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Abstract—This paper presents the application of an adaptive
feedforward control approach based on radial basis functions
for grid-tied Ćuk converters. A stability analysis provides a
theoretical foundation for the expected stable operating range
as well as bounds for the control signal at the operating points.
With a power hardware in the loop implementation of the
approach the feasibility for real-time application is shown, which
is further illustrated by operating scenarios. Further, practical
experience concerning the choice of the control parameters is
presented along with the resulting advantages and limitations of
the approach.
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I. INTRODUCTION

Increasing efforts towards carbon neutrality require the in-
corporation of renewable distributed energy resources (DER),
which calls for novel control methods in combination with
adjusted grid topologies. This has inherent challenges in terms
of control, stability and reliability for the electric energy
system [1], [2]. Testbenches are of utmost importance to
ease the transition from computer simulation to field testing.
For early stage assessment of the suitability of new control
approaches, the use of power hardware in the loop (PHIL)
systems is common [3]–[5], but has its own challenges, arising
from communication delays and restrictions posed by the real-
time implementation in terms of computational complexity.
Adaptive control methods offer advantages for systems with
uncertainties and systems which are exposed to changing
exogenous conditions. Converters in electric grids are such
systems for various reasons: mass production related varia-
tions in the parameters of the electric components such as
inductors or capacities, changing grid topology resulting from
the intermittency of renewable energy resources as well as the
changing load conditions which occur in electric grids.
However, adaptive control methods, aside from gain schedul-
ing, are seldom used in practical applications. This is due to
various destabilising phenomena such as peaking, bursting or

parameter drift, which can suddenly arise during operation [6].
For linear systems, the stability of some adaptive control
systems can be shown under certain strict assumptions, which
can not be easily transferred to nonlinear systems. Even for
linear systems, counterexamples show that the presence of
unmodeled fast dynamics can lead to instabilities for adaptive
controllers [7]. Since the control design for converter sys-
tems is mostly based on averaged models, which neglect the
switching nature of such systems, fast unmodeled dynamics
are certainly present during the operation.
With these conditions in mind, we approach this topic using
a self-learning/data-driven [8] adaptive feedforward control
method, which due to its single loop architecture is expected to
behave robustly. Further, the straight forward implementation
and low computational complexity make it well suited for real-
time applications.
To gain insights in the stability properties of such systems, we
choose a well studied converter topology, the Ćuk converter,
for which many control approaches and validated models exist
which provide valuable model knowledge, cf. [9]–[11] and
the references therein. Moreover, the consideration of duty
cycle controlled converters with the inherent limitation of
the control signal makes this approach less susceptible to
peaking phenomena and simplifies theoretical considerations
by providing limits for the adapted parameters.
To assess the properties of the developed adaptive feedforward
control (AFC) method in a real-time application, several
scenarios for the DC bus voltage regulation in an example
microgrid based on power hardware in the loop (PHIL)
emulation devices are considered.
The remainder of this paper is structured as following, Sec.
II presents the system under study and the assumptions made.
In Sec. III the implemented control method is described and
Sec. IV provides insights into the stability properties of the
closed loop system. Section V discusses the obtained results
and Sec. VI summarizes the paper.



II. SYSTEM UNDER STUDY

An example microgrid with an AC/DC interconnection is
shown in Fig. 1, which is abstracted for the experiments

Fig. 1. Illustrative interconnected microgrid

presented in Sec. V with the following assumptions:
• DC Subgrid: The DC/DC converters connecting the DER

are Ćuk converters with unknown parameter sets. Further
we neglect the dynamics of the generation side.

• Connection DC/AC: The converter at the point of com-
mon coupling (PCC) is assumed to be tightly droop
controlled. This allows us to model it as a combined
constant resistance and constant power representation.
Unidirectional power flow from the DC to the AC subgrid
is assumed.

• Devices: Two supply converters CC1, CC2 and the PCC
converter are considered for the PHIL validation setup,
resulting in the system shown in Fig. 2.

Fig. 2. System overview with respect to the assumptions made

A. Model of the Ćuk Converter

From the circuit diagram of the Ćuk converter in Fig. 3, the
following equations [9] are obtained using Kirchhoff’s laws

L1
di1
dt

= −(1− s1)v2 + Vsup

C2
dv2
dt

= (1− s1)i1 + s1 i3

L3
di3
dt

= −s1 v2 − v4

C4
dv4
dt

= i3 − iload ,

(1)

where v, i represent the voltages and currents, C, L denote

Fig. 3. Circuit diagram of a grid connected Ćuk converter

the capacitance and inductance of the corresponding passive
elements, Vsup is the supply voltage and s1 the gate signal of
the electric switch. In the following, we interpret the signals of
(1) as averaged over one period of the pulse width modulation
frequency, justifying the assumption that the sliding average
of s1 can be approximated by the duty cycle d [9], [12]. Note
that the model only describes the continuous conduction mode
[10]. For the control design, system (1) is mapped to control
nomenclature as given in Table I. Based on the mapping the
following representation is obtained:

ẋ=


p1(−x2 + p5)

p2 x1
−p3 x4
p4 x3

+


p1x2

p2(−x1 + x3)
−p3 x2

0

u+


0
0
0
−p4

 z
y =

[
0 0 0 −1

]
x .

(2)

TABLE I
MAPPING TO CONTROL NOTATION

Name Physical Notation Control Notation
States i1, v2, i3, v4 x1, x2, x3, x4
Input d u

Output −v4 y
Disturbance iload (measured) z
Parameters L1, C2 p1 = 1

L1
, p2 = 1

C2

L3, C4 p3 = 1
L3
, p4 = 1

C4

Vsup p5 =Vsup

B. Model of the Point of Common Coupling Converter

Following the assumptions given in Sec. I, we model the
PCC current i

PCC
as consisting of a constant resistance and a

constant power component as shown in Fig. 2. This yields

iPCC =
PCP

v
PCC

+
vPCC

R
CR

, (3)

where vPCC is the PCC voltage, RCR the constant resistance
and PCP the constant power. Due to the unidirectional power
flow, the PCC current is considered as a load during the
validation scenarios.

III. ADAPTIVE FEEDFORWARD CONTROL DESIGN FOR THE
ĆUK CONVERTERS

Adaptive feedforward control approaches, for example
Adaptive Inverse Control (AIC) [13], are well established



in engineering practice, since they offer robust performance
and easy implementation for stable plants [14], [15]. The
underlying idea is to adapt the feedforward controller to
approximate an inverse of the plant [16]. Various methods
based on different identification/filtering approaches and/or
model reference based concepts are described in [14]–[17].
To provide the desired bus voltage, we use a feedforward
controller, as shown in Fig. 4, based on a radial basis function
(RBF) network. However, we do not aim to approximate the
plant inverse as in [14], [16]. Since we are only interested
in a setpoint control application we want to obtain the static
characteristic of the plant. Consequently, the RBF network acts
as a static nonlinear feedforward controller, whose parame-
ters are adjusted via the adaptation loop to guarantee zero
steady state error. Decentralized load sharing is achieved by
modifying the AIC structure with a virtual resistance based
disturbance feedforward to the controller input. The activation
of the kernels is based on the desired output and thus can be
interpreted in the sense of gain scheduling. According to AIC
and the scheme in Fig. 4, the kernel weights are adapted based
on the tracking error e which is given by

e = y − yd . (4)

Fig. 4. Overview of the adaptive feedforward control scheme

The feedforward controller of the AFC is given by

u(yd) =

l∑
i=1

ωi k(yd, yvc,i) , (5)

where ωi are the weights, k the kernel function, yd the desired
output and yvc,i the predefined kernel centers. The RBF [18],
[19] is given as

k(yd, yvc,i) = exp

(
− (yd − yvc,i)2

2 ρ2

)
, (6)

where ρ is the kernel bandwidth. Since u is the duty cycle, it
can only take values in the interval [0, 1). For practical reasons
the interval is reduced to u ∈ [0, umax), with umax < 1.
Such a constraint can be realized using an adjusted saturation
function, but additionally in adaptive control it should be
preferred also to constrain the parameters ω. This can be
achieved by a projection onto the allowed parameter range.
To derive a suitable weight update we consider the gradient

descent for the quadratic tracking error J

J =
1

2

(
y − yd︸ ︷︷ ︸

=e

)2
(7)

which is given by

ω̇i = −γω
∂J

∂ωi
, (8)

with the adaptation gain γω > 0. After the initial transient,
which we neglect due to small γω and therefore slow parameter
dynamics, the system output will settle to its stationary value
y ≈ ϕ (u). Applying the chain rule yields

ω̇i = −γω
∂J

∂y

∂y

∂u

∂u

∂ωi

= −γωe
∂ϕ(u)

∂u
k(yd, yvc,i) ,

(9)

where ∂ϕ(u)
∂u is the slope of the static characteristic. With the

assumption that the expected characteristic is monotone, we
replace this slope with a positive constant, which we subse-
quently include in γω . This leads to the following adaptation
law supplemented with the parameter projection

ω̇i = Proj[0,ωi,max]

(
− γω e k(yd, yvc,i)

)
. (10)

Decentralized load sharing between the converters is real-
ized with the disturbance feedforward law

yd,VR = −αVR z , (11)

where αVR acts as a virtual resistance [20]–[22]. The choice
of αVR for CC1 and CC2 can be used to shape the load
sharing ratio. Note that unmodeled additional resistances can
deteriorate the designed load sharing. One example are the
connection lines between the converter and the PCC, depend-
ing on the length; their respective effects can be tolerated or
compensated if additional knowledge is available.
A command shaping filter is designed as a PT1 element with
the time constant TCSF to smooth jumps of the desired bus
voltage.
The desired signal yd for the adaptive feedforward controller
is given by

yd = yd,bus + yd,VR
, (12)

where yd,bus is the default bus voltage. In a classical hier-
archical control system, yd,bus is provided by some higher
level controller, often called secondary control [21], [23], [24].
Consequently the presented approach is to be understood as
a primary control scheme. For the scenarios described in this
paper, the desired bus voltage is given by the design of the
experiment.

IV. STABILITY ANALYSIS

To provide a meaningful analysis of the stability of the
presented approach we make the following assumptions
• We replace the measured disturbance z by a load with

the constant equivalent conductance θ > 0.
• The controller input yd is considered as constant.



We further argue concerning the dynamics of the control signal
u, which is given by

u̇=

l∑
i=1

ω̇i k(yd, yvc,i)

(10)
=

l∑
i=1

Proj[0,ωi,max]

(
−γω e k(yd, yvc,i)

)
k(yd, yvc,i) ,

(13)

that it is well known from adaptive control theory that stability
can be proven without the projection operator, therefore we
neglect it. Moreover we replace the error with the state
coordinate and introduce the new gain γ which yields

u̇
(4)
= (x4 + yd)

l∑
i=1

γω k(yd, yvc,i)
2

︸ ︷︷ ︸
=γ

(14)

and thus justifies the aggregation of the weights in the control
signal u.
Interpreting u as a new state variable, the extended dynamics
for x=[x1 x2 x3 x4 u]> is given by

ẋ =


p1(−x2 + x2 u+ p5)
p2(x1 − x1 u+ x3 u)
p3(−x4 − x2 u)
p4(x3 − θx4)
γ(x4 + yd)

 . (15)

We can obtain the following equilibrium set

Ex =




θy2d
p5

p5 + yd
−θyd
−yd
yd

yd+p5

 : yd ∈ R+


, (16)

note that ue = yd
yd+p5

. We apply the equilibrium transforma-
tion x̃ := x− xe, ũ := u− ue which yields

˙̃x= A(ũ) x̃ (17)

A=


0 p1(ũ−β1) 0 0 p1 β3

p2(β1−ũ) 0 p2(ũ+ β2) 0 −p2 β4
0 −p3(ũ+ β2) 0 −p3 −p3 β3
0 0 p4 −p4θ 0
0 0 0 γ 0

 ,
with β1 = p5

p5+yd
, β2 = yd

p5+yd
, β3 = (p5 + yd), β4 =

θ yd(p5+yd)
p5

.
We treat the above pseudo-linear problem caused by the
variable ũ by embedding it in an LTV system of the structure

˙̃x = A(t)x̃ , (18)

where the time-varying matrix A(t) can be expressed by
A(t) = A0 + ũ(t)B, with the matrices A0 and B, which

are given by

A0 =


0 −p1 β1 0 0 p1 β3

p2 β1 0 p2 β2 0 −p2β4
0 −p3 β2 0 −p3 −p3 β3
0 0 p4 −p4θ 0
0 0 0 γ 0



B =


0 p1 0 0 0
−p2 0 p2 0 0

0 −p3 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
(19)

The time-varying matrix A(t) is unknown, but lies in a convex
set, i.e. A(t) ∈ {A0 + ũ(t)B : ũ ∈ [u, u]} with u, u as the
lower and upper admissible bounds. Let us consider the case
u = −u = α to obtain symmetric bounds for ũ about its
equilibrium value. Now we search the largest α for which we
can guarantee stability. Taking a time independent Lyapunov
function candidate V (x̃) = x̃>Px̃ with P � 0 it has to be
shown that

A>(t)P + PA(t) ≺ 0, A0 − αB︸ ︷︷ ︸
A

< A(t) < A0 + αB︸ ︷︷ ︸
A

.

(20)
This task can be reduced to the problem of finding a common
Lyapunov function for the corner matrices A, A. Hence, we
obtain the following optimization problem

max
α,P

α s.t. (A0 + αB)>P + P (A0 + αB) ≺ 0

(A0 − αB)>P + P (A0 − αB) ≺ 0

−P ≺ 0 .

(21)

Due to the strict inequalities as well as bilinear relation
between α and P a sequence of feasibility problems with fixed
α has to be solved

topt =min
t,P

t s.t. (A0 + αB)>P + P (A0 + αB) � tIn

(A0 − αB)>P + P (A0 − αB) � tIn
−P � tIn .

(22)

For any topt < 0 this problem is feasible, consequently we
can optimize (21) by simply increasing α until the feasibility
fails.
The result of the optimization for the parameters of CC1 and
θ = 1

6 is shown in Fig. 5 by the bounds ub1. Obviously,
the calculated stability region is the interior enclosed by the
boundary lines, because αmax of (21) for each ue is only a
supremum (the maximum can not be achieved, due to the strict
inequalities).
Even if the stability region seems small, in practice the bounds
prove to be conservative. Nevertheless, the decrease for low
and high values of ue is observed during the application of
the control scheme.
Larger stability regions can be obtained by considering a
slowly varying ũ(t), which is achievable with γ � 1. As-
suming that | ˙̃u(t)| ≤ ρũ, we use the linear matrix inequality



Fig. 5. Bounds on u that guarantee the existence of a common Lyapunov
function

(LMI) formulation presented by Montagner and Peres [25].
For this we rewrite system (18) as

˙̃x = (α(t)A1 + (1− α(t))A2) x̃, α(t) ∈ [0, 1], (23)

where A1 = A0 + uB and A2 = A0 + uB with symmetric
relative deviations u = −δue and u = δ(1 − ue). The time-
varying parameter α(t) = ũ(t)−u

u−u is limited to a rate of change
|α̇(t)| ≤ ρũ

δ =: ρα. A time-dependent Lyapunov function

V (x̃, t) = x̃> (α(t)P1 + (1− α(t))P2) x̃ (24)

is used, where P1, P2 are symmetric positive definite solutions
of the LMIs

A>1 P1 + P1A1 ± ρα(P1 − P2)≺0

A>2 P2 + P2A2 ± ρα(P1 − P2)≺0

A>1 P2 + P2A1 +A>2 P1 + P1A2 ± 2ρα(P1 − P2)≺0 .

(25)

The result of the maximization of δ, such that (25) remains
feasible is shown in Fig. 5 for the parameters of CC1, θ = 1

6
and ρũ = 1 by the bounds ub2. It can be seen that the resulting
bounds are vastly increased by the limitation of the rate of
change for the control signal u. The price for a larger stability
region is a decrease of the performance.

V. POWER HARDWARE IN THE LOOP SETUP AND RESULTS

The setup of the power hardware in the loop environment
which is used to obtain the results presented in this section
is schematically shown in Fig. 6. The AFC approach and
the models of the Ćuk converters and the PCC converter, as
presented in Sec. II, are implemented on a real-time simulator
to obtain the responses of the emulated Ćuk converters. The
signals are then emulated as real voltages/currents using high
bandwidth sources, which feed the measurements back to the
real-time simulator as depicted in Fig. 6. For all connection
lines between the high bandwidth sources copper wires with
a cross-section of 35 mm2 are used.

An overview of the parameters used for the experiments is
provided in Table II, note that for parameters which are
changed during a scenario a range is given and the values
are described in more detail in the following.
In the remainder of this section, three operating scenarios are
presented for which the performance of the AFC is discussed.
Afterwards the key results concerning the training, positioning
and bandwidth of the kernels are presented.

TABLE II
PARAMETER OVERVIEW

Category Parameter Value
Ćuk converter 1 L1 10 mH

(CC1) C2 22µF
L3 10 mH
C4 44µF
Vsup 180 V

Ćuk converter 2 L1 10.5 mH
(CC2) C2 20.9µF

L3 9.5 mH
C4 46.2µF
Vsup 200 V

PCC converter PCP 0 − 3000 kW
RCR 6 − 15 Ω

AFC γω 0.01
yvc

[
10 20 30 . . . 300

]
ρ 10

TCSF 1 s
αV R,CC1 0.3
αV R,CC2 0.5

General Cycle time 20 · 10−6 s
ỹd,bus 190 V

Fig. 6. Setup of the real-time PHIL environment

A. Failure of a Generation Unit

For this scenario the load parameters RCR = 6.66 Ω and
P

CP
= 1000 W are chosen. Fig. 7 shows the transient behavior

during the sudden failure of a supply converter, evident by i
CC2

dropping to zero. The induced bus voltage drop is recovered
within 0.05 s followed by a transient period until the new
operating point is reached. Note that since the remaining
converter is now contributing a larger current, consequently



the new bus voltage is lower due to the implemented virtual
resistance. The magnitude of the voltage difference is quite
large, due to the extreme scenario of losing over 50% of the
initial supply current, indicating the robustness of the chosen
approach.

2.3 2.4 2.5 2.6 2.7 2.8
50

100

150

200

Fig. 7. Response of the bus voltage and supply currents during the failure of
one converter

B. Resistive Load Change

Fig. 8 shows the behavior of the system during a step change
of the load resistance R

CR
from 13.32 Ω to 6.66 Ω. Note

that for this scenario, the constant power term was chosen
as P

CP
= 0. After a transient period of around 0.02 s the new

operating point is reached, the load sharing ratio of around
iCC1

iCC2
= 0.61 is maintained after the load step. Again the bus

voltage after the load increase is smaller, due to the virtual
resistance.

8.8 8.85 8.9 8.95 9

100

200

Fig. 8. Response of the bus voltage and supply currents during step change
of the resistive load

C. Constant Power Load Change

In a second load change scenario, the behavior during the
change of the constant power term from P

CP
= 1000 W to

PCP = 3000 W is presented in Fig. 9. The resistive load
component is kept constant at RCR = 6.66 Ω. Similar to the
previous scenario, the new operating point is reached after
roughly 0.03 s and the load sharing ratio is restored after the
load change. The transient period exhibits a damped oscillatory
behavior as can be expected due to the decreased damping
caused by the increased constant power load share.

2.8 2.85 2.9 2.95 3

100

200

Fig. 9. Response of the bus voltage and supply currents during the change
of the constant power load

D. Learning Behavior of the Kernel Weights

One of the challenges for the real-time implementation of
the presented AFC method is the choice of the number and
spacing of the RBF kernel centers yvc in combination with
the kernel bandwidth δ. The maximum number of the used
kernel functions is limited by the available computational
power and the minimum necessary number is limited by the
desired quality of the adapted static characteristic.
For all shown scenarios the kernel centers are positioned
between 10 V and 300 V. A good trade-off is found to be
a spacing of 10 V for the kernel centers in combination with
a kernel bandwidth of δ = 10.
In order to provide a useful static characteristic during oper-
ation, a reasonable set of weights must be obtained. The first
influence to be discussed is the initialization of the weights.
For all presented scenarios, the worst case is assumed and
the weights are initialized as zero to evaluate the robustness
of the approach with respect to ill chosen initial weights.
Obviously, if a nominal static characteristic is known for
the used converter type, the initial weights can be chosen
accordingly to obtain better performance.
The second influence is the training of the system in order to
adapt the weights to the actual conditions. The same procedure
is performed for all presented scenarios. First ỹ

d,bus
= 100 V is



set, then CC1 is enabled, after the steady state is reached, CC2
is enabled. Thereafter ỹ

d,bus
is changed in 10 V increments

up to 200 V with constant load conditions. Afterwards the
described experiments are performed.
The approach presented above is now discussed using the three
static characteristics depicted in Fig. 10:
• Theoretical static characteristic: a theoretical charac-

teristic uideal for a single Ćuk converter can be obtained,
assuming the knowledge of the parameters given in Table
II for CC2. This curve is discussed as the reference.

• Best approximation characteristic: to show that the
chosen number and position of kernels is sufficient to
provide a good fit to the theoretical static characteristic,
we calculate the best approximation for the weights with
respect to the L2-norm. The resulting characteristic ubest
is optimized to fit the voltage range 50 − 250 V. From
a mathematical point of view, fewer kernels would be
sufficient to approximate the theoretical static character-
istic and also lessen the computational burden for the
real-time implementation. But fewer kernels will further
degrade the adapted static characteristic during operation.

• Adapted static characteristic: the third curve u
CC2

is an
characteristic curve obtained during operation for CC2.
Evidently, the adapted static characteristic differs from
the theoretically obtained curve. The monotonic behavior,
inside the trained range ≈ 100 − 190 V, as well as
the value at the current operating point (depicted as the
intersection of the blue and the red curve) match the
theoretical prediction.

Fig. 10. Comparison of theoretical, best approximation and adapted static
characteristic

To further discuss the importance of sufficient training for the
weight adaption as well as the initialization of the weights, we
consider the non-monotonic region depicted in Fig. 11 which
shows the edge of the trained region. It becomes clear, that the
system will not behave as expected for values in the untrained
range, which can lead to unpredictable behavior if the system

is not in a controlled training environment. This illustrates
the hazards that can arise from incomplete training of such
adaptive schemes. To avoid, or at least reduce such unwanted
behavior, the optimization approach for the initialization of
the weights as described earlier can be of great advantage if
knowledge about the static characteristic is available. Further
it should be noted, that due to these restrictions this scheme
should only be applied if the operating range is know a priori
and sufficient training can be ensured.

operating range untrained range

Fig. 11. Adapted static characteristic for CC2

VI. CONCLUSION AND OUTLOOK

We provide first experimental insights towards the perfor-
mance of a real-time implementation of the presented adaptive
feedforward control (AFC) approach during the scenarios loss
of a generation unit, change of the resistive load and change
of the constant power load. Further we illustrate the necessary
number, positioning and training procedure of the kernel based
AFC along with the arising challenges and limitations for
the application of such control schemes. Additional studies
need to be conducted to gain a better understanding of the
modifications to implement the approach reliably with real
converters in a closer-to-reality microgrid experiment.
The studied kernel based AFC scheme offers several ad-
vantages, such that only little a priori knowledge about the
system is needed to implement the approach. Further, some
robustness is provided by the feedforward structure and the
single loop architecture. This enables a fast implementation
with satisfactory behavior for a certain operating range.
The drawbacks of this approach are the inherently limited
performance, which is due to the lack of model knowledge.
Furthermore the stability region is limited compared to other
adaptive schemes due to the absence of an inner feedback
loop. The degraded performance can be partly restored by
integrating model knowledge a posteriori, such as the mono-
tonicity of the static characteristic. This additional effort
lessens the advantage of the fast implementation. The stability



considerations are not simpler than for strictly model-based
approaches. Lastly, the proofs tend to be more conservative
when only limited system knowledge is available.
We can conclude that self-learning or data-driven adaptive
control approaches can provide a quick solution for certain
problems, but lose some of their promising features when they
are applied to practical problems.
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