Integrating ULTRA and Trip-Based Routing

Jonas Sauer
Karlsruhe Institute of Technology (KIT), Germany
jonas.sauer2@kit.edu

Dorothea Wagner
Karlsruhe Institute of Technology (KIT), Germany
dorothea.wagner@kit.edu

Tobias Ziindorf
Karlsruhe Institute of Technology (KIT), Germany

zuendorf@kit.edu

—— Abstract
We study a bi-modal journey planning scenario consisting of a public transit network and a transfer
graph representing a secondary transportation mode (e.g., walking or cycling). Given a pair of source
and target locations, the objective is to find a Pareto set of journeys optimizing arrival time and
the number of required transfers. For public transit networks with a restricted, transitively closed
transfer graph, one of the fastest known algorithms solving this bi-criteria problem is Trip-Based
Routing [26]. However, this algorithm cannot be trivially extended to unrestricted transfer graphs.
In this work, we combine Trip-Based Routing with ULTRA [5], a preprocessing technique that allows
any public transit algorithm that requires transitive transfers to handle an unrestricted transfer
graph. Since both ULTRA and Trip-Based Routing precompute transfer shortcuts in a preprocessing
phase, a naive combination of the two leads to a three-phase algorithm that performs redundant
work and produces superfluous shortcuts. We therefore propose a new, integrated preprocessing
phase that combines the advantages of both and reduces the number of computed shortcuts by up to
a factor of 9 compared to a naive combination. The resulting query algorithm, ULTRA-Trip-Based
is the fastest known algorithm for the considered problem setting, achieving a speedup of up to 4
compared to the fastest previously known approach, ULTRA-RAPTOR.

2012 ACM Subject Classification Theory of computation — Shortest paths; Mathematics of com-
puting — Graph algorithms; Applied computing — Transportation

Keywords and phrases Algorithms, Journey Planning, Multi-Modal, Public Transportation
Digital Object Identifier 10.4230/0OASIcs.ATMOS.2020.4
Supplementary Material Code is available at https://github.com/kit-algo/ULTRA-Trip-Based.

Funding This research was funded by the DFG under grant number WA 654123-2.

Acknowledgements We thank Sascha Witt for many fruitful discussions about Trip-Based Routing.

1 Introduction

Research on algorithms for journey planning in both road and public transit networks has seen
remarkable advances in recent years [3]. Many algorithms have been developed that enable
efficient journey planning in either type of network, but exceedingly few of them are capable
of efficient journey planning in a combined multi-modal network. Recently, the ULTRA [5]
approach was introduced, which promises to extend most public transit journey planning
algorithms to handle multi-modal networks. In this work we consider the combination of
ULTRA and Trip-Based Public Transit Routing [26], a very efficient algorithm for public
transit networks that on its own cannot handle multi-modal networks. We demonstrate that
the naive combination of these two algorithms, i.e., using the output of ULTRA as input
for the Trip-Based approach, indeed results in an efficient multi-modal journey planning

© Jonas Sauer, Dorothea Wagner, and Tobias Ziindorf;

licensed under Creative Commons License CC-BY
20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020).
Editors: Dennis Huisman and Christos D. Zaroliagis; Article No. 4; pp. 4:1-4:15

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jonas.sauer2@kit.edu
mailto:dorothea.wagner@kit.edu
mailto:zuendorf@kit.edu
https://doi.org/10.4230/OASIcs.ATMOS.2020.4
https://github.com/kit-algo/ULTRA-Trip-Based
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

4:2

Integrating ULTRA and Trip-Based Routing

algorithm. However, we observe that the two algorithms can be combined on a much deeper
level, as they are both based on the precomputation of shortcuts. Through careful algorithm
engineering, we develop a truly integrated version of the ULTRA-Trip-Based algorithm,
which significantly reduces the number of required shortcuts. Using this approach, we are
able to outperform the previously fastest multi-criteria multi-modal algorithm.

Related Work. Journey planning algorithms for public transit networks can generally be
divided into graph-based approaches and algorithms that operate directly on the timetable and
exploit its schedule-based structure [3]. Graph-based approaches can be further subdivided
into time-dependent [17, 14, 18, 19] and time-expanded [2, 4, 22] techniques. Notable
examples of timetable-based approaches are RAPTOR [10, 8], which partitions the timetable
into routes, Trip-Based Routing [26, 27], which operates directly on the trips in the timetable,
and CSA [11, 24], which divides the trips further into elementary connections and processes
them individually. Common to all these algorithms is that they only consider walking
and other forms of non-schedule-based transport in the form of a restricted transfer graph,
which is often required to be transitively closed. However, experiments have shown that the
availability of unrestricted walking significantly reduces travel times [25, 23, 21].

Multi-modal journey planning algorithms remove this limitation, allowing the combination
of public transit with arbitrary, unrestricted transfer graphs. These algorithms are usually
based on an existing public transit journey planning algorithm that is interleaved with an
exploration of the unrestricted transfer graph. UCCH [12] combines a time-dependent graph-
based approach with Dijkstra [13] searches on a contracted transfer graph. Similarly, MCR [7]
combines RAPTOR [10] with Dijkstra [13] searches on a contracted transfer graph. HLRaptor
and HLCSA [21], which are based on CSA [11] and RAPTOR [10], respectively, explore the
transfer graph with two-hop searches based on Hub Labeling [1]. The most recent approach
is ULTRA [5], which utilizes a preprocessing step that creates shortcuts for all intermediate
transfers, i.e., transfers between two public transit vehicles. Using these shortcuts, only initial
and final transfers have to be computed at query time, which can be done very efliciently by
using Bucket-CH [20, 15, 16], a technique for fast one-to-many searches on road networks.
This approach can be combined with many public transit algorithms. In combination with
RAPTOR, it yields the currently fastest multi-modal journey planning algorithm that can
optimize travel time and number of used trips.

2 Preliminaries

Following the notation in [5], we define a public transit network as a 4-tuple (S,7,R,G)
consisting of a set of stops S, a set of trips T, a set of routes R and a directed, weighted transfer
graph G = (V,€). A stop v € S is a location in the network where passengers can enter or exit
a vehicle. A trip T = (e, ...,€e;) € T is a sequence of stop events performed by the same
vehicle. Each of these events €; represents the vehicle of the trip stopping at a stop v(e;) € S.
The arrival time of the vehicle at this stop is denoted as 7, (€;) and the corresponding
departure time is Tqep(€;). We use T'[i] to refer to the i-th stop event in a trip T'. The trips are
partitioned into a set of routes R such that all trips of a route share the same stop sequence
and no trip overtakes another along the stop event sequence. The transfer graph G = (V,€)
consists of a set of vertices V with S C V, and a set of edges £ CV x V. Associated with
each edge e = (v, w) is a transfer time 7(e), which denotes the time required to travel from v
to w along e. The transfer graph is not required to be transitively closed, and may represent
any non-schedule-based mode of transportation, such as walking or cycling.

J. Sauer, D. Wagner, and T. Ziindorf

Given a source vertex s € V and a target vertex t € V, an s-t-journey represents the
movement of a passenger from s to ¢ through the public transit network. It consists of an
alternating sequence of trip legs (i.e., subsequences of trips) and transfers (i.e., paths in the
transfer graph). A departure buffer time has to be observed between consecutive transfers
and trip legs. For the sake of simplicity, we do not consider them explicitly in this work.
However, they are implemented as in [5]. The transfer connecting s to the first trip leg is
called the initial transfer, whereas the final transfer connects the final trip leg to t. The
remaining transfers, which occur between trip legs, are called intermediate transfers. Note
that transfers may consist of empty paths.

Problem Statement. To evaluate the usefulness of an s-t-journey J, we consider its arrival
time at ¢ and the number of used trips (i.e., the number of trip legs). We say that a journey J
weakly dominates another journey J' if J arrives no later than J’ and does not use more
trips than J’. Moreover, J strongly dominates J' if J weakly dominates J’ and .J has an
earlier arrival time or uses fewer trips than J’ (i.e., J is strictly better than J’ according to at
least one criterion, and no worse according to the other). A Pareto set is a set containing a
minimal number of journeys such that every valid journey is weakly dominated by a journey
in the set. Given a source vertex s € V, a target vertex ¢ € V and a departure time 74cp,, we
want to compute a Pareto set of s-t-journeys that depart no later than 7gcp.

Algorithms. The main algorithms discussed in this work are Trip-Based Routing and
ULTRA, which we briefly outline in the following. Trip-Based Routing [26] is a routing
algorithm for public transit networks with a transitively closed transfer graph. It optimizes
both arrival time and number of trips in a Pareto sense, as required by our problem statement.
The algorithm explores the reachable trips of the network in rounds, where each round extends
the journeys found in the previous round by another trip. Unlike RAPTOR [10], which
also works in rounds, Trip-Based Routing does not maintain arrival times at stops. Instead,
each round consists of scanning reachable trips in order to find transfers to the target or to
other trips, which are then processed in the next round. The transfers to other trips are
precomputed in a preprocessing phase by first generating all potentially relevant transfers
between stop events, and then pruning unnecessary transfers in a “transfer reduction” phase.

ULTRA [5] is a preprocessing technique which enables any public transit journey planning
algorithm designed for transitively closed transfer graphs to handle unlimited transfers
instead. This is achieved by precomputing a small number of transfer shortcuts representing
all intermediate transfers that are required to answer any query correctly. To this end, the
preprocessing phase enumerates journeys using at most two trips, distinguishing between
candidate journeys, which contain a potential shortcut, and witness journeys, which can prove
irrelevance of candidates. If a witness journey is found that weakly dominates a candidate
journey, the corresponding shortcut is not needed. An ULTRA query is performed by first
exploring initial and final transfers via Bucket-CH [20, 15, 16}, a fast one-to-many technique
for road networks. Afterwards, a public transit algorithm of choice can be run on the public
transit network, using the precomputed shortcuts as the transfer graph.

3 Algorithms

The Trip-Based Routing algorithm can be integrated into the generic ULTRA query frame-
work, without any modification. However, as Trip-Based Routing on its own already requires
a preprocessing step, unlike RAPTOR and CSA, this yields a three-phase algorithm: The first

4:3

ATMOS 2020

4:4

Integrating ULTRA and Trip-Based Routing

phase is the ULTRA preprocessing, the second phase is the Trip-Based preprocessing, which
uses the ULTRA transfer shortcuts as input, and the third phase is the ULTRA-Trip-Based
query. Of these three phases, the two preprocessing steps have some parts in common.
Therefore, integrating them and removing redundant parts yields a single, more elegant
preprocessing step that produces fewer shortcuts.

Furthermore, the original Trip-Based query, as introduced in [26], is optimized for a use
case where only a small number of stops is reachable with transfers from the source or the
target. However, with unlimited transfers, we expect that almost every stop is reachable
from the source and the target. We therefore restructure the query to process the huge
number of possible initial and final transfers more efficiently.

3.1 Integrated Preprocessing

The preprocessing phases of ULTRA and Trip-Based Routing have many similarities, despite
the fact that Trip-Based Routing requires transitively closed transfers, which ULTRA does
not. Both of them compute shortcuts, which are later used to accelerate the query. However,
ULTRA computes time-independent shortcuts (connecting pairs of stops), while the Trip-
Based shortcuts are time-dependent (connecting pairs of stop events). This means that a short-
cut which is needed at one time during the day is available at all times when using ULTRA,
while Trip-Based Routing is aware that the shortcut is only needed at a certain time.

Both approaches identify unnecessary shortcuts by enumerating journeys with at most
two trips in order to find witness journeys which prove that a potential shortcut is not
necessary. The Trip-Based preprocessing does this in a “transfer reduction” step, after all po-
tential shortcuts have been generated. Since this is no longer feasible with unlimited transfers,
ULTRA interleaves the generation and pruning of shortcuts. Another difference is the type of
journeys that are considered as witnesses. In the Trip-Based preprocessing, witness journeys
must start with the same trip from which the shortcut originated, whereas the ULTRA
preprocessing also considers witness journeys that start with an initial transfer. Furthermore,
the Trip-Based preprocessing does not guarantee that a witness journey is found before the
shortcut it could prune has already been added to the output, since this depends on the
order in which the shortcuts are explored. Overall, ULTRA has more options for pruning
candidate journeys, and thus produces fewer shortcuts.

Since both preprocessing phases enumerate journeys for similar purposes, we propose
to integrate them and remove redundant parts. We implement this by keeping the gen-
eral approach of the ULTRA journey enumeration, which can handle unlimited transfer
graphs and prunes more shortcuts overall. In order to produce time-dependent shortcuts,
we switch from computing shortcuts between stops to computing shortcuts between stop
events. This makes the “transfer reduction” phase of the Trip-Based preprocessing obsolete.
Achieving this requires some alterations to the original ULTRA preprocessing phase, which
we describe in detail in the remainder of this section.

Candidate Journeys. The original ULTRA preprocessing includes an optimization that
dismisses candidate journeys if their intermediate transfer was already added as a shortcut
before. In the context of ULTRA, this has a significant impact because time-independent
shortcuts are likely to be used multiple times during the day. However, when switching to
time-dependent shortcuts, it becomes much less likely for a new candidate journey to use a
previously found shortcut. Thus, the expected benefit of potentially dismissing the candidate
no longer outweighs the work required to look up the shortcut. We therefore do not prune
candidate journeys with already found shortcuts.

J. Sauer, D. Wagner, and T. Ziindorf

(v
0—1 |
1
8—=9
Y

Figure 1 An example network that demonstrates how using weak domination in the ULTRA-
Trip-Based preprocessing leads to missing shortcuts. Transfer edges (gray) are labeled with their
travel time, while trips (colored) are labeled with Tgep — Tarr. With weak domination of candidates,
the preprocessing only finds two shortcuts: (0 — 1,) and (,8 = 9). These two shortcuts
are not sufficient for finding an s-t-journey. If candidate journeys are only dismissed if they
are strictly dominated by a witness, then an additional shortcut (,8 = 9) is found during
preprocessing. Using this shortcut, the s-t-journey <<s>, (0 — 1), (v, w), (), (@,), (8 = 9), <t>>
can be computed.

Parent Pointers. In order to determine the shortcut that corresponds to a candidate journey,
the ULTRA preprocessing algorithm maintains parent pointers for the stops of the candidate
journeys. These parent pointers point to earlier stops within the same journey and can thus
be used to find the intermediate transfer of a journey by tracing them back, starting from the
last stop of the journey. Since we want to compute shortcuts between stop events instead of
stops, we also change the parent pointers from stops to stop events. As in the original ULTRA
preprocessing, we propagate parent pointers by assigning parent[w] < parent[v] whenever
relaxing an edge (v, w) leads to an improved arrival time at w. Doing this enables an efficient
retrieval of the shortcut corresponding to the intermediate transfer of a candidate journey.
Assume that a candidate journey J ends at the stop ¢. In this case, the shortcut corresponding
to the intermediate transfer of J is (parent, [v(parent,[t])], parent,[t]), where parent;[v] is
the parent for reaching v using k trips (i.e., within the k-th RAPTOR round). As before,
witness journeys are distinguished from candidate journeys by assigning a special value to
the parent pointers of witness journeys.

Initial Transfer and Strict Dominance. The most important modification of the algorithm
is required due to the fact that the ULTRA preprocessing allows witness journeys with initial
transfers (unlike Trip-Based). In combination with weak domination of candidates, this can
lead to missed shortcuts between stop events, as demonstrated in Figure 1. In this example,
only two shortcuts will be found: (0 — 1,) and (,8 = 9). However, these two
shortcuts are not sufficient for finding a journey from s to ¢ with the Trip-Based query
algorithm. The algorithm will only find journeys starting at s that reach the only trip of
the blue route (0 — 1) and the first trip of the yellow route (). No further journeys
can be found, since there is no transfer shortcut from the blue route to the second trip of
the yellow route (0 — 1,) and no transfer from the first trip of the yellow route to
the red route (,8 — 9). Either one of these shortcuts would be sufficient for finding a
journey from s to t. We argue that adding (,8 = 9) as a shortcut is preferable, since
passengers using the blue route would have no reason to wait for the second trip of the yellow
route if they can also continue with the first trip of the yellow route.

Before explaining the modifications that are necessary in order to find the short-
cut (,8 = 9), we briefly examine why this shortcut is not found by a naive combination
of the ULTRA preprocessing and the Trip-Based preprocessing. For this, we consider
the candidate journey J¢ = ((w), (), (@,y), (8 — 9), (t)), which contains the missing
shortcut. During the ULTRA preprocessing, this journey is dominated by the witness jour-
ney J = ((w), (), (@,y), (8 — 9), (t)), hence no shortcut is added. Note that this problem

4:5

ATMOS 2020

4:6

Integrating ULTRA and Trip-Based Routing

only arises when ULTRA and Trip-Based Routing are combined. When using ULTRA on
its own, shortcuts connect pairs of stops instead of stop events. This means that the two
shortcuts (,8 —=9) and (,8 — 9) between stop events are both represented with
the single shortcut (x,y) between stops. Therefore, finding only one of them is sufficient. On
the other hand, when using Trip-Based Routing on its own, the problem does not arise, as the
Trip-Based preprocessing does not consider journeys with initial transfers. This means that
the candidate journey J°¢ is not dominated by the witness journey J, since J requires waiting
at w, which is considered to be an initial transfer. Therefore the shortcut (,8—=9) is
found by the standard Trip-Based preprocessing.

We observe that the problem of missing shortcuts only occurs if a candidate journey
and the corresponding witness journey are equivalent with respect to their arrival time and
their number of used trips. Thus the problem can be solved by only dismissing candidate
journeys that are strictly dominated by a witness (instead of being weakly dominated as in
standard ULTRA). We now continue with describing how this change can be implemented
within our preprocessing algorithm. Using strict dominance instead of weak dominance affects
all parts of the algorithm where a new arrival time at a vertex v is discovered (i.e., during
the relaxation of edges and during route scanning). Normally the label of v is only updated
if the newly discovered arrival time is strictly better (earlier) than the previously found
arrival time. Instead, we now also update the label of v if the following three conditions
hold: First, the new arrival time at v is equivalent to the previous arrival time. Secondly,
the current label of v does not correspond to a candidate journey. Thirdly, the journey that
corresponds to the new arrival time is a candidate journey. These new rules for updating a
label ensure that a newly found candidate journey is not implicitly dominated by a previously
found journey with the same arrival time. In the case of equal arrival times, we allow that
candidate journeys replace non-candidate journeys, but not vice versa. This is necessary to
prevent cyclic label updates, which would otherwise lead to infinite loops.

3.2 Improved Query

We use the shortcuts computed by the combined ULTRA-Trip-Based preprocessing within
a modified version of the Trip-Based query algorithm. As with the original ULTRA query,
initial and final transfers are handled by performing two Bucket-CH queries. However, in
contrast to the general ULTRA query, efficiently integrating the results of the Bucket-CH
queries into the Trip-Based query is more involved. We provide an overview that shows
how initial and final transfers are processed in our ULTRA-Trip-Based query algorithm in
Algorithm 1. In the following, we describe this query algorithm in detail.

Bucket-CH Query. The first step of the algorithm (lines 1-4) is the execution of the
Bucket-CH queries, which is done in the same manner as in the generic ULTRA query. In
order to improve efficiency, the Bucket-CH queries are split into three parts. First, a standard
CH query from s to t with departure time 74¢p is performed. This yields the minimal arrival
time Tmin at the target via a direct transfer, the forward CH search space V, of s, and the
backward CH search space V; of t. The minimal arrival time 7, is co if no path from s to ¢
exists in the transfer graph. If, on the other hand, 7,i, < oo holds, then we have found an
s-t-journey with arrival time 7,;, that uses zero trips, which we add to the result set in line 2.
Afterwards, we evaluate the buckets containing vertex-to-stop transfer times for vertices
in Vs, which provides us with the arrival time 7,,,(s,v) for each stop v with Tar (8,v) < Tmin.
Similarly, we evaluate the buckets containing stop-to-vertex transfer times for vertices
in V, in order to obtain transfer times 7 (v,t) for all stops v with 7 (v,t) < Tmin — Tdep-

J. Sauer, D. Wagner, and T. Ziindorf

Algorithm 1 ULTRA-Trip-Based query.

Input: Public transit network (S, T, R), transfer shortcut graph Gt = (V*, &Y,
Bucket-CH of the original transfer graph G,
source vertex s, departure time 7qep, and target vertex ¢

Output: All Pareto-optimal journeys from s to ¢ for departure time 74ep

(Tmin, Vs, Vi) <= Run a CH query from s to ¢ with departure time 7qep
if Trmin < 00 then J < {(Tar(s,1),0)}

Tarr (8, -) Evaluate the vertex-to-stop buckets for vertices in V,
7i(+,t) < Evaluate the stop-to-vertex buckets for vertices in V;

B W N

5 for each v € YV, do
6 L R+ R'U{Routes from R that contain v}
7 for each R € R’ do

8 Tin < 00
9 for i from 0 to |R| do
10 v < i-th stop of R
11 if Tarr(8,v) > Tmin then continue
12 if Tihin = oo then
13 L Toin < Binary search: First T' € R departing from v after 7., (s, v)
14 else
15 while the trip before T, in R departs from v after 7., (s,v) do
16 L Tmin < The trip before Ty, in R
17 if Thin is the first trip in R then break
18 if Tinin # 00 and 7gep(Tminlt]) > Tar (s, v) then Enqueue(Tmin, 4, Q1)
19 | | if T, is the first trip in R then break
20 n <+ 1

21 while @Q,, is not empty do
22 for each (T,j,k) € Q,, do

23 for ¢ from j to k do

24 if Tarr(T[i]) > Tmin then break

25 if Tor (T[7]) + 7e(v(T[Q]), t) < Tmin then
26 L Tmin < Tarr (T[4]) + 7 (v(T[7]), t)

27 L J «+ Pareto set of J U {(7min,n)}
28 for each (T,j,k) € Q,, do

29 for i from j to k do

30 if 7o (T[i]) > Tmin then break

31 for each (T[i],T'[i']) € £* do

32 L | Enqueue(T”,7, Qn+1)

33 | n+<n+1

Initial Transfer Evaluation. In the second step of the algorithm (lines 5-19), we evaluate
which trips of the public transit network are reachable by an initial transfer. In the original
Trip-Based query [26], this is done by iterating over all stops that are reachable via an initial
transfer. For each such stop v and each route R visiting v, the algorithm identifies the
earliest trip of R that can be entered at v after taking the initial transfer. This approach is
efficient as long as the number of stops reachable via an initial transfer is small. However, in
a scenario with unlimited transfers, where almost all stops are reachable by initial transfers,
consecutive stops of a route often share the same earliest reachable trip. This can cause

4:7

ATMOS 2020

4:8

Integrating ULTRA and Trip-Based Routing

cause the same trip to be found multiple times, leading to redundant work. To avoid this,
we propose a new approach for evaluating the initial transfers, which is based on two steps
of the RAPTOR algorithm: collecting updated routes and scanning routes.

We start by collecting all routes which contain a stop that is reachable by an initial
transfer from the source in lines 5 and 6. This is analogous to collecting routes that contain
updated stops at the beginning of a RAPTOR round. We proceed by scanning the routes
we have collected. The goal of this step is to find for each stop v within a route R the first
trip Thin of the route R that can be boarded at v. We achieve this by processing the stops v
in the order they appear in R, while gradually updating T, at the same time.

Let v be the next stop to be processed while scanning the route R. If we have not found a
reachable trip for any of the previous stops in R (i.e., Tmin = 00), then we use a binary search
to find the first trip in R that can be boarded at v (line 13). Otherwise, we assume that the
earliest reachable trip at v is probably not much earlier than the previously found trip Tmin.
Thus, we perform a linear search, starting from Tin, to find this trip (lines 15-17). Note
that in cases where the earliest reachable trip at v departs after T,,, the linear search will
not find it. However, this is not a problem, since it is preferable to enter T, at a previous
stop, in this case. After we have found the earliest trip reachable at v, we add it to the queue
of trips that have to be scanned in line 18. Finally, we can stop searching for earlier trips
if Thin is already the earliest trip in the route R.

The original Trip-Based query also collects final transfers to the target before continuing
with the trip scanning step. These are used in the trip scanning step to efficiently identify
the stops in the trip from which the target can be reached. In the presence of unlimited
transfers, this is no longer worth the effort, since the target can be reached from almost all
stops. We therefore skip this step and evaluate final transfers on the fly while scanning trips.
Unfortunately, skipping the evaluation of initial transfers is not an option, as we need to
evaluate them in order to know which trips have to be scanned.

Trip Scanning. The third and last step of the query algorithm (lines 20-33) is the trip
scanning phase, which is mostly identical to the original Trip-Based query algorithm. It is
organized in rounds, where the n-th round scans the trips that have previously been collected
in @, which correspond to journeys that start at s and contain n trips. For each of these
trips, the queue also contains indices ¢ and j, which indicate the first and last stop event
of the trip that have to be scanned, respectively. While scanning the ¢-th stop event of
the trip T, the algorithm checks whether a final transfer from the i-th stop of the trip T'
to the target exists in line 24. If such a transfer exists and if this transfer can be used to
improve the earliest known arrival time 7, at the target, then the algorithm has found a
new Pareto-optimal journey. In this case, T, is updated and the newly found journey is
added to the result set J. If J already contains a journey with n trips (note that a Pareto
set can only contain one such journey), this journey is replaced.

After the final transfers have been evaluated, we continue with relaxing the precomputed
transfer edges in £' that start at the stop event T'[i]. Each of these edges provides us with a
new trip 7" that can be used to extend the current journey. Thus, the trip 7" (together with
the index 4’ of the first stop event in T” that can be reached) is added to the queue Q11 of
trips that have to be scanned in the next round.

Note that we scan the trips in @, twice. We only evaluate final transfers during the
first scan and use a separate second scan to relax transfer shortcuts. We do this for two
reasons: First, separating the two scans improves memory locality. Secondly, we improve Tpin
throughout the first scan, which enables better pruning in line 30 of the second scan.

J. Sauer, D. Wagner, and T. Ziindorf

Table 1 Sizes of the public transit networks and the accompanying transfer graphs which we
consider in this work. Additionally, we report the number of edges in a transitively closed transfer
graph that we use to compare our multi-modal algorithm with pre-existing uni-modal algorithms.

Stuttgart London Switzerland Germany
Stops 13583 20595 25125 244055
Routes 12350 2107 13785 231084
Trips 91298 125436 350006 2387292
Stop events 1561912 4970428 4686 865 48 495 066
Transfer graph vertices 1166 593 183025 603 691 6872105
Transfer graph edges 3680930 579 888 1853260 21372360
Transitive graph edges 945514 3755200 2639402 23 880 322

Enqueueing Trips. The enqueue operation, which is used to add trips to the queues in
lines 18 and 32, is identical to the enqueue operation of the original Trip-Based query [26].
Internally, it maintains an index k for every trip T in the network. This index marks the
first stop event of the trip that has already been scanned and is initialized as |T'|. When
invoking Enqueue(T), i, @,,), this index is used to add the triple (T4,k) to the queue Q,.
Afterwards, k is decreased to i — 1 for this trip and all later trips of the route.

Data Structures and Memory Layout. In order to achieve the optimal performance possible
for the query algorithm, it is quite important that a streamlined memory layout is used.
To this end, we implement the FIFO queues @, using dynamic arrays. This enables an
efficient enqueue operation and efficient scanning of the entries in @,. The edges £ are
also stored in an array, such that edges (T[], T,[j]) and (T'[é], Ty [k]), which start at the same
stop event T'[i], occupy consecutive memory locations. Moreover, the section of this array
that contains edges starting with the stop event T'[i] is directly in front of the section that
contains edges starting with the stop event T[i + 1]. Finally, we observe that we only need
access to the arrival time 7, (T[i]) and the stop v(T'[i]) of the stop events T'[:] during the
trip scanning step. Thus we store these values separately from the departure time 7qep (7'[7])
of the stop event, which improves memory locality.

4 Experiments

All algorithms were implemented in C++17 compiled with GCC version 8.2.1 and optimization
flag -O3. All experiments were conducted on a machine with two 8-core Intel Xeon Skylake
SP Gold 6144 CPUs clocked at 3.5 GHz, with a turbo frequency of 4.2 GHz, 192 GiB
of DDR4-2666 RAM, and 24.75 MiB of L3 cache.

Benchmark Data. We evaluated our algorithms on the transportation networks of Stuttgart,
London, Switzerland, and Germany. The Stuttgart network was previously used in [6]. The
public transit timetable of London has been sourced from Transport for London' and was

previously used to evaluate the original Trip-Based query algorithm [26] as well as in [9, 7].

! https://data.london.gov.uk

4:9

ATMOS 2020

https://data.london.gov.uk

4:10

Integrating ULTRA and Trip-Based Routing

Table 2 An overview of the ULTRA-Trip-Based preprocessing results. We compare a basic
sequential preprocessing approach with our improved integrated preprocessing. All computations
were performed in parallel using 16 threads. Times are formated as h:m:s.

Stuttgart London Switzerland Germany
Shortcuts (sequential) 25 865 892 58301120 58 807528 1072750574
Shortcuts (integrated) 3900 258 19 856 062 11646572 121676 520
Time (sequential) 4:40 19:15 9:16 7:54:13
Time (integrated) 5:11 22:24 10:04 9:16:15

The Switzerland network was extracted from a publicly available GTFS feed? Besides other
works, it was previously used to evaluate ULTRA-RAPTOR, which is currently the fastest
multi-modal query algorithm [5]. Lastly, the Germany network, which is the largest of
our four networks, has previously been used to evaluate both Trip-Based Routing [26] and
ULTRA [5]. For all four instances, we combined the public transit networks with transfer
graphs representing walking and cycling that were extracted from OpenStreetMap?. In order
to obtain travel times, we assumed an average walking speed of 4.5km/h and an average
cycling speed of 20km/h. An overview of the resulting network sizes is given in Table 1.

4.1 Preprocessing

In this section we evaluate our novel integrated ULTRA-Trip-Based preprocessing. For
this, we compare it to the naive sequential combination of ULTRA and the Trip-Based
preprocessing. Furthermore, we analyze the structure of the computed shortcuts.

Comparing Sequential and Integrated Preprocessing. An overview of the results obtained
by both preprocessing variants is given in Table 2. Here, rows labeled with (integrated) refer
to our new integrated preprocessing approach, while rows labeled with (sequential) refer to
the naive sequential approach, i.e., using the output of the standard ULTRA preprocessing
as input for the Trip-Based preprocessing algorithm. The results show that using our novel
integrated preprocessing leads to a significant reduction in the amount of computed shortcuts.
This effect is weakest for the London network, where the number of shortcuts decreases only
by a factor of 3. For our largest network (i.e., the Germany network) the sequential approach
produces over 1 billion shortcuts while the integrated approach only leads to 121 million
shortcuts, which corresponds to a reduction factor of almost 9. The cost for this reduction
in the number of shortcuts is an increased running time of the preprocessing algorithm.
However, in comparison to the significantly decreased number of shortcuts, the running time
overhead is only minor. For our four test networks, the increase in preprocessing time ranges
from 8% for the Switzerland network to 17% for the Germany network.

Note that all time measurements reported in Table 2 were obtained by parallel execution
with 16 threads. It has been shown before that both the ULTRA preprocessing and the
Trip-Based preprocessing are well suited for parallel execution [5, 26]. This also applies to
our new preprocessing algorithm. As an example, we have performed the single-threaded
preprocessing on the Switzerland network, where we measured running times of 1:48:55 for

2 https://gtfs.geops.ch/
3 https://download.geofabrik.de/

https://gtfs.geops.ch/
https://download.geofabrik.de/

J. Sauer, D. Wagner, and T. Ziindorf

2.0

= Iy
) (=]
| |

o
o9]
!

Shortcuts [10°]

Transfer time [s]

102 - e
T XX X X X §
_i. CONE S T T R
[} %
£
= 10! A o i
&
= | X%
oo 1 xiix
1ooiiélé;
7\ — T T T T T T T T T 1
97 910 913 916 919 922
Geo-Rank

I Connected s-t-pairs Isolated s-t-pairs

’ HIH 1000 queries solved by ULTRA-TB (int.)

Figure 2 Histogram of the shortcuts computed
for the Switzerland network by the integrated
ULTRA-Trip-Based variant. The bar between 2°
and 2°7! depicts the number of shortcuts with a
transfer time in the interval [2°,2°7!). An excep-
tion is the first bar, which also contains shortcuts
with a transfer time of less than a second.

Figure 3 Query times of the integrated vari-
ant of the ULTRA-Trip-Based algorithm de-
pending on the geo-rank. We evaluated 1000
random vertex-to-vertex queries on the Ger-
many network for every geo-rank. The results
show that the running time greatly depends on
the query distance.

the sequential approach and 2:11:16 for the integrated approach. This corresponds to a
speed-up factor of 11.8 and 13.0 respectively, which matches the speed-ups observed for the
ULTRA preprocessing and the Trip-Based preprocessing.

Shortcut Structure. For the original ULTRA preprocessing, it has been observed that most
of the shortcuts that were computed for the Switzerland network have a transfer time of
over one hour [5]. The main reason for this are candidate journeys between stops that are
not connected in the transfer graph. This led to the hypothesis that most of the ULTRA
shortcuts are only required by a few special journeys and that they are only relevant at a few
times during a day. Given our new ULTRA-Trip-Based shortcuts (which connect stop events
instead of stops) we can analyze the distribution of shortcut travel times more thoroughly. A
shortcut of the original ULTRA that is used multiple times throughout a day leads to several
ULTRA-Trip-Based shortcuts since they connect stop events, which occur at a fixed point in
time. Thus, the number of ULTRA-Trip-Based shortcuts with a certain travel time reflects
more accurately how frequently these shortcuts are required.

Figure 2 shows the number of shortcuts computed by our integrated preprocessing for the
Switzerland network broken down by their travel time. We observe that most shortcuts have
a travel time between 2 minutes (= 27s) and 17 minutes (=~ 2!°s). This is quite different
from the original ULTRA, where most shortcuts have a travel time of more than one hour.
We can therefore conclude that long shortcuts are indeed only rarely required. Furthermore,
we observe that the fraction of shortcuts that are added due to candidate journeys between
vertices that are not connected in the transfer graph (light blue) is much lower when using
the ULTRA-Trip-Based preprocessing instead of the ULTRA preprocessing.

4:11

ATMOS 2020

4:12

Integrating ULTRA and Trip-Based Routing

Table 3 Query performance for Trip-Based Routing, ULTRA-Trip-Based (ULTRA-TB, with
sequential and integrated preprocessing), and ULTRA-RAPTOR. Query times are divided into
phases: the Bucket-CH query (B-CH), the initial transfer evaluation (Initial), and the scanning of
trips (Scan). All results are averaged over 10000 random queries. Note that Trip-Based (marked
with *) only supports stop-to-stop queries with transitive transfers. The other three algorithms
support vertex-to-vertex queries on the full graph, and have been evaluated for this query type.

Full Scans [k] Time [ms]
graph Trips Shortcuts B-CH Initial ~ Scan Total

Network Algorithm

Trip-Based* o 11.49 257.09 0.01 0.03 2.04 2.09

St ULTRA-TB (seq.) ° 25.05 152856 1.41 0.92 5.99 8.33
uttgart

ULTRA-TB (int.) ° 17.02 218.41 1.35 0.81 2.38 4.55

ULTRA-RAPTOR e - - 138 - - 10.50

Trip-Based™ o 22.75 1376.26 0.01 0.05 6.10 6.16

London ULTRA-TB (seq.) ° 34.09 1545.15 0.91 0.80 7.47 9.19

ULTRA-TB (int.)) 24.69 450.50 0.90 0.70 4.05 5.66

ULTRA-RAPTOR e - - 093 - - 7.55

Trip-Based* o 23.80 75747 0.01 0.04 5.64 5.70

. ULTRA-TB (seq.) . 36.46 1551.14 1.09 1.15 7.18 9.44

Switzerland

ULTRA-TB (int.) ° 23.48 238.12 1.07 1.03 3.19 5.32

ULTRA-RAPTOR e — - 1.25 - - 14.45

Trip-Based* o 33749 16116.64 0.01 0.05 116.14 116.21

G ULTRA-TB (seq.) e 43935 38092.34 25.34 18.96 151.35 195.67
ermany

ULTRA-TB (int.) e 20423 3149.87 26.12 19.13 46.38 91.65
ULTRA-RAPTOR e - - 25.68 - — 415.17

4.2 Queries

We continue by evaluating the query performance of our algorithm. To this end, we analyze
how query times depend on the query distance. Furthermore, we compare our approach to
the fastest multi-modal query algorithm that currently exists, namely ULTRA-RAPTOR.

Impact of the Query Distance. In order to assess the impact that the distance of a query
has on the running time of our algorithm, we use geo-rank queries, which are commonly
used for this purpose [26, 24]. For a geo-rank query, the source vertex is picked uniformly
at random among all vertices in the network. Afterwards, all vertices are sorted by their
beeline distance from the source vertex. The vertex with index i in this order is then the
target of the geo-rank query for rank 7. The query times of 1000 geo-rank queries performed
on the Germany network are aggregated in Figure 3. We observe that the query time of
our algorithm strongly correlates with the geo-rank of the query, with local queries being
more than two orders of magnitude faster than long-range queries. Furthermore, we see that
some queries require a running time that is significantly longer than the median running
time (independently of the geo-rank). However, in comparison to running times of the
original Trip-Based query as reported in [26], we observe that our algorithm has much
fewer outliers. The extreme outliers can be attributed to queries where the source vertex is

J. Sauer, D. Wagner, and T. Ziindorf

located in particularly sparse parts of the network. The reason for this is a poor correlation
between geo-rank and actual distance in sparse parts of the network. Thus, a query can
be a long-range query despite having a low geo-rank. An example for this are the queries
with geo-rank 27, which corresponds to a distance of less than 1km for most source-target
pairs. However, the source of the query that took about 500 ms is located in Prague, while
its target is located in Germany, which is more than 80km away.

Overall Query Performance. Table 3 presents average query performance (based on 10000
random queries) for all four networks. For comparison, we also include the original Trip-
Based algorithm, which cannot solve multi-modal queries and was therefore evaluated using
a different set of random queries. Overall, we see that our improved Trip-Based query in
combination with the integrated preprocessing yields the lowest query times, independent
of the network. For the Germany network, our new algorithm is more than 4 times faster
than ULTRA-RAPTOR, which previously was the fastest algorithm for multi-modal journey
planning. For most networks, ULTRA-Trip-Based is even faster than the original Trip-Based
algorithm, despite the fact that ULTRA-Trip-Based handles a large, realistic transfer graph
while Trip-Based can only consider transitively closed transfer graphs. The reason for this is
the reduced size of the search space due to better pruning of the shortcuts and the existence
of faster journeys in a network with unlimited transfers. The only exception to this is the
Stuttgart network, which has the fewest trips, but the second-largest transfer graph out of
our four networks. Thus, the comparison with an algorithm that cannot handle unlimited
transfer graphs, such as Trip-Based, is particularly unfair for the Stuttgart network.

In addition to the total query time, we also report time measurements for the three phases
of the Trip-Based query algorithm in Table 3. Analyzing these measurements, we see that the
Bucket-CH query and the initial transfers evaluation take a non-negligible fraction of the total
query running time. Furthermore, we observe that using the integrated preprocessing mainly
affects the trip scanning phase of the algorithm. This was expected, as the preprocessing
does not affect initial transfers, but only intermediate transfers, which are handled in the trip
scanning phase. Moreover, we observe that the integrated preprocessing not only reduces the
number of shortcuts that are scanned during the query, but also the number of trips.

5 Conclusion

In this work, we proposed a multi-modal variant of Trip-Based Routing, one of the fastest
known journey planning algorithms for public transit networks. We achieved this by combining
it with ULTRA, a preprocessing technique that replaces the transfer graph with a small
number of transfer shortcuts. A naive combination of the two, which uses the output
of ULTRA as input for the preprocessing phase of Trip-Based Routing, leads to many
unnecessary shortcuts. Therefore, we proposed a new, integrated preprocessing phase which
produces up to 9 times fewer shortcuts than the naive sequential preprocessing, at only
a slight increase in preprocessing time. By analyzing the produced shortcuts, we were
able to confirm a hypothesis from the original ULTRA publication that long intermediate
transfers are only rarely required, even though they are responsible for a large share of
the time-independent shortcuts. The resulting query algorithm, ULTRA-Trip-Based, is up
to 4 times faster than the fastest previously known multi-modal algorithm for bi-criteria
optimization, ULTRA-RAPTOR.

4:13

ATMOS 2020

4:14

Integrating ULTRA and Trip-Based Routing

—— References

1

10

11

12

13

14

15

Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck. A Hub-Based
Labeling Algorithm for Shortest Paths in Road Networks. In International Symposium on
Experimental Algorithms, pages 230-241. Springer, 2011.

Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin
Raychev, and Fabien Viger. Fast Routing in Very Large Public Transportation Networks using
Transfer Patterns. In Furopean Symposium on Algorithms, pages 290-301. Springer, 2010.
Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Miiller-Hannemann, Thomas Pajor,
Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route Planning in Transportation
Networks. In Algorithm engineering, pages 19-80. Springer, 2016.

Hannah Bast, Jonas Sternisko, and Sabine Storandt. Delay-robustness of Transfer Patterns in
Public Transportation Route Planning. In ATMOS-13th Workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems-2013, volume 33, pages 42-54. Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2013.

Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, and Tobias Ziindorf.
UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient Solution. In 27th
Annual European Symposium on Algorithms (ESA 2019), volume 144 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 14:1-14:16, Dagstuhl, Germany, 2019. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

Lars Briem, Sebastian Buck, Holger Ebhart, Nicolai Mallig, Ben Strasser, Peter Vortisch,
Dorothea Wagner, and Tobias Ziindorf. Efficient Traffic Assignment for Public Transit
Networks. In LIPIcs-Leibniz International Proceedings in Informatics, volume 75. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and Renato F. Werneck.
Computing Multimodal Journeys in Practice. In Proceedings of the 12th International Sym-
posium on Experimental Algorithms (SEA’13), volume 7933 of Lecture Notes in Computer
Science, pages 260-271. Springer, 2013.

Daniel Delling, Julian Dibbelt, Thomas Pajor, and Tobias Ziindorf. Faster Transit Routing
by Hyper Partitioning. In 17th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS 2017), volume 59 of OpenAccess Series in
Informatics (OASIcs), pages 8:1-8:14, Dagstuhl, Germany, 2017.

Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public Transit Routing.
In Proceedings of the 14th Workshop on Algorithm Engineering and Experiments (ALENEX’12),
pages 130-140. STAM, 2012.

Daniel Delling, Thomas Pajor, and Renato F Werneck. Round-based Public Transit Routing.
Transportation Science, 49(3):591-604, 2014.

Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly Simple and
Fast Transit Routing. In International Symposium on Experimental Algorithms, pages 43—54.
Springer, 2013.

Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. User-Constrained Multimodal Route
Planning. ACM Journal of Experimental Algorithmics, 19:3.2:1-3.2:19, April 2015.

Edsger W Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
mathematik, 1(1):269-271, 19509.

Yann Disser, Matthias Miiller-Hannemann, and Mathias Schnee. Multi-Criteria Shortest Paths
in Time-Dependent Train Networks. In Proceedings of the 7th Workshop on Ezxperimental
Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer Science, pages 347-361.
Springer, June 2008.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction Hier-
archies: Faster and Simpler Hierarchical Routing in Road Networks. In Proceedings of the 7th
Workshop on Ezperimental Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer
Science, pages 319-333. Springer, June 2008.

J. Sauer, D. Wagner, and T. Ziindorf

16

17

18

19

20

21

22

23

24

25

26

27

Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact Routing in
Large Road Networks Using Contraction Hierarchies. Transportation Science, 46(3):388-404,
August 2012.

Kalliopi Giannakopoulou, Andreas Paraskevopoulos, and Christos Zaroliagis. Multimodal
Dynamic Journey-Planning. Algorithms, 12(10):213, 2019.

Jan Hrnd¢it and Michal Jakob. Generalised Time-Dependent Graphs for Fully Multimodal
Journey Planning. In 16th International IEEE Conference on Intelligent Transportation
Systems (ITSC 2013), pages 2138-2145. IEEE, 2013.

Dominik Kirchler. Efficient Routing on Multi-Modal Transportation Networks. PhD thesis,
Ecole Polytechnique X, 2013.

Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner.

Computing Many-to-Many Shortest Paths Using Highway Hierarchies. In Proceedings of the
9th Workshop on Algorithm Engineering and Ezperiments (ALENEX’07), pages 36—45. SIAM,
2007.

Duc-Minh Phan and Laurent Viennot. Fast Public Transit Routing with Unrestricted Walking
through Hub Labeling. In Proceedings of the Special Event on Analysis of Ezxperimental
Algorithms (SEA?), Lecture Notes in Computer Science. Springer, 2019.

Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient Models
for Timetable Information in Public Transportation Systems. ACM Journal of Experimental
Algorithmics, 12(2.4):1-39, 2008.

Jonas Sauer. Faster Public Transit Routing with Unrestricted Walking. Master’s thesis,
Karlsruhe Institute of Technology, April 2018.

Ben Strasser and Dorothea Wagner. Connection Scan Accelerated. In 201 Proceedings of the

Sizteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pages 125-137.

SIAM, 2014.

Dorothea Wagner and Tobias Ziindorf. Public Transit Routing with Unrestricted Walking. In
17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS 2017). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2017.

Sascha Witt. Trip-Based Public Transit Routing. In 23th Annual European Symposium on
Algorithms (ESA 2015), pages 1025-1036. Springer, 2015.

Sascha Witt. Trip-Based Public Transit Routing Using Condensed Search Trees. In 16th
Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems
(ATMOS 2016), volume 54 of OpenAccess Series in Informatics (OASIcs), pages 10:1-10:12,
Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.

4:15

ATMOS 2020

	Introduction
	Preliminaries
	Algorithms
	Integrated Preprocessing
	Improved Query

	Experiments
	Preprocessing
	Queries

	Conclusion

