KIT | KIT-Bibliothek | Impressum | Datenschutz

Many-body localization in the interpolating Aubry-André-Fibonacci model

Štrkalj, Antonio; Doggen, Elmer V. H.; Gornyi, Igor V.; Zilberberg, Oded

Abstract (englisch):

We investigate the localization properties of a spin chain with an antiferromagnetic nearest-neighbor coupling,
subject to an external quasiperiodic on-site magnetic field. The quasiperiodic modulation interpolates between
two paradigmatic models, namely the Aubry-André and the Fibonacci models. We find that stronger many-
body interactions extend the ergodic phase in the former, whereas they shrink it in the latter. Furthermore,
the many-body localization transition points at the two limits of the interpolation appear to be continuously
connected along the deformation of the quasiperiodic modulation. As a result, the position of the many-body
localization transition depends on the interaction strength for an intermediate degree of deformation. Moreover,
in the region of parameter space where the single-particle spectrum contains both localized and extended states,
many-body interactions induce an anomalous effect: weak interactions localize the system, whereas stronger
interactions enhance ergodicity. We map the model’s localization phase diagram using the decay of the quenched
spin imbalance in relatively long chains. This is accomplished employing a time-dependent variational approach
... mehr

Verlagsausgabe §
DOI: 10.5445/IR/1000138888
Veröffentlicht am 13.10.2021
DOI: 10.1103/PhysRevResearch.3.033257
Zitationen: 9
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Quantenmaterialien und -technologien (IQMT)
Institut für Theorie der Kondensierten Materie (TKM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2021
Sprache Englisch
Identifikator ISSN: 2643-1564
KITopen-ID: 1000138888
HGF-Programm 47.11.03 (POF IV, LK 01) Quantum Nanoscience
Erschienen in Physical review research
Verlag American Physical Society (APS)
Band 3
Heft 3
Seiten 033257 1-13
Vorab online veröffentlicht am 17.09.2021
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page