
1. Introduction
Full-waveform inversion (FWI) has gained increasing attention in the reconstruction of Earth's structures. 
One typical problem FWI faces is the ill-posedness of the inverse problem, which may make FWI converg-
ing to a local minimum. A common practical way to mitigate this problem is to use an appropriate initial 
model and adopt a multiscale strategy to progressively include the waveform of shorter wavelength (Bunks 
et al., 1995). Another approach is to use a more convex objective function that exhibits less local minima 
(Bozdağ et al., 2011; Métivier et al., 2018; Yang & Engquist, 2017).

Uncertainty estimation in FWI has become popular in recent years. Different approaches, such as local 
Hessian-based approach (Fang et al., 2018; Izzatullah et al., 2019; Liu & Peter, 2019; Zhu et al., 2016), global 
Bayesian approach (Gebraad et al., 2020; Zhang & Curtis, 2020), Bayesian learning via stochastic gradient 
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Langevin dynamics (Brosse et al., 2018; Welling & Teh, 2011) have been made to approximate the poste-
rior covariance matrix or to estimate the posterior distribution. Besides, the normalizing flows (Siahkoohi 
et al., 2021), data-assimilation approach (Thurin et al., 2019), and null-space approach (Keating & Inna-
nen, 2021; Liu & Peter, 2020) have also been used for uncertainty characterization in FWI. A review of the 
uncertainty analysis in seismic tomography can be found in Rawlinson et al. (2014). One common problem 
for the uncertainty estimation in FWI is the prohibitively high computational cost due to the curse of high 
dimensionality and the cost of the forward problem (Curtis & Lomax, 2001). Shigapov (2019) proposed a 
probabilistic framework that formulates FWI as a deterministic multi-objective optimization problem. Pan 
et al. (2020) proposed a multi-objective waveform inversion on shallow-seismic data and showed that the 
distribution of Pareto solution in the model space represents the uncertainty (trade-off) information.

Generally, solving a multi-objective optimization problem is complicated and computationally expensive. 
Pan and Gao (2020) proposed a random-objective waveform inversion (ROWI) method to invert Rayleigh 
waves in 2D media by adopting a stochastic gradient descent algorithm and not checking the Pareto opti-
mality in the multi-objective optimization. At every iteration of ROWI, only one shot assigned with one 
measurement (objective function) is used for model update. The inclusion of multiple objective functions 
increases the robustness of ROWI against local minima, and the stochastic gradient descent algorithm im-
proves the computational efficiency since only one shot is used per iteration. Due to the huge computational 
cost in checking Pareto optimality, Pan and Gao (2020) used the final (last-iteration) models estimated by 
ROWI with different solution paths to approximate Pareto optimal solutions and showed their statistical 
distribution in the model space for trade-off analysis. This trade-off information shows the level of conflict 
among the subsets of data and using different objective functions. The Pareto front describes the trade-off 
among the models which are equally acceptable. It shares a similar idea with uncertainty information esti-
mated by the nullspace (Backus & Gilbert, 1970; Fichtner & Zunino, 2019; Liu & Peter, 2020) that represents 
the ensemble of admissible solutions. In the nullspace approach, the solutions whose misfits are within a 
predefined tolerance from the ’best’ solution (solution with the lowest misfit value) of a single-objective in-
verse problem are chosen as the admissible solutions, while in ROWI, the non-dominated Pareto solutions 
are chosen as the admissible solutions of the multi-objective inverse problem.

In this study, we promote ROWI to 3D media and apply it to a nine-component (9C) shallow-seismic field 
data acquired in Rheinstetten, Germany. This 3D 9C shallow seismic data has a dense acquisition system, 
relatively high signal-to-noise ratio, and high redundancy. Thus, it provides a convenient situation to study 
the performance of ROWI. The methodology of ROWI in 3D media is briefly introduced. We propose to 
decompose the original multi-objective function into multiple shot-related subproblems and use the Pareto 
solutions of the subproblems for trade-off analysis. We apply both conventional least squares FWI and 
ROWI on the field data to compare their efficiency. We run six ROWI tests with different random sequences 
and compare their final results to evaluate the robustness of ROWI against random solution paths. We also 
apply both conventional least squares FWI and ROWI on the data by using four different poor initial models 
to evaluate the robustness of ROWI against the poor initial model. The ROWI result is compared to several 
2D GPR profiles for validation. We estimate the Pareto solutions of multi-objective subproblems and ana-
lyze their distribution in the model space for trade-off information.

2. Methodology
2.1. Multi-Objective Framework

FWI tries to find an optimal model (or a set of optimal models) m that explains the observed data obsd  under 
certain criteria

min ( ) [ , ( )] s.t. ( ) ( ) ,obs syn syn P  Φ m d d m d m m   (1)

where  represents a measurement that quantifies the misfit between the synthetic data synd  and observed 
data obsd ;   and   represent the forward solver and the errors in it, respectively; P represents the sampling 
of seismic wavefield at receivers' locations. Although the error   always exists (i.e., numerical artifacts, 
imperfect theory, noise), it is usually assumed to be trivial and is ignored in FWI. In this study, we use the 
finite-difference modeling of 3D viscoelastic wave equation (Bohlen,  2002) as the forward solver ( )m . 
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Possible reasons for the error   in our forward solver include the undesired frequency dependency of the 
quality factor Q, imperfect source focal mechanism, and ignoring environmental noise.

Because the observed data typically contains multiple independent shots and we have multiple choices of 
measurements for misfit quantification, the FWI objective function can be discretized and written as

1 1 1 1

1 1

( , ), , ( , )
( ) , , , ,

( , ), , ( , )

obs syn obs syn
N Ns s

obs syn obs syn
N N N NL L s s

 
 
 
 
  

d d d d
Φ m

d d d d


  



 

 

 (2)

where the subscripts of  and d represent the indices of the measurements and shots, respectively, for 
example, ( , )obs syn

k j jd d  represents the misfit of the j-th shot with the k-th measurement; LN  and sN  are the 
numbers of measurements and shots, respectively, which define the size of the multi-objective function. 
Therefore, FWI is formulated as a multi-objective optimization problem.

There are different choices for the measurement  in FWI. How to choose measurements is target- and 
data-oriented. Since we are dealing with shallow-seismic data which is dominated by surface waves, we 
choose three different measurements including the conventional least squares misfit that has an ’optimal’ 
resolution (Pladys et al., 2017); the envelope misfit (Borisov et al., 2017; Yuan et al., 2015) that is sensitive 
to the group velocity and amplitude of surface waves; and the dispersion-spectra misfit (Masoni et al., 2013; 
Pérez Solano et al., 2014; Zhang et al., 2020) that is sensitive to the dispersion characteristics of surface 
waves

2
1

1( , ) ,
2

obs syn syn obs d d d d ‖ ‖ (3)

2 2 2 2 2
2

1( , ) ( ) ( ) ( ) ( ) ,
2

obs syn syn syn obs obs   d d d d d d  ‖ ‖ (4)

2
3 3 3 ,ˆ1( , ) | ( ) | | ( ) |

2
ˆobs syn syn obs

D D d d d d  ‖ ‖ (5)

where  and 3D  represent the Hilber transform and 3D Fourier transform, respectively; |.| represents the 
absolute value in the frequency-wavenumber ( f -k) domain; d represents the data in the acquisition coor-
dinates (typically the Cartesian coordinates that consist of the in-line horizontal, cross-line horizontal, and 
vertical coordinates); and d̂ represents the data in the ray-based coordinates (i.e., radial horizontal, trans-
verse horizontal, and vertical directions). We use the ray-based coordinates in 3  so that Rayleigh and Love 
waves are separated in the f -k  spectra of different horizontal components.

One common way to solve the multi-objective optimization problem is to scalarize the objective function 
(Yuan et al., 2020). Another way is to solve one of the objective functions progressively while using the other 
misfits as constraint (Pan et al., 2020). It is also possible to solve the multi-objective optimization problem 
by using an evolutionary optimization algorithm when the model dimension can be significantly reduced 
to a small number so that the computational cost is affordable. However, the mentioned approaches usually 
result in a relatively high computational cost that is more expensive than running a conventional FWI.

2.2. Stochastic Gradient Descent Optimization

To improve computational efficiency, we adopt a stochastic gradient descent algorithm to optimize the 
multi-objective function. At every iteration, we randomly choose and treat one of the multi-objective misfits 
only, for example, the j-th shot with the k-th measurement is chosen at the i-th iteration. We calculate the 
gradient of the chosen single-objective function that

( , ( )),obs syn
i k j j i  m d d m (6)

and update the model via a preconditioned steepest descent algorithm
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1 ( ) ,i i i i   m m P m m (7)

where im  and 1im  are the models at the i-th and ( 1)i  -th iteration, respectively; P is a preconditioner using 
the inverse of an approximated diagonal of the Hessian with respect to the least-squares misfit function 1  
(Shin et al., 2001);   is a step length estimated by a line search algorithm with parabolic fitting (Nocedal 
& Wright, 2006). At every iteration, the model is updated using the single-objective function that is cur-
rently assigned to. This early stopping in the single-objective optimization problem (one iteration) helps to 
regularize the stochastic gradient descent algorithm. The model is updated iteratively by using randomly 
assigned single-objective functions until the stopping criterion (maximal iteration in this study) is satisfied. 
This strategy of choosing a single shot-gather and performing one iteration requires a high quality of the 
data and high redundancy in the data. We may need to choose a mini-batch (van Herwaarden et al., 2020; 
Yang et al., 2018) of objective functions per iteration if the data has relatively poor quality and low redun-
dancy or when the use of single-shot data becomes inefficient in reducing the misfit. Mini-batches with 
growing sizes might further improve the quality of the final model (van Leeuwen & Herrmann, 2013).

Figure 1 shows schematically how ROWI proceeds iteratively. We randomly choose one shot with one meas-
urement at every iteration and therefore, the objective function also changes iteratively (contours in Fig-
ure 1). We do not set any constraint on the random selection of objective function so that each objective 

function has a chance of 
1

( )x
s LN N

 to be used x times in a row. ROWI probes and jumps between different 

objective functions and will converge to a common minimal region that is shared by all objective functions. 
Thus, similar to conventional FWI, ROWI might also become trapped in a local minimum region if it exists 
in all objective functions simultaneously.

In every iteration, we only need to solve a single-shot single-objective optimization problem to update the 
model, which is computationally inexpensive. The stochastic nature and the relatively low ill-posedness 
in the envelope misfit help ROWI avoid being trapped at local minimum regions. A multi-scale strategy 
(Bunks et al., 1995) can be combined with ROWI to further avoid cycle skipping (Virieux & Operto, 2009).

2.3. Pareto Solution and Trade-Off Information

In the ideal case, all single-objective functions share the same global minimum point in the model space 
that represents the optimal solution. However, due to the non-uniqueness of the inverse problem and the 
existence of errors in the data and the forward solver, the global minima may not locate identically among 
all objective functions (e.g., red crosses in Figure 1) in a realistic scenario. In this case, we are not able to 
find one optimal solution but a set of Pareto optimal solutions that are not dominated by any other solution.
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Figure 1. Schematic figure illustrating the solution path of random-objective waveform inversion. Colorful lines in the three images represent the contours of 
the objective functions assigned at the i-, (i+1)-, and (i+2)-th iteration, respectively. Circles represent the models on the solution path, which are lined up by 
arrows. The red cross represents the location of the global minimum in each assigned objective function.
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Pareto solution: A solution im  dominates a solution jm  if ( ) ( )k i k j m m  for all 1,2, ,k n   (n is the total 
number of objective functions) and with strict inequality for at least one k, where k  represents the k-th mis-
fit value in the multi-objective function Φ. A Pareto solution is a solution that is not dominated by any other 
solution. In other words, the multi-objective misfits of a Pareto solution cannot be reduced simultaneously. 
The set of Pareto solutions is called the Pareto front.

All non-Pareto solutions are dominated by at least one Pareto solution and are, therefore, falsified and 
dropped (Tarantola, 2006). The Pareto solutions are the admissible solutions of the multi-objective inverse 
problem and their distribution in the model space represents the trade-off information.

The complete characterization of Pareto solutions ( )best m argmin Φ  is computationally intractable, main-
ly due to (a) the complete evaluation of Pareto optimality is prohibitively expensive (we need to simulate all 
shots for all candidate solutions); (b) the complete sampling of Pareto solutions in the model space is dif-
ficult; (c) the computational cost of solving the forward problem is high. One practical way to characterize 
the Pareto front is to use the final (last-iteration) solutions of ROWI with different solution paths or initial 
models as the samples of the Pareto front. It assumes that ROWI has successfully converged to a Pareto 
solution at the last iteration and, therefore, the number of samples on the Pareto front equals the number 
of independent ROWI runs.

Here, we propose an alternative way for the estimation of Pareto solutions. We decompose the multi-objec-
tive function into Ns shot-related subproblems in which the objective functions corresponding to the same 
shot are grouped as one subproblem
 

(8)

Because every candidate model (models on the solution paths) has been assigned to one shot during the 
optimization, we only evaluate the Pareto optimality of the candidate model in the subproblem that corre-
sponds to the shot it has been assigned to

 

(9)

where jm  represents the models that have been assigned to the j-th shot during the inversion. Therefore, 
the models which have been assigned to the same shot are now grouped into a common subproblem (Equa-
tion 9) and the Pareto optimality in a subproblem is independent of the other shots. Since the synthetic 
data ( )syn j

j
d m  has already been simulated during the optimization, we just need to compare its single-shot 

misfits 1 , 2 , and 3  to the other candidate models in the same subproblem, and falsify the models which 
are dominated by at least one other model in a subproblem. The cost of evaluating Pareto optimality in the 
subproblems is negligible compared with the numerous forward simulations required in the optimization.

We estimate the Pareto solutions of all subproblems bestm  to approximate the Pareto solutions bestm  and 
analyze their distribution in the model space for trade-off analysis
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where std and mean represent the standard deviation and the mean value of the models, respectively. Here 
we use the relative standard deviation (RSD) U  to represent trade-off information with respect to the  
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reference solution (averaged model). Low RSD indicates that different objective functions agree on what 
the optimal model is, while in parts where the RSD is high, using different objective functions may lead to 
different models. Similar analysis can also be applied to a preferred Pareto solution (Pan et al., 2020).

We use the Pareto solutions of subproblems bestm  to approximate the Pareto solutions of the full problem 
bestm  by assuming that the Pareto fronts of all subproblems constitute the Pareto front of the full multi-ob-

jective problem (Equation 2). Because the candidate solutions are estimated by optimizing the full multi-ob-
jective function and are expected to be close to or located at the Pareto front, the error in the approximation 
of bestm  by bestm  is expected to be acceptable.

The estimated trade-off information is mainly associated with the inherent inconsistency among different 
subsets of data and objective functions, the non-uniqueness of the inverse problem, and the influence of 
errors in the forward solver (  in Equation 1). We perform several runs of ROWI with different solution 
paths to improve the diversity in the samples of the Pareto front. Overall, the decomposition of the original 
multi-objective function into shot-related subproblems provides a crude but computationally cheap (almost 
free) way for trade-off analysis.

3. Data Acquisition and Pre-Processing
A three-component (3C)  3C field data set is acquired in Rheinstetten, Germany. The main geological target 
is a refilled ’V’-shaped trench, namely ’Ettlingen Line’ (EL), which locates approximately along the main 
diagonal of the survey area. A total number of 888 3C receivers' locations are placed on a 1 m  1 m grid 
(Figure 2). A total number of 36 source locations are placed on a 4 m  4 m staggered grid and fully cover 
the survey area. We use a 3C Galperin source (Häusler et al., 2018) to generate three orthogonal single-force 
sources, namely U , V , and W  sources, on each source location, respectively. The U  source is generated by a 
single force along X direction with a dipping angle of   = 35.3, and the V  and W  sources are generated by 

PAN ET AL.

10.1029/2021JB022036

6 of 20

Figure 2. Acquisition system in the field example. Triangles and asterisks represent the locations of the 3C receiver 
and 3C source, respectively. The filled triangles represent the receivers' location for coarse-grid reference data acquired 
on the same day. The dense-grid data (triangles) is acquired during five days.
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rotating the U  source with 2 240   and 120   in the horizontal 
(X-Y) plane (Figures 2 and 6 in Häusler et  al.,  2018), respectively. The 
Galperin sources can be projected on the Cartesian coordinates via

cos 0 sin
cos cos2 cos sin 2 sin .
cos cos cos sin sin

U X
V Y
W Z

 
    
    

     
     

     
     
     

 (11)

Because of the lack of sufficient 3C geophones and seismographs, we can 
not deploy all receivers' locations on the 1 m  1 m grid simultaneously. 
Thus, a reference data set on a coarse grid (2  m  4  m; filled triangle 
in Figure 2) with all source locations is acquired on the same day. The 
dense-grid (1 m  1 m) data is divided into six subsets, and each subset 
containing part of the receivers' locations and all sources is acquired on 
the same day. A detailed description of the data acquisition can be found 
in Schaneng (2017) and Irnaka et al. (2019).

A 4D effect, i.e., undesired phase and amplitude inconsistency between 
the data acquired on different days, is observed if we directly combine the 
data of all subsets. Possible reasons for the 4D effect include the repeata-
bility of the source signal, different source's and receiver's coupling effect, 
different soil condition (saturation of the soil) and experimental environ-
ment (e.g., temperature and environmental noise). To overcome this 4D 
effect, a matching filter is estimated by minimizing the waveform differ-
ence between the dense-grid data and reference data. The matching filter 
is then applied to the dense-grid data to remove the 4D effects. The match-
ing filter strategy nicely compensates for the 4D effects in the dense-grid 
data, and a detailed description is shown in Irnaka et al. (2019). We have 
a total of 108 shots (3C * 36 source points) with 2,664 traces in each shot 
(3C * 888 receivers). Low-quality traces are removed before the inversion.

We build a 1D initial SV  model (black line in Figure 3) by inverting Ray-
leigh-wave dispersion curve. The initial PV  is set as 2.2 times of SV . The 1D 

SQ  and PQ  models are estimated by inverting Rayleigh-wave attenuation 
coefficient (Gao et al., 2018). A 1D initial density model is built by empiri-
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Figure 3. 1D initial model for the field example. The thin line highlights 
the SQ  and  values near the free surface.

Figure 4. Spectrum, signal-to-noise ratio (SNR), and wavelength of the whole data set. The wavelength is calculated 
by using Rayleigh-wave phase velocities. The noise is calculated from the signal that arrives after 500 ms with a 
window length of 480 ms. Considering the quality (SNR) and resolution (half wavelength) of the data, we choose to 
progressively invert the data up to 25, 35, and 50 Hz, respectively.
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cal estimation. We only update the elastic-parameter ( SV , PV , and density) 
models in the inversion and use the attenuation models as passive infor-
mation (Groos et al., 2017).

4. Conventional Least Squares FWI
We apply multiscale least squares FWI to the data. Considering the qual-
ity (signal to noise ratio) and resolution (half wavelength) of the data 
(Figure 4) as well as the availability of a good initial model (Figure 3), we 
choose to progressively invert the data up to 25, 35, and 50 Hz, respective-
ly. All 108 shots are used simultaneously and the least squares misfits of 
all shots are summed as the objective function. A preconditioned steepest 
descent algorithm is used.

The least squares FWI converges after 10 iterations (Figure 5a) and its re-
sult is shown in Figure 6. Two low-velocity trenches are estimated, while 
the one going diagonally across the shallow part of the model corresponds 
to the EL. The EL is around 8 m wide and reaches 3 m in depth. The 
dimension of the second trench is smaller than the EL and was not dis-
covered in the previous result estimated by the inversion of local Ray-
leigh-wave dispersion curves (Pan, Schaneng, Steinweg, & Bohlen, 2018). 
It is worth mentioning that we have also performed several FWI tests by 
using smaller frequency intervals and/or including stages with lower fre-
quencies in the multiscale approach, whose final results are very similar 
to Figure 6. The inversion runs only a few iterations per stage (Figure 5a). 
One possible reason for the premature convergence of the conventional 
FWI is the relatively poor performance of the steepest descent algorithm, 
which sometimes generates small steps (e.g., Figure 5a in Métivier & Bro-
ssier, 2016), and as a result of which, prematurely triggers the stopping 
criterion (i.e., the inversion stops or moves to the next stage once the rel-
ative improvement in the misfit is less than 1%). Another possible reason 

for the premature convergence is the unbalanced energy among different shots. In this example, we didn't 
perform shot normalization because the ratio between the 2L -norm of the strongest and weakest shots is 
less than two. While this unbalanced energy among different shots is not a problem in ROWI because every 
single shot is used independently. The result of conventional FWI can be improved by adopting an appro-
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Figure 5. Evolution of data misfit in (a) conventional least squares full-
waveform inversion and (b) random-objective waveform inversion (ROWI). 
The blue curve shows the relative improvement in the currently assigned 
single-objective function and represents the averaged performance of six 
ROWI tests.

Figure 6. Conventional least squares full-waveform inversion result in the field example. (a and b) represent the final SV  and PV  models, respectively.
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priate data normalization strategy (Louboutin et al., 2017) or using more advanced optimization strategies 
(e.g., Bessel gradient smoothing with l-BFGS method in Irnaka, 2021). It is worth mentioning that because 
the data is highly redundant, we can also improve the efficiency of the conventional FWI by only using part 
of the data (Irnaka, 2021).

5. ROWI Result and Its Robustness Against Random Solution Paths
We run six ROWI tests with different random solution paths on the field data. In each test, we use the same 
multiscale strategy and perform 72 iterations in each frequency stage. Thus, one ROWI test runs a total of 
216 iterations, whose computational cost is approximately equivalent to running two iterations in a con-
ventional FWI that uses all 108 shots. The objective value reduces rapidly in the first 30 iterations of each 
stage, and the speed of its reduction generally slows down with iteration (Figure 5b). On the averaged, the 
single-objective misfit is improved by 3% per iteration in the six ROWI tests.

Figure 7 shows the averaged inversion result estimated by the six ROWI tests and the RSD among the six 
final (last-iteration) models. Two low-velocity trenches are clearly identified in the reconstructed SV  and PV  
models and are similar to the conventional FWI results (Figure 6). The two trenches are more continuous 
and more dominant in the ROWI result compared with the conventional FWI results. The resolution of the 
ROWI result might be further improved by performing conventional least squares FWI on the ROWI result.
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Figure 7. Random-objective waveform inversion (ROWI) result in the field example. The upper and lower rows represent the averaged inversion result of six 
ROWI tests and their relative standard deviation (RSD), respectively. The left and right columns represent the SV  and PV  models, respectively. The relatively low 
RSD among the six inversion results indicates the high robustness of ROWI against the random solution paths.
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The RSD values among the six ROWI solutions are small in most parts of the model (i.e., RSD  2%; the area 
in blue in Figures 7c and 7d). It indicates that the ROWI converges toward a similar result despite using dif-
ferent solution paths. The relatively high RSD values are mainly distributed sporadically at the boundaries 
of the trenches. The areas inside the EL do not have systematically high RSD values, indicating that the tar-
geted trench-like structure is reconstructed consistently by the six ROWI tests with different solution paths.

6. Multi-Objective Data Fitting
We compare the least squares data misfits (up to 50 Hz) of all shots corresponding to the conventional FWI 
result (Figure 6) and the averaged ROWI result (Figure 7). We perform additional forward simulations on 
the averaged ROWI result (Figure 7) for the comparison of data misfit. Although the conventional FWI aims 
at minimizing the 2L  data misfit, its final misfit values of all shots are larger than the values corresponding 
to the ROWI result (Figure 8). The 2L  data misfit corresponding to the ROWI result is on average 21% lower 
than the conventional FWI result, showing that ROWI is more effective in reducing data misfit compared 
with the conventional FWI.
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Figure 8. Comparison between the 2L  data misfits (up to 50 Hz) corresponding to the conventional least squares full-
waveform inversion (FWI) result and the averaged random-objective waveform inversion (ROWI) result. Overall, the 2L  
misfit of the ROWI result is on average 21% lower than that of the least squares FWI result.
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We choose the data generated by V-source at source location 21 to show the waveform fitting of the ROWI 
result. This shot has the highest 2L  misfit among all shots generated by the V -source (Figure 8). The first 
comparison (Figure 9) is performed between the observed and synthetic waveforms acquired in the last 
row and last column of receivers (i.e., Y = 28 m and X = 32 m in Figure 2). Overall, the synthetic data fits 
the observed data fairly well. The waveform fitting in the vertical (Z-) component is generally better than 
in the horizontal components because the observed data has relatively higher amplitudes in the vertical 
component. We did not show the comparison between the waveform envelope whose nice data fitting can 
be inferred from the waveform comparison.

We perform another data comparison on the dispersion spectra ( f -k  spectra) of the same shot using all 
receivers. Figure 10 shows the wavenumber spectra of the observed (upper row) and modeled data (lower 
row) at a frequency of 35 Hz. The energy of the observed and synthetic data show a similar dispersion image 
in the wavenumber domain, which is mainly distributed along a circle. The circular energy represents the 
fundamental-mode Rayleigh (radial and vertical components) and Love waves (transverse component) at 
35 Hz. Some weaker energy distributed along a smaller circle in the radial and vertical components belongs 
to high-mode Rayleigh waves. The azimuth distribution of energy in the Love-wave dispersion image is 
mainly caused by the focal mechanism of the V source, which can be decomposed as a vertical force and a 
horizontal force striking along 240. Overall, the dispersion images of the observed data are nicely fitted, 
especially for the phase and the azimuth distribution of energy. The dispersion energy in the Rayleigh-wave 
components is stronger and better fitted compared with the Love-wave component.

7. Evaluation of ROWI Result
We evaluate the ROWI result by comparing its SV  model to several 2D ground-penetrating radar (GPR) pro-
files acquired in the same survey area. Figures 11a and 11b show the comparison of 2D slices at Y = 17 m 
and X = 21 m, respectively, in which the strong contrast in SV  nicely agrees with the boundaries delineated 
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Figure 9. Comparison of the synthetic data corresponding to the averaged random-objective waveform inversion result and observed data generated by the 
V  source at source location 21. The first and second rows represent the data acquired on the last line (Y = 28 m) and last column (X = 32 m) of receivers, 
respectively. Three columns represent the waveform acquired by the X-, Y-, and Z-component, respectively. The waveform is normalized in each trace for 
display.
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by the GPR profiles (wiggle plot; highlighted by the arrows). Figure 11c shows a 2D slice of SV  model at 
a depth of 0.8 m which is compared to the boundaries of the EL manually picked from multiple 2D GPR 
profiles (red lines). The location of the EL nicely matches its location estimated from GPR profiles in the 2D 
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Figure 10. Comparison between the dispersion ( f -k) spectra of the observed (first row) and synthetic (second row) data at a frequency of 35 Hz. Outer 
and inner circles of energy in the radial and vertical components represent the fundamental- and high-mode Rayleigh waves, respectively. The energy in the 
transverse component represents Love wave. The Rayleigh-wave energy is stronger than Love-wave in the data.

Figure 11. Comparison between the reconstructed SV  model and ground-penetrating radar (GPR) profiles. (a and b) represent the comparison in the 2D slices 
located at Y = 17 m and X = 21 m, respectively. (c) shows the comparison at a depth of 0.8 m. The triangles represent the boundary points of the EL picked 
from multiple 2D GPR profiles, which are lined up by two red lines. A, B, C, and D are the four chosen points for trade-off analysis. Arrows highlight the 
boundaries of the targeted trench, which are picked based on the prior information about the location and shape of the trench (Gao et al., 2020; Pan, Schaneng, 
Steinweg, & Bohlen, 2018).
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depth slice. Overall, the good match between the GPR profiles and our model, especially for the location and 
shape of the EL, proves the validity of the model estimated by ROWI.

8. Pareto Solutions and Trade-Off Analysis
We evaluate all solutions along the six search paths on the final stage (72 iterations  6 solution paths = 432 
models) and sort them into shot-related subproblems (Equation 9). Each shot has an average chance to be 
used four times, in other words, we have an average of four samples in each shot-related subproblem. In 
each subproblem, we compare the three misfit values of every sample to determine the Pareto solutions 
(see Section 2.3). Figure 12 shows the distributions and selections of Pareto solutions in the subproblems 
related to shot 1, 5, 33, and 36 generated by U  source, respectively. In the subproblem which only contains 
one sampled solution, this solution automatically becomes a Pareto solution. Overall, a total of 246 local 
Pareto solutions are chosen from the 432 models (red and blue lines in Figure 13). Six ROWI tests contribute 
to a similar number (i.e., 16%, 19%, 18%, 15%, 15%, and 17%) of samples to the estimated Pareto solutions.

Figure 14 shows the mean and RSD of all 246 Pareto optimal solutions in the model space. Overall, the 
trade-off (RSD) is low throughout the whole model, while two trenches, especially the one locates near 
the boundary (X = 31 m) of the survey area, have relatively higher trade-offs compared to the surrounding 
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Figure 12. Distribution of models in the objective space of the subproblems corresponding to U-source shot 1, 5, 33, and 36. Those four sources are located at 
the corners of the survey area. Asterisks and circles represent the misfit values of all available samples and Pareto solutions in the subproblems, respectively.
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areas. It implies that the second trench is less reliable compared to the EL. Both the averaged model and 
trade-off information estimated by the Pareto solutions show a relatively high similarity to the results esti-
mated by the six final (last-iteration) solutions of ROWI with different solution paths (Figure 15 compared 
to Figure 7). It indicates that the final ROWI results estimated by different solution paths nicely sample the 
Pareto front for trade-off analysis (Pan & Gao, 2020; Shigapov, 2019).

Besides analyzing the overall trade-off throughout the whole model, ROWI also allows analyzing the 1D or 
2D joint distributions at some points or between pairs of points. Figure 15 shows the distribution of Pareto 
optimal solutions of SV  at four specific points located inside two trenches in the 2D slice Y = 17 m and at a 
depth of 0.8 m (A, B, C, and D in Figure 11). The point pairs A-B and C-D are located inside the EL and the 
second trench, respectively, with an inner distance of 1 m.

The 1D distributions of samples at all four points are non-Gaussian and the distributions are more central-
ized at points A and B compared to points C and D (marginals in Figure 15). The velocities at points A and 
B are relatively lower than the velocities at points C and D. The high probability values mainly distribute 
along the diagonals of the 2D distributions (Figure 15). It indicates that the reconstructed model is fairly 
homogeneous inside the two trenches. The samples are distributed fairly centralized in both the pairs A-B 
and C-D, indicating that both two trenches contain relatively low trade-offs at those points.

9. Robustness of ROWI Against Poor Initial Models
We rerun the field example starting from several poorer initial models to evaluate the robustness of ROWI 
against the poor initial models. We replace the 1D SV  structure above the bedrock with a constant value of 
150, 160, 170, and 180 m/s ( SV  above 7 m in Figure 3), respectively, to generate four different initial models. 
The initial PV  is set as 2.2 times of the modified SV . The same 1D attenuation model, density model, and 
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Figure 13. Numbers of samples (blue) and Pareto solutions (red) in each subproblem.
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inversion setup are used. We only perform one ROWI test starting from each of the four poor initial models. 
For comparison, we also perform conventional FWI with different objective functions on the data by using 
the same poor initial models.

Figure  16 shows the inversion results estimated by the conventional FWI with different objective func-
tions and ROWI starting from the four poor initial models. Although we can roughly identify the existence 
and the locations of both two trenches in the conventional least squares FWI results (first row of images 
in Figure 16), the shapes and boundaries of the two trenches can not be reconstructed reliably. The four 
least squares FWI results differ significantly from each other, which highlights a high dependence of least 
squares FWI on the initial model. The results of envelope-based FWI also reconstruct the existence of the 
two trenches when using the four poor initial models (second row of images in Figure 16). Besides, the ve-
locity in the deep part of the model is also updated. However, the results of envelope-based FWI suffer from 
relatively strong artifacts in the near-surface region. This is because the envelope misfit function mainly 
uses (fits) the amplitude information of the waveform, while the quality of amplitude information in our 
observed data is not ideal due to the 4D effect (amplitude inconsistency among traces). Similarly, because 
the f -k-spectra misfit is sensitive to the amplitude information of the data, the f -k-spectra based FWI un-
derperforms in the reconstruction of the model compared to the least squares FWI, especially when a very 
poor initial model is used (third row of images in Figure 16). It is worth noting that the comparison between 
the performances of conventional FWI with different objective functions is not fair because the 4D effect 
in the data is corrected via a matching filter that minimizes the least squares waveform difference between 
the dense-grid data and reference data. The performances of the envelope-based and f -k-spectra based FWI 
can be improved when a more appropriate misfit function is used in the matching filter or by applying an 
appropriate trace-normalization to the data (Louboutin et al., 2017).
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Figure 14. Mean and relative standard deviation of the 246 Pareto solutions. Overall, they show a high similarity to Figure 7.



Journal of Geophysical Research: Solid Earth

The ROWI results are much more consistent regardless of the different poor initial models as well as the 
different solution paths (last row of images in Figure 16), especially for the reconstruction of the two trench-
es. The ROWI results better delineate the shapes and boundaries of the two trenches compared with the 
results estimated by conventional FWI, especially when a very poor initial is used (e.g., SV  = 150 m/s and 

SV  = 160 m/s in Figure 16). The difference among the four ROWI results is relatively small in most parts of 
the model, indicating that the SV  model is reconstructed consistently by ROWI even though different poor 
initial models are used. Relatively bigger differences mainly exist around the boundary of the model and 
below 5 m depth, which are caused by the low illumination of the wavefield in this part. The ROWI results 
also show a fairly high similarity to the result starting from a good initial model (Figure 7), especially for the 
part above 5 m depth due to a limited penetrating depth of surface wave. It indicates that both the inversion 
result and the trade-off analysis in the areas with low sensitivity (illumination) are not reliable. Overall, 
these examples prove the relatively higher robustness of ROWI against poor initial models compared with 
the conventional FWI approaches.

10. Discussion
10.1. Comparison Between Multi-Objective Trade-Off and Bayesian Uncertainty

We discuss the relationship between the trade-off information estimated by ROWI and the uncertainty 
based on the Bayesian approach (Tarantola, 2005). To do so, we scalarize our multi-objective function Φ 
(Equation 2) to a single-objective function   via

,
1 1

( , ) ( , ( )),
N Ns L obs syn

i j j i i
i j

w
 

 m w d d m (12)

where 1,1 1,2 ,[ , , , ]N Ns Lw w w w  represents arbitrary weights of positive values. Minimizing Equation  12 
provides a sufficient condition for Pareto optimality in the multi-objective function Φ. Once an arbitrary 
weight ŵ is given, the posterior probability density function (PDF) is expressed as
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Figure 15. Trade-off information of the SV  values at four points located inside the two trenches. (a and b) show the 2D joint distributions of SV  at correlated 
points A-B and C-D, respectively. The marginals (blue bars on top and right side of the images) show the 1D distribution of SV  at every single point and the red 
curve represents the corresponding normal distribution fit. The blue lines represent the mean values.
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( ) ( ) [ ( , )],ˆMk exp   m m m w (13)

where k  is a normalization constant and ( )M m  is the PDF of a priori information (Tarantola, 2005). The 
Pareto solution corresponding to the weight ŵ represents the maximum a posteriori (MAP) model.

Similarly, the posterior PDF corresponding to the multi-objective function Φ (we follow Shigapov, 2019 and 
call it parametric probability) is expressed as

( , ) ( ) [ ( , )].Mk exp   m w m m w (14)

In a realistic case, multiple MAP models are estimated with different w, and these models correspond to the 
Pareto solutions of the multi-objective function Φ. The collection of Pareto solutions represents the samples 
that maximize the parametric probability (MAP models that maximize the posterior PDFs with varying w in 
Equation 14) and we estimate the trade-off information by analyzing their distribution in the model space. 
This trade-off information differs from the uncertainty based on the Bayesian approach that represents 
posterior PDF centered at the MAP model.
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Figure 16. Inversion results in the field example by using the four poor initial models (four columns). Four rows represent the inversion results estimated by 
the conventional least squares full-waveform inversion (FWI), envelope-based FWI, f -k-spectra based FWI, and random-objective waveform inversion (ROWI), 
respectively.
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The trade-off analysis performed in this study (Figure 14) uses six ROWI tests, which overall costs around 
9,700 times of forward/adjoint simulations (6 tests  216 iterations per test  around 6 times forward/adjoint 
simulation per iteration; the remaining forward simulations are used for the estimation of source time 
functions). The computational cost is approximately equivalent to that of running 16 iterations in a con-
ventional FWI. Although the local Hessian-based approach for uncertainty estimation is computationally 
inexpensive by the low-rank approximation of the inverse Hessian at the MAP model and may only need to 
solve several forward/adjoint equations per shot, the estimation of the MAP model is time-consuming by 
running a conventional FWI. Therefore, the overall computational cost for the trade-off analysis in ROWI 
and the uncertainty estimation using the local Hessian-based approach is comparable. The joint use of 
ROWI (to estimate MAP model) and local Hessian-based approach (to estimate the inverse Hessian at the 
MAP model) might provide a computationally efficient way for uncertainty estimation, which deserves to 
be studied in the future.

10.2. Pareto-Solution and Convergence Diagnostics

The trade-off analysis relies on the accurate estimation of Pareto solutions. The multiple runs of ROWI 
better explore the solution space and are essential to a comprehensive estimation of the Pareto front. It 
provides more candidate solutions for a fair evaluation of Pareto optimality. Although a single run of ROWI 
might be able to recover the subsurface model, it might not be sufficient for a reliable estimation of the 
trade-off information.

We use a maximal iteration as our stopping criterion in ROWI because the information from single-misfit 
values could not assure the convergence of the multi-objective function. The maximal iteration number 
needs to be large enough to guarantee the convergence of ROWI toward a Pareto solution. Once ROWI ar-
rives at the Pareto front, it starts to explore the Pareto front. Therefore, a large number of iteration in ROWI 
benefits the reliability of the inversion results and their trade-off information on the price of an increased 
computational cost.

10.3. Limitations of ROWI

ROWI benefits the advantages and, at the same time, suffers the drawbacks of the chosen objective func-
tions (e.g., non-convexity of the objective function). Because ROWI uses a local optimization algorithm and 
the objective functions are mostly non-convex, the inversion might converge toward a local Pareto solution 
or become inefficient when trapped at a saddle point (Ge et al., 2015), especially when an inappropriate 
initial model is chosen.

One technical problem ROWI faces is its computational performance on the parallel supercomputer. Be-
cause only one shot is used per iteration, we can only parallelize the code based on model-domain decompo-
sition (Bohlen, 2002), which might become computationally inefficient when many (e.g., 310 ; depending 
on the size of the model) cores are available. However, it will not be a problem when multiple ROWI tests 
are needed because they can be run independently in parallel.

Shallow-seismic data with dense acquisition provides a preferred situation for the application of ROWI. 
This is because surface waves, which dominate the observed data, have a similar and homogeneous illumi-
nation in the shallow subsurface among different shots. Thus, it results in relatively high redundancy in the 
data. How to adapt ROWI to other data sets deserves further study.

Although ROWI estimates the trade-off information of multiparameter models (i.e., SV  and PV  in Figure 14), 
it does not account for the interparameter trade-off (crosstalk). The interparameter trade-off is difficult to 
be assessed in ROWI because multiple measurements are used simultaneously and independently. It is 
more preferable to use a local Hessian-based approach (Fichtner & van Leeuwen, 2015; Pan, Geng, & Inna-
nen, 2018) for the estimation of interparameter trade-off.
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11. Conclusions
We promoted the ROWI method for 3D multi-component shallow-seismic data and applied it to a field data 
set. In every iteration, we randomly choose one shot and randomly assign one measurement to it to compute 
the model update. We applied ROWI to a nine-component shallow-seismic field data set and successfully 
delineated the targeted refilled trench. Several 2D GPR profiles acquired in the same test site also proved the 
validity of the estimated model. Trade-off analysis was performed statistically by using 246 approximated 
samples of the Pareto front, which suggested relatively lower reliability at the boundaries of the targeted 
trench and in another trench near the boundary of the survey area. We also ran four additional ROWI tests 
on the field data starting from poor initial models. The inversion results reconstructed the main structures 
reasonably well, which highlighted the high robustness of ROWI against poor initial models. Because the 
Pareto solutions of the subproblems do not accurately represent the Pareto solutions of the full multi-objec-
tive problem, efficient approaches for Pareto optimality evaluation and the exploration of the Pareto front 
require further studies.

Data Availability Statement
The raw field data is freely available from the KITopen repository (https://doi.org/10.5445/IR/1000125628). 
We thank students from KIT and Université Grenoble Alpes for their help in the field-data acquisition.
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