KIT | KIT-Bibliothek | Impressum | Datenschutz

Graph neural networks in TensorFlow-Keras with RaggedTensor representation (kgcnn)

Reiser, Patrick; Eberhard, André; Friederich, Pascal ORCID iD icon

Abstract:

Graph neural networks are a versatile machine learning architecture that received a lot of attention recently due to its wide range of applications. In this technical report, we present an implementation of graph convolution and graph pooling layers for TensorFlow-Keras models, which allows a seamless and flexible integration into standard Keras layers to set up graph models in a functional way. We developed the Keras Graph Convolutional Neural Network Python package kgcnn based on TensorFlow-Keras which focus on a transparent tensor structure passed between layers and an ease-of-use mindset.


Verlagsausgabe §
DOI: 10.5445/IR/1000138684
Veröffentlicht am 07.10.2021
Originalveröffentlichung
DOI: 10.1016/j.simpa.2021.100095
Scopus
Zitationen: 16
Dimensions
Zitationen: 17
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 2665-9638
KITopen-ID: 1000138684
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Software Impacts
Band 9
Seiten Art.-Nr.: 100095
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page