifies approaches regarding their
support for the scenario of keeping multiple, i.e., more than two, models
consistent, which is the focus of this thesis. It found that only one of the
considered approaches is able to handle multiple models, which is done by
considering consistency pairwise, like we do in our work.

We focus the discussion of related work on consistency preservation rather
than checking, as the contributions of this thesis aim to support it. We first
depict an overview of relevant consistency preservation approaches, includ-
ing the foundation of the view-update problem, model merging, constraint
solving, and the methodology of multi-view modeling.

14.1.1. The View-Update Problem

The view-update problem is common in software engineering. It occurs when-
ever a view, i.e., a model, is supposed to represent information from some
underlying source, which in our case is also a model, such that modifications
to this view can be propagated back to the underlying source without chang-
ing information that is not contained in the view. The problem was and is
a central topic in database research [BS81; DB82], where views are derived
from database tables. Updating database tables with changes in views to
them, denoted as update translation [BS81], can be achieved by considering
a complement view that contains all information of the database that is not
contained in the modified view. This means that the Cartesian product of
the functions for generating a view and its complement must be injective.
Calculating the update of the database after changes to the view can be
achieved by inverting this function. There are many possible complements to
a view, but for considering a view updatable, it must be possible to translate
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its updates to the database tables with a constant complement [BS81]. Update
translation must, however, ensure that it leaves invariant the information
in the complement. It is thus inevitable to design views and complements
properly to enable automated translation of updates.

An application of the view-update problem to software artifacts and, in
particular, to transformations, is given by the lenses framework [Fos+05;
Fos+07]. It defines two essential operations, which are get for deriving a
view from a model and putback for propagating changes in the view back to
the model. This defines a transformation between a view and an underlying
model. Specific laws ensure that lenses are well-behaved [Fos+07, Def. 3.2],
i.e., that they are complete such that all information changed in a view
is propagated back to the model, and that they do not perform unintended
changes. The proper design of the putback function influences expressiveness
and robustness of the view and the changes that can be propagated back to
the underlying source [Fos+07]. Lenses also depict a well-researched formal
foundation to express and study incremental transformations [Ste08b].

While lenses originally consider states of models, delta lenses [Dis+11] con-
sider the application to deltas, which conforms to our notion of changes
and consistency preservation according to Definition 4.5. They particularly
consider the so called symmetric case [Dis+11], in which the view is not
a projection from the underlying source, but the view and the underlying
source are both models with information that is unique to each of them, and
thus transformations are defined in both directions.

Lenses have also been extended to the multiary case, in which more than
two models need to be kept consistent [DKL18]. It especially reflects that
transformations may need to change the originally modified models as well,
which is denoted as reflective updates in that work and which we have also
motivated and introduced with the notion of synchronizing transformations

in Chapter 6. Despite these multiary lenses, work on lenses is especially
focused on or related to bidirectional transformations, which build the basis
for our work of constructing networks of them.

14.1.2. Traceability and Model Merging

Traceability is an important concept for different concerns, ranging from
comprehension over change impact analysis to the identification and resolu-
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tion of inconsistencies. For example, architectures based on correspondence
models to identify that elements belong together and affect each other among
changes have been developed [SC13]. While traces are also used as auxiliary
or witness structures for consistency preservation, much work on traceabil-
ity is focused on consistency checking, such as UML/Analyzer [Egy06] for
checking consistency of UML models incrementally, and its generalization
Model/Analyzer [Egy11] for checking consistency of arbitrary models. These
tools were also extended to repair inconsistencies with repair actions derived
from the incremental consistency checks to determine the scope of consis-
tency repair [RE12a]. Our approaches go beyond consistency checking and
use traceability especially as a means to trace consistency relations in the
practical approach realization to be able to update them among changes.

Model merging goes beyond traceability by not only providing correspon-
dences for related information but by merging elements that share and
redundantly represent information. This process is also known as amalga-

mation [KD17]. Model merging consists of matching elements that represent
the same information and merging them [KD17]. Such an approach has also
been applied in a framework based on category theory [DXC10]. Model
merging is comparable to the Commonalities idea (see Chapter 11), as it is
also concerned with finding elements that represent the same information.
Model merging is, however, usually used for merging models into a single,
redundancy-free, and thus inherently consistent representation or for check-
ing consistency during the merge task but not to preserve consistency like
we do with the Commonalities approach. In addition, Commonalities relate
redundant elements by construction, i.e., as soon as an element is created
that requires a corresponding one in another model, it is created, whereas
model merging identifies redundant elements after their creation.

14.1.3. Multi-View Modeling

Multi-view modeling, as introduced in Section 2.3, concerns the description
of a system by means of multiple views, reflecting different interests. A recent
survey of such approaches [CCP19] has identified lacking consistency man-
agement as a central challenge of them, which is also emphasized by Reineke
et al. [RST19]. In addition to identifying this challenge, Persson et al. [Per+13]
classify different types of relations between views to be distinguished. Our
contributions can be applied in the context of multi-view modeling, as model
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transformations are a possible means to solve the consistency challenge
in multi-view modeling. We give an overview of different approaches to
multi-view modeling, even beyond transformations, to sketch the research
field and embed and highlight the relevance of our contributions.

A systematic approach to multi-view modeling is OSM (see Subsection 2.3.1).
It considers the description of a system in a single repository, a SUM, from
which views are projected that allow modifications that can be propagated
back to the SUM. The approach defines how views can be organized in
orthographic dimensions representing the different concerns that shape a
view. The idea is comparable to a hybrid approach using an underlying meta-
model from which multiple views can derived [CCL12], which are consistent
through the underlying model by construction. A SUM can be achieved by
construction or by applying data integration approaches [Áng+18].

Different ways to construct a SUM, i.e., an underlying repository of con-
sistent information, have been discussed and classified [Mei+19; Mei+20].
Vitruvius, which we have introduced in Subsection 2.3.2, composes a SUM
from different models, which conform to metamodels of existing tools and
are kept consistent by transformations, and calls this a V-SUM. Role-oriented
single underlying models (R-SUMs) let model elements take different roles by
separating their properties into different compartments, such that depending
on the view someone takes on the system only specific compartments are
relevant [Wer+18; WA18]. They provide relation compartments that can be
used to relate information of multiple elements to preserve their consistency.
MoConseMi constructs a SUM by metamodel integration [MW18]. It can be
considered a model merging approach, which does not only merge the models
but also the metamodels by means of operators that check and preserve con-
sistency. While all these approach rely on the idea of multi-view modeling and
project views from a single repository, they all ensure consistency of informa-
tion in the underlying repository in different ways by means of some explicit
consistency preservation mechanisms, be they called transformations, opera-
tors or something else, such that they all have to deal with the challenges
that we have addressed in this thesis. Action-driven consistency [AMK20] is
a comparable approach, which uses language-specific actions rather than
generic change operations, but it is, in fact, only a framework for defining
transformations with actions of language-specific semantics.

In general, multi-view modeling considers that one or multiple users work
on a single system with different interests reflected by different views. A
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realization of multi-view modeling with a specific focus on collaborative
engineering is theDesignSpace approach [Dem+15; Egy+18], which integrates
the previously discussed Model/Analyzer approach for checking consistency.
It is comparable to a V-SUM approach, but it performs an ad-hoc integration
of data and definition of consistency repair rather than applying predefined
relations and preservation rules as a V-SUM in the Vitruvius approach
does. The DesignSpace approach even integrates consistency preservation
capabilities [TME19; KKE19] and especially considers that artifacts may be
temporarily inconsistent as well as that inconsistencies have to be resolved
in potentially complex processes [Kre+20].

Multi-paradigm modeling [VL03] covers an idea that is comparable to multi-
view modeling. It aims at combining multiple modeling formalisms with
transformations to avoid redundant specification effort and inconsistencies. It
has a particular focus on engineering domains beyond software engineering.
In consequence, it also focuses on the runtime state of continuous and hybrid
systems rather than the static structure of discrete systems, and it is especially
concerned with simulations of a system. Current research especially applies it
in the context of cyber-physical systems [CAV20]. Multi-paradigm modeling
covers the broad topic of model consistency, especially for cyber-physical
systems design, and relies on foundations such as transformations and the
construction of networks of them, such that is serves as an application area
of our contributions, like multi-view modeling does.

Macromodeling denotes a methodology [SWS12] for defining relations be-
tween multiple models for different purposes, ranging from only improving
comprehension to consistency management [SME08; SME09]. It is compara-
ble to the notion ofmegamodels, which reflect systems of models and relations,
properties, and operations over them [DKM13]. To express relations between
models, the application of collection-based operators known from functional
programming have been investigated [Sal+15; Sal+20]. Stevens applies meg-
amodel terminology to transformation networks [Ste20a], which we discuss
in more detail regarding transformations and networks of them.

Most multi-view modeling approaches, if considering consistency between
multiple models and its preservation at all, assume that there is a common
knowledge about how all involved models shall be related. When knowl-
edge about relations between views is distributed, like we assume for the
construction of transformation networks, and thus the relations between
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views are defined independently, the problems such as incompatibilities dis-
cussed in this thesis can occur. In consequence, regardless of the multi-view
modeling approach, the findings of our work are relevant for most of these
approaches. Multi-view modeling, including multi-paradigm modeling and
SUM approach, are thus an important application area of our contributions.

14.1.4. Constraint Solving and Model Finding

Some approaches consider consistency preservation as a constraint solving
problem rather than a transformation problem. They use constraints to repre-
sent consistency relations, like we do for the relations of transformations, and
then try to find valid solutions after modifications that introduce inconsis-
tencies by model finding. Answer Set Programming (ASP) [CDE06; Era+08]
is an approach based on logical programming techniques. Logic programs
define the rules and constraints for models, such that consistent models are
those fulfilling all of them, which are known as ground instantiations. After
changes, the ASP engine can deduce consistent sets of models reflecting the
given changes and the original states of the models.

Echo [MGC13] is a model repair tool that checks and resolves inconsistencies
by model finding. It employs Alloy, which is a formal specification language
supporting model finding via constraint solving. It can transform Ecore
models, as well as OCL expressions, QVT-R transformations, and ATL trans-
formations into Alloy descriptions [MC13; MC16], which applies constraint
solving to validate consistency and finds options to restore it.

Constraint solving is a different approach to consistency preservation than
transformations, as it relies on declarative specifications of consistency and
employs generic solvers to find solutions for inconsistent models. A benefit
of using transformations is that they provide more means to influence how
consistency is actually achieved. Constraint solving, however, can inherently
deal with an arbitrary number of models, as constraints are not restricted to
two models, whereas the imperative specification in transformations how
consistency between models is restored becomes difficult for more than
two models. Since we focus on transformation-based techniques, we depict
constraint solving as an alternative technique for consistency preservation,
but we do not discuss that research area in mode detail. In addition, it serves
as a foundation of our approach for identifying compatibility, in which we
use constraint validation techniques.
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14.2. Consistency by Model Transformation

We have focused on model transformations as a means to preserve consis-
tency between multiple models, as transformations provide a high degree of
freedom for specifying how consistency is preserved. Most existing transfor-
mation approaches are restricted to the bidirectional case [Cle+19; WS20],
in which two models are kept consistent. Two central approaches for relat-
ing multiple metamodels by transformations are transformation networks
and multidirectional transformations. They have been discussed in a ded-
icated Dagstuhl seminar [Cle+19] with a particular focus on the usage of
networks of bidirectional transformations and the interaction of several such
transformations.

We have identified multidirectional transformations to be complex to specify,
whereas networks of bidirectional transformations have limited expressive-
ness [Ste20b], which, however, may not be practically relevant [Cle+19].
Adding auxiliary models circumvents the limitations of binary relation ex-
pressiveness in transformation networks [Ste20b], like we do with the Com-
monalities approach. Research on transformations is especially driven by
theoretic investigations of bidirectional transformations and tools that sup-
port their specification. Since reasonable consistency preservation requires
incrementality, the area of incremental, bidirectional transformations is most
relevant for that purpose. Different scenarios regarding the transformation
direction and the scope of changes that need to be propagated between two
models have been classified and based on a taxonomy [Dis+16b]. Since our
approaches do not make any restrictions regarding the transformation direc-
tions or the scope of changes to be considered, our contributions fit into any
of the needs for consistency preservation covered by this classification.

14.2.1. Bidirectional Transformations

Stevens emphasizes the importance of bidirectionality for model transforma-
tions and for software engineering in general [Ste18]. Although bidirectional
transformations themselves are not sufficient for achieving consistency be-
tween more than two models, they are still relevant for and related to our
work. First, we compose networks of transformations out of bidirectional
transformations, thus they serve as a foundation for our work. Second,
some approaches already implement necessities for building transformations
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networks, for example, by matching existing elements to achieve synchro-
nization, like provided by QVT-R. Bidirectionality can be achieved by an
explicit specification of consistency preservation in both directions, for ex-
ample, with imperative languages such as QVT-O, by the specification of
one direction and inference of the opposite one [Xio+07; HLR08; Sem+16],
or by declaratively specifying constraints that have to hold and inferring the
way to preserve it in both directions, like with QVT-R.

Bidirectional transformations are a well-researched option for keeping two
models consistent. They have been formally founded on the lenses frame-
work [Ste08b], whose laws have been related to requirements of bidirectional
transformations, such as correctness, hippocraticness, or undoability [Ste10].
Correctness and hippocraticness have been identified as essential proper-
ties for bidirectional transformations, whereas undoability is beneficial but
usually not achievable [Ste10]. We have reflected correctness and hippocrat-
icness in our formalization (see Definition 4.6 and Definition 4.9). Another
interesting property is the one of least change, which we have discussed in
Chapter 7 as an improvement for finding orchestrations. This property has
been considered as a basic principle [Che+17] especially by transformation
tools [MC16]. Stevens [Ste12] also discusses equivalence relations given by
the consistency relations of bidirectional transformations, denoting those
instances of one metamodel that are consistent to the same instances of an-
other. They can be considered as an explicit description of different options
for a transformation to select from, as discussed in Chapter 7.

Several tools and languages have been developed to support the specification
of bidirectional transformations, which have been summarized and classified
over the time in several surveys regarding different criteria [Ste08a; DEP12;
Kus+13; Jak+14; SZK15; SZK16; Hid+16; Kah+19]. It is a current and open dis-
cussion whether specific transformation languages actually provide benefits
over using general-purpose languages for specifying model transformations,
especially because of lacking evidence and adoption [BCG19]. For our work,
it is not important whether a transformation language or a general-purpose
language is used to define a transformation, since we only define and consider
the properties a transformation has to fulfill, no matter how it is defined.
Thus, our contributions are not tied to specific languages or the usage of
transformation languages at all.

Popular approaches for specifying bidirectional transformations include im-
perative and declarative languages, such as the QVT language family [QVT],
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the ATL [Jou+06; Xio+07] and especially its incremental realization [MTD17],
the Epsilon languages [Kol+14] and approaches using them [SZK18], as well
as VIATRA [Ber+15; Var+16]. VIATRA is a consistency framework based on
an event-driven mechanism, which conforms to our notion of delta-based
consistency preservation (see Definition 4.5) and which the authors refer
to as change-driven transformations [Ber+12]. A different kind of specifi-
cation is followed by graph-based approaches, such as TGGs, which were
originally developed by Schürr [Sch95] and which are well-suited for model
transformations [Anj+14]. Several tools for specifying TGGs have been de-
veloped [Leb+14], in particular based on the EMF, such as eMoflon [Anj14].
Expressiveness [AVS12] and applicability of TGGs are continuously extended,
e.g., in terms of applying integer linear programming to consider consistency
as an optimization problem [Wei+19; WA20]. Kramer has proposed an ap-
proach combining a language for declarative mappings between metamodels
with a fallback language for imperative consistency repair [Kla16; Kra17],
which have been developed for the Vitruvius framework [Kla+21]. We have
used these languages for the realization of the Commonalities languages and
for evaluation purposes throughout this thesis. While all these languages are
external DSLs, i.e., they use an own syntax, some languages [Buc18; HB19]
are internal DSLs, i.e., they reuse existing languages by providing an internal
API and are thus more lightweight.

Extensions to support consistency preservation between more than two mod-
els have been proposed for only few tools, which we discuss subsequently.
In general, our approaches to build transformation networks can be applied
to any existing approach or language for bidirectional transformations. De-
pending on which assumptions a language makes and which abstraction
it provides, different requirements to fulfill our notion of synchronizing
transformations have to be considered. First, most languages operate in a
state-based manner and thus applying a change to a modified state can be
more complex than in a delta-based approach, in which changes can be reap-
plied to another state of the models. In such a case, approaches for change
reconstruction have to be applied, which are especially difficult to develop
for textual languages such as code [Fal+14]. Second, most languages do not
allow the definition of synchronizing transformations (see Definition 4.7),
such that our approach for making transformations synchronizing proposed
in Chapter 6 has to be applied, whereas some languages, such as QVT-R,
already provide a level of abstraction that achieves synchronization.
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14.2.2. Synchronizing Transformations

Transformation networks of arbitrary topology require synchronizing trans-
formations (see Definition 4.7) as a special case of bidirectional transforma-
tions. In our definition, this covers transformations that consider changes
to both models and are able to update both of them. While in literature the
term concurrent synchronization always covers this scenario, the term model

synchronization is used ambiguously for incremental updates [GW09] as well
as for concurrent synchronization [SZK15]. Thus, much work on model syn-
chronization is not related to the concurrent modification scenario that we
consider. The case of interest is also denoted as bidirectional synchronization
with reconciliation [Ant08]. Work in this area is especially related to our
work on synchronization, as presented in Chapter 6.

EVL+trace [SZK15] considers concurrent modifications of both models re-
lated by a transformation. The authors make a case distinction of several
scenarios of concurrent changes to support the developer of transformations
in considering these different situations of concurrent modifications. They do,
however, leave it up to the developer to implement the scenarios. In addition,
they consider the case of conflicting user changes, which we have excluded
in this thesis as it is not relevant during the execution of a transformation
network if transformations are not conflicting, thus making the necessary
solution that we have proposed in Chapter 6 simpler.

Approaches for handling concurrent modifications to both models are often
concerned with the case of conflicts, i.e., that changes concurrently performed
in both models are conflicting. This has, for example, been researched for
TGGs [Her+12; OPN20; WFA20]. Orejas et al. [OPN20] proposed an approach
that provides different solutions to synchronize concurrent modifications
and leaves it up to the developer to decide how conflicts shall be resolved.
While this behavior may be desired and beneficial for resolving conflicts
of user changes, having multiple transformation results is not applicable
in transformation network as the execution has to proceed with a single
one. Weidmann et al. [WFA20] propose an approach based on integer linear
programming to find consistent solutions after concurrent updates. This
approach also handles conflicting changes and could thus be applied in trans-
formation networks to resolve conflicting user inputs. It should, however,
not replace the approach we have presented for the synchronization case in
transformation networks, as performing the matching of existing elements
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by construction through encoding it into transformations ensures that match-
ing is performed deterministically and successfully rather than potentially
getting unexpected results when considering the scenario as an optimization
problem solved by integer linear programming.

One highly related approach to synchronize concurrent changes with bidi-
rectional transformations is given by Xiong et al. [Xio+09; Xio+13]. They
propose a certain process of executing a transformation in both directions
and merging the generated changes in between with a special three-way
merger. While the idea of executing the consistency preservation rules on
specific states of the two modified models to reflect concurrent changes is
equal to our synchronization approach (see Chapter 6), there are two essen-
tial differences. First, their approach merges the changes rather sequentially
applying them. Second, their approach does not iteratively apply the preser-
vation rules in both directions to improve partial consistency but assumes to
achieve consistency after executing each of them once. Thus, they do not
consider that changes to one model may require both models to be changed.
Merging the changes rather than sequentially applying them has the benefit
that a transformation developer does not have to ensure that elements are not
duplicated. The merger must, however, correctly consider that case, which, in
general, can only be implemented as a heuristic. The differences between our
and the discussed approach especially arise from their different goals. While
our approach aims to synchronize concurrent changes performed by trans-
formations, which will not produce conflicts if the transformations are not
contradictory, their approach merges user changes, because these changes
can, of course, be conflicting and these conflicts need to be resolved.

Design patterns are an established way of defining a common notion for so-
lutions to recurring problems, such as the design patterns for object-oriented
software by Gamma et al. [Gam+95]. We have also defined patterns to achieve
synchronization of transformations, and several further patterns have been
researched for the specification of transformations. This especially comprises
patterns for specific kinds of consistency relations [ISH08] and the improve-
ment of modularization [Lan+14]. Patterns for transformations have been
surveyed by Lano et al. [Lan+18b], and even ways to semi-formally describe
them have been proposed [ESG16]. These patterns focus on improving the
development of single transformations and mainly unify how specific kinds
of consistency relations can be expressed in transformation languages, but
they do not aim to achieve interoperability with other transformations like
the patterns that we have proposed do. However, the catalog of Lano et al.
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[Lan+14] also comprises patterns for the single instantiation of elements, like
we have discussed for achieving synchronizing transformations, but covers a
more general use case than the specific scenario of ensuring synchronization
of a transformation in a transformation network.

14.2.3. Transformation Networks

Combining multiple transformations, in particular bidirectional transforma-
tions, to a network is one approach to preserve consistency between several
models. Lämmel has already emphasized the necessity to couple transfor-
mation early in the research of model transformations in MDSD [Läm04].
Combining transformations to networks is a task that is external to the indi-
vidual transformations and languages to define them, which is why existing
transformation languages do not consider the combination of transformations
developed with them. Stevens [Ste20b] states that it is reasonable to target
consistency between multiple models by combining binary transformations,
even though multiple binary relations cannot express all relations between
multiple models. She also derives the relaxed notion of binary-implemented

relations, which requires that models consistent to the binary relations need
to be consistent to the multiary one but not vice versa.

Favoring transformation networks over multidirectional transformations is
motivated by multiple reasons. Networks are easier to develop when do-
main knowledge is distributed [Kla18], and they are easier to comprehend
by a single developer [Cle+19; Ste20b] in comparison to multidirectional
transformations. Additionally, binary transformations are researched well
and a variety of tools supporting different kinds of specifying them exist,
as discussed in the previous subsection. Finally, there is also the problem
of technical debt in transformations [Lan+18a], which can be mitigated by
modularizing the specification rather than developing a monolithic multi-
directional transformation. Research regarding transformation networks
especially concerns the orchestration and execution of them and is thus
related to our work on orchestration presented in Chapter 7.

Several research papers consider theoretical properties of transformation
networks, especially including their resolvability, i.e., the possibility to find
a consistent orchestration. While we aim at finding a universal approach
for orchestrating and executing transformations of arbitrary transforma-
tion network topologies, most existing approaches restrict the number of
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allowed executions. A general approach for a platform managing multi-
ple models [Den+08] considers change propagation based on a dependency
graph between the models and performs a depth-first search for determining
an execution order. In networks of arbitrary topology, however, no such
explicit dependencies exist, and the approach is restricted to executing each
transformation only once. Likewise, Di Rocco et al. [Di +17] describe a sim-
ple strategy for orchestrating transformation networks, but they also make
strong assumptions in terms of the necessity to apply each transformation
only once. Stevens [Ste20b] proposes a strategy that also executes each trans-
formation only once in one direction. This includes a notion of authoritative
models, which are not allowed to be changed, and does not consider synchro-
nizing transformations. She also discusses non-termination and resolvability
issues, i.e., reasons for not finding a consistent orchestration, which can arise
from incompatibilities of the relations, as we have discussed in Chapter 5,
or further problems such as the selection of different options, as we have
discussed in Chapter 7. But that work is restricted to the single execution
of each transformation and does not distinguish and discuss the reasons for
missing resolvability like we do. In the same way, Stevens [Ste20a] proposes
to find an orientation model that defines in which direction transformations
are executed after a change to restore consistency, also considering authori-
tative models. However, if there are several transformations that modify the
same model, this work leaves it up to the developer to ensure that the trans-
formations are executed in an appropriate order such that all consistency
relations hold afterwards. We have presented use cases in which this is too
limiting to be used as a universal approaches for orchestration, which is why
our approach for orchestration presented in Chapter 7 explicitly considers
that an arbitrary number of transformation executions may be necessary.

Provenance is a topic of growing attention and importance in research for
bidirectional transformations [Cle+19; AC19]. While Anjorin et al. [AC19]
especially consider provenance information about changes performed by
a single transformation, we provide such information for the cause of a
failure of a transformation network. This affects and supports the network
developers rather than the users of a transformation.

One motivation for building transformation networks and our assumptions
is the modular reuse of individual transformations. There has been research
regarding the reuse of and variability in transformations [Bru+20], support-
ing the derivation of different transformations from a single specification for
different purposes, comparable to product lines. An approach for transfor-
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mation product lines reuses concepts from software product lines [Lar+18]
to derive several transformations with variable parts from one specification.
Another approach supporting reuse considers that it is not necessary to
define a transformation for two metamodels but only for some requirements
that two metamodels have to meet [Lar+19], thus allowing reuse of a transfor-
mation for all metamodels fulfilling these requirements. Such approaches for
reusability support development processes that cover the assumptions that
we have made in our work. Although these works consider quality properties
of transformations, such as reuse, which we have discussed in Chapter 10,
they are not concerned with quality properties of a transformation network
and especially the reuse of transformations in other network.

14.2.4. Transformation Composition and Chains

Transformation composition has especially been researched in terms of cre-
ating chains of transformations, composing larger transformations from
smaller ones, and finding and extracting common parts in different trans-
formations, known as factorization. These approaches deal with specific
problems of the execution of and compatibility in transformation networks
and are thus related to our work on compatibility and orchestration, which
we have presented in Chapter 5 and Chapter 7.

A transformation chain defines a sequence of transformations to represent
an MDSD process. It especially covers the case that an abstract model at a
high level of abstraction shall be transformed into a model at a low level of
abstraction across one or more other models at different abstraction levels,
comparable to the idea of the MDA (see Subsection 2.1.3). Transformation
chains thus deal with specific kinds of transformation networks. While
approaches for transformation chains have in common that they support
the specification of such chains, often with dedicated languages, they aim
to achieve different additional goals. Tools like UniTI [Van+06; Van+07;
Pil+08] enable the explicit specification of chains while treating models as
black-boxes, FTG+PM [Lúc+13] provides a complete framework that also
aims to model and support processes of applying transformation chains,
and CITRIC [Bas+18] especially aims to optimize the automatic selection
of transformation chains between two defined metamodels. Transforma-
tion chain approaches are currently also applied to low-code development
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platforms [SDP20]. However, tools like UniTI derive compatibility from addi-
tional, external specifications of the transformations, for which conformance
to the actual transformations is not guaranteed. Additionally, transformation
chains are only a special case of transformation networks, as each trans-
formation network is also aware of the individual transformation chains
between all pairs of metamodels. They are, by construction, not that prone
to correctness issues, because there are no multiple paths of transformations
that can lead to cycles and conflicts in the network, like was our motivation
for the Commonalities approach in Chapter 11.

To improve maintainability, approaches for separating transformation chains
into smaller concern-specific ones [Yie+12] and to support evolution [Yie+09]
have been developed. Other approaches support the incremental develop-
ment by automated testing [KGZ09]. Etien et al. consider specific properties
of transformation chains. They investigate how two transformations with
incompatible input and output metamodels can be chained [Eti+10] and
how conflicts in terms of results that depend on the execution order can
be detected [Eti+12]. A comparable approach validates whether chained
transformations fit together in terms of matching contracts and types during
both construction and execution [HKA10]. Although these approaches are
related to finding interoperability issues and to finding an orchestration for
transformations, they particularly aim at checking syntactic compatibility
rather than semantic interoperability leading to termination with consistent
results, and they do not aim to relieve developers from the task of finding an
execution order manually, like we do in our work.

A variety of transformation composition approaches is focused on composing
transformations between the same two metamodels. They can be separated
into internal and external techniques [Wag08]. Internal techniques are white-
box approaches integrated into a language [Wag+11], such as inheritance
or superimposition techniques [WVD10]. External approaches consider the
transformations as black-boxes and thus work independently from the lan-
guage. Our approaches can be considered as a combination of white-box and
black-box approaches. Achieving synchronization is an intrusive concept
that needs to be applied to the implementation of a transformation, thus
it is a white-box approach to the transformation. Analyzing compatibility
requires knowledge about the relations encoded in the transformations, thus
it is not a white-box approach, as it does not consider the actual consistency
preservation rules. Considering the consistency relations as a kind of in-
terface, we may denote the compatibility analysis as a gray-box approach.
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Finally, the orchestration of a transformation network works under the as-
sumption of having synchronizing, compatible transformations, which are
then orchestrated without considering their contents, thus using a black-box
approach. The proposed Commonalities approach specifies how to define the
internals of transformations and thus represents a white-box approach.

Factorization approaches identify common parts of transformations and
extract them into a base transformation from which the individual parts
are extended [SG08]. Such approaches use intrusive operators that adapt
the transformations for composition, whereas we only provide construction
approaches and non-intrusive analyses but do not perform intrusive mod-
ifications of the transformations. A recent approach applies higher-order
transformations to modularize transformations [Fle+17]. Some approaches
also deal with processes for specifying composition, which simply assume
interoperability of the individual transformations [Old05].

Existing composition approaches especially have the goal of enhancing mod-
ularization of transformations to improve maintainability and reusability,
and thus they support composition of transformations between the same
metamodels. We, in contrast, combine transformations between different
metamodels and with the goal of achieving interoperability rather than main-
tainability. However, our findings on compatibility can also be applied to
composition of transformations between the same metamodels, as compati-
bility is also a reasonable and relevant notion for a single transformation, as
we have identified in our evaluation in Chapter 9.

14.2.5. Multidirectional Transformations

Multidirectional transformations are an alternative to networks of bidirec-
tional transformations. Although they benefit from being less prone to
interoperability issues, they do not allow for modular definitions of consis-
tency specifications. Early ideas include the Multi Document Integration
(MDI) approach [KS06]. The approach proposes Multi Graph Grammars
(MGGs) as an extension of TGGs for defining transformation rules between
multiple models. Another extension of TGGs to relate multiple models via
one multidirectional transformation rather than defining relations between
pairs models are Graph Diagram Grammars [TA15; TA16]. The QVT-R
standard [QVT] provides the opportunity to define multidirectional trans-
formations by design, but Macedo et al. [MCP14] reveal ambiguities in the
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standard that lead to several limitations of its applicability, and they propose
strategies to circumvent them.

In contrast to our work, these approaches support the specification of multi-
ary relations between multiple, i.e., more than two, metamodels. Although
this allows to preserve consistency between multiple models and although
a single multidirectional transformation is, by design, especially less prone
to the correctness and compatibility issues discussed in this thesis, it does
not support the specification and preservation of consistency under the as-
sumption of distributed knowledge, requiring independent development and
modular reuse, which we have made in this thesis to support the motivational
process. Multidirectional transformations require a transformation devel-
oper to have or acquire knowledge about and be able to express all relations
between the involved metamodels. Such approaches may, however, be used
to define multidirectional transformations between some of the involved
metamodels to be later combined with others to a network. We have depicted
the extension of our approaches to construct transformation networks of
multidirectional rather than bidirectional transformation as future work.

14.2.6. Commonalities Approaches

Commonalities approaches consider additional auxiliary models in trans-
formation networks, which can be beneficial for different reasons. These
reasons range from expressiveness of multiary relations [Ste20b; Stü+18]
to engineering methodologies for improving quality properties, like in this
work. The classification of Kolovos et al. [KPP08] covers commonalities
models as “weave models”, which were originally focused on trace models
but also apply to the idea of commonalities models. Work in this area is
especially related to our work on the Commonalities approach for improving
quality properties of transformation networks, as presented in Chapter 11.

The idea of defining commonalities to express consistency of multiple models
was especially researched from a theoretical viewpoint. Not every multiary
relation can be expressed by sets of binary relations [Ste20b]. An𝑛-ary consis-
tency relation describing consistency between𝑛 metamodels can, however, be
decomposed into binary relations to an additional𝑛+1-th metamodel [Ste20b].
Formal foundations for the construction of commonalities have been based
on category theory [Stü+18]. These considerations especially assume one
commonalities metamodel, but they may be extended to a hierarchy of them,
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like we have proposed in this thesis. These foundations have been used to
propose a construction approach of commonalities for comprehensive sys-
tems [Stü+20]. A formalization of the preservation of multiary consistency
relations has been given with the lenses framework [DKL18], which was
originally proposed by Foster et al. [Fos+07] and which we have discussed
before. All this work has a particular focus on expressiveness of consistency
relations rather than engineering considerations such as the improvement
of quality properties that we focus on. In addition, if not guaranteeing spe-
cific tree structures of commonalities specification, like we have discussed
in Chapter 11, a commonalities specification is still a transformation net-
work for which correctness has to be achieved, for example, by applying the
approaches proposed in this thesis.

Some existing approaches to practically use commonalities for keeping mul-
tiple models consistent are domain-specific. The DUALLy approach [Mal+10;
Era+12] uses a domain-specific metamodel of commonalities for architecture
description languages to which relations of arbitrary architecture description
languages can be defined. DUALLy is based on a generic model consistency
approach, which uses ASP based on logical programming techniques. In
contrast to such domain-specific solutions, our Commonalities approach can
be applied to arbitrary domains and scenarios.

14.2.7. Validation and Verification

Validation and verification is important for transformations to ensure that
they do what they are supposed to do. It is cross-cutting to the topics
discussed before, since it is relevant for every kind of transformation or
composition of them, which is why it is not explicitly depicted in Figure 14.1.
Most existing approaches concern correctness of a single transformation
rather than correctness of a network of them, as we have considered. They
either validate single constraints defined in a transformation or validate a
transformation as a whole. Our approach for proving compatibility can be
seen as a validation approach for transformation network correctness. In
addition, some approaches consider termination criteria for transformations,
which is related to our work on orchestration but also concerns a single
transformation rather than a network of them.

Several approaches for the validation of OCL constraints used to define con-
ditions on valid models or to define model transformations exist. Kuhlmann
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et al. [KHG11] and González et al. [Gon+12] have proposed an approach
using SAT solvers to validate the existence of models that fulfill specific
OCL constraints. Different approaches for the validation of model trans-
formations have been proposed and surveyed [CS13; AW15]. Cabot et al.
[Cab+10] derive invariants from transformations for verification purposes,
such as to find whether a model that fulfills a transformation rule exists.
Comparably, Cuadrado et al. [CGL17] have proposed an approach to analyze
ATL transformations for errors in them and to find out whether a source
model exists that may trigger a transformation. Other approaches support
testing by model comparison [KPP06], regression testing by deriving test
cases that ensure that changes to the transformations or their incremental
execution are correct [TSR18], or mutation testing [Tro+15]. Rather than
using constraint logic for verifying a transformation, an approach by Azizi et
al. [AZK17] verifies correctness of transformations written with the Epsilon
Transformation Language (ETL) [Kol+14] using the symbolic execution of the
transformation. Instead of checking a transformation on its own, Vallecillo
et al. [Val+12] have proposed to define a formal specification of transforma-
tions against which they can be validated. This is comparable to a validation
approach for contracts of transformations, representing contracts as models
to be able to apply model validation techniques [BSS14]. Finally, Büttner
et al. [BEC12] have proposed an approach for proving correctness of ATL
transformations against pre- and postconditions using SMT solvers. Most
approaches use some kind of constraint logic or theorem proving for validat-
ing correctness of transformations, which is comparable to our approach of
proving compatibility of transformation.

Existing works on termination of transformations has especially considered
the termination of single graph transformations. They prove termination
of transformations [Ehr+05] and use Petri Nets [Var+06] based on criteria
for the termination of graph transformation systems. We have considered
the termination of transformation networks in terms of the orchestration
problem to which we have reduced the halting problem of Turing machines
to prove undecidability. The problem could also be considered as a term
rewriting problem, in which models states and changes to them may be
encoded as terms, which are modified by transformations encoded as a
reduction relation. Since termination of rewriting systems is equivalent to
termination of Turing machines and thus undecidable [End+11], the results
would be the same. Rewriting systems are specifically interesting, because
confluence is well-researched in terms of the Church-Rosser theorem. We
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have, however, argued in Subsection 7.2.5 why confluence is not a desired
property of transformation networks.

Our defined notion of compatibility is comparable to correctness notions in
the approaches of Cuadrado et al. [CGL17] and Cabot et al. [Cab+10], as they
try to figure out whether a rule can be triggered by any model. Nevertheless,
all these approaches consider correctness of a single transformation, whereas
we consider a correctness notion for complete transformation networks.
Only few works, especially on transformation chains, consider validation
of transformation networks by means of tests [BK11] but not by means of
constructive or analytic approaches that we have proposed in this thesis.

500



15. Conclusions

We conclude this thesis with a summary of the developed contributions
for the problems of achieving correctness of transformation networks and
improving their quality properties as well as a summary of central topics
for future work. In addition to summarizing the central insights, we focus
on bringing them into relation and deriving the overall benefits of these
contributions. Limitations and future work have already been discussed in
detail within the two evaluations in Chapter 9 and Chapter 13. We thus
emphasize general topics of future work that we derive from the overall
assumptions made for this thesis and the limitations these assumptions
induced to the presented approaches.

15.1. Summary

With our work, we aim to support the construction of transformation net-
works to enable the evolution of multiple models describing a software-
intensive system while ensuring their consistency. We have motivated the
necessity to develop such transformations independently and to enable their
modular reuse, because knowledge about consistency to be defined in trans-
formations is distributed across several roles and because subsets of the
transformations may be reused across multiple projects. In consequence, it
was our goal to find assumptions for transformations such that they can be
combined with arbitrary other transformations to a network and to find an
approach to decide how and in which order to execute them, i.e., to find an or-
chestration, such that all models are consistent afterwards. We have restricted
ourselves to the combination of bidirectional transformations and refer to
future work for the combination of multidirectional transformations.

For this context, we have identified two important topics. First and most
essentially, transformation networks need to be correct. Thus, we have iden-
tified the necessity to define a notion of correctness for them and approaches
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how to achieve it in Part II. Second, as building transformation networks is
a software engineering task, not only correctness but also further quality
properties, such as maintainability, are important. Thus, we have discussed
the relevance of certain quality properties, and we have identified how they
can be influenced by the way in which a transformation network is specified
in Part III.

15.1.1. Correctness of Transformation Networks

We have defined transformation networks as a combination of transforma-
tions and functions for determining an execution order of the transformations
after a change was performed to a set of models, as well as for applying the
transformations in that order. Such a network can be considered correct if for
every set of models and changes the application of the transformations in the
determined order yields consistent models, provided such an execution order
restoring consistency for the inputs exists. This correctness notion consists
of three requirements. First, each transformation must be correct on its own.
Second, the combination of transformations must preserve consistency ac-
cording to a non-contradicting notion of consistency. Third, the determined
execution order of transformations must ensure that the resulting models
are consistent to the consistency notions of all transformations.

Correctness of the individual transformations is a well-defined requirement
for bidirectional transformations [Ste10]. Transformations to be used in a
transformation network must, however, be synchronizing, i.e., they must be
able to process changes to both models and update both models they keep
consistent. We have thus discussed how transformations can be defined to be
synchronizing with existing transformation languages, which only support
processing changes to one model and which only update the other model to
restore consistency. To this end, we have derived a formal property, for which
we have proven to achieve synchronization of bidirectional transformations,
and a pattern for practical application, of which we have successfully evalu-
ated completeness and correctness to achieve synchronization in case studies.
This approach enables the specification of synchronization transformations
with existing transformation languages without the necessity to know about
other transformations to later combine the developed ones with.

When knowledge about consistency between models is distributed across
multiple roles, these roles can have a contradicting notion of consistency,
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which can prevent the transformations from finding models that are consis-
tent to all these notions. This is especially the case if the different pairwise
notions of consistency induce a global notion among all models that cannot
be fulfilled by any set of models. We have defined compatibility as a property
to reflect when consistency notions are contradicting and proposed a formal
approach to validate compatibility, which is proven correct. In addition, we
have derived a practical approach for validating compatibility for QVT-R
transformations, which operates conservatively, i.e., which is able to prove
compatibility for many sets of transformations that are actually compatible
but not for all possible transformations because of undecidability of OCL
used in QVT-R. In an empirical applicability evaluation of the practical ap-
proach, the approach was able to validate compatibility of transformations
in 80% of the cases. Compatibility is a property of a set of transformation
and thus its validation requires knowledge about all transformations to be
combined. The contributions give systematic knowledge about when trans-
formations cannot be combined properly, and the validation approach even
enables transformation network developers to automatically validate their
transformations to that effect.

Finally, transformations must be executed in an order such that the resulting
models are consistent to the notions of consistency of all transformations.
We have identified and defined the orchestration problem, which considers
finding an orchestration, i.e., an execution order, of the transformations
such that the resulting models are consistent whenever such an order exists.
We have proven that this can require each transformation to be executed
multiple and an even arbitrary high number of times, and that this problem
is, in general, undecidable. In addition, we did not find restrictions of the
transformations or networks to make the problem decidable and expect it to
be unlikely to find such restrictions, as the considered ones were even too
restrictive to be practically applicable. In consequence, we have proposed
an algorithm that conservatively approaches the problem by only applying
transformations when the resulting models are consistent, and in cases in
which it fails to find such an orchestration, it supports identifying the reasons
for that. These contributions provide the knowledge that a combination of
transformations cannot preserve consistency between multiple models in
every case, but they also give an algorithm at hand to support transformation
network developers and users in identifying the reasons for not finding an
orchestration of transformations that preserves consistency.
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In conclusion, we have provided an approach to achieve correctness for the
individual transformations by construction, an approach to statically vali-
date compatibility of transformations, and an approach to dynamically deal
with undecidability of the orchestration problem. In case studies, we have
identified missing synchronization to be the most relevant type of mistake,
i.e., most occurring failures during transformation network execution were
caused by missing synchronization. Since synchronization can be achieved by
construction of the individual transformations, most failures can be avoided
without knowing about the other transformations to combine the developed
one with. In addition, the case studies indicate that the orchestration problem
may not be that relevant in practice, as no failures due to it occurred.

Our contributions thus provide systematic knowledge about correctness of
transformation networks and the different necessities to achieve it. They en-
able transformation developers to achieve synchronization, as one of the most
important properties in transformation networks, already by construction of
the individual transformations, to analyze compatibility of transformations,
and to be aware of undecidability of the orchestration problem but also to
have an algorithm at hand that eases the identification of the cause whenever
transformations are not able to preserve consistency.

15.1.2. Quality Properties of Transformation Networks

Beyond correctness, we have discussed how further quality properties of
software systems according to the ISO 25010 standard [I25010] apply to
transformation networks. We have identified how they are influenced by
the network topology and which of them are contradictory in the sense that
determining a specific topology of the transformation network induces a
trade-off decision between them. This especially applies to the two essential
properties of correctness and reusability of the individual transformations
within other transformation networks. We especially found that correctness
can be optimized in specific kinds of tree topologies of transformation net-
works, whereas reusability of the individual transformations is optimized if
the network forms a complete graph.

From the insights regarding effects of topologies on properties, we have
derived the Commonalities approach, which is a construction approach for
transformation networks that mitigates these trade-offs by introducing addi-
tional auxiliary models. On the one hand, the approach introduces a different
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way of thinking about consistency in terms of explicitly defining common
concepts represented redundantly to be kept consistency rather than implic-
itly encoding them into rules of transformations. On the other hand, the
approach mitigates the trade-off between correctness and reusability.

To support the construction of transformation networks according to the
Commonalities approach, we have discussed how a specialized language can
support that process and proposed a realization in terms of the Commonali-

ties language. It provides a problem-specific, concise syntax for specifying
consistency by means of common concepts, from which a compiler then
derives an ordinary transformation network.

While the trade-off mitigation, as the essential benefit of the approach, is
given by construction if a specific kind of tree topology of the network is
achieved, whether such a topology can be achieved in practice was subject
to an empirical evaluation by means of a case study. In this evaluation, we
have also evaluated the benefits provided by the Commonalities language
in terms of reducing the specification effort. The evaluation revealed initial
indicators for the practical applicability of the approach and the benefits of
the language, but additional studies still need to provide further evidence.

In general, our contributions provide systematic knowledge about the effects
of network topologies on quality properties and about their systematic im-
provement. The Commonalities approach is supposed to be applied only in
specific situations, in which consistency actually concerns redundant rep-
resentations of common concepts, whereas it may not be well applicable
when consistency describes more complicated dependencies. In situations
for which the approach fits, it gives more guarantees regarding specific qual-
ity properties than ordinary transformation networks and thus relieves the
transformation developer from ensuring them. Especially in comparison to
defining ordinary transformations, the transformation developers must take
less care of ensuring correctness of the defined transformation network.

Due to the restriction to those specific situations, it is necessary to enable
the combination of a specification using the Commonalities approach with
other transformation networks defining consistency, be it in terms of another
specification with the Commonalities approach or with ordinary transforma-
tions. In consequence, the approaches for building a correct transformation
network derived in Part II of the thesis must still be applied when using
the Commonalities approach proposed in Part III of the thesis to ensure
correctness when combining it with other, ordinary transformations.
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15.2. Future Work

The contributions of this thesis provide several detailed opportunities for
future work, given by the limitations and specific options for improvement as
discussed in the evaluations in Chapter 9 and Chapter 13. In the following, we
discuss relevant directions of future work, which need to be followed to make
transformation networks applicable for preserving consistency in realistic,
complex development scenarios. They especially require the relaxation of
some of the assumptions that we have made for this thesis.

Concurrent Editing: We have restricted ourselves to modifications of a single
model (see Subsection 3.1.3). In general, multiple developers may mod-
ify several models concurrently or even a single developer may modify
multiple models at a time. The former scenario could be resolved by reap-
plying changes of other developers whenever one of them has published
his or her modifications, comparable to rebasing commits with Git. For
example, if one developer changes an architecture model, which leads to
changes to the code through transformations, and he or she publishes his
or her changes, another developer, who may have also adapted the code,
reapplies his or her changes to the new system state. If these changes
to the code are conflicting with the ones performed by transformations
to stay consistent with the architecture model, these conflicts need to
be resolved manually. It is important that two independent changes
together with the changes performed by a transformation network for
each of them cannot simply be merged, as there is no guarantee that
a merge yields consistent models (see Subsection 6.2.1). In the latter
scenario, in which even a single developer may modify multiple models,
applying the changes sequentially can, however, also lead to conflicts
that need to be resolved by the same developer. Research for considering
concurrent modifications within the two models kept consistent by a
single transformation already exists, for example, for TGGs [Her+12;
OPN20] and in terms of specific algorithms conforming to our notion of
synchronization [Xio+13; Xio+09]. Supporting this for transformation
networks is, however, subject to future research.

User Decisions: We have introduced transformations to be composed of con-
sistency relations and consistency preservation rules (see Definition 4.7),
of which the latter are functions accepting models and changes to them
and delivering new changes. In Subsection 1.3.2, we have restricted the

506



15.2. Future Work

considerations of this thesis to the case in which transformations can
restore consistency in a fully automated way, i.e., we have assumed the
consistency preservation rules to be computable. It may, however, be
necessary to require decisions or inputs from users to properly restore
consistency. For example, whether a class added to the code is supposed
to represent an architectural component or not may not be decidable
based on information given within the code but may be a decision of the
software architect. Relaxing consistency preservation rules to not neces-
sarily be computable but to involve user decisions has two essential issues
to be researched. First, different transformations may require the same
decisions, but they would then need to ensure that the user cannot make
contradictory decisions, as already discussed in Subsection 9.2.6. This
does, however, require transformation developers to align the transfor-
mations with each other, which conflicts our assumption of independent
development. Second, decisions cannot necessarily be made by the same
role who performed the original change. For example, when a software
developer adds a class, whether or not it represents a component may
be the decision of a software architect. In consequence, the execution
of transformation networks can become a long-running process while
waiting for necessary decisions of other roles. This requires the definition
of a reasonable notion of transactions and considerations of workflows
to avoid that a network has to pause somewhere in its execution while
waiting for an input. It can even be extended with explorations of the
decision space to avoid that if cyclic decisions between several roles are
necessary, they have to be asked repeatedly but can instead make spec-
ulative decisions based on different options for the decision of another
role to be performed later.

Inconsistency Toleration: We have introduced consistency as a total notion
(see Definition 4.19), except for the partial notion for the process of re-
peated execution of transformations to emulate synchronizing behavior
(see Subsection 6.3.1). This manifests in our induction assumption in Sub-
section 4.3.2, in which we assume models to be consistent before applying
changes that need to be kept consistent by transformations. In current
development processes, the system description, especially for large scale
systems, will, however, not always be consistent. This may not always
be by accident but can also be intended to share temporarily inconsistent
states with other stakeholders. Inconsistencies can be resolved later and
potentially by other roles and not necessarily instantly by transforma-
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tions. It is an open question whether this can or should be covered with
relaxed or potentially different levels of consistency notions, or whether
tolerating such temporary inconsistencies may not be necessary with
future processes enabled by consistency preservation approaches any-
more. The former case could even enable further workflows to integrate
user decisions by annotating inconsistencies to temporarily inconsistent
states, which can be resolved in that state rather than in a workflow that
requires an explicit decision of a user. This could enable the definition of
different levels of consistency on which development can be performed,
in addition to the completely consistent representation of the system
and the user-local representation with inconsistencies performed by the
user before restoring consistency with transformations. Tolerating in-
consistencies and managing uncertainty have already been discussed for
bidirectional transformations [EPR15; Ste14; Dis+16a], but transferring
this to complete system descriptions and their consistency preservation
by networks of transformations has to be considered in future research.

Evidence: Several of our evaluation results lack evidence regarding external
validity due to the restriction to few case studies. Although we have
argued why and where we expect the results to generalize despite the low
number of case studies, further evidence should be provided especially
for central insights, such as the relevance of the orchestration problem.
Since a realization of such case studies requires significant effort, evidence
could especially be provided by community benchmarks, as recently initi-
ated [Anj+20], or by practical applications of transformation networks in
industrial cooperation. Then, benefits would not only arise from evidence
for the scientific results presented in this thesis but also from the practical
usability of the case study.
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A. Compatibility Proofs

In Section 5.3, we have given Theorem 5.6 for inherent compatibility of
consistency relation trees as defined in Definition 5.6. Due to the complexity
of the according proof, we have separated it into this appendix.

To prove the statement of Theorem 5.6, we first present a lemma that shows
that in a consistency relation tree one can always find an order of the relations
such that the classes at the right side of a relation do not overlap with the
classes at the left side of a relation that preceded in the order, i.e., there is no
cycle between classes in the relations.

Lemma A.1 (Consistency Relation Tree Unique Paths)
Let CR = {𝐶𝑅1,𝐶𝑅

𝑇
1 , . . . ,𝐶𝑅𝑘 ,𝐶𝑅𝑘 }𝑇 be a symmetric, connected set of

consistency relations. CR is a consistency relation tree if, and only if,

for each 𝐶𝑅 ∈ CR exists a sequence CR′ [] = [𝐶𝑅′1, . . . ,𝐶𝑅′𝑘 ] with
𝐶𝑅′1 = 𝐶𝑅 that contains for each 𝑖 either 𝐶𝑅𝑖 or 𝐶𝑅

𝑇
𝑖 , i.e.,

∀ 𝑖 ∈ {1, . . . , 𝑘} :
[︁ (︁
𝐶𝑅𝑖 ∈ CR′ [] ∧𝐶𝑅𝑇𝑖 ∉ CR′ []

)︁
∨
(︁
𝐶𝑅𝑇𝑖 ∈ CR′ [] ∧𝐶𝑅𝑖 ∉ CR′ []

)︁ ]︁
such that:

∀ 𝑠 ∈ {1, . . . , 𝑘 − 1} : ∀ 𝑡 ∈ {𝑠 + 1, . . . , 𝑘} :(︁
ℭ𝑟,𝐶𝑅′𝑠 ∩ ℭ𝑟,𝐶𝑅′𝑡 = ∅ ∧ ℭ𝑙,𝐶𝑅′𝑠 ∩ ℭ𝑟,𝐶𝑅′𝑡 = ∅

)︁
Proof. We start with the forward direction. Given a consistency relation tree
CR, we show that a sequence according to the requirements in Lemma A.1
exists by constructing such a sequence CR′ [] = [𝐶𝑅′1, . . . ,𝐶𝑅′𝑘 ] for any
𝐶𝑅 ∈ CR. We begin with any 𝐶𝑅′1 = 𝐶𝑅 ∈ CR and inductively add further
relations to that sequence. We take any consistency relation 𝐶𝑅𝑠 = 𝐶𝑅𝑠,1 ⊗
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. . . ⊗ 𝐶𝑅𝑠,𝑚 ∈ CR+ with ℭ𝑙,𝐶𝑅𝑠,1 ⊆ ℭ𝑟,𝐶𝑅 . Such a sequence exists because of
CR being connected. Then we add all𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚 to the sequence, such
that we have [𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚], which fulfills both requirements to that
sequence in Lemma A.1 by definition. The addition of further consistency
relations can be applied inductively. We take any other consistency relation
𝐶𝑅𝑡 = 𝐶𝑅𝑡,1 ⊗ . . . ⊗ 𝐶𝑅𝑡,𝑛 ∈ CR+ such that:

∃𝐶𝑅′ ∈ {𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚} : ℭ𝑙,𝐶𝑅𝑡,1 ⊆ ℭ𝑟,𝐶𝑅′

∧𝐶𝑅𝑡,1,𝐶𝑅𝑇𝑡,1 ∉ {𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚}

In other words, we take any concatenation in the transitive closure ofCR that
starts with a relation with a left class tuple that is contained in a right class tu-
ple of a relation already added to the sequence. Again, such a sequence must
exist because of CR being connected and, again, we add all 𝐶𝑅𝑡,1, . . . ,𝐶𝑅𝑡,𝑛
to the sequence. Per construction, for each𝐶𝑅′ in the sequence, a non-empty
concatenation of relations within the sequence 𝐶𝑅 ⊗ . . . ⊗ 𝐶𝑅′ exists, be-
cause relations were added in a way so that such a concatenation always
exists. Since all relations in the sequence are contained in CR, such a con-
catenation was also contained in CR+. First (1.), we show that the sequence
still contains no duplicate elements, i.e., that none of the 𝐶𝑅𝑡,𝑖 or 𝐶𝑅𝑇𝑡,𝑖 is
already contained in the sequence [𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚]. Second (2. ,3.), we
show that both further conditions for the sequence defined in Lemma A.1
are still fulfilled for the sequence [𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚,𝐶𝑅𝑡,1, . . . ,𝐶𝑅𝑡,𝑛].

1. Let us assume that [𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚] already contained one of the
𝐶𝑅𝑡,𝑖 or 𝐶𝑅𝑇𝑡,𝑖 . If the sequence contained 𝐶𝑅𝑡,𝑖 , there is a non-empty
concatenation 𝐶𝑅 ⊗ . . . ⊗ 𝐶𝑅𝑡,𝑖 of relations in [𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚].
In addition, the concatenation 𝐶𝑅 ⊗ . . . ⊗ 𝐶𝑅𝑡,1 ⊗ . . . ⊗ 𝐶𝑅𝑡,𝑖 is
non-empty by selection in our construction approach. Since 𝐶𝑅𝑡,1 ∉
{𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚} by construction, these two concatenations are
not identical but relate the same class tuples, i.e., they contradict the
definition of a consistency relation tree. If 𝐶𝑅𝑇𝑡,𝑖 was contained in the
sequence [𝐶𝑅,𝐶𝑅𝑠,1 ⊗ . . . ⊗ 𝐶𝑅𝑠,𝑚], there is a non-empty concatena-
tion 𝐶𝑅 ⊗ . . . ⊗ 𝐶𝑅𝑤 ⊗ 𝐶𝑅𝑇𝑡,𝑖 of relations in [𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚],
and, like before, the concatenation 𝐶𝑅 ⊗ . . . ⊗ 𝐶𝑅𝑡,1, . . . ,𝐶𝑅𝑡,𝑖 is non-
empty by construction. Due to ℭ𝑟,𝐶𝑅𝑤

∩ ℭ𝑙,𝐶𝑅𝑇𝑡,𝑖
≠ ∅ (with ℭ𝑙,𝐶𝑅𝑇𝑡,𝑖

=

ℭ𝑟,𝐶𝑅𝑡,𝑖
) and 𝐶𝑅𝑇𝑡,1 ∉ {𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚} by construction, the two

concatenations 𝐶𝑅 ⊗ . . . ⊗ 𝐶𝑅𝑤 and 𝐶𝑅 ⊗ . . . ⊗ 𝐶𝑅𝑡,1 ⊗ . . . ⊗ 𝐶𝑅𝑡,𝑖
have an overlap in both their left and right class tuples, i.e., they con-
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tradict the definition of a consistency relation tree. In consequence,
[𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚] cannot have contained any𝐶𝑅𝑡,𝑖 or𝐶𝑅𝑇𝑡,𝑖 before.

2. Let us assume that [𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚,𝐶𝑅𝑡,1, . . . ,𝐶𝑅𝑡,𝑛] contains
any 𝐶𝑅′𝑥 and 𝐶𝑅′𝑦 such that ℭ𝑟,𝐶𝑅′𝑥 ∩ ℭ𝑟,𝐶𝑅′𝑦 ≠ ∅. As discussed be-
fore, for each of these relations exists a non-empty concatenation
of relations 𝐶𝑅 ⊗ . . . ⊗ 𝐶𝑅′𝑥 and 𝐶𝑅 ⊗ . . . ⊗ 𝐶𝑅′𝑦 in the sequence
[𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚,𝐶𝑅𝑡,1, . . . ,𝐶𝑅𝑡,𝑛] that is contained inCR+. This
contradicts the definition of a consistency relation tree, so there cannot
be two such relations with overlapping right class tuple.

3. Let us assume that [𝐶𝑅,𝐶𝑅𝑠,1, . . . ,𝐶𝑅𝑠,𝑚,𝐶𝑅𝑡,1, . . . ,𝐶𝑅𝑡,𝑛] contains
any𝐶𝑅′𝑥 and𝐶𝑅′𝑦 with 𝑥 < 𝑦 such that ℭ𝑙,𝐶𝑅′𝑥 ∩ℭ𝑟,𝐶𝑅′𝑦 ≠ ∅. Again per
construction, there must be a non-empty concatenation 𝐶𝑅 ⊗ . . . ⊗
𝐶𝑅′𝑤 ⊗ 𝐶𝑅′𝑥 with𝑤 < 𝑥 . Since ℭ𝑙,𝐶𝑅′𝑥 ⊆ ℭ𝑟,𝐶𝑅′𝑤 per definition, it holds
that ℭ𝑟,𝐶𝑅′𝑤 ∩ ℭ𝑟,𝐶𝑅′𝑦 ≠ ∅. We have already shown in (2.) that this
contradicts the definition of a consistency relation tree.

The previous strategy for adding relations to the sequence can be continued
inductively by adding relations of the transitive closure of CR if their rela-
tions were not yet added to the sequence. This process can be continued until
finally all relations in CR are added to the sequence. Inductively applying
the same arguments as before, the final sequence still fulfills all requirements
for the sequence in Lemma A.1.

We proceed with the reverse direction, i.e., given a sequence according
to the requirements in Lemma A.1 for all 𝐶𝑅 ∈ CR, we show that the
set of consistency relations fulfills the definition of a consistency relation
tree. Let us assume that the tree definition was not fulfilled, i.e., that there
were two consistency relations 𝐶𝑅𝑠 = 𝐶𝑅𝑠,1 ⊗ . . . ⊗ 𝐶𝑅𝑠,𝑚 ∈ CR+ and
𝐶𝑅𝑡 = 𝐶𝑅𝑡,1 ⊗ . . . ⊗ 𝐶𝑅𝑡,𝑛 ∈ CR+ such that ℭ𝑙,𝐶𝑅𝑠

∩ ℭ𝑙,𝐶𝑅𝑡
≠ ∅ and

ℭ𝑟,𝐶𝑅𝑠
∩ℭ𝑟,𝐶𝑅𝑡

≠ ∅. Without loss of generality, we assume that𝐶𝑅𝑠,𝑚 ≠ 𝐶𝑅𝑡,𝑛 ,
because if these last relations are the same, the previous relations 𝐶𝑅𝑠,𝑚−1
and 𝐶𝑅𝑡,𝑛−1 must have an overlap in the classes at the right side and thus
we could instead consider the sequences without those last relations and
still fulfill the defined requirements. Any sequence according to Lemma A.1
containing both 𝐶𝑅𝑠,𝑚 and 𝐶𝑅𝑡,𝑛 would contradict the assumption, because
ℭ𝑟,𝐶𝑅𝑠,𝑚

∩ ℭ𝑟,𝐶𝑅𝑡,𝑛
≠ ∅ in contradiction to the assumptions regarding the

sequence. Thus, the sequence has to contain either 𝐶𝑅𝑇𝑠,𝑚 or 𝐶𝑅𝑇𝑡,𝑛 . Let us
assume that the sequence contains𝐶𝑅𝑇𝑠,𝑚 . Then the sequence cannot contain
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𝐶𝑅𝑠,𝑚−1, because ℭ𝑟,𝐶𝑅𝑇𝑠,𝑚
∩ ℭ𝑟,𝐶𝑅𝑠,𝑚−1 ≠ ∅, which, again, would contradict

the assumptions regarding the sequence. This argument can be inductively
applied to all 𝐶𝑅𝑠,𝑖 , such that the sequence has to contain all 𝐶𝑅𝑇𝑠,𝑖 . Since the
sequence contains𝐶𝑅𝑇𝑠,1, it must contain𝐶𝑅𝑡,1, because ℭ𝑟,𝐶𝑅𝑇𝑠,1

∩ℭ𝑟,𝐶𝑅𝑇𝑡,1
≠ ∅.

In consequence of𝐶𝑅𝑡,1 being contained in the sequence, all𝐶𝑅𝑡,𝑖 have to be
contained as well for the same reasons as before. So we have these conditions,
which introduce a cycle in the overlaps of the class tuples of the relations
within the sequence:

ℭ𝑙,𝐶𝑅𝑇𝑠,𝑖−1
∩ ℭ𝑟,𝐶𝑅𝑇𝑠,𝑖

≠ ∅ ∧ ℭ𝑙,𝐶𝑅𝑡,1 ∩ ℭ𝑟,𝐶𝑅𝑇𝑠,1
≠ ∅

∧ ℭ𝑙,𝐶𝑅𝑡,𝑖
∩ ℭ𝑟,𝐶𝑅𝑡,𝑖−1 ≠ ∅ ∧ ℭ𝑙,𝐶𝑅𝑇𝑠,𝑚

∩ ℭ𝑟,𝐶𝑅𝑡,𝑛
≠ ∅

Because of that cycle in the overlap of class tuples, there is no order of these
relations [𝐶𝑅′′1 , . . . ,𝐶𝑅′′𝑚+𝑛] such that for all of them it holds that ℭ𝑙,𝐶𝑅′′𝑢 ∩
ℭ𝑟,𝐶𝑅′′𝑤 ≠ ∅ (𝑢 < 𝑤), which contradicts the assumptions regarding the
sequence in Lemma A.1. The analogous argument holds when we assume that
the sequence contains 𝐶𝑅𝑇𝑡,𝑛 instead of 𝐶𝑅𝑇𝑠,𝑚 . In consequence, there cannot
be two such concatenations 𝐶𝑅𝑠 and 𝐶𝑅𝑡 without breaking the assumptions
for the sequence in Lemma A.1.

The previous lemma shows that the definition of consistency relation trees in
Definition 5.6 is equivalent to the possibility to find sequences of the relations
that do not contain cycles in the related class tuples. We can now show that
a consistency relation tree is always compatible by a constructive proof that
requires the equivalent definition from Lemma A.1. We have defined this
statement in Theorem 5.6 and now provide the according proof.

Proof. We prove the statement by constructing a tuple of models for each
condition element in the left condition of each consistency relation. This
model tuple contains the condition element and is consistent, i.e., it fulfills the
compatibility definition. The basic idea is that because CR is a consistency
relation tree, we can simply add necessary elements to get a model tuple that
is consistent to all consistency relations by following an order of relations
according to Lemma A.1. Thus, we explain an induction for constructing such
a model tuple, which is also exemplified for a simple scenario in Figure 5.12,
which is based on the relations in the consistency relation tree in Figure 5.11.
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Base Case: Take any 𝐶𝑅 ∈ CR and any condition element of the left-
side condition 𝔠𝑙 = ⟨𝑜𝑙,1, . . . , 𝑜𝑙,𝑚⟩ ∈ c𝑙,𝐶𝑅 . Select any 𝔠𝑟 = ⟨𝑜𝑟,1, . . . , 𝑜𝑟,𝑛⟩ ∈
c𝑟,𝐶𝑅 , such that 𝔠𝑙 and 𝔠𝑟 constitute a consistency relation pair ⟨𝔠𝑙 , 𝔠𝑟,⟩ ∈
𝐶𝑅 . We now construct the model tuple 𝔪 = {𝑜𝑙,1, . . . , 𝑜𝑙,𝑚, 𝑜𝑟,1, . . . , 𝑜𝑟,𝑛}. In
consequence, we have a minimal model tuple 𝔪, such that 𝔪 contains 𝔠𝑙 and
𝔪 consistent to 𝐶𝑅 . Additionally, 𝔪 is consistent to 𝐶𝑅𝑇 due to symmetry
of 𝐶𝑅 and 𝐶𝑅𝑇 : It is 𝔠𝑟 ∈ c𝑙,𝐶𝑅𝑇 and ⟨𝔠𝑟 , 𝔠𝑙 ⟩ ∈ 𝐶𝑅𝑇 and no other condition
element of c𝑙,𝐶𝑅𝑇 is contained in 𝔪 by construction, thus 𝔪 is consistent to
𝐶𝑅𝑇 . In consequence, we know for all𝐶𝑅 ∈ CR that {𝐶𝑅,𝐶𝑅𝑇 } is compatible.
Considering the example in Figure 5.12, for the selection of any person as a
condition element in c𝑙,𝐶𝑅1 (1), we select a resident in c𝑟,𝐶𝑅1 with the same
name (2), such that the elements are consistent to 𝐶𝑅1.

Induction Assumption: We know from Lemma A.1 that for the relations in
CR there is a sequence [𝐶𝑅1, . . . ,𝐶𝑅𝑘 ] with 𝐶𝑅1 = 𝐶𝑅 such that:

∀ 𝑠 ∈ {1, . . . , 𝑘 − 1} : ∀ 𝑡 ∈ {𝑠 + 1, . . . , 𝑘} :(︁
ℭ𝑟,𝐶𝑅′𝑠 ∩ ℭ𝑟,𝐶𝑅′𝑡 = ∅ ∧ ℭ𝑙,𝐶𝑅′𝑠 ∩ ℭ𝑟,𝐶𝑅′𝑡 = ∅

)︁
Considering the example in Figure 5.12, such a sequence would be [𝐶𝑅1,𝐶𝑅2],
because the elements in the right condition of 𝐶𝑅2 are not represented
in the left condition of 𝐶𝑅1. We assume that for some 𝑖 < 𝑘 we know
that {𝐶𝑅1,𝐶𝑅

𝑇
1 , . . . ,𝐶𝑅𝑖 ,𝐶𝑅

𝑇
𝑖 } is compatible. Then for every 𝔠𝑙 ∈ c𝑙,𝐶𝑅

we can find a model tuple 𝔪 that contains 𝔠𝑙 and that is consistent to
{𝐶𝑅1,𝐶𝑅

𝑇
1 , . . . ,𝐶𝑅𝑖 ,𝐶𝑅

𝑇
𝑖 }. We can especially create a minimal model by our

construction for the base case and the following induction step.

Induction Step: We consider𝐶𝑅𝑖+1. There is at most one condition element
𝔠𝑙 ∈ c𝑙,𝐶𝑅𝑖+1 with 𝔪 contains 𝔠𝑙 . If there were at least two condition elements
𝔠𝑙 , 𝔠
′
𝑙
∈ c𝑙,𝐶𝑅𝑖+1 that are both contained in 𝔪, then by construction there is

a consistency relation 𝐶𝑅𝑠 (𝑠 < 𝑖 + 1) with 𝔠𝑙 , 𝔠
′
𝑙
∈ c𝑟,𝐶𝑅 𝑗

. Let us assume
there were two consistency relations 𝐶𝑅𝑠 ,𝐶𝑅𝑡 , each containing one of the
condition elements in the right condition, then there would be non-empty
concatenations𝐶𝑅 ⊗ . . . ⊗ 𝐶𝑅𝑠 and𝐶𝑅′ ⊗ . . . ⊗ 𝐶𝑅𝑡 with ℭ𝑙,𝐶𝑅 ∩ℭ𝑙,𝐶𝑅′ ≠ ∅,
because we started the construction with elements from the left condition
of 𝐶𝑅 and so every element is contained in the models because of a relation
to those elements, and with ℭ𝑟,𝐶𝑅𝑠

∩ ℭ𝑟,𝐶𝑅𝑡
≠ ∅, because both condition

elements 𝔠𝑙 and 𝔠′
𝑙

instantiate the same classes, as they are both contained in
c𝑙,𝐶𝑅𝑖+1 . This would violate Definition 5.6 for a consistency relation tree, thus
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there is only one such consistency relation𝐶𝑅𝑠 . Consequently, there must be
two condition elements 𝔠𝑙𝑙 , 𝔠′𝑙𝑙 ∈ c𝑙,𝐶𝑅𝑠

with ⟨𝔠𝑙𝑙 , 𝔠𝑙 ⟩, ⟨𝔠′𝑙𝑙 , 𝔠
′
𝑙
⟩ ∈ 𝐶𝑅𝑠 , because,

per construction, 𝔪 was consistent to 𝐶𝑅𝑠 and so there must be a witness
structure with a unique mapping between condition elements contained in
𝔪. The above argument can be applied inductively until we find that there
must be two condition elements 𝔠𝑙𝑙𝑙 , 𝔠′𝑙𝑙𝑙 ∈ c𝑙,𝐶𝑅 that are contained in 𝔪. This
is excluded by construction, as we started with only one element from c𝑙,𝐶𝑅 ,
so there is only one such condition element 𝔠𝑙 ∈ c𝑙,𝐶𝑅𝑖+1 with 𝔪 contains 𝔠𝑙 .

For this 𝔠𝑙 ∈ c𝑙,𝐶𝑅𝑖+1 , we select an arbitrary 𝔠𝑟 = ⟨𝑜1, . . . , 𝑜𝑠⟩ ∈ c𝑟,𝐶𝑅𝑖+1 such
that ⟨𝔠𝑙 , 𝔠𝑟 ⟩ ∈ 𝐶𝑅𝑖+1. Now we create a model tuple 𝔪′ = 𝔪 ∪ {𝑜1, . . . , 𝑜𝑠 }.
Since 𝔠𝑙 is the only left condition element of 𝐶𝑅𝑖+1 that 𝔪 contains, 𝔪′ is
consistent to𝐶𝑅𝑖+1 per construction. 𝔪′ is also consistent to𝐶𝑅𝑇𝑖+1, since the
symmetry of𝐶𝑅𝑖+1 and𝐶𝑅𝑇𝑖+1 implies 𝔠𝑟 ∈ c𝑙,𝐶𝑅𝑇𝑖+1 , and due to ⟨𝔠𝑟 , 𝔠𝑙 ⟩ ∈ 𝐶𝑅𝑇𝑖+1
a consistent corresponding element exists in 𝔪′. Furthermore, there cannot
be any other 𝔠′ ∈ c𝑙,𝐶𝑅𝑇𝑖+1 with 𝔪′ contains 𝔠′, because otherwise there would
have been another consistency relation 𝐶𝑅′ that required the creation of
𝔠′, which means that there are two concatenations of consistency relations
𝐶𝑅 ⊗ . . . ⊗ 𝐶𝑅′ and𝐶𝑅 ⊗ . . . ⊗ 𝐶𝑅𝑖+1 that both relate instances of the same
classes, which contradicts Definition 5.6 for a consistency relation tree.

Additionally, we know the following for all𝐶𝑅𝑠 (𝑠 < 𝑖 +1) due to Lemma A.1:
First, it is ℭ𝑙,𝐶𝑅𝑠

∩ℭ𝑟,𝐶𝑅𝑖+1 = ∅. Since the newly added elements 𝔠𝑟 are part of
c𝑟,𝐶𝑅𝑖+1 , these elements cannot match the left condition of 𝐶𝑅𝑠 . So 𝔪′ is still
consistent to all 𝐶𝑅𝑠 (𝑠 < 𝑖 + 1). Second, it is ℭ𝑟,𝐶𝑅𝑠

∩ ℭ𝑟,𝐶𝑅𝑖+1 = ∅. Again,
since the newly added elements 𝔠𝑟 are part of c𝑟,𝐶𝑅𝑖+1 , these elements cannot
match the left condition of𝐶𝑅𝑇𝑠 . So 𝔪′ is still consistent to all𝐶𝑅𝑇𝑠 (𝑠 < 𝑖 +1).
In consequence, we know that 𝔪′ consistent to {𝐶𝑅1,𝐶𝑅

𝑇
1 , . . . ,𝐶𝑅𝑖+1,𝐶𝑅

𝑇
𝑖+1}.

Considering the example in Figure 5.12, we would select 𝐶𝑅2 and add for
the resident, which is in the left condition elements of 𝐶𝑅2, an appropriate
employee to make the model tuple consistent to 𝐶𝑅2 (3).

Conclusion: Taking the base case for 𝐶𝑅 and the induction step for 𝐶𝑅𝑖+1,
we have inductively shown that

𝔪′ consistent to {𝐶𝑅1,𝐶𝑅
𝑇
1 , . . . ,𝐶𝑅𝑘 ,𝐶𝑅

𝑇
𝑘
} = CR

Since the construction is valid for each condition element in every relation
in CR, we know that a consistency relation tree CR is compatible.
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Along with the depiction of our approaches and their evaluation, we have
referred to their realization artifacts, which are available at GitHub. In
particular, most of the evaluation results can be reproduced with the case
studies provided in those repositories. Since these repositories evolve, we
have annotated the date of the repository state that we have last used for
the evaluation in the bibliography. In addition, we provide a reproduction
package [Kla21] that contains all artifacts in that state together with an
according environment that eases the reproduction of the results to improve
long-term reproducibility.

We have developed four kinds of artifacts. They comprise a realization of
the approach for validating compatibility of transformations, a simulator for
transformation networks, an evaluation of the categorization of errors in
transformation networks and approaches to resolve them, and finally the
Commonalities language and a comprehensive case study for its evaluation.

We have realized a decomposition approach for the validation of compatibility
(see Subsection 5.1.2) [GitDec]. The implementation validates compatibility
of given QVT-R transformations defined with the Eclipse implementation
QVTd [EcQVT]. The case study presented in Section 9.1 is implemented in
terms of test cases in the according repository.

We have implemented a simulator for transformation networks, in which
different scenarios of transformations and models to which they are applied
can be executed step by step (see Section 7.3) [GitSim]. The implementation
provides a predefined set of transformation networks and model states to
apply them to, which can be extended by further scenarios. It is realized as a
web-based visualization of the network execution process.

For the case studies on error categorization and synchronization of trans-
formations (see Section 9.2), the prototypical implementation of the Com-
monalities language (see Chapter 12), and its evaluation (see Chapter 13),
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we have employed and extended the Vitruvius framework [Kla+21]. The
Commonalities language has been realized as an additional language in the
Vitruvius framework repository [GitVit], next to the existing Reactions and
Mappings languages. The case studies have been realized based on trans-
formations and test scenarios implemented in the case study repository for
component-based system development [GitApp].

The contributions and case studies for the Vitruvius framework have last
been validated with release version 2.0.1 of the framework and release version
0.2.0 of the case studies repository. Results may also be reproducible with
later versions, but the framework behavior may change and the case studies
may be developed further, such that the absolute result values will differ
although the same conclusions should be derivable from them. To support
the reproduction of the results with the Vitruvius framework presented in
this thesis, the reproduction package [Kla21] contains the depicted artifact
versions and a Docker-based execution environment to ease their setup.

Several evaluation results, especially regarding the categorization and reso-
lution of errors in Section 9.2, depend on the execution of a process. This
process starts with independently developed transformations, combines them
to a network, and fixes faults revealed by occurring execution failures. The
states of this process during the development have been tagged in the case
studies repository [GitApp], but they may be difficult to reproduce in detail,
as they depended on the framework at that time. However, the mentioned
versions of the artifacts and especially the reproduction package contain the
final state after performing the depicted process, in which all faults have
been fixed.
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