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ABSTRACT:

To simulate environmental processes, noise, flooding in cities as well as the behaviour of buildings and infrastructure, ‘watertight’
volumetric models are a measuring prerequisite. They ensure topologically consistent 3D models and allow the definition of
proper topological operations. However, in many existing city or other geo-information models, topologically unchecked boundary
representations are used to store spatial entities. In order to obtain consistent topological models, including their ‘fillings’, in this
paper, a triangulation combined with overlay and path-finding methods is presented by climbing up the dimension, beginning with
the wireframe model. The algorithms developed for this task are presented, whereby using the philosophy of graph databases and
the Property Graph Model. Examples to illustrate the algorithms are given, and experiments are performed on a data-set from
Erfurt, Thuringia (Germany), providing complex geometries of buildings. The heavy influence of double precision arithmetic on
the results, in particular the positional and angular precision, is discussed in the end.

1. INTRODUCTION

Wireframe models are one of the basic models to describe any
kind of spatial entities used in city models or other geo-infor-
mation models. One of the major issues is to triangulate those
one-dimensional geometry types into higher-dimensional geo-
metry types like triangle nets as surface models embedded into
three-dimensional Euclidean space. Doing so will add value to
the data-set. E.g. queries like ”How large is the area of walls
between neighbouring buildings?” can be answered thus. The
same situation arises when dealing with boundary represent-
ation models (B-Rep) consisting of surfaces in order to model
solids. A triangulation to true three-dimensional geometry types
like tetrahedral nets provides more answerable queries than a
B-Rep which only represents the boundary surface of a solid.
An example is the query ”How large is the overlapping volume
within the city model?”. Methods dealing with the construc-
tion of solids from wireframe models so far assume that the
underlying model is topologically consistent, i.e. its building
blocks form a partitioning of the space to be modelled, mean-
ing that they do not overlap. If the model is topologically in-
consistent, then such queries are not trivial to be answered us-
ing a B-Rep. The reason is that costly steps have to be taken to
calculate the triangulations leading to higher-dimensional geo-
metry types. If a city model for example consists of overlap-
ping pieces of wall polygons, roof polygons, or even build-
ing parts are made up of overlapping planar polygon pieces, it
gets much harder to retrieve those higher-dimensional geometry
types they represent by being a B-Rep made of a collection of
lower-dimensional B-Rep’s, where we consider not only con-
nected planar surfaces as a B-Rep for solids, as in (LaCourse,
1995), but any n-dimensional representation of the boundary of
an n+ 1-dimensional model, and call this also a B-Rep.

The main problem in dealing with topologically inconsistent
models is that the inconsistency can affect all dimensions, mean-
ing that there are overlaps between objects of any dimensions

in the topologically inconsistent model. This means that the in-
crement from dimension n to n+ 1 needs to be combined with
a method that produces output which is guaranteed to be topo-
logically consistent. In other words, many intersections need
to be computed. This leads to numerical issues affecting the
partitioning of overlapping pieces using double-precision arith-
metic. If angles get to small, then intersection points between
lines or intersection lines between planes become uncertain. If
algorithms are chained in pipelines to achieve more complex
results, then the uncertainty accumulates, too, or the pipelines
break up, producing no results at all. This major problem of
computational geometry is faced when using standard double-
precision arithmetic. Nevertheless, calculating a topological
model is sensitive and expensive with double-precision arith-
metic (e.g. due to intersections, differences, overlay etc.) and
has higher memory usage than only storing topologically incon-
sistent B-Reps. But it provides reusable information on how the
pieces are connected, thus yielding benefits and outlays which
need to be examined.

This paper addresses the problem of producing watertight (i.e.
topologically consistent) volumetric models from topologically
inconsistent input data in the form of a polygonal B-Rep whose
polygons are given as a collection of wireframes. In the ex-
ample, the input data is an LoD2 CityGML dataset of Erfurt,
Thuringia. For the handling of topologically inconsistent data,
we provide a conceptual model based on the Property Graph
Model and OGC’s General Feature Model ISO 19109 and Sim-
ple Feature Model ISO 19107 design patterns which have already
been partly introduced in (Jahn et al., 2017) or (Breunig et al.,
2016).

Within geo-information there are formats like CityGML or GML
which are XML-based, and hence semi-structured according to
(Erl et al., 2015). One basic idea of geo-information is de-
scribed in the General Feature Model ISO 19109 and Simple
Feature Model ISO 19107. Everything may be seen as a Fea-
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ture, a real world object with certain properties. The model in-
sists on three different property types, the spatial part, the tem-
poral part and the thematic part. The Simple Feature Model
defines the spatial part and which geometry types should be
provided. The main reason for using the Property Graph Model
is that it is a basic model for graph databases to store topological
information, in our case the topology of features. The connec-
tion between those two models and the introduction of basic
relation types lead us to an algorithm which is able to tetra-
hedralise wireframe models by analysing the spatial parts and
the topology. Even if the GML standards require topologically
consistent data, in reality they do contain overlaps which are
not explicitly modelled in the data (Giovanella et al., 2019).

In this article, the algorithm for transforming topologically in-
consistent wireframe data into topologically consistent volume
models is described, and a couple of results generated from a
LOD 2 CityGML input data-set of Erfurt, Thuringia (Germany)
are provided. The results have been produced for two compan-
ion papers on sensitivity analysis using double-precision arith-
metic and the parallelisation of computing higher-dimensional
models from lower-dimensional models in order to evaluate the
conceptual model and the problems. This is not to be confused
with the LOD paradigm, where the aim is to separate different
LODs. Our aim here is to calculate higher-dimensional geomet-
ric models from topologically inconsistent lower-dimensional
geometric models only. Therefore, the application is not re-
stricted to city models, be they CityGML, IFC etc. It is also
to say that any geometric model may be triangulated to higher-
dimensional models in that sense. We also do not focus on any
specific application (e.g. city models, sub-surface models, land
use models etc.) in order to provide a versatile spatial or spatio-
temporal model to manage a broad variety of geo-data which in
turn is more easy to be analysed in a general way, i.e. the way
of topology and graphs.

The following section will summarise the related work. The
following Section 3 on methods introduces the data structure
and the algorithms which have been implemented to solve the
tetrahedralisation. This is followed in Section 4 by a discussion
of the experimental results. The final Section 5 consists of the
conclusions.

2. RELATED WORK

One workaround to answer the specific question of ”How large
can a city volume be?” was to use ray casting methods, like
e.g. The Voluminator (Sindram et al., 2016), to produce ras-
ter data of a certain density. However, the input data are tri-
angulated polygons which get shot by the ray casting method,
which causes the same computational problems. Namely, the
first problem is how to triangulate the polygons in order to form
planar surfaces. The second problem is the uncertainty of the
intersection point when the ray casting method is used on tri-
angles with different normal vectors against the ray. There is
also another problem just before those problems. Namely, how
to produce the polygon as a planar closed ring in a way that a
lot of planar closed rings actually form a computable closed hull
as connected planar surfaces. Besides the arithmetic problems,
there are memory issues also. As a matter of fact, a topologic-
ally well connected wireframe may save memory by not sav-
ing redundant polygon parts which are shared by neighbouring
polygons, like two planar walls share the edge of a room.

Going beyond volume calculation, an important notion for hav-
ing data suitable for simulations is that of topological consist-

ency, as defined in (Giovanella et al., 2019), where also compet-
ing definitions from the literature can be found. In that article, it
was found that CityGML data is usually not topologically con-
sistent. Definition 2.1 below paraphrases this notion which is
in compliance with the ISO 19107 standard. We observe that
the notion from (Ledoux and Meijers, 2011) comes close to the
definition used here.

Definition 2.1 A configuration of geometrical objects in Euc-
lidean space is topologically consistent, if two objects are either
disjoint or identical.

The main advantage of this definition is that it allows any to-
pological query to be performed on the topological model itself
without having to resort to geometry with its costly computa-
tions like intersection and others. Having such a notion of to-
pological consistency, healing as e.g. in (Zhao et al., 2014) be-
comes conceptually more feasible. In this article, this becomes
an important pre-processing step using computational geometry
in order to achieve topologically consistent data. This gives rise
to numerical issues with an accumulation of floating-point er-
rors, as already seen e.g. in (Biljecki et al., 2014).

In the context of topologically consistent data, there are meth-
ods for computing solid models from wireframe. E.g. one using
a shortest path method for calculating the B-Rep of solids from
a wireframe is given in (Bagali and Waggenspack Jr., 1995).
Other independent methods are (Vosniakos, 1997, Inoue et al.,
2003). Topologically consistent 3D-models including tetrahedra
are necessary for simulation models for environmental processes,
infrastructure, noise or flooding (Ledoux, 2008, Breunig et al.,
2017, Stoter et al., 2008, Zhang et al., 2006). Namely, it is
topology that captures the relationships between entities, be
they geometric or not. The use of topology in geo-informatics
is widespread, leading to a vast literature beginning with the
application of point-set topology in (Egenhofer and Franzosa,
1991). There, various relationships between regions are deemed
topological. Already P. Alexandrov proved that any binary re-
lation gives rise to a topology on a finite set of objects (Alexan-
drov, 1937), and this led to the notion of topological databases
in (Bradley and Paul, 2010), fundamental for this work. The
article (Breunig et al., 2020) reviews present and future direc-
tions for the application of topology in the management of geo-
data. The question of how to produce higher-dimensional mod-
els from topologically inconsistent lower-dimensional models
has not yet been addressed.

3. METHODS

3.1 Finite T0-spaces

Here, we explain how the most general topology for geo-information
arises from binary relations. It was Pavel Alexandrov who showed
that any partial ordering on a finite set gives rise to a so-called
T0-topology and vice versa (Alexandrov, 1937). This very gen-
eral kind of topology captures the situations where no direc-
ted circuit paths are allowed. Its flexibility can capture a lot
of applications. A particular instance is the boundary relation-
ship between geometric objects. Given a possibly topologic-
ally inconsistent boundary representation of a 3D model, i.e. a
model not satisfying Definition 2.1, the overlay method below
produces a topologically consistent finite T0-space which cap-
tures the topology inherent in the geometric model. This model
has a minimal representation as a directed acyclic graph, called
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Figure 1. Hasse diagram of a triangle with its boundary relation.

Hasse diagram such that the reflexive and transitive closure of
the edge relationship yields the topology in the sense of (Al-
exandrov, 1937). Fig. 1 illustrates this for the example of a
triangle: The top node represents the area which is bounded by
its three side edges, represented by the middle row of nodes,
and each of these are bounded by two corners represented by
the lower row of nodes. The edges are oriented downwards and
represent the boundary relationship between objects.

In (Bradley and Paul, 2010) it was observed that this general
structure can be implemented in a relational database with one
table for the ‘nodes’ and another table for the direct ‘relation-
ships’, and the reflexive and transitive closure operation can be
used to make topological queries on this database. In applica-
tions, any entities considered as ‘nodes’ and any binary ‘rela-
tionship’ thus generates a topology, thus allowing topological
methods to be applied to this setting, even if the entities do
not carry geometric or topological information themselves. The
most efficient way to store a T0-topology in a graph database is
to store the nodes and edges of its Hasse diagram, as this avoids
the storing of redundant relationships. In this case, topological
queries like neighbourhoods or connectivity become path quer-
ies in a graph. This is the approach followed in this article.

3.2 Property Graph Model

In order to store Hasse diagrams, we use the Property Graph
Model. Every node of a graph within the Property Graph Model
carries certain properties. The property types were chosen from
the Simple Feature Model 19107 and the General Feature Model
19109, where every feature has a spatial part, a temporal part
and a thematic part. We also defined six relationship types con-
cerning aggregation, abstraction and incidence relations (Jahn
et al., 2017). Furthermore, three different node types were
implemented, cf. Fig. 3. One for non-spatial or non-spatio-
temporal contents, one for spatial contents and one for spatio-
temporal contents. Each maintains the basic graph node prop-
erties: name, description, identification, temporal and thematic.
The relations to other nodes are organised by maps (key-value
pairs). The key has two attributes, one for the type of relation
and one for the node id.

Five basic building operations have been implemented within
the spatial model which build an aggregation node, a number
of sub-component nodes, overlay nodes, border nodes, or a
d + 1-dimensional node from a d-dimensional node. The op-
eration to build an aggregate node collects the spatial properties
of all composite-of neighbours into one spatial collection and
replaces the node which called that operation by a new spatial
node within the Property Graph. The new node is added to
a spatial access method if the parameter was set. Its inverse
operation creates all sub-nodes by analysing the spatial prop-
erty. In case of a spatial collection as spatial property all non-
empty d-dimensional spatial networks are linked with new sub-
nodes as their spatial parts. Each new sub-node is then related
to the main node in an aggregation relation. Fig. 2 illustrates

all possible aggregation relations within the spatial and spatio-
temporal model. The standard behaviour as described may be
changed by manipulating the spatial predicate within this opera-
tion e.g. a node with a spatial collection as spatial property may
create new sub-nodes which are linked to all contained spatial
elements (simplices) directly. The operation which builds all
overlay nodes calculates all intersections (ignoring border in-
tersections) between the spatial part of a node and the spatial
parts a set of given nodes. Each node-to-node intersection is
linked to a new node and this new node is related to its parents
in an aggregation relation in order to find topological inconsist-
encies. The operation for building all border nodes creates the
border nodes of a node by calling the getBorder() operation of
the spatial property and adds the nodes in an incidence relation.
A spatial predicate is used to control the complexity of the sub-
nodes.

Spatial3D

Net3D Component3D Element3D

Spatial4D

Net4D Component4D Sequence4D Element4D

Spatial3DCollction

Spatial4DCollction

1..n 1..n 1..n

1..n 1..n 1..n 1..n

Figure 2. Spatial and spatio-temporal model
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1:n

Thematic

Temporal

Spatial3D

1:11:1

Spatial4D

1:1

TONode3D TONode4D

TONode

Figure 3. Implemented Property Graph Model

3.3 From d-dimensional to d + 1-dimensional simplicial
networks

The previous subsection introduced the implementation of the
Property Graph Model. Here, we describe a method for produ-
cing a topologically consistent d+1-dimensional model from a
topologically inconsistent d-dimensional model. It uses a com-
bination of an overlay and a shortest-path method for finding
cycles. In the following, we call any aggregation of simplicial
complexes, which is not necessarily topologically consistent,
a simplicial network. The operation which builds a d + 1-
dimensional node from a d-dimensional node is rather com-
plex and contains the main algorithm to calculate d-dimensional
simplicial networks into d+1-dimensional simplicial networks.
Complexes in our model always maintain the manifold con-
straint and are made of equi-dimensional simplices only. The
main idea behind the algorithm is to picture a d-dimensional
simplicial complex as a patch and to cut and stitch a couple
of patches together wherever there is a d− 1-dimensional inter-
section between them to form a patchwork. This patchwork can
be transformed into an incidence graph which can be analysed
to find closed d-dimensional simplicial complexes, i.e. patch-
works forming B-Rep’s. Those B-Rep’s can be triangulated to
(d + 1)-dimensional simplicial complexes. The disjoint union
of (d + 1)-dimensional simplicial complexes can be found by
rejecting all triangulated (d + 1)-dimensional simplicial com-
plexes which non-trivially intersect any of the patches. The ba-
sic steps are shown in Alg. 1. Two examples are given in Fig. 4
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and 5.

Algorithm 1: computing d-dimensional simplicial net-
works into d+ 1-dimensional simplicial networks
input : set of d-dimensional simplicial complexes
output: disjoint set of (d+ 1)-dimensional simplicial

complexes
1 collect (d− 1)-dimensional intersections;
2 create disjoint d-dimensional patches;
3 create disjoint (d− 1)-dimensional seams;
4 stitch seams which share the same patches;
5 stitch patches to manifolds and clean up;
6 stitch manifolds to form B-Rep’s and triangulate them to

(d+ 1)-dimensional simplicial complexes;
7 create difference;

Steps 1 to 5 of Alg. 1 are pre-processing steps to build the T0-
space to be used in step 6. Steps 1 to 3 create the T0-space
and steps 4 and 5 reduce the T0-space. In step 6, a Dijkstra al-
gorithm is used to search loops between each connected pair of
patches in order to find all B-Rep’s. If the shortest path leads to
a B-Rep which contains any patch, it is rejected and the Dijkstra
algorithm retrieves the next path which is going to be checked.
Special care has to be taken in case of curves in order to ensure
the planarity of the triangulated surfaces. The algorithm in step
6 has been parallelized by giving each thread a different pair of
patches, which reduced computation time significantly.

3.4 Constructing disjoint simplicial complexes

The algorithm of the previous subsection also uses standard al-
gorithms of computational geometry. One of these is finding
intersections. Our model uses a standard procedure shown in
Algorithm 2. A wireframe generated within step 11 needs to
be triangulated into a convex complex of a certain dimension.
For this, we use a standard method which triangulates the point
cloud of the wireframe from the centre to the most outer point
by a sweep algorithm. Intersecting each simplex of a complex
with any object will retrieve the overlaps.

Algorithm 2: simplex-to-spatial intersection
input : Simplex3D A and Spatial3D B to intersect with

another and Spatial3D C to subtract from the
intersection

output: Intersection of A and B without C
1 if A or B is instance of Point3D
→ return results of contains-point test;

2 if complexity(B) > complexity(A)
→ return B intersection with A;

3 if MBB(A) does NOT intersect MBB(B)
→ return null;

4 if B contains-all-points of A
→ return A difference with C and vice versa;

5 create Wireframe3D W containing each point of A which
is contained by B and vice versa;

6 if A is a SOLID3D
→ B′ = B ;

7 if A is a SURFACE3D
→ B′ = B intersection with plane of A;

8 if A is a CURVE3D
→ B′ = B intersection with line of A ;

9 intersect border of B′ with A and add results to W ;
10 intersect border of A with B′ and add results to W ;
11 triangulate W into a Spatial3D with maximal dimension of

minimum(dimension(A), dimension(B)) and return
result;

A difference operation was added for enabling all operations
needed in set theory. The difference between a segment and

Remove orange patches 
which are linked to the net 
at one seam only, and stitch 
patches at seams which are 
connected to two patches 
only.

Input 1.

2. 3.

4. 5.

7.6.

Six (d-1)-dimensional 
intersections (yellow dots) 
and two d-dimensional 
intersections are found 
(orange dots as border).

18 disjoint d-dimensional 
patches (coloured lines) are 
found by splitting the net at 
the (d-1)-dimensional 
intersections (yellow  dots) 
of previous step. 18 patch 
nodes are created.

Now there are no seam 
nodes which are related to 
exactly the same patch 
nodes.

Nothing to do at this step.

10 seam nodes are created 
(yellow dots) and related to 
each of their spatially 
connected patch node by 
an incidence relation.

Eight closed hulls are found 
whose triangulated (d+1)-
dimensional simplicial 
complexes (coloured) do 
not strictly intersect any 
patch after step 4.

Cut colored patches from 
grey patch.
Result is a set of disjoint
(d+1)-dimensional simplicial 
complexes

The input consists of three 
closed d-dimensional 
simplicial complexes (black, 
green and blue) and two not 
closed d-dimensional 
simplicial complexes 
(orange and red).

Figure 4. Five 1-dimensional simplicial complexes triangulated
to eight 2-dimensional disjoint simplicial complexes
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Input 1.

2. 3.

4. 5.

7.6.

16 (d-1)-dimensional 
intersections (black) are 
found.

11 disjoint d-dimensional 
patches are found (blue) by 
applying the algorithm on 
the set of (d-1)-dimensional 
intersections of the previous 
step. 11 patch nodes are 
created.

Three patch nodes (red, 
green, orange) remain after 
stitching patches at seams 
which were connected to 
two patches only. 4 seam 
nodes remain (black with 
red dots as border).

One seam node (black) 
remains after stitching the 
four seams which are 
related to exactly the same 
patch nodes.

20 seam nodes (black with 
red dots as borders) are 
created and related to each 
of their spatially connected 
patch node by an incidence 
relation.

Two closed hulls are found 
whose triangulated
(d+1)-dimensional simplicial 
complexes do not strictly 
intersect any patch after 
step 4.

There does not exist any 
surrounding (d+1)-
dimensional simplicial 
complex.

Nothing to do at this step.

The input consists of seven 
d-dimensional simplicial 
complexes.

Figure 5. Six 2-dimensional simplicial complexes triangulated to
one 3-dimensional simplicial complex

Algorithm 3: simplex-to-spatial difference
input : Simplex3D A and Spatial3D B
output: A without B

1 if MBB(A) does NOT intersect MBB(B)→ return A;
2 d = dimension(A);
3 I = intersection between A and B;
4 if dimension(I) != dimension(A)
→ return A;

5 if I is a NET3D
→ subtract each component of B from A and return
difference;

6 Ab = border of A;
7 Ib = border of I;
8 A′b = Ab without Ib;
9 I ′b = Ib without Ab;

10 A′bb = border of A′b;
11 Db = intersection of A′b and I ′b without A′bb;
12 if Db! = NULL→

triangulate d-dimensional simplices around elements of
A′bb
add them to result set
add their united border to A′b;

13 if Db == NULL and A′bb == NULL→
triangulate d-dimensional simplices between A′b and I ′b
add them to result set
add their united border to A′b;

14 glue A′b and I ′b and triangulate all B-Rep’s;
15 add the triangulated B-Rep’s to result set;
16 build a valid Spatial3D from result set and return it;

Algorithm 4: Small bite by sweep
input : set of segments which form polygon (B-Rep)
output: set of triangles which form triangle complex

1 geometrically sort the corner points of the input set (e.g.
ascending XYZ order);

2 for corner point in sorted corner point set do
3 take the two segments which share the corner point;
4 create a triangle by adding the missing segment;
5 if the triangle is not valid or intersects the rest of the

polygon
→ try a different geometrical sort and go on;

6 remove the two segments which share the corner point
from the input set;

7 add the newly created segment to the input set if it is
not contained in the input set to close the input set;

8 add the triangle to the result set;
9 end

10 return the set of triangles;

Algorithm 5: Big bite by sweep
input : set of triangles which form closed triangle

complex (B-Rep)
output: set of tetrahedrons which form a tetrahedron

complex
1 geometrically sort the corner points of the input set (e.g.

ascending XYZ order);
2 for corner point in sorted corner point set do
3 take all triangles which share the corner point (rice

hat);
4 triangulate its border polygon to create the second

triangle complex (rice hat capping);
5 create the tetrahedrons from the corner point to each

triangle within the second triangle complex;
6 try to bite each tetrahedron;
7 if any not solvable problems occur→try a different

geometrical sort and go on;
8 end
9 return set of tetrahedrons;
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any spatial object reduces to an interval difference algorithm.
Algorithm 3 shows the basic steps to calculate a simplex-to-
spatial difference for triangles and tetrahedrons. However, the
algorithm includes a triangulation of B-Rep’s in step 14 which
is described in Algorithm 4 and 5. Special care has to be taken,
if holes are cut out of a simplex. This is done in steps 12 and 13
of Algorithm 3 which reduces the problem to a triangulation of
disjoint B-Rep’s.

Algorithms 4 and 5 are sweep algorithms which triangulate con-
cave polygons or closed hulls (closed triangle complexes). Both
algorithms were designed with two constraints. First, no ad-
ditional points should be added to the point set. Second, the
input is a closed d-dimensional simplicial complex and the out-
put is a d + 1-dimensional simplicial complex. The basic idea
of Algorithm 4 is to bite a triangle from a polygon. The al-
gorithm does not necessarily depend on planar polygons. While
the polygon itself is a collection of segments unambiguously
connected through their bordering corner points, it is possible
to sort those corner points and sweep over this list to generate
(d + 1)-dimensional simplices. The algorithm will fail if all
sweep orders find invalid triangles (validity in accordance with
the inaccuracy model, e.g. not too small, not too sharp) or valid
triangles which intersect any of the remaining segments of the
polygon only. It triangulates as long as there are neither invalid
triangles nor bad intersections.

It is possible to use the Delaunay condition in order to reduce
the number of sharp triangles while sweeping over the set of
corner points. The Delaunay condition reduces the number of
ways a surface is able to be built, but since the algorithm de-
pends on the type and order of the geometrical sort, there still
exists a number of ways surfaces are able to be built.

The basic idea of Algorithm 5 is to bite a couple of tetrahedra
from a closed triangle complex (closed hulls). For each corner
point, there exists a set of triangles forming a triangle complex
(like a rice hat). The boundary of this triangle complex is a
polygon which can be triangulated to a second triangle com-
plex (like a rice hat capping) by Algorithm 4. Both triangle
complexes together form a closed triangle complex if they do
not overlap. Each triangle of the second triangle complex to-
gether with the corner point may form a tetrahedron. However,
the failing issues of Algorithm 4 still remain (cf. last paragraph).

4. EXPERIMENTAL RESULTS

The algorithms presented in the previous section were tested
on CityGML raw data. The data were produced by the tri-
dicon CityModeller (Leica/Hexagon) and are manually revised
with the tridicon 3D Editor (Leica/Hexagon). The produced
CityGML data is stored in 3dcitydb. The production steps were
carried out by the Thuringian state office for land management
and geo-information (TLBG). In order to not increase the point
set, we focused on not adding additional points to the data-set
to establish ”beautiful” triangles or tetrahedra which are not too
thin etc. We also did not want to operate on data which had
been manipulated by some CityGML optimiser or validator.
These may be optimised in application through the modelling
steps or generation steps of the input set. CityGML is just a
show case for a more general problem when dealing with B-
Rep’s. The data was zeroed to the coordinates lat = 642004.72,
lon = 5649093.259 z = 229.074.

The positional precision ε and angular precision ζ were chosen
to be 10−6 for this presentation. Fig. 7 and 8 illustrate some

difficult situations when dealing with planarity and double pre-
cision arithmetic. Planarity of triangle complexes is checked
against the normal vector of an arbitrary triangle within the tri-
angle complex by calculating the cosine between the reference
normal vector and the other normal vectors. If the cosine is
equal to one with a devation not larger than ζ, then both nor-
mal vectors are interpreted as collinear. The top pictures of Fig.
7 and 8 filter non-planar surfaces from the input set for Alg.
1. This is one of the main reasons why Alg. 1 sometimes fails
to build volumes. The second pictures from the top show tri-
angulated polygons (orange) which are not checked for planar-
ity. Without discarding non-planar triangulated polygons, Alg.
1 would not recover the non-planar polygons while trying to
calculate closed hulls.

On the other hand, the Dijkstra in step 6 finds other polygons
which are not part of the input set (e.g. the floor of the attic
in Fig. 8 top). But if the triangulated surfaces are not part of
the input set, then they will be rejected. These two situations
can be handled by splitting each triangle complex into a set of
planar triangle complexes as a pre-processing step and ignoring
that every surface of step 2 needs to be part of the input triangle
net. The results are shown in Fig. 7 and Fig. 8, third picture
from the top and the overall results from Erfurt city centre show
more than 80% tetrahedralised buildings / building parts in Fig.
6 (ε = 10−2, ζ = 10−9). The results shown in Fig. 8 also
ignored the cross checking of the triangulated surfaces against
the input. The roof is one tetrahedron complex (red) and the
main building is another disjoint tetrahedron complex (blue).
This example shows a valid tetrahedralisation. If the building
has concave structures like an open atrium they will be closed
and the results are invalid.

Three different methods of tetrahedralising triangle nets were
tried. The first method is to aggregate every triangle complex
of each building part of every building into one triangle net, and
to tetrahedralise this net. The second method aggregates every
triangle complex of each building part into one triangle net per
building and tetrahedralises those triangle nets separately. The
third method tetrahedralises each building part separately. The
resulting tetrahedron complexes are aggregated into one tetra-
hedron net for further analysis. Nevertheless, the first method
leads to disjoint tetrahedron complexes. The second method
leads to overlapping volumes between buildings, if they over-
lap. The third method leads to overlapping volumes within
buildings and between buildings, if the different tetrahedron
complexes overlap. Fig. 8 at the bottom illustrates that situ-
ation and shows building parts of the Erfurter Dom and the
Severikirche which do overlap (coloured) and need to be sub-
tracted from another to form distinct volumes. The analysis
has been parallelised. Each Thread calculates one triangle net.
Since the computation of one net itself was also parallelised (cf.
end of paragraph on Alg. 1), the computation time was reduced
significantly.

5. CONCLUSIONS

Calculating topology with double precision arithmetic remains
a difficult task. The paper provided straight-forward methods to
calculate higher dimensional geo-objects from topologically in-
consistent lower-dimensional B-Rep’s. The algorithm-pipeline
produces volumes, if the objects are simple enough, but illus-
trates the problems which may occur. The major control para-
meters are the positional precision ε and angular precision ζ. If
ε is set large, then segments from the input set will be smoothed
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Figure 6. Erfurt city center, CityGML wireframe (black), triangle complexes (grey), tetrahedron complexes (green).

Figure 7. Krämerbrücke (Europe’s longest bridge with fachwerk
houses on both sides), CityGML wireframe (black), triangle

complexes (grey) with ignored planar constraint while
triangulation (orange), tetrahedron complexes (green) with

splitting of non-planar triangle complexes as pre-processing step
(coloured)

Figure 8. Juri-Gagarin-Ring 2 (top three), Erfurter Dom &
Severikirche (bottom), CityGML wireframe (black), triangle

complexes (grey) with ignored planar constraint while
triangulation (orange), tetrahedron complexes (coloured)
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out, but the planarity check of curve patches within the Dijk-
stra step 6 of Algorithm 1 will find more valid patches to stitch
together to form closed polygons. If ε is small, then points
will not be recognised on planes (e.g. planarity of wire-frame
patches), intersections between walls and roofs may also not be
recognised anymore, which leads to topological inconsistency.
If ζ is large, then thin triangles get rejected easily and non-
planar surfaces may be triangulated wrongly. If ζ is small, then
triangulations get rejected, because they are found to be ”non-
planar”, and closed hulls are not to be found because the wire-
frame patches do not form planar polygons. These problems are
not new and are highly sensitive to the quality of the input data.
However, the presented conceptual model which combines the
philosophies of graph databases with the OGC’s General Fea-
ture Model helped to produce complex topological structures
and added value to the data-set. The algorithm-pipeline may
easily be extended and optimised. Parts of the algorithm-pipeline
may be exchanged (e.g. the triangulation algorithms, planarity
checks etc.) or reconfigured with different precision paramet-
ers to optimise processing efficiencies (better result or better run
time through the scalability of graph databases). We are work-
ing on the optimisation of the algorithm-pipeline to produce sci-
entifically reliable results which may be visualised nicely also,
or used within simulations or other scientific analysis.
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