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1. Introduction

The supersymmetric principle (SUSY) introduces a new symmetry, linking fermions and
bosons, which facilitates numerous extensions of the Standard Model (SM) [1]. As a result
of this additional symmetry, each SM particle obtains a SUSY counterpart. This principle is
formulated with the concept of R-parity, where every SM particle is assigned an even parity and
every superpartner receives odd parity [2].

Provided that R-parity is conserved, the lightest supersymmetric particle (LSP) is stable.
While most studies assume this particle to be a neutralino, extensions to include gravity suggest the
gravitino as an alternative LSP candidate [3]. In scenarios where the gravitino is a stable LSP and
the stau represents the next-to-lightest supersymmetric particle (NLSP), the decay of the stau into
a gravitino and a tau lepton is suppressed by the scale of SUSY breaking [4, 5]. Hence, the stau
appears as a long-lived particle and can be measured in collider experiments.

However, the production of staus is not restricted to collider experiments. High-energy cosmic
rays striking the atmosphere provide enough energy for the production of SUSY particles. If the
stau is sufficiently long-lived, large volume neutrino telescopes are able to detect its Cherenkov
signature (see [6]).

As signatures of stau signals in the detector are hardly distinguishable from muons, a char-
acteristic indicator is necessary to claim a discovery. Previous efforts concerning a stau detection
with neutrino telescopes focused on a search for double track signatures [3, 7]. While only few SM
interactions result in parallel tracks of muons, staus are produced in pairs and moving in parallel
tracks continuously through Lorentz boosting. This makes the detection of an excess of parallel
tracks a distinctive signature for staus [3, 6].

Complementary to double track searches, [5] proposes a discovery potential of an excess stau
event search over the low-energy muon background. Following this novel approach, our analysis,
as the very first of its kind, investigates the suggested region of interest using the IceCube Neutrino
Observatory [8]. In this article, we state the details of our Monte Carlo (MC) analysis and present
our first results as sensitivities to the stau mass.

2. Analysis Structure

To study and discover stau signals in IceCube, we rely on precise modelling of signal and
background distributions. As a first feasibility study, we use an existing event selection event
selection for low-energy muons from atmospheric muon neutrino interactions, the main background
of our analysis. Details on the calculation of the used background can be found in [9].

For now, an already existing background simulation allows us to concentrate on the stau signal
inside IceCube. The simulation chain for our signal can be structured into three overall categories:
Production, Propagation and Detection Simulation. We begin by explaining the propagation of
staus in comparison to muons and its significance for the analysis. Afterwards we focus on the
production of staus in the atmosphere and show the resulting stau fluxes, after they were propagated
to the detector surface. As a final step of our simulation, we model the detectors response to staus
and calculate effective areas.
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Propagation Like muons, the stau is subject to an energy loss dE when traversing a distance dX
in a material according to

−
dE
dX
= α(E) + β(E)E . (1)

While the ionisation losses, represented by α(E), are the same for muon and stau, the stochastic
losses (β(E)) of the stau are suppressed by its mass. This difference in energy loss plays a crucial
role, as it is what makes our analysis possible in the first place.

As a result of the suppression, the energy deposited by staus remains constant for any initial stau
energy (Figure 1), generating an excess signal in the low energy region. Additionally, this property
enables staus to propagate further through any material than muons. This combination opens up
the possibility of an excess event search in a region of zenith angles where muons from atmospheric
air showers can no longer reach the detector and muons induced by atmospheric neutrinos are not
yet present in numbers.
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Figure 1: Energy deposit of staus (orange) and muons (blue) for a propagation length of 1 km in ice.

Production Both, signal and background events of our analysis originate from cosmic-ray air
showers. The Drell-Yan cross section for the production of staus at proton beam collisions is
calculated with MadGraph [10].

In Figure 2 we see a decrease of the cross section depending on the mass of the stau. Higher
beam energies and thus higher cosmic-ray primaries however, increase the probability of stau
production. Via the Glauber formalism [11], we generalize the cross section data from pure proton
beam collisions in Figure 2 to be valid for collisions of protons with air molecules.

Staus are more likely to be produced in the primary interaction of a cosmic-rays with the
atmosphere. Nevertheless, we monitor the proton flux towards Earth with MCEq ([12]) and apply
the stau cross section at each level of the air shower. As we are merely interested in the average
individual particle fluxes, we benefit from an application of matrix cascade equations over elaborate
MC shower simulations. Note, that the transverse dispersion of air showers, accounted for in MC
simulations, is sub-dominant at energies above a few GeV [13]. Hence, so-called 3D-effects are
negligible for primary energies necessary to produce stau pairs.
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Figure 2: MadGraph cross section data for stau production in 5TeV and 15TeV proton beam collisions. The
cross section decreases for larger stau masses resulting in a smaller stau flux.

In the end, the combination of the production in air showers and the propagation to the detector
yield the stau flux at the detector surface seen in Figure 3. Notice the sharp edge that is a result of
our current requirement to solely include relativistic staus.
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Figure 3: Simulated flux of 100 GeV staus at the detector surface for three different zenith angles (0° = true
south).

During the propagation of the stau towards the detector, we neglect the magnetic bending of the
particle as well as multiple scattering. A small non-vertical magnetic field component might affect
the zenith angle distribution and thus have an influence on the stau flux. Similar to the magnetic
bending, multiple scattering processes described in [14] can broaden the angular range and shift
events to higher zenith angles. The influence on the stau flux from either effect and whether it is
negligible will be assessed during future analysis steps.

Detector Simulation Our simulation of the detector response to staus uses IceCube’s internal MC
software. We use PROPOSAL [15] to calculate the stau energy losses and propagate the photons
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with the CLSim package [16]. The simulation includes 20 million stau events for every zenith angle
between 0° and 180° in an energy range from 100 GeV to 10 TeV.

After the simulated detector response we use an existing event selection optimized for track
detection from the northern hemisphere (zenith angles > 90°). Details on this event selection can
be found in [17] where it originates form, with optimizations from [9, 18].

The simulated MC events pass through the different filter levels of the event selection. Re-
maining events are binned in zenith angle and energy to calculate an effective area. The effective
area of stau events in three different zenith angles is displayed in Figure 4.
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Figure 4: Effective area for stau events in three selected zenith angles.

Background The background of our analysis consists of secondarymuons induced by interactions
of muon neutrinos from cosmic-ray air showers. The track selection incorporates a strong cut-off
below 85° to shield atmospheric muons and thus cuts out part of our signal too. Although it does
not cover our full region of interest, we are provided with a solid estimate to compare with our stau
signal.

3. Results

The combination of our simulated flux (Figure 3 and the effective area for staus in IceCube
(Figure 4) yields an estimate on the stau event rates. In Figure 5, we show the stau event rates for
two different masses alongside the muon background integrated over energies from 100 to 1000GeV
and dependending on the zenith angle. We see an expected cut-off at 85° as a result of our event
selection and a strong dependence between stau rates and mass. Nevertheless we see a promising
signal to background ratio at lower zenith angles.

Our overall signal and background rates (RSignal, RBackground) are available in form of a
zenith/ energy binned grid. This provides us with sufficient information to generate maps containing
χ2 values for each bin. Our χ2 is thereby calculated with the following formula:

χ2 =
R2
Signal

RBackground
. (2)
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Figure 5: Signal and background event rates. Displayed are the rates for staus with masses of 100 Gev and
150 GeV respectively. The simulated background results from a event selection optimized for northern tracks
[9, 17, 18]

A depiction of the χ2 values for the zenith/ energy grid assuming 100 GeV staus is shown in
Figure 6. The mass dependence of χ2 is a result of the initial cross section that leads to a different
flux at the detector. Varying the number of stau events over background produces different χ2 maps
for the different masses.
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Figure 6: Signal over background χ2 data for a zenith energy bin grid. The data displayed is calculated
according to Equation 2 for every bin of our region of interest. Values are for a stau mass of 100 GeV and
one year of data.

Sensitivity Another way of using the event rates (RSignal, RBackground) yields a sensitivity for
the expected mass limit using an existing event selection. We understand the rates as simulated
averages for signal and background events. Hence, for each bin we simulate 1 × 105 outcomes
(RPoisson for signal and background with an underlying Poisson distribution. With

χ2 =
(RPoisson − RBackground)

2

RBackground
, (3)
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Figure 7: Sensitivity for expected stau mass limit. This figure shows the multiplication factor for simulated
stau events necessary to achieve an exclusion of the corresponding stau mass. An exclusion is achieved if
90% of the stau signals χ2 distribution lies above the median of the χ2 background distribution.

we calculate the χ2 of each bin and experiment and finally build a sum over energy and zenith bins.
This leaves us with 105 summed χ2 values for background and signal.

In our next steps we compare the median of all simulated χ2 values for the background to the
tenth’s percentile of the signals χ2 values. Given a stau mass we can now find a multiplication factor
for RSignal which we apply before simulating Poisson outcomes, so that both values agree. This
factor depends on the stau mass like shown in Figure 7. Our sensitivity then presents an expected
limit by excluding all masses with a multiplication factor below one.

Outlook The current mass limit of the stau is determined by the collider experiment LHC to
exclude masses < 430 GeV [19]. With our current event selection and neglecting systematic
uncertainties, IceCube would be able to exclude stau masses < 63.2 GeV with 90% confidence
level. Considering the state of our analysis, this sensitivity demonstrates the power of this type
of study. Using only existing and un-optimized tools like the event selection and and energy
estimator and without any background rejection, this study misses the current limit by one order
of magnitude. However, improvements to our analysis are necessary to compete with the limits of
collider experiments.

One of two main improvements involves an optimized event selection to be applied to the data.
The existing event selection of a different analysis works fine in our case for deriving a sensitivity.
However, for more advanced calculations it is unable to exploit the potential of the analysis. An
improved event selection targets a better effective area for staus as well as a reduction of background
events. It could incorporate a removal of the cut-off at 85° and open up the analysis to more sensitive
zenith bins with a better signal to background ratio.

Further improvement of the sensitivity can be achieved with a better energy reconstruction. A
more precise reconstruction that fixes the bias for low-energy muons leads to fewer muon events
in the sensitive energy bins. In addition, it would produce a more sharp distribution of the stau
signal. If more stau events are reconstructed to the same energy bin, our signal to background ratio
increases.
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The effects of the named improvements are still to be determined but are expected to push the
limit to LHC standards like proposed in [5].
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