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Recent observations of two coherent radio pulses with the ANITA detector can be interpreted as
steeply upward-going cosmic-ray showers with energies of a few tenths of an EeV and remain
unexplained. The Pierre Auger Observatory has a large exposure to such upward propagating
shower-like events, and has used 14 years of its Fluorescence Detector (FD) data to perform a
generic search for such events with elevation angles greater than 20° from the horizon. Here this
search is recast to constrain models generating high energy 7-leptons. For maximal flexibility, only
the propagation, decay, and interactions of 7-leptons are treated in this analysis, meaning that the
results are independent of the 7-production scenario. This treatment allows for the application of
these results to the wide range of models producing 7-leptons that have been proposed to describe
the "anomalous" ANITA events. The goal of this study is accomplished by generating 7-leptons
within the Earth and its atmosphere with an intensity dependent on the media density. The zenith
angle, location and calorimetric energy of any resulting 7-induced air showers are then used to
calculate the exposure of the FD of the Pierre Auger Observatory to 7 primaries. Differential
limits as low as 107° GeV s~!em™2sr™! to the flux of 7-leptons produced with less than a 50 km
path length below the Earth’s surface are reported for several zenith angle ranges and primary
energy spectra. Full exposure and sensitivity information is provided, facilitating the application
of these results to different 7-lepton production models.
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1. Introduction

The ANITA collaboration reported the observation of two up-going cosmic ray-like events
that were observed in the first and third ANITA flights. The two events were reconstructed with
moderately high elevation angles of 27.4 ° + 0.3 © and 35.0 ° +£0.3°, and their energies were initially
reported to be 0.6 + 0.4 EeV and 0.56’:%:32 EeV, respectively [1]. Later they were reanalyzed with
dedicated simulations and the reconstructed energy was shown to depend on the altitude of the
"injection point" at which the shower begins to develop in the atmosphere. From this, a minimum
shower energy of 0.2 EeV was found for both events [2]. Up-going air showers of that kind can be
potentially explained by particles penetrating the Earth with very low cross section. As the 7-lepton
has a range that can reach 50km in rock at ultra-high energies, the conversion of high energy
T-neutrinos into 7-leptons was considered as one possible explanation. However, this interpretation
was dismissed because of the large attenuation of neutrinos in the Earth for these energies and
elevation angles. The corresponding diffuse neutrino flux that would be required to explain the
two events exceeds the flux constraints published by IceCube and Auger [2—4] by far. For this
reason these events are often referred to as "anomalous" ANITA events. Neutrinos of these energies
are actually unlikely to be observed with elevation angles greater than a few degrees below the
horizon [5, 6]. The observation of these two up-going events with steep exit angles and high
energies is in strong disagreement with the Standard Model of particle physics [7].

Due to the surprising nature of these events, there is a distinct need for follow-up studies to
independently verify the ANITA observations. The Pierre Auger Observatory has been used to set
competitive limits to neutrino fluxes with its surface detector array. The detector is particularly
sensitive to T-neutrinos interacting in the Earth, but only for very low emerging angles, typically
of one or two degrees. The surface array cannot detect showers with the elevation angles of these
anomalous events. However, using the telescopes that constitute the Fluorescence Detector, FD, of
the Observatory, we can directly observe the evolution of air showers in the atmosphere by collecting
the fluorescence light emitted as the air shower develops. As the light emission is proportional to
the energy deposit in the atmosphere, it measures the calorimetric energy, missing only a small
fraction of the total shower energy carried by muons and neutrinos.

The FD can only take data on clear, moonless nights, resulting in an up-time of around 14 %.
However, as it has been continuously operated since December 2004, it has a massive exposure
[8]. Due to this, the FD is one of the few instruments which are directly sensitive to up-going air
showers, and can be used to follow-up these ANITA observations. A general search for up-going
showers has been performed using Monte-Carlo simulations for signal and background in a separate
contribution [9]. Only events with elevation angles above 20 degrees have been considered because
separation of upcoming and down going showers becomes less efficient as the showers become more
horizontal. An integral upper limit of 3.6- 107%cm™2 sr™! 57!, respectively 8.5-107%cm=2sr! 57!,
for two different spectral indexes y (y = —1 and y = —2) was obtained on the existence of up-going
showers with a calorimetric energy E., > 1073 eV [9].

Several possible interpretations involving physics Beyond Standard Model, BSM, have been
proposed to interpret the ANITA anomalous events, such as sterile neutrino mixing [10], heavy dark
matter [11], stau decays [12] or L, — L, gauge interaction [13]. The search for up-going cosmic
ray-like air showers at the Pierre Auger Observatory is recast in this work to a specific case as an
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example. Here we consider the production of 7-lepton primaries by some unspecified mechanism.
To widen the applicability of the results, in this work 7-leptons are generated in the Earth and
atmosphere in proportion to media density without considering any specific model.

The generated 7-leptons are propagated

3
taking into account energy loss inside the Earth 9 N 40
until they decay using a modified version of Nu- ?: » ! D >
TauSim [5] with the 7-decays being modeled 6l -MZ E g 4 §
with TAUOLA [14]. The resulting daughter E 5 Emo 3 E
particles are then evaluated in terms of theirpo- = 4 . I - - T
tential for producing an atmospheric air shower 3 = - = 2 3
which can be measured by the FD. The resulting or — i- z E 5 S 1 ©
distribution of 7-decay induced air showers are r ‘ e - - 0
binned in height of first interaction and shower 5 17 175 18

energy. This 2-D distribution is then folded to-
gether with the double differential exposure of  Figure 1: The double differential exposure of the FD
the Observatory to up-going events provided in  to up-going showers from [9]

[9] in three zenith angle ranges, shown again

here for the full zenith range in Figure 1. As a result we obtain the effective exposure of the
Observatory to up-going showers induced by 7-decay due to 7-leptons produced in the Earth by an
unspecified mechanism, which is used to provide limits on the flux of these particles.

2. Simulation of 7-lepton primaries

For this study, simulated 7-leptons have been tracked from injection points both above and
below the surface of the Earth with primary energies E € [10'%, 10%] eV, with dN /dE o« EY and
v = —1,-2. Due to energy loss and decay, the location of 7-lepton injection is of key importance.
It is characterized by the distance from the injection point to the Earth’s surface along the 7-lepton
propagation axis, Dj,; (negative when injected inside Earth and positive in the atmosphere). The
7-leptons are injected uniformly in a range of Dj,j € [-50.0,26.3] km. D, = =50 km was chosen
as lower limit because no 7-lepton injected further away exited the Earth with energies above
10'%3 eV in simulation. The maximum value of Dyyj is chosen to match the exposure calculation
in [9], namely Dpax = Hmax/C0S Omin = 9.0/cos 110° ~ 26.3 km, where Hp,,x and the zenith angle
Omin are chosen according to the simulation parameters defined in [9].

The flat distribution of Djy; is then re-weighted using the media density at the injection point
when it is above or below the surface of the Earth with:

1 Hipj <0
w(Hiyj) = Pam(Hin) . g
. Mip;

Pearth

ey

where pam(Hiyj) is the average atmospheric density profile as a function of height above the
Observatory, Hiyj = Digjcos6 [15] and pearn 18 taken as a constant 2.6 gcm‘3 in the simulated
depth range [5]. This is done so that the relative rate of 7-lepton production both in the Earth and
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atmosphere correctly reflects relative interaction rates in matter as expected!.

To track the propagation, energy-loss, and eventual decay of the generated t-leptons, the
simulation code developed for this study used NuTauSim [5] directly as a base. The main difference
from the original version is that 7-leptons are directly generated rather than being produced from
charged current interactions from injected 7-neutrinos. The 7-lepton propagation and tracking has
been left entirely intact, however, the reporting of 7-decay products has been enhanced to directly
report each daughter particle species along with its energy.

In the modified NuTauSim simulations, each generated 7 Diaa = 9km/cos 110

-
is tracked until one of the six possible outcomes illustrated in

Figure 2 occurs: In case.s 1-4, the 7s are generated within —’?r

the Earth and will be subject to energy losses through photo- Dy )\

nuclear processes, bremsstrahlung, and pair-production, until ‘ lo_"" __5 _______
they either decay or escape to the atmosphere. In cases 5 and Ground £

6, the T are generated directly in the atmosphere. Cases 1 and 2

are killed within the Earth either due to premature decay (1), or Z
energy-loss to below the minimum threshold of 10'6- eV (2). g
In cases 3—6, the T must be tracked in the atmosphere where, ?g
because of the low density of the atmosphere, T energy-loss 16 2l 3l 4 =
is minimal and therefore neglected?. As a result, T can only D,in=-50 km

either decay within the potential field-of-view of the FD, FD- . . . .

) ) Figure 2: Representation of 7 simu-
FoV, (3 and 5), or escape the FD-FoV at which point they are  |,4ns. r-decays which may trigger
killed (4 and 6). Only cases 3 and 5 contribute to the FD the FD are indicated in red
exposure to 7-leptons. All 7-leptons in cases 3 or 5 have the
decay energy, Egecay. The distance from the surface of the Earth to the point of r-decay, Dy, is
recorded for later simulation of the 7-decay and modeling of the resulting air shower.

Modeling 7-lepton decay induced showers The 7-decays for cases 3 and 5 above are simulated
using TAUOLA [14], taking into account all decay branches. Of the particle species which can
result from the 7-decay, only n*, 79 K*, K9 e* are considered to meaningfully contribute to the
energy available to the resulting atmospheric air shower. Because of this, the energy of the resulting
7-decay induced shower is calculated as

Eg = Z Ei(Edecay)a ()

where i iterates over 7%, 7°, K*, K°, * and E; (Egecay) is the energy of each daughter type calculated
using Egecay. If the resulting Eg, € [10'6-5 10'8-3] eV, then that event falls within the range of
exposures reported in [9] and can therefore be used to adapt those results to a 7-primary case.

The FD exposure from [9], E(Eg, Hy), shown in Figure 1, is given in terms of shower energy,
Eq and height of first interaction H;. Therefore, the point of first interaction of the resulting
7-induced air shower is also needed. The point of 7-decay, directly reported by the modified

IWhile production in the atmosphere is negligible in this case, this procedure allows for easy modification in case the
production was due to other mechanisms such as exotic particle decays.
2This also has the consequence of removing all zenith dependence from the 7 simulations as peyp iS @ constant.
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Figure 3: The distribution of 7-decay induced air = Figure 4: The distribution of 7-lepton induced air
showers within the FD-FoV. showers which would be selected as candidates in
the FD analysis.

NuTauSim code for cases 3 and 5, must be extended by a depth X, corresponding to the combined
depth of first interaction of the daughter particles, on an event by event basis. X is calculated by
taking the average of the first interaction depths of the daughters particles, weighted by their energy:

. E
XI:ZX;-E—‘ 3)
i

b
sh

where i again iterates over 7%, 19, K*, K9, * and X { is the mean depth of first interaction for each
particle type (taken from CONEX [16]). To smooth the results, this procedure is carried out 100
times for each 7-decay and each result is given a weight of 1/100. The resulting distribution of X,
is then folded together with the atmospheric density profile using the Hy and 6 of that event in order
to calculate H,. Following this procedure for all generated 7-leptons in cases 3 and 5 results in
the H; and Eg, distribution of 7-decay induced air showers shown in Figure 3. The distribution of
selected T-shower candidates which would trigger the FD and be selected in the up-going analysis
is obtained by combining the two double differential histograms plotted in Figures 1 and 3 and is
shown in Figure 4 for the entire zenith range. This procedure is also carried out separately for the
three zenith sub-ranges provided in [9].

3. The exposure to T-lepton decay induced showers

To calculate the exposure to T-induced air showers as a function of the energy of the 7-lepton
at the injection point, here-on called the primary energy, Ey, all T-induced showers produced in
Egn, and H; space as described in the previous section, N+ rov(Esn, H1), are back-tracked through
the NuTauSim generation. Since each (Eg,, H1) bin in N, gov(Esp, H)) is populated by 7-leptons
events generated with many different Eq values, each event in each N; pov(Esp, H1) bin must
be back-tracked to its primary energy E( to obtain the distribution N; gov(Eo|Esn, H1). The
triple differential exposure in Ey, Eg, and H; is simply obtained multiplying the generic exposure,
E(Eg, Hy), numerically evaluated in [9], by the ratio of the induced number of showers and the
primary number of generated events for primary tau-lepton energy Ey:

Nz rov(Eo|Esn, Hy)

ST(EOlEsh,Hl) = N. (EO)
gen

X E(Esn, Hy). “)
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The final exposure is then obtained simply integrating &, (Eg|Ep, Hy) over the range of values
of Egn, and H considered, which is achieved by summing over all Eg, and H; bins:

E(Eo) = ) D E(EolEg, Hy). )

Esn H)

This results in the FD exposure to 7 generated with a less than 50 km path length below the surface
of the Earth, which is plotted in Figure 5 (green symbols). This figure also displays the exposure
for the three partial zenith angle sub-ranges considered in [9].

There are two behaviors visible in Figure 5 and therefore also in the limit plot shown below: a
slow decrease in the rate growth of the exposure as energy increases and a quick flattening of the

0'87 V. The slow decrease in the rate growth of the exposure as energy

exposure just above ~ 1
increases, is purely physical in origin. Here, the increase in FD sensitivity and 7-lepton survival
rate in Earth as energy increases are competing with the quickly lengthening mean lifetime of the
7-leptons which causes an increasing number of T to escape from the atmosphere without decaying.
The quick flattening of the exposure, on the other hand, is understood as an edge effect related to the

maximum shower energy of 10!8-3

eV used in the general up-going search. As Ey increases past this
point, E;, begins to also climb past this limit. Here, even though the FD sensitivity to these events
would increase, the events are cut from the analysis because we still lack exposure information at
these energies. However, this decrease is partially compensated for by the increasing rate at which
T survive to the surface, leaving the exposure almost flat above these energies.

If the energy range of the general study were

to be increased past 108V to higher ener- 10 eo-ss st esoe
. . . [ 7:::.._.—9—.—0—0—'—0—0—0—0-
gies, the exposure would continue to increase 1t +F e
. . -1 - -o-
past ~ 10'87 eV while the rate of exposure in- 107 et
crease would continue to slow down. At some g 10'2? - +
energy, the increases in FD sensitivity and 7 sur- £ 10°%F
- . . a F -+ T —¢— 6 0[110° - 180°]
vival would be insufficient to compensate for the I% 1074 - —— 80[110°- 12427
e . E 0 0(124.2° - 141.37
longer 7-lifetime and the exposure would peak, 10°F —— 60(1417 - 180]
flatten and then decrease. This increase in the ey PR P R
. L. . 165 17 175 18 185 19 195 20
maximum shower energies in the general analysis IgE, eV

would of course also translate to even lower upper
limits then those provided below. This improve- Figure 5: Exposure to up-going r-induced air show-
ment to the study is planned for the near future.  ers as a function of primary energy and zenith angle.

4. Flux limits

From the background simulations carried out in the general search [9], a background expectation
Npkg of 0.5 events was found for the full evaluated energy range. After the data unbinding we get
1 event passing the analysis cuts, which is consistent with the background expectations. Using the
Feldman Cousins approach, the limit that can be obtained at 95% C.L. when 1 event is observed
and 0.5 events are expected as background, corresponds to the flux that would give an expected
number of events Ngpc = 4.05. To calculate the differential flux limits in terms of 7-lepton primary
energy, the events are back tracked to the specific primary energy distribution as explained above.
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Then, the number of FC candidates required per Eq bin, Ngc(Ep), can be calculated as

NFC/Nbins
E+(Eo) - wy(E0)/ L, pins (Ex(Eo) - wy(Eo))

Ngc(Eo) = (6)

where w,, (Eo) o Eg + inherently depends on the energy spectral index, y, which the 7 primaries
are injected with. The effects of the spectrum are therefore folded into Npc(Ep). Finally, the flux
limits can be calculated by using the exposure defined in Eq. 5 to translate Ngc(Ep) into flux as:

O (Eo) = _zz/;c(%) : @

Following the procedure described above, 10r =
upper limits against the primary energy for dif- i 1, R i igq b
ferent 7-lepton energy spectra are presented for - ig—_zl: 4 y=2 E 10:2 b
the entire zenith angle range in Figure 6. Since % 103 E ig_m 5
the simulated 7-leptons are uniformly produced 2 18:;‘: - , 10:2 )
below the surface, the limits are provided both in = 10—6; ":‘ : 18713 'U_J
terms of flux of 7-leptons created within 50 kmof W™ 107F . J101 =
path length below the Earth’s surface (left scale Nip 18:2: T paeartil : igjz 5
oF L ! E Ur

on the y-axis), as well as in terms of the rate of 10651717518 185 15 195 20
T-leptons generated per unit volume, energy and IgE, /ev

solid angle (right scale on the y-axis) which may Figure 6: Flux Upper limits for 7-induced air show-
be more convenient to compare to specific models o with CI = 95% for different primary energy
producing 7-leptons uniformly below the Earth’s  spectra

surface. For a spectral index of y = —1 the flux

limits follow the trends present in the exposure plot. The limits for an energy spectrum of y = -2
also follow the trend in Figure 6, however here the limits worsen after 10'®-7 eV. The upper flux
limits for the three zenith angle sub-ranges have also been calculated and are plotted in Figure 7.

As expected from the exposure, the most horizontal zenith angles provide the best limits.
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Figure 7: CI = 95 % upper-limit to 7-lepton flux at 50 km under the Earth surface vs Eq energy for 1 event
passing the analysis cuts, consistent with Ny = 0.5, for different 7 energy spectra and zenith angle ranges.
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5. Conclusions

The response of the fluorescence detector of the Pierre Auger Observatory to up-going 7-
induced air showers has been studied. This was accomplished by simulating 7-leptons in a zenith
range of 110°-180° generated both below and above Earth. For a maximal flexibility, the T-leptons
are generated in a way that ignores their production mechanism. The 7-leptons are propagated
through the Earth and followed through the atmosphere until they reach the maximum height of
9 km defined in [9]. All recorded 7-decays in the FD-FoV are then used to estimate the exposure of
the FD to up-going showers induced by 7-decay, using the double differential exposure distribution
provided in the general study. This is then translated to flux limits to up-going 7 within a maximum
range of 50 km below the Earth’s crust to 9 km above it.

Both the exposure results and the upper flux limits have been calculated for the whole zenith
range of interest, as well as for three different zenith sub-ranges. The highest exposure is obtained
for the most horizontal zenith angles. Flux upper limits for a CI = 95 % have been calculated
for different primary energy spectra. As in the exposure case, the best flux limits are obtained
for the most horizontal zenith angles. Since the general study case represents the skeleton of the
analysis, the presented results are strongly influenced by the maximum energy considered within the
simulations. This can be clearly seen in the exposure plots, which are peaked at the corresponding
7-lepton primary energy. The current flux limits and exposure results are therefore corresponding
to 7 induced air showers in a sensitive volume of the FD of the Pierre Auger Observatory limited to
a maximum shower energy of 10'8-3 eV.

By using the presented results with the given values for the upper flux limits and exposure
one can test different BSM scenarios which produce 7-leptons. By folding in the respective cross
sections, upper flux limits can be calculated against various theoretical models.
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