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Abstract— In distributed estimation, several sensor nodes
provide estimates of the same underlying dynamic process.
These estimates are correlated but due to local processing, the
correlations are only partially known or even unknown. For a
consistent fusion of the local estimates, the correlation needs
to be properly treated. Many methods provide consistent but
overly conservative fusion results. In this paper, we propose
to learn partial knowledge about the correlation in the form
of correlation sets and exploit this knowledge to provide less
conservative estimates. We use a simple numerical example to
demonstrate the advantages of the proposed approach in terms
of quality and consistency and how the quality of the fused
estimate increases with time.

I. INTRODUCTION

Considered Problem: Distributed sensor networks can
cooperatively perform various tasks [1]. While centralized
processing of measurements can be done optimally, the
local processing into state estimates has proven to be more
robust, flexible, and scalable [2]. However, the fusion of
state estimates suffers from the track-to-track correlation
problem [3] that needs to be addressed to ensure consistent
fusion results. This paper considers the problem of fusing
the state estimates from two discrete-time linear Gaussian
systems with two completely synchronized sensors with
linear Gaussian observations.

State-of-the-Art: Over the last four decades, several
methods for distributed estimation have been proposed [4],
such as the information form of them Kalman filter [5], [6],
[7]. When fusing state estimates, correlations between the
local tracks have to be accounted for [8] to ensure consis-
tency of the fused estimate. Furthermore, [9] pointed out that
the fusion configuration plays a vital role in the quality of
the fused estimate. Covariance intersection [10], [11], [12]
is commonly used in distributed estimation tasks because it
ensures consistent fusion results in all circumstances. The
relationship between this upper bound and the Minkowski
sums of ellipsoids is discussed in [13]. Since covariance
intersection tends to produce estimates that are often too
conservative, other approaches propose closer bounds [14],
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[15], [16], to exploit implicit knowledge about partial knowl-
edge [17], or to exploit known independent knowledge [18].
Inverse covariance intersection [19], [20] is another method
that aims to exploit partial knowledge to achieve tighter
bounds. Recently, several methods to reconstruct cross-
covariances have been proposed that include methods using
an ensemble [21], samples [22], [23], [24] or square-root
decompositions [25], [26]. However, these methods suffer
from increased computation and communication require-
ments, which is prohibitive in many distributed estimation
tasks. Nonetheless, reconstruction methods can find patterns
in repetitive fusion tasks and help learn correlations between
state estimates over time.

Contribution: This paper explores the learning of par-
tial knowledge about correlated estimation errors of state
estimates in distributed estimation. We focus on learning
the bounds of the sets of correlations and using this partial
information to improve the quality of the fused estimates.
We introduce an analytic and a simulation approach to learn
the correlation coefficients suitable for different types of
uncertainty about the correlation. Furthermore, we discuss
bounding techniques based on [14], [15] that can provide
tight bounds for the estimation errors. See also [27], where
similar approaches for the exploitation of partial knowledge
are proposed. We focus on the fusion of two state estimates
and a linear system description. The numerical evaluation
example is chosen to allow for an intuitive understanding of
the learned correlation coefficients.

Outline: Sec. II formulates the problem of fusing two
state estimates with unknown correlation. In Sec. III, we
consider different methods to learn correlated estimation
errors between distributed estimators and possible ways to
exploit this knowledge to improve the fusion result. We
highlight the proposed approach by using a simple numerical
experiment in Sec. IV. Finally, our findings are summarized
in Sec. V.

II. PROBLEM FORMULATION

Consider the discrete-time linear time-variant stochastic
dynamic system with time index k

xk+1 = Akxk + wk , wk ∼N (0,Qk) , (1)

zik = Hi
kxk + vik , vik ∼N (0,Ri

k) , (2)

where xk is the system state, wk is the Gaussian zero-mean
process noise, zik is the measurement from the i-th sensor
node, vik is the Gaussian zero-mean measurement noise. Ak

and Hi
k are matrices of corresponding dimensions and the

initial condition is x0 ∼ N (x̂0|−1,P0|−1). The covariance



matrices Qk and Ri
k are assumed to be known and positive

definite. The noises are white, mutually independent, and
independent of the initial condition. The goal of state esti-
mation is to infer the state xk given all the information up
to time instant k consisting of the available measurements.

A. Estimation in Local Sensor Nodes

In distributed estimation, each sensor node processes its
own measurements to obtain the local state estimate x̂ik|k and
corresponding error covariance matrix Pi

k|k. The estimates
are communicated between nodes or sent to the fusion center,
where the estimates are fused to obtain better estimates.

For the linear system (1) and (2), the estimate x̂ik|k is
computed by the Kalman filter by performing a prediction
step

x̂ik|k−1 =Akx̂
i
k−1|k−1 ,

Pi
k|k−1 =AkP

i
k−1|k−1(Ak)>+Qk

and incorporating a local measurement

x̂ik|k= x̂ik|k−1+Ki
k(zik−x̂ik|k−1),

Pi
k|k=(I−Ki

kH
i
k)Pi

k|k−1(I−Ki
kH

i
k)>+Ki

kR
i
k(Ki

k)>,

where the Kalman gain Ki
k is given by

Ki
k = Pi

k|k−1H
i
k

(
Hi
kP

i
k|k−1(Hi

k)> + Ri
k

)−1

.

This local estimate can be improved by fusing it with the
estimate of another sensor node.

B. Fusion of State Estimates

Once a sensor node receives the estimate and the corre-
sponding covariance matrix of another sensor node, they are
fused with the local estimate to increase its quality. The two
estimates x̂i and x̂j have joint error covariance

J =

[
Pi Pij

Pji Pj

]
,

where the cross-covariance Pij = (Pji)> is due to common
prior information, common process noise, and double count-
ing of measurement information. Note that the time indices
were dropped for the convenience purposes. The estimates
are fused using the linear combination

x̂f = Fix̂i + Fj x̂j with Fi + Fj = I,

where Fi and Fj are fusion gain matrices and I is the identity
matrix.

The optimal fusion gain can be calculated according to the
Bar-Shalom/Campo (BSC) formula [3]

Fj = (Pi −Pij)(Pi + Pj −Pij −Pij)−1, (3)

where the cross-covariance Pij has to be known. It is usually
non-zero and generally hard to keep track of it.

C. Cross-Correlation

Instead of tracking the cross-covariance exactly, one can
strive to obtain some partial knowledge about it, e.g., in the
form of a bounded set. A conservative natural bound is given
by positive semi-definiteness of the joint error covariance
J, which is used by CI [13]. However, in this paper we
are interested in a smaller subset for bounding the possible
cross-covariances.

For easier representation and learning of the joint error
covariance J, one may wish to work with its normalized
version in the form of the cross-correlation matrix obtained
by a decomposition

J =

[
Si 0
0 Sj

] [
I Ω

Ω> I

] [
Si 0
0 Sj

]>
, (4)

where Si and Sj are obtained by the Cholesky decomposi-
tions of the covariances Pi and Pj , respectively. The matrix
Ω containing the correlation coefficients (CCs) satisfies the
natural bound

Ω Ω> ≤ I

for (4) being positive definite and equals to

Ω = (Si)−1Pij(Sj)−>. (5)

The advantage of the CC is that it provides intuitive in-
formation about the correlation. Furthermore, compared to
the cross-covariance, a single CC value is naturally bounded
between [−1, 1]. This paper focuses on learning a set of CCs
smaller than the set given by the natural bounds. The aim is
to utilize this information in the sensor nodes for the fusion
together with the error covariances sent by the sensor nodes.
As a result, the quality of the fused estimate should become
better compared to CI using just the natural bounds.

III. LEARNING AND EXPLOITING
SETS OF CORRELATION COEFFICIENTS

This section discusses i) the reasons for the CCs being
unknown (in addition to the difficulty of keeping track of
them), ii) the means to learn some information about the CC
and derive an upper bound, and iii) exploiting the learned
information for fusing local estimates.

A. Uncertainty of Correlation Coefficient

In this paper, the information about the CC will exclusively
be considered in the form of its lower and upper bounds.
The reason for the CC uncertainty may lie either in the
system model uncertainty or in the uncertainty of the data
processing. The system model uncertainty can be caused
by unknown values of the dynamics or measurement model
parameters or unknown initial conditions. Let M denote a
system model consisting of the matrices Ak, Hk, Qk, Rk,
and P0 and let M denote the set of all models that are
admissible, i.e., the models that correspond to the limited
knowledge of the designer. Then, M ∈ M expresses the
system model uncertainty. The set M is thus specified
implicitly. Note that the system model uncertainty could



also emerge if a node uses a linear model obtained by
linearization of a nonlinear one, and the linearization point
is unknown to the other nodes. The CC uncertainty due to
data processing can be caused by communication problems
such as packet losses when a node may not receive the
estimate from its neighbors or by uncertain/unknown network
topology. The CC uncertainty can also be used to conve-
niently express the accuracy of the approximations involved
in the fusion/estimation design. If a time-invariant model
is considered, for example, the fusion can be tuned for a
steady-state value of CC while it is also used in the transition
process. The CC uncertainty can be used as an efficient tool
to reflect this discrepancy.

B. Learning Correlation Coefficient

In principle, two approaches can be followed to obtain a
bound for the CC. The first approach is based on an analysis
of CC values for all system models, while the second one
uses Monte Carlo simulations of the system.

Analytical approach: In the analytical approach, for each
system model M ∈M, the cross-covariance matrices of the
prediction estimation error Pij

k|k−1,

Pij
k|k−1 = E[(x̂ik|k−1 − xk)(x̂jk|k−1 − xk)>]

= Ak−1P
ij
k−1|k−1A

>
k−1 + Qk−1, (6)

and the cross-covariance matrices of the filtering estimation
error Pij

k|k,

Pij
k|k = E[(x̂ik|k − xk)(x̂jk|k − xk)>]

= (I−Ki
kH

i
k)Pij

k|k−1(I−Kj
kH

j
k)>, (7)

are calculated. Then, the information about the CC matrix is
obtained from (5).

Note that if the set M is infinite or too large, the bounds
can be obtained approximately over a convenient subset
(e.g., grid) of models. Such an approximation may lead to a
slightly inconsistent fusion. Further, note that the techniques
proposed in [24], [25], [26] belong to this approach. This
approach is particularly suitable for the system model uncer-
tainty of the CC.

Simulation approach: This approach consists of perform-
ing Monte Carlo simulations of the whole system, including
the local estimation up to the next fusion step. The situation
when a node does not receive the estimate from its neighbor
can be efficiently modeled by an uncertain initial condition.
The information about the CC is learned from the knowledge
of the simulated state and the simulated measurement that
leads to simulated estimates and corresponding estimate
errors.

Let εi(`) denote an estimation error of the n-th element
of the state at the `-th Monte Carlo simulation

εi(`) = e>n
(
xk(`)− x̂ik|k(`)

)
,

where en is the n-th column of the identity matrix I of the
corresponding dimension. Note that the element index n and
time index k were dropped in εi(`) for convenient purposes.

Then, given the samples of the errors of the i-th and j-th state
estimates, their sample (co-)variances si = 1

L

∑L
`=1[εi(`)]2,

sj = 1
L

∑L
`=1[εj(`)]2, and si,j = 1

L

∑L
`=1 ε

i(`)εj(`) can be
used to obtain the sample CC as

ci,j =
si,j√
sisj

. (8)

The uncertainty of the sample CC estimate in terms of
the confidence interval can be calculated using the Fisher
z-transform [28]. Since the probability distribution of the
correlation becomes extremely skewed towards the natu-
ral bounds of the correlation coefficients, the Fisher z-
transformation reduces this skewed curve to approximate a
normal distribution. The limits of the confidence intervals are
then treated as the CC bounds. Note that for large values of
L, the sample CC estimate variance is almost identical [29]
to

σ2
i,j =

(
1− (ci,j)2

)2
L− 2

. (9)

While (9) is simpler for specification of confidence intervals,
it does lead to probability mass outside of the admissible
area of CC. The Fisher z-transform does not suffer from this
problem.

The simulation approach described above can be used
for learning the CC matrix using confidence sets element-
wise only. This is a significant difference from the analytical
approach, which can naturally work with whole CC matrices.

The simulation approach is expensive in terms of com-
munication and computing power. The approach is suitable
for CC uncertainty due to data processing and can also
be employed for a generalization of the CC learning and
exploiting concept to nonlinear system estimation. Note that
the learning procedures proposed in [22], [23] stay on the
borderland between the analytical and simulation approaches.

C. Exploiting Correlation Coefficient

While the previous sections dealt with implicit specifi-
cation of the admissible set M, this section assumes that
the implicit specification has already been transformed to an
explicit one. At this point, it is irrelevant whether the explicit
specification of the admissible set has been obtained from the
model or by a learning procedure.

Assume the learned information about the CC matrix is
available in the form

Ω ∈
{
Tij + TiΛ(Tj)>

∣∣I− ΛΛ> ≥ 0
}
, (10)

where Λ, Ti, Tj , and Tij are matrices of appropriate dimen-
sions and the matrices Ti and Tj are full column rank. Also,
suppose the decompositions Si and Sj of error covariance
matrices Pi and Pj , respectively, are provided by the sensor
nodes. The parametrization of the set (10) corresponds to the
split CI fusion [18], which assumes the joint error covariance
J equals to a sum of error covariance term with known
correlation denoted as Jk and error covariance with unknown
correlation denoted as Ju,

J = Jk + Ju ,



where

Jk =

[
Pi−SiTi(Ti)>(Si)> SiTij(Sj)>

Sj(Tij)>(Si)> Pj−SjTj(Tj)>(Sj)>

]
and

Ju =

[
SiTi(SiTi)> SiTiΛ(Tj)>(Sj)>

SjTjΛ>(Ti)>(Si)> SjTj(SjTj)>

]
,

where I − ΛΛ> ≥ 0. The upper bound for the joint error-
covariance is then parameterized by µ > 0 as[

Pi+µSiTi(Ti)>(Si)> SiTij(Sj)>

Sj(Tij)>(Si)> Pj+ 1
µSjTj(Tj)>(Sj)>

]
. (11)

The upper bound (11) is then used instead of the unknown
joint error covariance J and its elements are used for the
fusion (3).

A special case of (10) has been used in [15] considering

Ω ∈
{
Tij + ρΛ

∣∣I− ΛΛ> ≥ 0
}
,

where 0 ≤ ρ ≤ 1 is a known parameter. Then, the upper
bound of the joint error covariance J is[

Pi(1 + ρµ) Tij

(Tij)> Pj(1 + ρ 1
µ )

]
.

Because of the centering matrix Tij , this method can be seen
as an asymmetric bound. The scalar value ρ is bounding the
set of admissible CC matrices.

The above considerations dealt with the fusion of two es-
timates. For fusion of more than two estimates, the following
aspects have to be investigated. A CC matrix Ω for each pair
of estimates has to be specified. Some combinations of the
CC matrices need not lead to a positive semidefinite joint
matrix J. Construction of the optimal upper bounds for J is
unclear when more than two estimates are fused.

IV. EVALUATION

We now discuss a numerical example of learning the CC
matrix using Monte Carlo simulations. Kalman filters per-
form local estimation and then communicate their estimates
to a central fusion node that performs the fusion. We will use
the Markov assumption about the estimators in which both
estimators’ output and the correlation of the state estimates
only depend on the input of the local filters, which is the
initial covariance matrix. Furthermore, we assume that the
employed local system and measurement models of system
set M are unknown. Therefore, we can only estimate the
correlation of the state estimates based on the output of the
local estimators and the estimation error.

We will first examine the problem of estimating the
unknown CC matrix between two state estimates over time
using only a single known input covariance matrix P0. This
procedure is then extended to learning the CC matrix when
applying different input covariance matrices generated with
a random scaling factor in a known range.
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(a) Estimated c1,1.
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(b) Estimated c1,2.

Fig. 1: Estimated correlation coefficients c1,1 and c1,2 (blue)
and the estimated 95% confidence interval ρ (gray) with
increasing number of training covariances compared to the
analytically calculated correlation coefficients %1,1 and %1,2

(red) for a single training covariance.

A. Learning Correlations for Single Input Covariance

We consider two sensor nodes A and B that both estimate
the state of a discrete-time time-invariant linear stochastic
dynamic system with

A=

[
1 ∆T
0 1

]
, Q=0.1

[
∆T 3

3
∆T 2

2
∆T 2

2 ∆T

]
, ∆T =0.1 .

Both sensor nodes use a linear measurement model with
measurement matrices HA = HB = I. Each observation
is corrupted by additive white Gaussian noise with variances

RA=diag(0.52, 0.52) , RB=diag(52, 12) .

Both Kalman filters of the local sensor nodes are initialized
with the same input covariance matrix P0 = [1, 0.5; 0.5, 1].
Afterward, they execute one prediction step and one mea-
surement update. The local estimates are then sent back to
the fusion center to be fused. Sensor node A sends the
full state estimate x̂A and covariance PA to the fusion
center while node B sends only its first state x̂B1 and the
belonging variance PB

11. The joint covariance matrix as
already discussed in (4) is given as

J =

[
SA 0
0 SB

] 1 %A %1,1

%A 1 %1,2

%1,1 %1,2 1

[SA 0
0 SB

]>
,

where SA is the square-root decomposition of the elements
on the main diagonal of PA and SB is the square-root
of PB

11. The CC %A is given by the covariance matrix
PA. The unknown CCs %1,1 and %1,2 describe how the
two state estimates are correlated. In the beginning, no



knowledge about the fusion is available to the fusion center,
and, therefore, covariance intersection (CI) is used to obtain
consistent fusion results. Using the simulated ground truth
and the state estimates, we can estimate the sample CC
over time by using (8). Further, the uncertainty of every CC
estimate σ2

i,j is calculated using (9). The resulting estimated
CCs c1,1 and c1,2 and the 95% confidence interval of the
estimate is shown in Fig. 1. In the beginning, the uncertainty
is large and reduces over time. However, because of the naı̈ve
calculation of the uncertainty, the values violate the natural
bounds of the CC matrix in the beginning, when only a small
number of estimations are available.

For the fusion, we decided to exploit the partial knowledge
by using the asymmetric bounds described by [15] as already
discussed in Sec. III-C. This asymmetric bound requires the
centering matrix TAB and the scalar parameter ρ. Because
we estimate two CCs, ρ is equal to a circle that includes all
admissible CCs. We calculate ρ by using the largest singular
value of the CC estimates

ρ = 1.96
√

max(svd
(
σ2)
)

and calculating the 95% confidence interval. In our case this
is equal to taking the largest variance. The estimated CCs c1,1

and c1,2 are the entries of the off-diagonal matrix TAB =
[c1,1, c1,2]>.

The improvement of the fusion result over time after
L = 50 Monte Carlo simulations using the estimated CCs
is shown in Fig. 2. The mean squared error (MSE) in
Fig. 2a drops immediately to a value close to the optimal
fusion using the Bar-Shalom/Campo (BSC) formula with the
analytically calculated cross-covariance using (6) and (7).
Covariance Intersection (CI) shows a slightly higher MSE.
The consistency of the fused estimate is evaluated using the
averaged normalized estimation error squared (ANEES) [30],
where the ANEES of time step k and Monte Carlo simulation
` is defined as

ε̄k =
1

nL

L∑
`=1

(
xk(`)− x̂f

k(`)
)>

Pf(`)−1
(
xk(`)− x̂f

k(`)
)
,

with the system state xk, and the fused estimate x̂f and
covariance matrix Pf of state dimension n. The ANEES
indicates whether the estimated uncertainty matches the
actual MSE. Therefore, values above 1 indicate an incon-
sistent estimator which underestimates the uncertainty and
values below 1 indicate an conservative estimator which
overestimates the uncertainty. In Fig. 2b we can see that
CI shows a considerably lower ANEES, which indicates that
the uncertainty is overestimated. The fusion using the asym-
metric bound (CIasym) shows over-bounding in the beginning
when the uncertainty is outside of the natural bounds of
the CC matrix but improves significantly over time when
ρ becomes smaller.

B. Learning Correlations for Several Input Covariances

In the second example, we want to explore learning
the CC matrix with different input covariances and then
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(a) Average MSE of fusion result.
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(b) Average ANEES of fusion result.

Fig. 2: Comparison of the fusion results of different algo-
rithms for 50 Monte Carlo simulations, moving average over
the last 200 values.

interpolate between the learned data points. We generate a
set of covariance matrices with linear scaling factor P0 =
p[1, 0.5; 0.5, 1], where p is randomly chosen between pmin =
0.01 and pmax = 1. As in the first example, the covariance
matrix is used to initialize the local Kalman filters, which
again execute one prediction and one filtering step and
send their state estimates back to the fusion center. For
each simulation run, we save the scaling value p and the
estimation errors. For the estimation of c1,1 and c1,2, we use
a search radius of r = 0.01 to find data points with similar
scaling factor p and use the acquired estimation errors for
the estimation of the CCs. Over time, more data is available,
and thus the uncertainty of the CC estimates decreases, as
can be seen in Fig. 4. The plots show that the CC estimates
are very close to the analytically calculated CCs.

We also simulate the improvement of the fusion result
over time which can be seen in Fig. 3. CI does show a
higher MSE and is more conservative than the optimal fusion
and the asymmetric bounds using the estimated CCs. These
bounds are close to the performance of CI in the beginning
but approach the fusion result of the optimal fusion over time
as more data points are available.

V. CONCLUSION

This paper explored different approaches to learning par-
tial knowledge about correlations in distributed estimation
and proposed methods to bound sets of possible CCs to
obtain consistent estimates. A natural progression of this
work is to investigate the estimation of CC matrices to ensure
that the natural bounds are not violated. A possible way to
achieve this might be estimating CC matrices directly in the
correlation domain or a suitable space that naturally only
allows admissible values.
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Fig. 3: Comparison of the fusion results of different algo-
rithms with improved partial knowledge over time, moving
average over the last 1000 values.

This paper also showed that the proposed bounding tech-
nique using one scalar value is limited in its performance and
should be developed further to provide even tighter bounds.
The topic of transforming the set of admissible models to a
set of correlations should also be investigated in the future.
Future research should be conducted to investigate how to
use the sets of CC matrices directly instead of bounding
them, providing even less conservative results. Finally, the
topic of transforming the set of admissible models to a set
of correlations should also be investigated in the future.
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