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Abstract. In this work, we apply the finite element heterogeneous multiscale method to a class of dispersive
first-order time-dependent Maxwell systems. For this purpose, we use an analytic homogenization result, which
shows that the effective system contains additional dispersive effects. We provide a careful study of the (time-
dependent) micro problems, including H2 and micro errors estimates. Eventually, we prove a semi-discrete error
estimate for the method.
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1 Introduction

The simulation of electromagnetic wave propagation in heterogeneous structures has been and
continues to be a challenging task. Especially, the class of metamaterials, first constructed in [40],
attracts high interest due to their extraordinary material properties such as negative refraction,
perfect lensing or electromagnetic cloaking [34, 38, 29]. Those artificial materials consist of
so-called unit cells whose size, denoted by δ > 0, is significantly smaller than the wavelength
of an incident wave. While the propagation of electromagnetic waves in general is modeled
using Maxwell’s equations, heterogeneous materials enter these equations via rapidly varying
coefficients. In the simplest case covered by our analysis, this means that the electric permittivity
εδ, the magnetic permeability µδ and the electric conductivity σδ are highly oscillatory, which
is indicated by the superscript δ. Therefore, also the electric field Eδ and the magnetic field Hδ

depend on the characteristic size of the unit cells. Given the current density Jδ = σδEδ + Jδ
ext,

the goal is to find the electromagnetic field that is the solution of:

εδ(x)∂tE
δ(t, x) + σδ(x)Eδ(t, x)− curlHδ(t, x) = −Jδ

ext(t, x) , (1.1a)

µδ(x)∂tH
δ(t, x) + curlEδ(t, x) = 0 , (1.1b)

subject to suitable initial and boundary conditions. Even with modern computer technology,
the resolution of the microscopic and macroscopic scale simultaneously is not possible. Thus, a
suitable multiscale method has to be applied to solve the heterogeneous Maxwell system.
The periodicity and scale separation of the materials under consideration suggests to use

analytic homogenization to derive an effective counterpart to the heterogeneous system. This
homogenized set of equations describes a material that reflects the effective behavior that we
are actually interested in. Except from special cases, however, the effective parameters are not
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known analytically. Instead, they are represented as averages over unit cells and include the
solutions of partial differential equations, the so-called micro problems, posed on the unit cells.
An overview of the method of homogenization is found in [27, 14]. More specific for Maxwell’s
equations, we refer to first results in [37] and [41] for the time-domain homogenization of the
system eq. (1.1). The resulting effective Maxwell system consists of parameters ε0, µ0 and σ0

which are the homogenized variants of the permittivity, permeability and conductivity. Here, the
superscript 0 indicates that these quantities result from a suitable limit for δ → 0. The effective
electric and magnetic field E0, H0 are solution of the system:

ε0∂tE
0(t, x) + σ0E0(t, x) +

� t

0

χ0(t− s)E0(s, x) ds− curlH0(t, x) = −J0
ext(t, x) ,

µ0∂tH
0(t, x) + curlE0(t, x) = 0 .

The additional parameter χ0 is a non-local material law, which is solely present due to the
damping of the conductivity. Precisely this expression, describing dispersive effects, is associated
with the experimentally observed properties of metamaterials. This is consistent with physically
derived models for metamaterials, such as the Drude [35] or the Lorentz model [39]. The rigorous
derivation of the effective system is based on the concept of two-scale convergence [33, 5]. We
follow the approach from [8] that includes linear dispersive effects and is thus valid for a far
more general class of Maxwell systems. In [9] even time-dependent parameters are considered.
The latter references use the method of periodic unfolding [12, 13], a generalization of two-scale
convergence.
In this work, we aim to approximate the effective solution using the finite element method.

Since no explicit representation of the effective parameters is available, a direct application of
the FEM is not possible. Thus, we also use the finite element scheme to approximate the
effective parameters. This combination of a macroscopic and a microscopic solver fits in the
framework of the Heterogeneous Multiscale Method (HMM) [15, 4, 2, 16] which provides a
general framework for the solution of multiscale problems. The HMM applied to the Maxwell
system in time harmonic formulation is presented in [10, 23]. An application to the time-domain
Maxwell system without any damping is considered in [25]. As alternative methods to cover
the multiscale character, we mention the Multiscale Finite Element Method [26, 17] and the
multiscale hybrid-mixed finite element method from [21]. The latter one has recently been
applied to an instantaneous heterogeneous Maxwell system in [28]. Moreover, multiscale methods
for the Maxwell’s equations with memory effects are presented in [42]. Finally, we mention the
Localized Orthogonal Decomposition [31, 22, 36]. First introduced for the Laplace operator, it
was shown in [20] that this technique is also applicable to the (stationary) Maxwell system. The
aforementioned multiscale methods are especially useful for unstructured heterogeneities. Here,
however, we consider (locally) periodic structures and thus, the HMM is an appropriate choice.
Our main contribution is the semi-discrete error estimate for the application of the HMM to

an effective Maxwell system including dispersive effects. We extend techniques from [25, 24] to
the integro-differential structure of the effective problem. Moreover, we provide new micro error
estimates that are crucial in the analysis of the proposed method. For these estimates, a H2

result for the so-called Sobolev equation is mandatory, which we also prove.
The structure of this paper is as follows. In section 2, we introduce general damped Maxwell

systems and our main assumptions. We recapture a homogenization result in section 3 and
present a reformulation of the effective Maxwell system. Further, in section 4, we investigate the
well-posedness and stability of the microscopic and macroscopic problems that arise from ho-
mogenization and derive the H2 estimate. In section 5 we apply the finite element heterogeneous
multiscale method to the effective Maxwell system. Eventually, section 6 is concerned with the
semi-discrete error analysis, including the examination of the micro errors.
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1.1 Notation

Throughout, we use a generic constant C > 0, which can have different values at each appearance.
Let Ω ⊆ R3, referred to as the macroscopic domain, be open, bounded and simply connected.
Furthermore, T denotes the final time of interest, and we introduce the (microscopic) unit cell

Y = (0, 1)
3
. We abbreviate the mean as

�
Y
· dy = 1

|Y |
�
Y
· dy. Moreover, with ej ∈ Rd, for

j ∈ {1, . . . , d} we denote the j-th canonical basis vector of Rd. A bold 0 represents a vector or a
matrix with all entries equal to 0. By L2 (Ω) we denote the space of square integrable functions
over Ω, which is equipped with the inner product (·, ·)L2(Ω;Rd) = (·, ·) and norm ∥·∥L2(Ω;Rd) =

∥·∥. The Sobolev space of L2-functions with k-th weak derivative in L2 is denoted by Hk (Ω).
Additionally, the space H1

# (Y ) contains all functions in H1 (Y ) that are periodic and have zero

mean value. Furthermore, the space H (curl,Ω) consists of the L2-functions whose weak curl is
also in L2 (Ω). Finally, to incorporate perfectly conducting boundary conditions, we introduce
H0 (curl,Ω), which is the closure of C∞0

(
Ω;R3

)
with respect to the H (curl,Ω)-norm.

2 The heterogeneous Maxwell system

Throughout, we denote by δ > 0 the characteristic length scale of microscopic oscillations. The
parameters in the Maxwell system are assumed to be locally periodic.

Definition 2.1 (Locally periodic parameter). Let δ > 0, n ∈ N. A tensor αδ : Ω → Rn×n is
called locally δ-periodic if there exists a tensor α : Ω × R3 → Rn×n, which is Y -periodic in its
second argument and αδ(x) = α

(
x, xδ

)
holds for almost every x ∈ Ω.

The example (1.1) fits in a rather general class of (damped) Maxwell systems that describe
a broad class of linear dispersive materials. The dispersion, representing frequency dependent
material response, enters Maxwell’s equations via the polarization and magnetization. Here, we
only consider electric effects, and thus assume that no magnetization is present. This is just for
convenience, and we point out that all results below hold true for magnetic effects as well. We
consider the polarization Pδ to be given as the solution of an NE-th order ODE, NE ≥ 0, which
can be written as a system of first order ODE’s. Therefore, introduce the collection of all time
derivatives of Pδ up to order NE − 1 as

Pδ(t, x) =
(
Pδ(t, x)T ∂tP

δ(t, x)T . . . ∂NE−1
t Pδ(t, x)T

)T ∈ R3NE .

The polarizations that fit in our model are given as solutions of

Mδ
P(x)∂tPδ(t, x) +Rδ

PP(x)Pδ(t, x) +Rδ
PE(x)E

δ(t, x) = 03NE
, Pδ(0, x) = 03NE

,

where the dimensions of the matrices are Mδ
P, R

δ
PP ∈ R3NE×3NE and Rδ

PE ∈ R3NE×3. Examples
that fit in this framework are the Debye model for orientation polarization or the Lorentz model,
see [8, Section 6]. Now, we introduce the abstract solution

uδ(t, x) =

Eδ(t, x)
Pδ(t, x)
Hδ(t, x)

 ∈ R3(2+NE) .

and the parameter matrices

Mδ(x) =

εδ(x) Mδ
P(x)

µδ(x)

 , Rδ(x) =

Rδ
EE(x) Rδ

EP(x)
Rδ

PE(x) Rδ
PP(x)

0

 .
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Additionally, we denote the Maxwell operator and the right-hand side as

Auδ(t, x) =

− curlEδ(t, x)
0

curlHδ(t, x)

 , gδ(t, x) =

−Jδ
ext(t, x)
0
0

 .

The solution space for the Maxwell system is given as

Vmac := H0 (curl,Ω)×H(curl,Ω)
NE ×H(curl,Ω) . (2.1)

Hence, we obtain a family of electromagnetic fields uδ : [0, T ] → Vmac that solves the heteroge-
neous evolution problem with perfectly conducting boundary condition

Mδ(x)∂tu
δ(t, x) +Rδ(x)uδ(t, x) +Auδ(t, x) = gδ(t, x) in (0, T )× Ω , (2.2a)

uδ(0, x) = uδ
0(x) in Ω , (2.2b)

n× uδ
1(t, x) = 0 on (0, T )× ∂Ω . (2.2c)

We denote the dimension of this abstract Maxwell system by n := 3(2 + NE). For the well-
posedness of eq. (2.2) we assume that the parameter Mδ is bounded and positive definite, i.e.,
Mδ ∈ L∞ (Ω;Rn×n) and there exist constants α, CM > 0 such that

α|Φ|2 ≤ Mδ(x)Φ ·Φ ≤ CM|Φ|2 for all Φ ∈ Rn . (2.3)

The damping parameter Rδ is assumed to be bounded and positive semi-definite with

CR = ∥R∥L∞(Ω,Rn×n) . (2.4)

Well-posedness of eq. (2.2) may be shown using semigroup theory [19, Theorem 3.2.23] or the
Faedo–Galerkin approach [9, Proposition 1].

3 Homogenization of Maxwell’s equations in locally periodic
media

As explained, we are interested in the asymptotic behavior of the solution uδ as the periodicity
length δ tends to zero. For the initial data and source, we assume

uδ
0 → u0 strongly in Vmac , gδ → g strongly in H1

(
0, T ; L2 (Ω;Rn)

)
. (3.1)

We follow the approach of [8] where the periodic unfolding method [12, 13] is used to derive
the effective system. In [9, Theorem 3], and [8, Theorem 5.1] it is shown that the sequence uδ

is uniformly bounded and converges weakly-* to a limit u0 in L∞ (0, T ; Vmac). The following
theorem states that the effective solution solves a global Maxwell problem in (0, T ) × Ω. In
addition, there exists a corrector u that solves local diffusion problems posed in (0, T ) × Y for
x ∈ Ω.

Theorem 3.1 ([8, Theorem 5.2]). For δ > 0, let Mδ ∈ L∞ (Ω;Rn×n), symmetric and uniformly
positive definite, and Rδ ∈ L∞ (Ω;Rn×n), be two families of locally periodic parameters. Assume
that the initial condition uδ

0 and the source gδ satisfy eq. (3.1). Then there exists a unique
effective field

u0 =

E0

P0

H0

 ∈ W1,∞ (0, T ; L2 (Ω;Rn)
)
∩ L∞ (0, T ; Vmac) ,
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which solves the effective Maxwell system

M0(x)∂tu
0(t, x) + R̃0(x)u0(t, x) + ∂t

� t

0

G̃0(t− s, x)u0(s, x) ds+Au0(t, x)

= g(t, x)− J0(t, x)u0(x) in (0, T )× Ω ,

u0(0) = u0 in Ω ,

n× u0
1 = 0 on (0, T )× ∂Ω .

The parameters M0 and R̃0 only depend on the macroscopic (slow) variable x. The extra source
J0 and the parameter G̃0 result from homogenization, the latter representing additional polariza-
tion effects.

Next, we give an equivalent formulation of the homogeneous system from Theorem 3.1. The
central difference is the formulation of the cell-problems as differential, rather than integral,
equations and the evaluation of time derivatives. Moreover, in the spirit of the HMM, we
transform the unit cell to a so-called sampling domain Y δ (x) = x+ δY , x ∈ Ω. The measure of
these sampling domains is independent of x and thus denoted by

∣∣Y δ
∣∣. In the following result and

throughout, we use the notation for the component wise gradient. For w =
(
w1 wT

2 w3

)T ∈
R1+NE+1 define ∇w :=

(
∇wT

1 ∇wT
2 ∇wT

3

)T ∈ Rn .

Corollary 3.2. The solution u0 from Theorem 3.1 is also solution of

M0(x)∂tu
0(t, x) +R0(x)u0(t, x) +

� t

0

G0(t− s, x)u0(s, x) ds+Au0(t, x)

= g(t, x)− J0(t, x)u0(x) in (0, T )× Ω ,

(3.3a)

u0(0) = u0 in Ω , (3.3b)

n× u0
1(t, x) = 0 on (0, T )× ∂Ω , (3.3c)

where for i, j = 1, . . . , n the i, j-th component of the effective parameters and the extra source
are given as

(M0(x))i,j =

 
Y δ(x)

M
(
x,
y

δ

) (
ej +∇yw

M
j (x, y)

)
·
(
ei +∇yw

M
i (x, y)

)
dy , (3.4a)

(R0(x))i,j =

 
Y δ(x)

R
(
x,
y

δ

) (
ej +∇yw

M
j (x, y)

)
·
(
ei +∇yw

M
i (x, y)

)
dy , (3.4b)

(
G0 (t, x)

)
i,j

=

 
Y δ(x)

R
(
x,
y

δ

)
∇ywj (t, x, y) ·

(
ei +∇yw

M
i (x, y)

)
dy , (3.4c)

(J0(t, x))i,j =

 
Y δ(x)

R
(
x,
y

δ

)
∇yw

0
j (t, x, y) ·

(
ei +∇yw

M
i (x, y)

)
dy . (3.4d)

Let N := n
3 . The correctors wM

j (x, ·) ∈ H1
#

(
Y δ (x) ;RN

)
solves

�
Y δ(x)

M
(
x,
y

δ

) (
ej +∇yw

M
j (x, y)

)
· ∇yv(y) dy = 0 for all v ∈ H1

#

(
Y δ (x) ;RN

)
, (3.5)

The time-dependent corrector wj ∈ C∞
(
0, T ; H1

#

(
Y δ (x) ;RN

))
that arises due to the damping

parameter Rδ solves for all t ∈ (0, T ) and all v ∈ H1
#

(
Y δ (x) ;RN

)
the initial value problem

�
Y δ(x)

[
M
(
x,
y

δ

)
∂t∇ywj(t, x, y) +R

(
x,
y

δ

)
∇ywj(t, x, y)

]
· ∇yv(y) dy = 0 , (3.6a)
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�
Y δ(x)

[
M
(
x,
y

δ

)
∇ywj(0, x, y) +R

(
x,
y

δ

) (
ej +∇yw

M
j (x, y)

)]
· ∇yv(y) dy = 0 . (3.6b)

The cell corrector w0
j ∈ C∞

(
0, T ; H1

#

(
Y δ (x) ;RN

))
solves for all t ∈ (0, T ) and all v ∈

H1
#

(
Y δ (x) ;RN

)
the initial value problem

�
Y δ(x)

[
M
(
x,
y

δ

)
∂t∇yw

0
j (t, x, y) +R

(
x,
y

δ

)
∇yw

0
j (t, x, y)

]
· ∇yv(y) dy = 0 , (3.7a)

�
Y δ(x)

M
(
x,
y

δ

) (
ej −∇yw

0
j (0, x, y)

)
· ∇yv(y) dy = 0 . (3.7b)

Proof. We start with Theorem 3.1. The reformulation is based on the evaluation of the time
derivative of the convolution and the equivalent formulation of integral- as differential equations.
Eventually, a change of variables yields the formulation using the sampling domains. For the
details, we refer to [19, Section 4.4.4 and Appendix A.2]. In Lemma 4.2 below, we prove the
regularity of the cell correctors.

4 Well-posedness of microscopic and macroscopic problems

In this section we drop the dependence on the x variable, since it is only a parameter in the cell
problems. Thus, let x ∈ Ω be fixed. Furthermore, we abbreviate the solution space of the cell
problems by Vmic := H1

#

(
Y δ (x) ;RN

)
, equipped with the inner product

(ϕ, ψ)Vmic =(∇yϕ,∇yψ)L2(Y δ(x);RN ) for all ϕ, ψ ∈ Vmic .

This is a inner product due to the Poincaré inequality. The induced norm is equivalent to the
L2-norm of the gradient, i.e, ∥·∥Vmic = ∥∇y·∥L2(Y δ(x)). Additionally, we introduce the weighted

inner product sδm : Vmic ×Vmic → R given as

sδm(ϕ, ψ) :=

�
Y δ(x)

M
(y
δ

)
∇yϕ(y) · ∇yψ(y) dy for all ϕ, ψ ∈ Vmic . (4.1)

It is bounded and coercive, since the parameter Mδ is assumed to be bounded and positive
definite, cf. eq. (2.3). Thus, the bilinear form is an inner product on Vmic, and we denote its
induced norm by ∥·∥sδm . Hence, we have an equivalent inner product, which satisfies

√
α ∥ϕ∥Vmic ≤ ∥ϕ∥sδm ≤

√
CM ∥ϕ∥Vmic for all ϕ ∈ Vmic . (4.2)

Lemma 4.1. For every j = 1, . . . , n the cell problems eq. (3.5), eq. (3.6b) and eq. (3.7b) are
well-posed . Moreover, the solutions are bounded by∥∥wM

j

∥∥
sδm

≤
√
CM |Y δ| , ∥wj(0)∥sδm ≤ 2

CR

α

√
CM |Y δ| ,

∥∥w0
j (0)

∥∥
sδm

≤
√
CM |Y δ| .

Proof. The three problems eqs. (3.5), (3.6b) and (3.7b) can be written as: Find w ∈ Vmic such
that

sδm(w, v) = b(v) for all v ∈ Vmic .
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with a suitable definition of the linear, bounded functional b. Thus, the well-posedness follows
from the Lax–Milgram lemma. For the bound in the sδm-norm on wM

j we choose in eq. (3.5)

v = wM
j . Due to eq. (4.2) and the Cauchy–Schwarz inequality we find

∥∥wM
j

∥∥2
sδm

= sδm
(
wM

j , w
M
j

)
= −

�
Y δ(x)

M
(y
δ

)
ej · ∇yw

M
j (y) dy ≤

√
CM |Y δ|

∥∥wM
j

∥∥
sδm

.

Similarly, we choose v = wj(0) in eq. (3.6b) which yields

∥wj(0)∥2sδm = sδm(wj(0), wj(0)) = −
�
Y δ(x)

R
(y
δ

) (
ej +∇yw

M
j (y)

)
· ∇ywj(0, y) dy

≤ CR

(
∥ej∥L2(Y δ(x)) +

∥∥wM
j

∥∥
Vmic

)
∥wj(0)∥Vmic ≤ 2

CR

α

√
CM |Y δ| ∥wj(0)∥sδm .

The bound for w0
j (0) follows like that for wM

j by choosing v = w0
j (0) in eq. (3.7b).

The two time-dependent cell problems eq. (3.6a) and eq. (3.7a) are so-called Sobolev equations
with respective initial value, which is given in each case in eqs. (3.6b) and (3.7b). Results for
those problems are found in [6, 30]. For the following error analysis, we provide two results.
Using ideas from [24], we introduce another bilinear form related to the parameter Rδ.

sδr(ϕ, ψ) :=

�
Y δ(x)

R
(y
δ

)
∇yϕ(y) · ∇yψ(y) dy for all ϕ, ψ ∈ Vmic . (4.3)

In contrast to the bilinear form sδm the form sδr is only bounded but not coercive, since the
parameter is only positive semi-definite. We consider a general (variational) Sobolev equation
with initial value w0 ∈ Vmic

sδm(∂tw(t), v) + sδr(w(t), v) = 0 for all v ∈ Vmic , t ∈ [0, T ] . (4.4a)

w(0) = w0 in Y δ (x) . (4.4b)

Due to Riesz-representation theorem we find an operator S : Vmic → Vmic such that

sδr(ϕ, ψ) = sδm(Sϕ, ψ) for all ϕ, ψ ∈ Vmic . (4.5)

We thus get the Sobolev equation as

sδm(∂tw(t), v) + sδm(Sw(t), v) = 0 for all v ∈ Vmic . (4.6)

With respect to the inner product sδm, the operator S inherits by definition its properties from
the bilinear form sδr. From eq. (2.4) and eq. (4.2) we find that S is bounded∣∣sδm(Sϕ, ψ)

∣∣ = ∣∣sδr(ϕ, ψ)∣∣ ≤ CR ∥ϕ∥Vmic ∥ψ∥Vmic ≤
CR

α
∥ϕ∥sδm ∥ψ∥sδm .

Moreover, since Rδ is non-negative, the operator −S is dissipative, i.e.,

sδm(−Sϕ, ϕ) = −sδr(ϕ, ϕ) ≤ 0 .

In this setting the operator S also satisfies the range condition with respect to Vmic, i.e.,
range(id+S) = Vmic. This follows by an application of the Lax–Milgram lemma.
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Lemma 4.2. For every j = 1, . . . , n the cell problems eq. (3.6) and eq. (3.7) are well-posed.
Moreover, the solutions have the regularity wj, w

0
j ∈ C∞

(
0, T ; Vmic

)
and satisfy the stability

bounds

∥wj(t)∥sδm ≤ ∥wj(0)∥sδm ,
∥∥w0

j (t)
∥∥
sδm

≤
∥∥w0

j (0)
∥∥
sδm

.

Proof. Let j = 1, . . . , N be fixed. Note, that eq. (3.6a) is equivalent to the abstract Cauchy
problem eq. (4.6) with w = wj , where the initial value satisfies eq. (3.6b). We just showed that
−S is dissipative and satisfies the range condition. By the Lumer–Phillips theorem [18, Chapter
II, Corollary 3.20] it generates a contraction semigroup

(
e−St

)
t≥0, i.e., in the ∥·∥sδm-norm we get∥∥e−St∥∥

sδm←sδm
≤ 1 . (4.7)

Hence, due to [18, Chapter III, 6.2 Proposition] the abstract Cauchy problem is well-posed and
the solution is given by

wj(t) = e−Stwj(0) . (4.8)

The initial value wj(0) is given as solution of eq. (3.6b), which is well-posed thanks to Lemma 4.1.
For the regularity of the solution we use the representation of the solution given in eq. (4.8) and
the fact that the operator is bounded. The series representation of the exponential for bounded
operators may be differentiated infinitely often, which yields the regularity in time. In turn,
the stability bound directly follows from the representation of the solution in eq. (4.8) and the
contraction property eq. (4.7).
Exactly the same argumentation is valid for the cell problem eq. (3.7).

For the error analysis below, the following H2-estimate is essential.

Theorem 4.3. Let M ∈ W1,∞ (Y δ (x)
)
be symmetric and uniformly positive definite, R ∈

W1,∞ (Y δ (x)
)
be positive semi-definite and assume that the initial value is H2-regular. For a

solution w(t, ·) ∈ H2
(
Y δ (x)

)
, t ∈ [0, T ] of eq. (4.4) we get the estimate

∥w(t)∥H2(Y δ(x)) ≤ C ∥w0∥H2(Y δ(x)) .

Proof. Let w0 ∈ H2
(
Y δ (x)

)
be given. We rewrite the Sobolev equation eq. (4.4a) in strong

formulation as: Find w : [0, T ] → H2
(
Y δ (x)

)
such that

∆M∂tw(t) + ∆Rw(t) = 0 in Y δ (x) .

The operators ∆M = div (M(y)∇·) and ∆R = div (R(y)∇·) are weighted Laplace operators.
Note, that ∆M : H2

(
Y δ (x)

)
→ L2

(
Y δ (x)

)
is invertible due to the properties of M, cf. eq. (2.3).

The operator S defined in eq. (4.5) as operator on H2
(
Y δ (x)

)
may be written as S = ∆−1M ∆R.

Next, we consider the closely related operator ∆R∆−1M : L2
(
Y δ (x)

)
→ L2

(
Y δ (x)

)
. We show

that this operator is also monotone and bounded with respect to L2
(
Y δ (x)

)
equipped with the

weighted inner product

(Φ,Ψ)∆−1
M

=
(
Φ,−∆−1M Ψ

)
for all Φ,Ψ ∈ L2

(
Y δ (x)

)
.

Note, that the weighted Laplacian has a negative spectrum, and thus the negative operator
induces an inner product. Integration by parts yields(

∆R∆−1M Φ,Φ
)
∆−1

M

=
(
∆R∆−1M Φ,−∆−1M Φ

)
=
(
R∇

(
∆−1M Φ

)
,∇
(
∆−1M Φ

))
≥ 0 .
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Additionally, using again integration by parts, the boundedness of R as well as the positive
definiteness of M and the Cauchy–Schwarz inequality we get∣∣∣(∆R∆−1M Φ,Ψ

)
∆−1

M

∣∣∣ = ∣∣(R∇
(
∆−1M Φ

)
,∇
(
∆−1M Ψ

))∣∣
≤ CR

α

∣∣(M∇
(
∆−1M Φ

)
,∇
(
∆−1M Ψ

))∣∣ = CR

α

∣∣−(div (M∇
(
∆−1M Φ

))
,∆−1M Ψ

)∣∣
=
CR

α

∣∣(Φ,−∆−1M Ψ
)∣∣ = CR

α

∣∣∣(Φ,Ψ)∆−1
M

∣∣∣ ≤ CR

α
∥Φ∥∆−1

M
∥Ψ∥∆−1

M
.

Thus, the operator −∆R∆−1M is dissipative and generates a contraction semi-group e−∆R∆−1
M t.

Both −∆−1M ∆R and −∆R∆−1M are bounded operators. We use the series representation for their
generated semi-groups and define for n ∈ N the partial sum

sn(t) :=
∑n

k=0

(
−∆R∆−1M

)k tk
k!
∆Mw(0) .

Since ∆Mw(0) ∈ L2
(
Y δ (x)

)
and due to the properties of −∆R∆−1M we just showed, we find the

convergence in L2
(
Y δ (x)

)
as

sn(t) → s(t) = e−∆R∆−1
M t∆Mw(0) as n→ ∞ .

Moreover, for zn(t) :=
∑n

k=0

(
−∆−1M ∆R

)k tk

k!w(0) we find ∆Mzn(t) = sn(t), and

zn(t) → w(t) = e−∆
−1
M ∆Rtw(0) as n→ ∞ .

This enables us to use the fact that ∆M is closed. To be precise, we conclude from

zn(t) → w(t) as n→ ∞ , ∆Mzn(t) = sn(t) → s(t) as n→ ∞ ,

that w(t) ∈ D (∆M) and

∆M

(
e−∆

−1
M ∆Rtw(0)

)
= ∆Mw(t) = s(t) = e−∆R∆−1

M t∆Mw(0) .

Eventually, we find

∥w(t)∥H2(Y δ(x)) ≤ C ∥∆Mw(t)∥L2(Y δ(x)) = C ∥s(t)∥L2(Y δ(x))

≤ C
∥∥∥e−∆R∆−1

M t
∥∥∥
∆−1

M←∆−1
M

∥∆Mw(0)∥∆−1
M

≤ C ∥w(0)∥H2(Y δ(x)) .

4.1 Well-posedness of the integro-differential homogeneous system

Let us give some properties of the effective parameters.

Lemma 4.4. The effective parameter M0 is positive definite and bounded with the same constant
α as Mδ, and R0 is positive semi-definite and bounded. The time-dependent parameters satisfy
G0, J0 ∈ C∞ (0, T ; L∞ (Ω;Rn×n)).

Proof. The boundedness of M0 is shown in [27, Chapter 1.4], while the coercivity with the same
constant α as in eq. (2.3) follows as in [7, Chapter 2.3]. The positive semi-definiteness of Rδ
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directly implies the one of R0 by its definition in eq. (3.4b). For fixed x ∈ Ω the boundedness
follows using the definition in eq. (3.4b) by∣∣R0(x)i,j

∣∣ ≤ CR

|Y δ|

(
∥ej∥L2(Y δ(x))

(
∥ei∥L2(Y δ(x)) +

∥∥wM
i (x, ·)

∥∥
Vmic

)
+
∥∥wM

j (x, ·)
∥∥
Vmic

(
∥ei∥L2(Y δ(x)) +

∥∥wM
i (x, ·)

∥∥
Vmic

))
≤ 4

CRCM

α
,

where we used Lemma 4.1 and the coercivity of Mδ. Next, consider the convolution kernel.
Using eq. (3.4c), Lemmas 4.1 and 4.2 together with eq. (4.7) yields∣∣G0(t, x)i,j

∣∣ ≤ CR

|Y δ|
∥wj(t, x, ·)∥Vmic

(
∥ei∥L2(Y δ(x)) +

∥∥wM
j (x, ·)

∥∥
Vmic

)
≤ 2

CR

√
CM |Y δ|

α |Y δ|
∥wj(0, x, ·)∥sδm ≤ 4

(
CR

α

)2

CM .

Finally for the extra source we get from eq. (3.4d) with the same techniques as above∣∣J0(t, x)i,j
∣∣ ≤ 2

CRCM

α
.

Therefore, we find G0, J0 ∈ L∞ (0, T ; L∞ (Ω;Rn×n)). As pointed out in Lemma 4.2, the cell
correctors wj , w

0
j are C∞ in time. Thus, a direct consequence is the smoothness in time, i.e.,

G0, J0 ∈ C∞ (0, T ; L∞ (Ω;Rn×n)).

For the variational formulation of the effective Maxwell system eq. (3.3) we introduce bilinear
forms m0, r0, a : Vmac ×Vmac → R such that for every Φ, Ψ ∈ Vmac

m0(Φ,Ψ) :=
(
M0Φ,Ψ

)
, (4.9a)

r0(Φ,Ψ) :=
(
R0Φ,Ψ

)
, (4.9b)

a(Φ,Ψ) :=(AΦ,Ψ) . (4.9c)

Moreover, for t ∈ [0, T ] define g0 : [0, T ]×Vmac ×Vmac → R such that

g0(t;Φ,Ψ) :=
(
G0(t)Φ,Ψ

)
for all Φ,Ψ ∈ Vmac . (4.9d)

Thanks to the bounds on the parameters, we immediately get the continuity of all bilinear forms,
i.e., for all Φ, Ψ ∈ L2 (Ω;Rn) and t ≥ 0 we find∣∣m0(Φ,Ψ)

∣∣ ≤ CM ∥Φ∥ ∥Ψ∥ ,∣∣r0(Φ,Ψ)
∣∣ ≤ 4

CRCM

α
∥Φ∥ ∥Ψ∥ , (4.10)

∣∣g0(t;Φ,Ψ)
∣∣ ≤ 4

(
CR

α

)2

CM ∥Φ∥ ∥Ψ∥ . (4.11)

Moreover, m0(·, ·) and r0(·, ·) are bounded from below by

m0(Φ,Φ) ≥ α ∥Φ∥2 , r0(Φ,Φ) ≥ 0 . (4.12)

With these definitions we search for u0(t) ∈ Vmac such that

m0
(
∂tu

0(t),Φ
)
+ r0

(
u0(t),Φ

)
+

� t

0

g0
(
t− s;u0(s),Φ

)
ds+ a

(
u0(t),Φ

)
= m0(f(t),Φ)−

(
J0(t)u0,Φ

)
for all Φ ∈ Vmac ,

(4.13)
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u0(0) = u0 in Ω ,

where f ∈ L2
(
0, T ; L2 (Ω)

)
is such that

m0(f(t),Φ) =(g(t),Φ) for all Φ ∈ Vmac .

Theorem 4.5. Let the assumptions of Theorem 3.1 be satisfied and assume that Rδ is positive
semi-definite. Then, problem eq. (4.13) has a unique solution satisfying

∥∥u0(t)
∥∥ ≤ eCG0 (t)

[
1

α
t ∥g∥L∞(0,t;L2(Ω;Rn)) +

(
1 +

1

α

∥∥J0
∥∥
L1(0,t;L∞(Ω;Rn×n))

)
∥u0∥

]
, (4.14)

where the exponential growth is determined by

CG0(t) =
1

α

� t

0

∥∥G0
∥∥
L1(0,s;L∞(Ω;Rn×n))

ds .

Proof. The proof of the well-posedness relies on the Faedo–Galerkin method. The details can be
found in [9, Proposition 1], where also an estimate similar to eq. (4.14) is proved. Our bound
results from these ideas but provides precise constants, in particular the growth due to the
Gronwall estimate. Consider the system eq. (4.13) with test function Φ = u0(t). The product
rule, as well as eq. (4.12) and the skew-adjointness of the Maxwell operator yields

α

(
d

dt

∥∥u0(t)
∥∥)∥∥u0(t)

∥∥ ≤ 1

2

d

dt
m0
(
u0(t),u0(t)

)
= m0

(
∂tu

0(t),u0(t)
)

≤
∣∣(g(t),u0(t)

)∣∣ + ∣∣(J0(t)u0,u
0(t)

)∣∣ + ∣∣∣∣� t

0

g0
(
t− s;u0(s),u0(t)

)
ds

∣∣∣∣ .
Applying the Cauchy-Schwarz inequality in the last line, dividing by

∥∥u0(t)
∥∥ and using the

Hölder inequality yields

α
d

dt

∥∥u0(t)
∥∥ ≤ ∥g(t)∥ +

∥∥J0(t)
∥∥
L∞(Ω;Rn×n)

∥u0∥

+

� t

0

∥∥G0(t− s)
∥∥
L∞(Ω;Rn×n)

ds
∥∥u0

∥∥
L∞(0,t;L2(Ω;Rn))

.

Next, we integrate over [0, t], resulting in

α
∥∥u0(t)

∥∥ ≤ α
∥∥u0(0)

∥∥ +

� t

0

∥g(s)∥ ds+

� t

0

∥∥J0(s)
∥∥
L∞(Ω;Rn×n)

ds ∥u0∥

+

� t

0

� s

0

∥∥G0(s− r)
∥∥
L∞(Ω;Rn×n)

dr
∥∥u0

∥∥
L∞(0,s;L2(Ω;Rn))

ds .

The final step is to take the supremum over [0, t] to obtain

∥∥u0
∥∥
L∞(0,t;L2(Ω;Rn))

≤ C0(t) +

� t

0

C1(s)
∥∥u0

∥∥
L∞(0,s;L2(Ω;Rn))

ds ,

where

C0(t) :=

(
1 +

1

α

� t

0

∥∥J0(s)
∥∥
L∞(Ω;Rn×n)

ds

)
∥u0∥ +

1

α

� t

0

∥g(s)∥ ds ,
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C1(t) :=
1

α

� t

0

∥∥G0(t− s)
∥∥
L∞(Ω;Rn×n)

ds =
1

α

∥∥G0
∥∥
L1(0,t;L∞(Ω;Rn×n))

.

We apply Gronwall’s inequality, which yields∥∥u0
∥∥
L∞(0,t;L2(Ω;Rn))

≤ e
� t
0
C1(s) dsC0(t) = exp (CG0(t))C0(t) .

Since the supremum is bounded, we get the same estimate for all s ∈ [0, t], i.e., eq. (4.14).

5 The Finite Element Heterogeneous Multiscale Method

For the space discretization we choose the finite element method. The implementation we strive
for uses hexahedral elements. Hence, from now on, assume that we have an adjacent and shape
regular family of triangulations {TH}H>0 of the domain Ω in parallelepipeds. Other choices of
elements are possible and the analysis transfers directly to those variations. The parameter H
represents the maximum diameter of all elements K ∈ TH . All quantities that are labeled with
an H are macroscopic expressions, as the triangulation TH . For microscopic quantities we use h
instead. We define the space of polynomials with maximal degree ℓ in the first, m in the second
and n in the third component on K ∈ TH as Qℓ,m,n(K). On every element K ∈ TH of the
triangulation we choose a quadrature formula consisting of QK ∈ N quadrature points xqK ∈ K
and weights γqK ∈ R≥0, q = 1, . . . , QK . We assume that the quadrature is exact for polynomials
in Q2ℓ,2ℓ,2ℓ(K), ℓ ∈ N. Hence, for p ∈ Q2ℓ,2ℓ,2ℓ(K) we have

�
K

p(x) dx =
∑QK

q=1
γqKp(x

q
K) . (5.1)

Note that we use positive weights, e.g. Gaussian rules, to ensure that the resulting bilinear forms
keep, for instance, their positivity.

5.1 Nédélec finite elements

For the macroscopic Maxwell system we use H (curl,Ω)-conforming Nédélec elements. For ℓ ∈ N
we define

Qℓ
Nédélec(K) := Qℓ−1,ℓ,ℓ(K)×Qℓ,ℓ−1,ℓ(K)×Qℓ,ℓ,ℓ−1(K) for all K ∈ TH .

Denote the space of Nédélec’s elements of the first type of order ℓ ∈ N by

Vℓ (curl, TH) :=
{
vH ∈ H(curl,Ω) : vH |K ∈ Qℓ

Nédélec(K) for all K ∈ TH
}
,

and further define

Vℓ
0 (curl, TH) := H0 (curl,Ω) ∩Vℓ (curl, TH) .

We obtain the following interpolation error estimate that can be found in [32, Theorem 6.6].

Theorem 5.1. Let u ∈ Hℓ+1
(
Ω;R3

)
. There exists a global interpolation operator

IH : Hℓ+1
(
Ω;R3

)
→ Vℓ (curl, TH) for Nédélec elements of the first type, such that

∥u− IHu∥H(curl,Ω) ≤ CHℓ|u|Hℓ+1(Ω;R3) . (5.2)
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5.2 Lagrange finite elements

The cell problems are discretized using standard Lagrangian finite elements. Therefore, as above,
we introduce a triangulation Th of the sampling domain Y δ (x). The space of Lagrangian elements
with periodic boundary conditions is given as

Vh :=
{
vh ∈ H1

(
Y δ (x)

)
: vh|K ∈ Qk,k,k(K) for all K ∈ Th

}
.

We get an interpolation error estimate as in [11, Theorem 3.2.1] or [32, Theorem 6.11].

Theorem 5.2. Let u ∈ Hk+1
(
Y δ (x) ;R

)
. For the triangulation Th of Y δ (x) there exists an

interpolation operator Πh : Hk+1
(
Y δ (x) ;R

)
→ Vh such that the following estimate holds

∥u−Πhu∥H1(Y δ(x);R) ≤ Chk |u|Hk+1(Y δ(x);R) . (5.3)

5.3 The HMM framework and the application to Maxwell’s equations

Consider the effective system given in eq. (4.13). We choose the finite dimensional subspace of
Vmac, cf. eq. (2.1), as

VH := Vℓ
0 (curl, TH)×Vℓ (curl, TH)

NE ×Vℓ (curl, TH) ⊆ Vmac . (5.4)

On VH we use the inner product

(ΦH ,ΨH)H =
∑

K∈TH

∑QK

q=1
γqKΦH(xqK) ·ΨH(xqK) for all ΦH ,ΨH ∈ VH .

The discrete counterparts to the bilinear forms defined in eq. (4.9a) - eq. (4.9d) are m0
H , r

0
H ,

aH : VH ×VH → R such that for every ΦH , ΨH ∈ VH

m0
H(ΦH ,ΨH) :=

(
M0ΦH ,ΨH

)
H
, r0H(ΦH ,ΨH) :=

(
R0ΦH ,ΨH

)
H
,

aH(ΦH ,ΨH) :=(AHΦH ,ΨH)H , (5.5)

where AH is the discretization of A. Moreover, for t ∈ [0, T ] define g0H : [0, T ]×VH ×VH → R
such that

g0H(t;ΦH ,ΨH) :=
(
G0(t)ΦH ,ΨH

)
H

for all ΦH ,ΨH ∈ VH .

The semi-discrete formulation of the effective Maxwell system is to find u0
H : [0, T ] → VH such

that

m0
H

(
∂tu

0
H(t),ΦH

)
+ r0H

(
u0
H(t),ΦH

)
+

� t

0

g0H
(
t− s;u0

H(s),ΦH

)
ds

+ aH
(
u0
H(t),ΦH

)
= m0

H(fH(t),ΦH)−
(
J0(t)u0,H ,ΦH

)
H

for all ΦH ∈ VH ,

(5.6)

u0
H(0) = u0,H ,

where fH is defined such that for an approximation gH of g we find

m0
H(fH(t),ΦH) =(gH(t),ΦH)H for all ΦH ∈ VH ,

and where u0,H ∈ VH is an approximation of the initial value u0 ∈ Vmac.
The system eq. (5.6) is semi-discrete since it involves the analytic effective parameters. To be

precise, the information from the microscopic scale is missing. This situation is exactly where the
Heterogeneous Multiscale Method (HMM), introduced in [15] and exposed in [4], is applicable.

Remark 5.3. Note that the subspace property VH ⊆ Vmac is one ingredient of a conforming
finite element method. We point out that this is not restrictive and that it is possible to use a
finite dimensional space that is not a subspace of Vmac, e.g, a discontinuous Galerkin approach.
See also [25, Remark 4.6].
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5.4 Approximating the effective parameters on the microscale

With the definition of the discrete bilinear form we get for ΦH , ΨH ∈ VH(
M0ΦH ,ΨH

)
≈ m0

H(ΦH ,ΨH) =
∑

K∈TH

∑QK

q=1
γqKM0(xqK)ΦH(xqK) ·ΨH(xqK) .

Here we see that the effective parameter has to be known for every macroscopic quadrature
point. Thus, the sampling domains in the HMM are always centered around such a point. For
convenience, in the rest of this section we abbreviate x̄ = xqK .

Remark 5.4 (Knowledge about periodicity). The definition of the parameters involves the
solution of cell problems and unit cells. In this work we make the assumption that we know the
period length δ exactly. In a more general setting, without this knowledge, we would introduce
an oversampling parameter. However, the analysis of the resulting modeling errors is the task of
future research.

In the view of Remark 5.4 we introduce a triangulation Th of the sampling domain Y δ (x̄)
and from now on we drop the dependence on the macroscopic variable. As function space, we
choose Lagrange finite elements of degree k ∈ N with periodic boundary conditions, denoted
as Vh. Accordingly, we introduce the discrete counterparts of the cell problems and effective
parameters. The discrete corrector wM,h

j (x̄, ·) ∈ Vh for j = 1, . . . , n is the solution of

�
Y δ

M
(
x̄,
y

δ

)(
ej +∇yw

M,h
j (x̄, y)

)
· ∇yv

h(y) dy = 0 for all vh ∈ Vh . (5.7)

The HMM parameter MH (we indicate HMM quantities by a straight H) is given as

(MH(x̄))i,j :=

 
Y δ

M
(
x̄,
y

δ

)(
ej +∇yw

M,h
j (x̄, y)

)
·
(
ei +∇yw

M,h
i (x̄, y)

)
dy .

Consequently, we define the HMM bilinear form using these discrete quantities as

mH(ΦH ,ΨH) =
(
MHΦH ,ΨH

)
H

=
∑

K∈TH

∑QK

q=1
γ̄MH(x̄)ΦH(x̄) ·ΨH(x̄) . (5.8)

For the damping parameter we proceed as before and use the discrete corrector wM,h
j , j = 1, . . . , n

solution of eq. (5.7) and define the HMM damping parameter as

(
RH (x̄)

)
i,j

=

 
Y δ

R
(
x̄,
y

δ

)(
ej +∇yw

M,h
j (x̄, y)

)
·
(
ei +∇yw

M,h
i (x̄, y)

)
dy .

Thus, the HMM bilinear form related to eq. (4.9b) is given as

rH(ΦH ,ΨH) :=
∑

K∈TH

∑QK

q=1
γ̄RH (x̄)ΦH(x̄) ·ΨH(x̄) . (5.9)

For the effective convolution kernel recall the definition in eq. (3.4c). To define the HMM
counterpart of eq. (4.9d) we need to introduce the discrete cell problems. Therefore, we introduce
the corrector wh

j as the finite element approximation of wj , i.e., it solves: Find w
h
j (·, x̄, ·) : [0, T ] →

Vh such that�
Y δ

[
M
(
x̄,
y

δ

)
∂t∇yw

h
j (t, x̄, y) +R

(
x̄,
y

δ

)
∇yw

h
j (t, x̄, y)

]
· ∇yv

h(y) dy = 0 ,
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and �
Y δ

[
M
(
x̄,
y

δ

)
∇yw

h
j (0, x̄, y) +R

(
x̄,
y

δ

)(
ej +∇yw

M,h
j (x̄, y)

)]
· ∇yv

h(y) dy = 0 ,

for all vh ∈ Vh. Eventually, the HMM parameter is defined as(
GH (t, x̄)

)
i,j

=

 
Y δ

R
(
x̄,
y

δ

)
∇yw

h
j (t, x̄, y) ·

(
ei +∇yw

M,h
i (x̄, y)

)
dy , (5.10)

and the HMM bilinear form is given as

gH(t;ΦH ,ΨH) :=
∑

K∈TH

∑QK

q=1
γ̄GH (t, x̄)ΦH(x̄) ·ΨH(x̄) . (5.11)

The final expression of the system eq. (5.6) that includes an effective parameter is the extra
source. Similar to the previous considerations, we define the HMM extra source(

JH (t, x̄)
)
i,j

=

 
Y δ

R
(
x̄,
y

δ

)
∇yw

0,h
j (t, x̄, y) ·

(
ei +∇yw

M,h
i (x̄, y)

)
dy , (5.12)

where the corrector w0,h
j is the discrete approximation of w0

j .

Remark 5.5. For the implementation, a different formulation of the HMM bilinear forms should
be used, see [25, Section 3.3], [19, Section 5.2.1] that is suited for parallel assembly of finite
element matrices.

5.4.1 The FE-HMM Maxwell system

Combining the results we get the Finite Element Heterogeneous Multiscale Method for the general
Maxwell system. We search for the HMM solution uH : [0, T ] → VH such that

mH
(
∂tu

H(t),ΦH

)
+ rH

(
uH(t),ΦH

)
+

� t

0

gH
(
t− s;uH(s),ΦH

)
ds+ aH

(
uH(t),ΦH

)
= mH

(
fH(t),ΦH

)
−
(
JH(t)u0,H ,ΦH

)
H

for all ΦH ∈ VH ,

(5.13)

uH(0) = u0,H , (5.14)

where fH is defined such that

mH
(
fH(t),ΦH

)
=(gH(t),ΦH)H for all ΦH ∈ VH .

The bilinear forms are given in eqs. (5.5), (5.8), (5.9) and (5.11). Note that due to the property
VH ⊆ Vmac the discrete Maxwell operator inherits its properties from the continuous one.

Lemma 5.6. The HMM parameters MH, RH are bounded. In addition, MH is positive definite
with the same constant α as Mδ and RH is positive semi-definite.The time-dependent parameters
GH and JH satisfy GH, JH ∈ L∞ (0, T ; L∞ (Ω;Rn×n)).

Proof. The proof is as in Lemma 4.4 but uses the discrete cell problems.

Again a direct consequence is the continuity of the HMM bilinear forms as well as the coercivity
ofmH and the non-negativity of rH. The well-posedness of the FE-HMM system eq. (5.13) follows
along with the same stability estimate.
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Theorem 5.7. Assume that uδ, gδ and the parameters Mδ and Rδ satisfy the assumptions from
Theorem 3.1. Then the HMM system eq. (5.13) has a unique solution uH ∈ W1,1 (0, T ; VH),
which satisfies the estimate∥∥uH(t)

∥∥
VH

≤ eCGH (t)
[
1
α t ∥g∥L∞(0,t;VH) +

(
1 + 1

α

∥∥JH
∥∥
L1(0,t;L∞(Ω;Rn×n))

)
∥u0∥VH

]
. (5.15)

The growth is determined by

CGH(t) =
1

α

� t

0

∥∥GH
∥∥
L1(0,s;L∞(Ω;Rn×n))

ds . (5.16)

Proof. The proof of unique solvability relies on a reformulation as in [19, Theorem 5.3.11] and
an application of [9, Lemma 1.1]. The estimate eq. (5.15) follows thanks to VH ⊆ Vmac and
eq. (5.1) using the same techniques as in the continuous setting in eq. (4.14).

6 Semi-discrete error analysis

Eventually, we want to estimate the error between the effective solution u0 of eq. (4.13) and its
HMM approximation uH, solution of eq. (5.13). For that purpose we need to analyze the micro
errors, that are the errors between the effective and the HMM parameters. The next result from
[3, Corollary 5.3] or (for k = 1) [1, Lemma 3.3] bounds the micro error for the parameter Mδ.

Lemma 6.1. Assume that for k ∈ N and every quadrature point xqK we have wM
j (xqK , ·) ∈

Hk+1
(
Y δ
)
such that for every j = 1, . . . , n and every quadrature point xqK it holds

∣∣wM
j (xqK , ·)

∣∣
Hk+1(Y δ)

≤ Cδ−k
√
|Y δ| .

Then, we have the following estimate

sup
K∈TH ,q∈{1,...,QK}

∥∥M0(xqK)−MH(xqK)
∥∥
F
≤ C

(
h

δ

)2k

.

A main contribution of this work is to establish similar results for the other parameters arising
in the general Maxwell setting.

Lemma 6.2. Assume for k ∈ N and for every quadrature point xqK that wM
j (xqK , ·), wj(0, x

q
K , ·) ∈

Hk+1
(
Y δ
)
such that for every j = 1, . . . , n and every quadrature point xqK it holds

∣∣wM
j (xqK , ·)

∣∣
Hk+1(Y δ)

, |wj(0, x
q
K , ·)|Hk+1(Y δ) ≤ Cδ−k

√
|Y δ| . (6.1)

Then there exists a constant C > 0 independent of h and δ such that we have a bound on the
Frobenius norm

sup
K∈TH ,q∈{1,...,QK}

∥∥R0(xqK)−RH(xqK)
∥∥
F
≤ C

(
h

δ

)2k

.

Proof. For i = 1, . . . , N we introduce the short notation

∇yφi(x, y) :=
(
ei +∇yw

M
i (x, y)

)
, ∇yφ

h
i (x, y) :=

(
ei +∇yw

M,h
i (x, y)

)
. (6.2)
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Note that φh
i −φi ∈ Vmic. We investigate the difference, suppressing the xqK variable. First, add

and subtract sδr
(
φh
j , φi

)
. Next, use the transposed cell problem for wi(0), cf. eq. (3.6b), tested

with φj − φh
j and the cell problem for wj(0) tested with φh

i − φi, i.e,

sδm
(
φj − φh

j , wi(0)
)
+ sδr

(
φj − φh

j , φi

)
= 0 ,

sδm
(
wj(0), φ

h
i − φi

)
+ sδr

(
φj , φ

h
i − φi

)
= 0 .

This yields∣∣(R0)i,j − (RH)i,j
∣∣

=
1

|Y δ|

∣∣∣sδr(φh
j − φj , φi − φh

i

)
+ sδm

(
wj(0), φ

h
i − φi

)
− sδm

(
φj − φh

j , wi(0)
)∣∣∣ .

Finally, we use the standard cell problems eq. (3.5) and eq. (5.7) for wM
j , w

M,h
j and the transposed

ones for wM
i , wM,h

i tested with wh
i (0) and w

h
j (0) respectively and add the resulting zeros, i.e.

sδm
(
φj − φh

j , w
h
i (0)

)
= 0 , sδm

(
wh

j (0), φ
h
i − φi

)
= 0 .

This leads to∣∣(R0)i,j − (RH)i,j
∣∣ = 1

|Y δ|

∣∣∣sδr(wM,h
j − wM

j , w
M
i − wM,h

i

)
+ sδm

(
wj(0)− wh

j (0), w
M,h
i − wM

i

)
+ sδm

(
wM

j − wM,h
j , wh

i (0)− wi(0)
)∣∣∣ .

An application of the Cauchy-Schwarz inequality together with eq. (2.4) yields∣∣(R0)i,j − (RH)i,j
∣∣ ≤ C

1

|Y δ|
∥∥wj(0)− wh

j (0)
∥∥
Vmic

∥∥∥wM,h
i − wM

i

∥∥∥
Vmic

+C
1

|Y δ|

∥∥∥wM,h
j − wM

j

∥∥∥
Vmic

(∥∥∥wM
i − wM,h

i

∥∥∥
Vmic

+
∥∥wh

i (0)− wi(0)
∥∥
Vmic

)
The remaining H1-errors are all estimated using [11, Theorem 3.2.2]. With the assumption on
the regularity of the cell correctors we end up with the asserted estimate.

6.1 Error estimates for the Sobolev equation and the time-dependent
parameter

For the analysis of the micro error of the time-dependent parameters we need an error estimate
for the Sobolev equation. The following result is similar to [30, Theorem 3.2] but uses a different
technique. Therefore, we are able to avoid the application of Gronwall’s lemma, which prevents
an exponential growth in time.

Theorem 6.3. Let wh : [0, T ] → Vh be solution of

shm
(
∂tw

h(t), vh
)
+ shr

(
wh(t), vh

)
= 0 for all vh ∈ Vh .

Assume that w, solution of eq. (4.4a), satisfies w ∈ C1
(
0, T ; Hk+1

(
Y δ
))
. Then there exists a

constant C > 0 independent of h and t such that

∥∥w(t)− wh(t)
∥∥
sm

≤ Chk
[
|w(0)|Hk+1(Y δ) + |w(t)|Hk+1(Y δ) +

� t

0

|w(s)|Hk+1(Y δ) ds

]
.
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Proof. The proof is found in [19, Theorem 5.3.6] and follows ideas of [24].

With this crucial semi-discrete error estimate we proceed with the analysis of the micro error
of the convolution kernel and extra source.

Lemma 6.4. Assume that for k ∈ N and for every quadrature point xqK we have wM
j (xqK , ·) ∈

Hk+1
(
Y δ
)
and wj(t, x

q
K , ·) ∈ Hk+1

(
Y δ
)
for all t ∈ [0, T ] such that for every j = 1, . . . , n it holds∣∣wM

j (xqK , ·)
∣∣
Hk+1(Y δ)

≤ Cδ−k
√

|Y δ| , |wj(0, x
q
K , ·)|Hk+1(Y δ) ≤ Cδ−k

√
|Y δ| ,

for constants C > 0. Then, there exists a constant C > 0 independent of t, h and δ such that we
have a bound on the Frobenius norm

sup
K∈TH ,q∈{1,...,QK}

∥∥G0(t, xqK)−GH(t, xqK)
∥∥
F
≤ C(1 + t)

(
h

δ

)k

.

Under identical assumptions with wj replaced by w0
j we get

sup
K∈TH ,q∈{1,...,QK}

∥∥J0(t, xqK)− JH(t, xqK)
∥∥
F
≤ C(1 + t)

(
h

δ

)k

,

with a constant C > 0 independent of t, h and δ.

Proof. We only show the case k = 1. With the same notation as in eq. (6.2), we investigate the
difference, suppressing the xqK variable. We use the bilinear forms sδm and sδr from eq. (4.1) and
eq. (4.3). The error can be expressed by eq. (3.4c) and eq. (5.10) as∣∣(G0(t))i,j − (GH(t))i,j

∣∣ = 1

|Y δ|
∣∣sδr(wj(t), φi)− sδr

(
wh

j (t), φ
h
i

)∣∣ .
We add and subtract sδr

(
wj(t), φ

h
i

)
and directly use the boundedness of the parameter Rδ as well

as the boundedness of the solutions wj(t) and φh
i from Lemmas 4.1 and 4.2. With a constant

C > 0 this yields∣∣(G0(t))i,j − (GH(t))i,j
∣∣

≤ C

|Y δ|
∥wj(t)∥sδm

∥∥∥wM
i − wM,h

i

∥∥∥
sδm

+
C

|Y δ|
∥∥wj(t)− wh

j (t)
∥∥
sδm

∥∥φh
i

∥∥
sδm

≤ C√
|Y δ|

∥∥∥wM
i − wM,h

i

∥∥∥
sδm

+
C√
|Y δ|

∥∥wj(t)− wh
j (t)

∥∥
sδm

.

The final step is to use the finite element error estimate from [11, Theorem 3.2.2] in the first
expression and the error result from Theorem 6.3 in the second one. At this point, for higher
regularity, i.e., k > 1 we get higher order estimates. This gives∣∣(G0(t))i,j − (GH(t))i,j

∣∣ ≤ C√
|Y δ|

h
∣∣wM

i

∣∣
H2(Y δ)

+
C√
|Y δ|

h

(
|wj(0)|H2(Y δ) + |wj(t)|H2(Y δ) +

� t

0

|wj(s)|H2(Y δ) ds

)
.

With the assumption on the correctors, and Theorem 4.3 we get the final result. The estimate for
the extra source follows with the same ideas using the definitions in eqs. (3.4d) and (5.12).

Remark 6.5. See [19, Section 5.3.2] for an improved estimate in the case t = 0.
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6.2 Semi-discrete a priori error analysis

We analyze the error between the solutions of the effective system eq. (4.13) and the HMM
system eq. (5.13). Recall that we have n = 3(2 + NE) and assume ℓ ≥ 1. Moreover, we
equip the space VH , cf. eq. (5.4), with the inner product

(
ϕH , ψH

)
VH

= mH
(
ϕH , ψH

)
and

abbreviate X := L2 (Ω;Rn) which is equipped with the inner product (·, ·)X = m0(·, ·). Finally,
let Z := Hℓ+1 (Ω;Rn) and denote its norm as ∥ϕ∥Z = ∥ϕ∥Hℓ+1(Ω;Rn).

Due to the properties of Mδ in eq. (2.3) and the resulting properties for the bilinear forms
m0 in Lemma 4.4 and mH in Lemma 5.6 the induced norms are equivalent to the standard
L2 (Ω;Rn)-norm, i.e., for all Φ ∈ X and ΦH ∈ VH we get

√
α ∥Φ∥L2(Ω;Rn) ≤ ∥Φ∥X ≤

√
CM ∥Φ∥L2(Ω;Rn) , (6.3a)

√
α ∥ΦH∥L2(Ω;Rn) ≤ ∥ΦH∥VH

≤
√
CM ∥ΦH∥L2(Ω;Rn) . (6.3b)

We extend the interpolation operator for Nédélec elements IH from eq. (5.2) to higher dimensions
by component-wise application. Additionally, since MH is positive definite, we may introduce
PH : X → VH such that

mH(PHΦ,ΨH) = m0(Φ,ΨH) for all Φ ∈ X,ΨH ∈ VH . (6.4)

The following procedure extends the results from [24] and [25] to the more general case considered
in this work. We introduce the remainder operator Λ. This characterizes either the difference
between the continuous and discrete Maxwell operator, or for t ∈ [0, T ] and a parameter S ∈
{R,G(t),J(t)} the difference of the effective and HMM representations, i.e.,

Λ(A,AH) := PH(M0)−1A− (MH)−1AHIH ,

Λ
(
S0,SH

)
:= PH(M0)−1S0 − (MH)−1SHIH .

Next, we provide a preliminary error estimate.

Theorem 6.6. Let u0 and uH be the solutions of eq. (4.13) and eq. (5.13), respectively, and
assume u0 ∈ C1 ([0, T ]; Z). With CGH(t) given as in eq. (5.16) the error of the semi-discrete
HMM-solution is bounded by∥∥uH(t)− u0(t)

∥∥
X
≤ eCGH (t)

[(
1 +

1

α

∥∥JH
∥∥
L1(0,t;L∞(Ω;Rn×n))

)
∥u0,H − IHu0∥VH

+
t

α

∥∥fH − PHf
∥∥
L∞(0,t;VH)

+
t

α

∥∥Λ(R0,RH
)
u0
∥∥
L∞(0,t;VH)

+
t

α

∥∥Λ(A,AH)u0
∥∥
L∞(0,t;VH)

+
t

α
sup

s∈[0,t]

∥∥Λ(J0(s),JH(s)
)
u0

∥∥
VH

+
t

α
sup

s∈[0,t]

∥∥∥∥� s

0

Λ
(
G0(s− r),GH(s− r)

)
u0(r) dr

∥∥∥∥
VH

+
t

α

∥∥(PH − IH)∂tu
0
∥∥
L∞(0,t;VH)

]
+
∥∥(IH − id)u0(t)

∥∥
X
,

(6.5)

Proof. We introduce the discrete error eH(t) := uH(t) − IHu0(t) ∈ VH . Observe that due to
eq. (6.3), we have∥∥uH(t)− u0(t)

∥∥
X
≤ ∥eH(t)∥X +

∥∥(IH − id)u0(t)
∥∥
X

≤
√
CM√
α

∥eH(t)∥VH
+
∥∥(IH − id)u0(t)

∥∥
X
.

(6.6)
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We consider the time derivative of the discrete error. For any ΦH ∈ VH we get

mH(∂teH(t),ΦH) = mH
(
∂tu

H(t)− PH∂tu
0(t),ΦH

)
+mH

(
(PH − IH) ∂tu

0(t),ΦH

)
.

A lengthy calculation, where we rewrite the first part on the right-hand side using the effective
and HMM systems eq. (4.13) and eq. (5.13) as well as eq. (6.4), shows that the error eH itself
satisfies the differential equation

mH(∂teH(t),ΦH) + rH(eH(t),ΦH) +

� t

0

gH(t− s; eH(s),ΦH) ds+ aH(eH(t),ΦH)

= −
(
JH(t)eH(0),ΦH

)
H
+mH

(
fH(t),ΦH

)
−m0(f(t),ΦH)

+ r0
(
u0(t),ΦH

)
− rH

(
IHu0(t),ΦH

)
+ a
(
u0(t),ΦH

)
− aH

(
IHu0(t),ΦH

)
+

� t

0

g0
(
t− s;u0(s),ΦH

)
ds−

� t

0

gH
(
t− s; IHu0(s),ΦH

)
ds

+m0
(
(M0)−1J0(t)u0,ΦH

)
−mH

(
(MH)−1JH(t)IHu0,ΦH

)
+mH

(
(PH − IH) ∂tu

0(t),ΦH

)
= −

(
JH(t)eH(0),ΦH

)
H
+mH

(
f̃H(t),ΦH

)
,

for the right-hand side f̃H given as

mH
(
f̃H(t),ΦH

)
= mH

(
fH(t)− PHf(t),ΦH

)
+mH

(
Λ
(
R0,RH

)
u0(t),ΦH

)
+mH

(
Λ(A,AH)u0(t),ΦH

)
+mH

(� t

0

Λ
(
G0(t− s),GH(t− s)

)
u0(s) ds,ΦH

)
+mH

(
Λ
(
J0(t),JH(t)

)
u0,ΦH

)
+mH

(
(PH − IH) ∂tu

0(t),ΦH

)
.

At this point we use the stability estimate eq. (5.15) for this discrete system. Note that we

need f̃ ∈ L∞ (0, t; VH), which is the case due to the assumption on u0 and the properties of the
parameters. Along with eq. (6.6) we showed the result.

We proceed by bounding each expression in eq. (6.5) separately, which yields conformity errors,
that are given as differences in the bilinear forms. Hence, for discrete functions and t ∈ [0, T ] we
define

△m(·, ·) := m0(·, ·)−mH(·, ·) , △a(·, ·) := a(·, ·)− aH(·, ·) ,
△r(·, ·) := r0(·, ·)− rH(·, ·) , △j(t; ·, ·) :=

(
J0(t)·, ·

)
−
(
JH(t)·, ·

)
H
,

△g(t; ·, ·) := g0(t; ·, ·)− gH(t; ·, ·) . (6.7)

In [24, Lemma 2.11, Theorem 3.3] two expressions from eq. (6.5) are already estimated.

Lemma 6.7 ([24, Lemma 2.11, Theorem 3.3]). Let Φ ∈ Z. Then there exists a constant C > 0
such that

∥(PH − IH)Φ∥VH
≤ C ∥(id−IH)Φ∥X +max∥ΨH∥VH

=1 |△m(IHΦ,ΨH)| .

Moreover, there exists another constant C > 0 such that

∥Λ(A,AH)Φ∥VH
≤ C ∥(id−IH)Φ∥Vmac +max∥ΨH∥VH

=1 |△a(IHΦ,ΨH)| .
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Observe that this gives an estimate in terms of an interpolation error and a conformity error.
Following the approach in [24, Theorem 3.3] combined with the boundedness of the parameters
yields the following results with a similar structure.

Lemma 6.8. Let Φ ∈ Z. Then there exists a constant C > 0 such that∥∥Λ(R0,RH
)
Φ
∥∥
VH

≤ C ∥(id−IH)Φ∥X +max∥ΨH∥VH
=1 |△r(IHΦ,ΨH)|VH

.

Proof. We follow the proof of [24, Theorem 3.3], which yields∥∥Λ(R0,RH
)
Φ
∥∥
VH

= max∥ΨH∥VH
=1

(
r0((id−IH)Φ,ΨH) +△r(IHΦ,ΨH)

)
.

The bound eq. (4.10) yields the result.

Next, we turn our focus to the time-dependent parameters and the corresponding forms, where
we start with a result concerning the convolution.

Lemma 6.9. For all s ∈ [0, T ], Φ ∈ C1 ([0, s]; Z) there exists a constant C > 0 such that∥∥∥∥� s

0

Λ
(
G0(s− r),GH(s− r)

)
Φ(r) dr

∥∥∥∥
VH

≤ C ∥(id−IH)Φ∥L∞(0,s;X) +max∥ΨH∥VH
=1

∣∣∣∣� s

0

△g(s− r; IHΦ(r),ΨH) dr

∣∣∣∣ .
Proof. Following [24, Theorem 3.3] we obtain from eqs. (5.11), (6.4) and (4.9d)∥∥∥∥� s

0

Λ
(
G0(s− r),GH(s− r)

)
Φ(r) dr

∥∥∥∥
VH

= max
∥ΨH∥VH

=1
mH

(� s

0

Λ
(
G0(s− r),GH(s− r)

)
Φ(r) dr,ΨH

)

= max
∥ΨH∥VH

=1

 s�

0

g0(s− r; (id−IH)Φ(r),ΨH) dr +

s�

0

△g(s− r; IHΦ(r),ΨH) dr


From the t-independent bound in eq. (4.11) we obtain the result.

The next lemma gives an estimate for the error that stems from the extra source term.

Lemma 6.10. For all s ∈ [0, T ] and Φ ∈ Z there is a constant C > 0 such that∥∥Λ(J0(s),JH(s)
)
Φ
∥∥
VH

≤ C ∥(id−IH)Φ∥X +max∥ΨH∥VH
=1 |△j(s; IHΦ,ΨH)| .

Proof. With the boundedness of J0(s) independent of s from Lemma 4.4 and the same techniques
as above we get the proposed estimate.

Using the inequalities from Lemmas 6.7 to 6.10 in eq. (6.5) yields an estimate that consists of
conformity errors, errors in the data, and interpolation errors. The latter ones can be bounded
using the property of the interpolation IH from Theorem 5.1, i.e.,

∥(id−IH)u∥L∞(0,t;Vmac) ≤ CHℓ |u|L∞(0,t;Z) ,

∥(id−IH)∂tu∥L∞(0,t,X) ≤ CHℓ |∂tu|L∞(0,t;Z) .
(6.8)

Hence, we have to analyze the conformity errors, i.e., the expressions with △. First we recall
[25, Lemma 4.1] where the conformity errors in m and a have been analyzed.
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Lemma 6.11 ([25, Lemma 4.1]). Assume that the corrector wM satisfies∣∣wM(x̄, ·)
∣∣
Hk+1(Y δ)

≤ Cδ−k
√

|Y δ| for all quadrature points x̄ ,

for a constant C > 0 and furthermore

M0|K ∈ Wℓ+1,∞ (K;Rn×n) , ∥∥M0
∥∥
Wℓ+1,∞(K)

≤ C ,

for all K ∈ TH with a different constant C > 0 independent of δ and H. Then, for all Φ ∈ Z
and ΨH ∈ VH we get

|△m(Φ,ΨH)| ≤ C

(
Hℓ +

(
h

δ

)2k
)
∥Φ∥Z ∥ΨH∥X , |△a(ΦH ,ΨH)| = 0 .

The bounds on the remaining conformity errors are obtained similarly to Lemma 6.11.

Lemma 6.12. Assume that wM, w(0) and w0(0) satisfy∣∣wM
j (x̄, ·)

∣∣
Hk+1(Y δ)

, |wj(0, x̄, ·)|Hk+1(Y δ) ,
∣∣w0

j (0, x̄, ·)
∣∣
Hk+1(Y δ)

≤ Cδ−k
√
|Y δ| ,

for every quadrature point x̄ and a constant C > 0 and furthermore

M0|K ,R0|K ∈ Wℓ+1,∞ (K;Rn×n) , ∥∥M0
∥∥
Wℓ+1,∞(K)

,
∥∥R0

∥∥
Wℓ+1,∞(K)

≤ C ,

for all K ∈ TH with a constant C > 0 independent of δ and H. Then, for all Φ ∈ Z, ΨH ∈ VH

and t ∈ [0, T ] we get

|△r(Φ,ΨH)| ≤ C

(
Hℓ +

(
h

δ

)2k
)
∥Φ∥Z ∥ΨH∥X , (6.9)

|△g(t;Φ,ΨH)| ≤ C

(
Hℓ + (1 + t)

(
h

δ

)k
)
∥Φ∥Z ∥ΨH∥X , (6.10)

|△j(t;Φ,ΨH)| ≤ C

(
Hℓ + (1 + t)

(
h

δ

)k
)
∥Φ∥Z ∥ΨH∥X . (6.11)

Proof. The first bound in eq. (6.9) follows as in [25, Lemma 4.1] using the boundedness of R0

and Lemma 6.2. For the bounds in eq. (6.10) and eq. (6.11) we again use the proof of [25, Lemma
4.1] combined with the uniform estimates from Lemmas 4.4 and 6.4.

With all preliminary results at hand, we prove the semi-discrete error estimate.

Theorem 6.13. Let u0 and uH be the solutions of eqs. (4.13) and (5.13) respectively and assume
that u0 ∈ C1 ([0, T ]; Z) and uH ∈ C0 (0, T ; VH). Under the assumptions of Lemma 6.12 with
CGH(t) as in eq. (5.16) the error of the semi-discrete HMM-solution is bounded by

∥∥uH(t)− u0(t)
∥∥
X
≤ CeCGH (t) (1 + t)

[
∥u0,H − IHu0∥VH

+
∥∥fH − PHf

∥∥
L∞(0,t;VH)

+

(
Hℓ +

(
h

δ

)2k
)[∥∥u0

∥∥
L∞(0,t,Z)

+
∥∥∂tu0

∥∥
L∞(0,t,Z)

]
+ (1 + t)

(
Hℓ + t

(
h

δ

)k
)∥∥u0

∥∥
L∞(0,t;Z)

]
,
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Proof. The starting point is the estimate eq. (6.5) combined with Lemmas 6.7 to 6.10. As a first
step, we use the interpolation error estimates from eq. (6.8). Hence, we are left with conformity
errors but the arguments IHu0 and IH∂tu0 are not in the space Z. In order to apply Lemmas 6.11
and 6.12, we follow [25, Theorem 4.5]. The procedure is similar for all the remaining expressions.
Therefore, we only consider △g, defined in eq. (6.7). For r, s ∈ [0, t] and ΨH ∈ VH we find∣∣△g(s; IHu0(r),ΨH

)∣∣ ≤ ∣∣g0(s; IHu0(r),ΨH

)
− g0

(
s;u0(r),ΨH

)∣∣
+
∣∣g0(s;u0(r),ΨH

)
− gH

(
s;u0(r),ΨH

)∣∣
+
∣∣gH(s; IHu0(r),ΨH

)
− gH

(
s;u0(r),ΨH

)∣∣
≤ C

∥∥(IH − id)u0(r)
∥∥
X
∥ΨH∥X +

∣∣△g(s;u0(r),ΨH

)∣∣
+ C

∥∥(IH − id)u0(r)
∥∥
VH

∥ΨH∥VH
.

In the last inequality we used the boundedness of the bilinear forms g0 and gH given in eq. (4.11)
and Lemma 5.6. With this, [25, Lemma 4.4] and the properties of the interpolation in eq. (5.2)
we get

max
∥ΨH∥VH

=1

∣∣∣∣∣∣
s�

0

△g
(
s− r; IHu0(r),ΨH

)
dr

∣∣∣∣∣∣ ≤
s�

0

C
∥∥(IH − id)u0(r)

∥∥
VH

dr

+

s�

0

C

√
CM

α

∥∥(IH − id)u0(r)
∥∥
X

dr + max
∥ΨH∥VH

=1

s�

0

∣∣△g(s− r;u0(r),ΨH

)∣∣ dr
≤

s�

0

CHℓ
∣∣u0(r)

∣∣
Z
dr + max

∥ΨH∥VH
=1

s�

0

∣∣△g(s− r;u0(r),ΨH

)∣∣ dr .
Here the result from eq. (6.10) is applicable in the last expression. This yields

max
∥ΨH∥VH

=1

∣∣∣∣� s

0

△g
(
s− r; IHu0(r),ΨH

)
dr

∣∣∣∣
≤
� s

0

CHℓ
∣∣u0(r)

∣∣
Z
dr +

� s

0

C

(
Hℓ + (1 + s− r)

(
h

δ

)k
)∥∥u0(r)

∥∥
Z
dr ,

and finally

sup
s∈[0,t]

max
∥ΨH∥VH

=1

∣∣∣∣� s

0

△g
(
s− r; IHu0(r),ΨH

)
dr

∣∣∣∣
≤
� t

0

(
CHℓ + C(1 + t− r)

(
h

δ

)k
)

dr
∥∥u0

∥∥
L∞(0,t;Z)

.

With this bound and similar ones for the other conformity errors we get the final semi-discrete
error estimate.

7 Conclusions

Within this paper we derived a semi-discrete error estimate for the HMM applied to a general class
of dispersive Maxwell systems. We provide bounds for the micro error and proved a rigorous error
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estimate. Along the examination a crucial H2 estimate for the Sobolev equation and the well-
posedness of the microscopic and macroscopic problems has been shown. Numerical experiments,
which shall be provided in the future, suggest that an improvement of the rate in Lemma 6.4
seems to be possible. This has to be addressed by forthcoming research.
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