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Resistance of two-dimensional superconducting films
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We consider the problem of finite resistance R in superconducting films with geometry of a strip of width
W near zero temperature. The resistance is generated by vortex configurations of the phase field. In the first
type of process, quantum phase slip, the vortex world line in 2+1 dimensional space-time is spacelike (i.e., the
superconducting phase winds in time and space). In the second type, vortex tunneling, the world line is timelike
(i.e., the phase winds in the two spatial directions) and connects opposite edges of the film. For moderately
disordered samples, processes of the second type favor a train of vortices, each of which tunnels only across a
fraction of the sample. Optimization with respect to the number of vortices yields a tunneling distance of the
order of the coherence length ξ , and the train of vortices becomes equivalent to a quantum phase slip. Based
on this theory, we find the resistance ln R ∼ −gW/ξ , where g is the dimensionless normal-state conductance.
Incorporation of quantum fluctuations indicates a quantum phase transition to an insulating state for g � 1.
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I. INTRODUCTION

Since its original discovery by H. Kamerlingh Onnes, a
defining feature of superconductivity is its vanishing electri-
cal resistivity in the thermodynamic limit. Yet, experimental
samples are finite and can therefore be expected to display a
nonzero, albeit small, resistance R. This naturally provokes
questions about the resistance of superconductors [1,2]—
particularly in two-dimensional (2D) films, where resistivity
and resistance have the same physical dimension: What is the
dependence of R on the system size and disorder strength?
Is its scaling with increasing system size dual to the ex-
ponentially vanishing zero-temperature conductance of an
insulator?

An approximate duality of this kind can be formalized [4]
using the particle-vortex duality within the bosonic descrip-
tion of the superconductor-insulator transition (SIT) [5–7].
Such theories are optimized for samples, where Cooper pairs
on superconducting granules Anderson delocalize at the SIT.
In this paper, instead, we concentrate on the different ex-
perimental situation of homogeneous films for which the
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impurity-induced reduction and ultimate annulment of Tc (as
defined by the onset of a spectral gap) is well described by
fermionic theories [8,9] and the study of resistivity below
Tc constitutes a separate, subsequent question: At finite tem-
perature, but infinite system size, resistance is established
by vortex proliferation above a renormalized Berezinskii-
Kosterlitz-Thouless temperature [10,11]. On the other hand,
near zero temperature but at finite system size, the resistance
as a function of size and disorder strength is unknown and is
the subject of this paper. We focus on a 2D superconducting
strip of width W and length L > W , Fig. 1(a).

FIG. 1. (a) Setup for measuring resistance in a 2D superconduct-
ing film. (b) The bias current lifts the periodicity of the ground-state
energy as a function of �φ. Tunneling events (and subsequent energy
relaxation) between adjacent minima generate resistance. (c) Re-
sistance, Eq. (8), per square (i.e., RW/L) for several values of the
normal-state conductance g. The linear decay of ln R is consistent
with experiment [3].
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We briefly review the literature on the resistance of su-
perconductors. Josephson’s equation relates the voltage V =
(d�φ/dt )h̄/2e to the time derivative of the phase difference
�φ = φ(x = L/2) − φ(x = −L/2). The presence of a bias
current I lifts the degeneracy of quantum states with inte-
ger difference in �φ/2π , Fig. 1(b). Near zero temperature,
quantum tunneling between adjacent minima dominates the
decay of the phase difference. The voltage is then given by the
effective tunneling rates 1/τ±2π for the change of the phase by
±2π :

V = h

2e

(
1

τ2π

− 1

τ−2π

)
. (1)

Theoretically, the decay of metastable vacua is described
by instantonlike field configurations [12–15], i.e., imaginary-
time solutions of the semiclassical equations of motion which
connect the adjacent minima. For the decay of the super-
current, the general form of such solutions is not known.
However, certain trial solutions are believed to be good
approximations for the present strip geometry: (i) vortex con-
figurations which are y independent and swirl in the x − τ

plane (τ is the imaginary time), i.e., the world line of the core
is spacelike; and (ii) vortices which wind in the x − y plane
and tunnel across the system perpendicularly to the current
(a timelike world line). We will refer to case (i) as quantum
phase slips and (ii) as vortex tunneling.

Most of the literature on the resistance of superconductors
is devoted to thermally activated decay of the supercurrent
[16–18] and to vortex physics in the presence of a magnetic
field [19–21] or for current bias close to the critical current.
We restrict ourselves to summarizing the work in the quantum
regime for quasi-1D and 2D systems at small currents and
without external field. Supercurrent decay in homogeneous
1D wires was considered theoretically in Refs. [22–28]. There
is a consensus that the semiclassically dominant field con-
figuration is a dipole of phase slips at distance δτ ∝ 1/I in
time direction, while the role of electromagnetic fields was
up for debate [23,25,29,30]. In addition, it was shown that in-
homogeneities in the wire can be crucially important [31,32].
For 2D samples, studies of voltage generation in ultraclean
samples focus on the theory of vortex tunneling [33–36].
Quantum tunneling in the presence of inhomogeneities (pin-
ning centers) was addressed in Refs. [33,37–39]. At the same
time, the role of finite width electromagnetic gauge potentials
were disregarded in these works. Further, the influence of
the Magnus force and the size of the vortex mass remained
controversial [40].

Experimental evidence [41] for quantum tunneling of vor-
tices in 2D superconductors at finite current bias, in particular
in the context of dark photon counts [42,43], additionally aug-
mented interest in this research field. Modern experimental
tools, such as SQUID-on-tip microscopy [44], allow accessing
both vortex motion and energy dissipation (local heating). At
the same time, the direct measurement of the extremely small
resistance of large samples of 2D superconductors is exper-
imentally challenging; most recent studies [45] demonstrate
the technical subtleties and advances in the careful filtering
of external radiation. A remedy is to study higher-resistance
samples, e.g., not too far from the SIT or with a smaller width
W . In the regime where a finite zero-temperature saturation

value of R is measurable, experimental data [3] is consistent
with − ln R ∝ W .

In this paper, we consider moderately disordered homoge-
neous films with 1/τel � �2/EF under infinitesimal current
bias. We will refer to the case 1/τel � � (1/τel � �) as the
clean (dirty) limit. Here, EF is the Fermi energy, τel the elastic
scattering time of electrons, and � the spectral gap of the
superconductor. As discussed below, for systems considered
here, the Magnus force is unimportant and the vortex mass is
finite. We find that the combined tunneling of several vortices
dominates over single-vortex events and demonstrate that,
for the optimal number of involved vortices, the tunneling
process has the same contribution as quantum phase slips.
This allows us to determine the linear-response resistance
of superconducting strips, which is exponentially small but
finite. Estimating the preexponential factor and pushing the
theory to the border of its applicability range, we also show
that the SIT due to the antagonistic interplay of energy ver-
sus entropy (here due to quantum fluctuations) is captured
at sufficiently strong disorder. Beyond the strictly 2D limit,
which is the focus of all calculations, our results also apply
to the experimentally relevant situation of quasi-2D films of
type-II superconductors, which are thinner than the correla-
tion length.

II. QUANTUM PHASE SLIPS

We first consider the voltage generation by quantum phase
slips. In perfectly coherent systems, the decay out of a false
vacuum is technically encoded in bounce solutions: [14,25] a
phase slip takes the system to a lower vacuum where it dwells
for a time δτ and subsequently an anti-phase-slip takes it back
to the point of departure. The action of a bounce is (�0 is the
flux quantum)

SI (δτ ) � 2Score + K1D ln(�δτ ) − �0Iδτ. (2)

Each phase slip described by Eq. (2) is weighted by its core
action Score ∼ K1D ∼ (W/ξ )EF min(τel, 1/�), where the fac-
tor (W/ξ ) represents the length of the spacelike world line of
the core. Here, we introduced the dimensionless stiffness of
1+1 dimensional (i.e., y-independent) phase fluctuations K1D

and the coherence length ξ ∼ vF /� (ξ ∼ vF
√

τel/�) in the
clean (dirty) limit, where vF is the Fermi velocity.

The action is maximal at the typical dwell time δτtyp =
K1D/(�0I ), and a steepest-descent evaluation [46] of the
instanton contribution to the partition sum [47] Zinstanton ∼
(L/ξ )

∫
dδτ exp[−SI (δτ )] yields the decay rate [25] 1/τ2π ∼

�2δτtyp exp[−SI (δτtyp)]L/[ξ
√

K1D] ∼ IK1D−1. This nonlinear
current-voltage characteristic is a manifestation of a perfectly
quantum-coherent bounce. However, at infinitesimal bias cur-
rent, δτtyp exceeds the relaxation time τcoh which is always
finite in a finite system connected to the metallic leads or in the
presence of an external bath. The broadening of levels inside
the core described by τcoh leads to a finite rate for quantum
phase slips and anti-phase-slips 1/τ±2π ∝ e−S±I (τcoh )L/(τcohξ ).
Then, Eq. (1) leads to a linear current-voltage relation,

RQPS ∼ h

e2

L

ξ
K−3/2

1D (τcoh�)2−K1D e−2K1D , (3)
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where the prefactor is determined by matching the nonlinear
resistance at I � K1D/(�0τcoh ) mentioned above.

We conclude this consideration with three remarks. First,
we comment on τcoh which is finite in any realistic situation
and may result from a variety of system-dependent origins,
such as phonons, external radiation, and noise in the leads.
Different sources generally imply different temperature and
system-size dependence of the relaxation time which we do
not study here, since the main factor in − ln R is the tunneling
action, while τcoh enters in the form of a logarithmic prefactor.
Second, spatial fluctuation of the world line of the phase-slip
core around the y-independent line have been disregarded up
to now. These fluctuations lead to an additional preexponential
factor, which we estimate at the end of the paper. Third,
magnetic screening effects (see Ref. [29] and Supplemental
Material [48]) are unimportant in the above consideration
[30] so long as τcoh� � exp(λM/W ), where λM is the Pearl
length (2D analog of the London penetration length), which
is usually macroscopic. For longer relaxation times, the re-
sult for − ln R gets modified according to K1D ln(τcoh�) →
K1DλM ln[W ln(τcoh�)/λM]/W .

III. VORTEX DYNAMICS

When the width of the sample exceeds the superconducting
coherence length, vortices in the x − y plane of the supercon-
ducting film become well-defined topological excitations and
the supercurrent acquires an additional decay channel related
to vortex tunneling across the sample. This effect therefore
relies on the dynamics of vortices, described by the ac-
tion Skin = ∫

dτ (mẋ2/2 + i α ẋ y) + η
∫

dω|ω||x(ω)|2/(2π ),
where x(τ ) = (x(τ ), y(τ )) is the time-dependent position of
a given vortex. The first term represents the kinetic energy for
a point particle of mass m, the term proportional to α describes
the Magnus force, which is somewhat similar to the Lorentz
force in a magnetic field, and the last term, proportional to η,
describes dissipation.

The values of these parameters drastically depend on
whether the vortex core is featureless or whether it contains a
quasicontinuum of bound states. In the first case, dissipation is
absent (η = 0) and the parameter α is topologically quantized
(it is given by the superfluid density) [49]. The mass diverges
logarithmically if the superfluid is neutral, but the logarithm
is cut inside the core for charged superconductors, where the
mass is therefore minute, m ∼ melectronλTF/ξ (here, λTF is the
Thomas-Fermi screening length) [50–54].

Here, we concentrate on the more realistic second case, in
which the Caroli-deGennes-Matricon-type [55] bound states
inside the vortex core cannot be neglected. In s-wave super-
conductors, the spacing ω0 of these subgap states [56] can be
estimated to be ω0 ∼ ν−1ξ−2, where ν is the metallic density
of states. Typically, in the clean (dirty) limit, ω0 ∼ �2/EF

(ω0 ∼ �/EF τel) is negligible compared to 1/τel. For a mov-
ing vortex that explores different microscopic realizations of
disorder, this leads to a quasicontinuum of states, which al-
lows for energy dissipation, yielding η ∼ nω0τel, where n is
the density of electrons in the normal state [37,57]. At the
same time, the Magnus force acquires a second topological
contribution resulting from the spectral flow of bound states,
which is equal in magnitude but opposite to the hydrodynamic

FIG. 2. A single vortex at position (x0, y0 ) tunneling from lower
to the upper edge. (a)–(c) Gradient of the superconducting phase ∇φ.
Note that mirror charges outside the sample (gray shaded) ensure
no current outflux. (d)–(f) Principal branch of the phase φ along the
colored horizontal lines of panels (a)–(c) (same color and dashing
code).

contribution discussed above, so α effectively vanishes
[58,59]. Finally, the vortex mass is given by the total mass of
particles trapped inside the vortex, m ∼ melectronξ

2/λ2
F [59].

IV. SINGLE VORTEX TUNNELING

We first inspect tunneling events involving a single vortex
in the system and remind the reader of the logarithmic attrac-
tion of a vortex-antivortex pair. It is, perhaps, less known that a
single vortex in a finite superconducting strip is attracted to the
boundaries. Technically, this results from the implementation
of no-current-outflux boundary conditions by means of mir-
ror charges [Figs. 2(a)–2(c) and Supplemental Material [48])
and leads to a potential V (y) = 2J ln[W cos(πy/W )/ξ ] that
should be included in the total action of the vortex in the strip
geometry. Here, J is the 2D superconducting stiffness: J ∼ EF

(J ∼ EF �τel) in the clean (dirty) limit at zero temperature.
We begin by considering a kink solution, ykink (τ ), of the

equation of motion, i.e., the unbinding of a single vortex
from lower boundary and subsequent tunneling across the
system, Fig. 2. The tunneling action is Skink (W ) = Spot (W ) +
Scond(W ), where

Spot =
∫ W/2−ξ

−W/2+ξ

dy
√

2mV (y) = 2W
√

mJ f (πξ/W ), (4)

is the contribution from the potential barrier. Here, we
have introduced the dimensionless function f (x) that sat-
isfies f (x) � √

ln(1/x) in the limit x � 1 and f (π/2) =
0. The second contribution, Scond = EcondT , is the con-
densation energy Econd ∼ J times the total length of the
world line T = T (W ). Here, T (W ) = W/[v

√
ln(W/πξ )] for

wide strips W � ξ (with v = √
J/m ∼ vF �/EF the typ-

ical vortex speed), whereas for W → 2ξ , T (W ) → 1/�,
which is the time for a vortex to nucleate. Thus, for nar-
row strips, Skink (W → 2ξ ) � J/� ∼ K1D|W ∼ξ approaches
the same value as the core action of a quantum phase slip,
while for wide strips, both Spot (W ) and Scond(W ) are of the
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order of JW/v ∼ (W/λF )EF min(τel, 1/�), which is (ξ/λF )
times larger than the core action of a phase slip in Eq. (2).

A finite current bias lifts the degeneracy of the potential
minima at y = ±W/2 by an additional term VI = −�0Iy/W .
As mentioned, the supercurrent decay is governed by a bounce
solution [14,47], which we approximate by a kink and an an-
tikink at temporal distance δτ : ybounce(τ ) = ykink (τ + δτ/2) −
ykink (τ − δτ/2) + W/2 − ξ . Using this ansatz, we obtain the
following δτ -dependent action, see Supplemental Material
[48]:

SI (δτ ) = 2Skink (W ) + Sint (δτ ) − �0Iδτ. (5)

At variance with the 1D bounce solution, Eq. (2), the attrac-
tion between kink and antikink, encoded in Sint (δτ ), cannot be
determined exactly. It asymptotically vanishes if the vortex
disappears at the opposite boundary [60] Sint (δτ ) → 0 for
δτ > T and monotonically increases in the preceding regime
0 < T − δτ � T , where Sint (δτ ) � −Econd(T − δτ ), which
shows that the dominant reason for attraction is the string
tension of the vortex world line.

Formally, the instanton contribution to the partition sum
can be evaluated using the steepest-descent method analo-
gously to the bounce action Eq. (2). However, the properties
of Sint (δτ ) imply that the typical dwell time δτ diverges as a
function of I → 0, exceeding the coherence time τcoh � T .
Consequently, evaluation of Eq. (1) similarly to Eq. (3) but
using Eq. (5) instead of Eq. (2) yields

RSVT = h

e2

L

ξ
Avortex e−2Skink (W ). (6)

The pre-exponential factor Avortex depends on the nature of
relaxation and should be evaluated for a given microscopic
model of relaxation.

We conclude the discussion of a single-vortex tunneling
with three comments. First, the logarithmic vortex interaction
is cut beyond the Pearl length [48] λM so Eq. (4) is valid
only for samples W < λM . Second, the effect of dissipation
on the tunneling has been disregarded here, which is valid
if the tunneling time T is small compared to the dissipation
time m/η ∼ 1/ω2

0τel. This is equivalent to the condition W �
min(vF τel, ξ )/(ω0τel ). We will see in the next section that
the resistance is dominated by vortices tunneling across an
effective distance dopt � W , which satisfies both the bounds
imposed by screening and by dissipation, even for wide junc-
tions. Third, in deriving the effective tunneling action, we
disregarded the mesoscopic fluctuations of the superconduct-
ing gap (and, hence, stiffness J) [11,61]. As we demonstrate
in Ref. [48] for EF τel � 1, these fluctuations do not affect the
exponential factor in Eq. (6).

V. MULTIVORTEX TUNNELING

A simple tunneling event that involves more than one
vortex is a dipole dissociation [34] in which a quantum
fluctuation creates a dipole of vortices inside the strip and
subsequently the dipole constituents tunnel toward opposite
edges, leading to an overall phase slip of 2π . Here, we
consider a generalization of this event where n dipoles are
nucleated in the strip and subsequently tunnel to either side
of the strip, Fig. 3(b). We also consider a generalization of

FIG. 3. (a) The unbinding of a vortex from the lower edge, sim-
ilar to Fig. 2, but assisted by an additional dipole nucleating in the
bulk of the system. (b) The decay of two vortex dipoles into a dipole
and two vortices disappearing at the edge. (c) The tunneling action
[in units of Score introduced in Eq. (2)] for a multivortex tunneling
process as a function of N .

the edge unbinding event discussed above, Fig. 2, where the
tunneling of a vortex from one edge to the other is assisted by
n dipoles in the bulk, Fig. 3(a).

As a natural ansatz, we consider [48] the total action
Skink,N = ∑N

i=1 Skink (di ), where Skink (d ) is the kink action for
a single vortex tunneling in a strip of size d introduced before
Eq. (4), di is the tunneling distance of the ith vortex, and
N = 2n + 1 in the case of Fig. 3(a) and N = 2n in case of
Fig. 3(b). The minimization of the action prescribes that all
dipoles nucleate at the same moment in time and same x po-
sition, and that the nucleation points are furthermore equally
spaced in the y direction, i.e., each vortex travels the same dis-
tance dN = W/N , so the kink action is Skink,N = NSkink (dN ).
We remark that this is an accurate tunneling action for the
optimum event; yet, the ansatz that we used is heuristic and
employing it for the calculation of fluctuation determinant is
not exact, although parametrically correct.

Increasing N in Skink,N has two effects. On one hand,
NSpot (dN ) decreases with the number of dipoles. On the other
hand, the contribution of the string tension NEcondT (dN ) in-
creases with N [even though T (dN ), of course, decreases].
The first effect prevails, Fig. 3(c), in which the solid curve
is obtained on the basis of the vortex motion at length scales
large compared to ξ , and the dashed curve is the extrapolation
of T (dN ) ↘ 1/� as dN approaches ξ (shaded region). The
action monotonically decreases with an increasing number
of vortices, leading to an optimum number Nopt ∼ W/ξ and
dN ∼ 2ξ . The resistance produced by multivortex configura-
tions,

RMVT = h

e2

L

ξ
A e−2(W/ξ )Skink (2ξ ), (7)

follows along the lines of the calculation for the single-vortex
tunneling event (the pre-exponential factor A, which may de-
pend on relaxation details, is considered separately). Clearly,
as dN ∼ ξ , vortices cease being well-defined excitations,
and the multivortex tunneling event cannot be distinguished
from a quantum phase slip. It is, therefore, a reassuring
consistency check that the exponent in the resistance due
to N cotunneling vortices, Eq. (7), NSkink (2ξ ) ∼ NJ/� ∼
W EF min(1/�, τel )/ξ ∼ K1D, is in accordance with the expo-
nent of the resistance due to quantum phase slips, Eq. (3).
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VI. CONCLUSION

In summary, we have investigated the resistance of
superconducting strips with moderate disorder near zero
temperature. The obtained resistance R is dominated by cotun-
neling of N ∼ W/ξ > 1 vortices, a process that is equivalent
to a quasi-1D quantum phase slip, see Eqs. (3) and (7).
These results also apply to quasi-2D films with thickness
dz ∈ (λF , ξ ), then the parameters K1D, Skink contain additional
factors [48] of dz/λF . The exponential dependence of re-
sistance on W is reminiscent of exponential suppression of
conductance with the system size on the insulating side of SIT.

While we concentrated on the exponent of the supercon-
ducting decay rate, we conclude with a discussion of the
preexponential factor. Its W dependence stems from quan-
tum fluctuations of the tunneling trajectory (if dissipation
is local). Using the above-mentioned ansatz for multivortex
events, we estimate that each of the W/ξ vortices contributes
to A in Eq. (7), a fluctuation determinant of the order of the
inverse kink action [48], leading to a pre-exponential factor
[Skink (2ξ )]−W/ξ . A similar factor is expected to arise from
spatial fluctuations about the straight y-independent phase-slip
world line. By re-exponentiation, this quantum-fluctuation-

induced prefactor can be viewed as an entropic contribution
to the tunneling action, leading to

ln(e2R/h) ∼ −W [g + ln(g)]/ξ + ln(L/ξ ) (8)

in the dirty limit, which qualitatively agrees with the low-T
saturation values of resistance presented in Fig. 1 of Ref.
[3], see Fig. 1(c). In Eq. (8), g = EF τel (g = EF τeldz/λF ) is
the normal-state conductance in the 2D limit (quasi-2D film).
Pushing our theory to the border of its applicability, we ob-
serve a sign change of the action at g ∼ 1, reminiscent of SIT.
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