KIT | KIT-Bibliothek | Impressum | Datenschutz

Many-body localization in large systems: Matrix-product-state approach

Doggen, Elmer V.H.; Gornyi, Igor V.; Mirlin, Alexander D.; Polyakov, Dmitry G.

Abstract (englisch):
Recent developments in matrix-product-state (MPS) investigations of many-body localization (MBL) are reviewed, with a discussion of benefits and limitations of the method. This approach allows one to explore the physics around the MBL transition in systems much larger than those accessible to exact diagonalization. System sizes and length scales that can be controllably accessed by the MPS approach are comparable to those studied in state-of-the-art experiments. Results for 1D, quasi-1D, and 2D random systems, as well as 1D quasi-periodic systems are presented. On time scales explored (up to in units set by the hopping amplitude), a slow, subdiffusive transport in a rather broad disorder range on the ergodic side of the MBL transition is found. For 1D random spin chains, which serve as a “standard model” of the MBL transition, the MPS study demonstrates a substantial drift of the critical point with the system size : while for we find , as also given by exact diagonalization, the MPS results for –100 provide evidence that the critical disorder saturates, in the large- limit, at . For quasi-periodic systems, these finite-size effects are much weaker, which suggests that they can be largely attributed to rare events. ... mehr

DOI: 10.1016/j.aop.2021.168437
Zitationen: 2
Zugehörige Institution(en) am KIT Institut für Quantenmaterialien und -technologien (IQMT)
Institut für Theorie der Kondensierten Materie (TKM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2021
Sprache Englisch
Identifikator ISSN: 0003-4916
KITopen-ID: 1000138891
HGF-Programm 47.12.01 (POF IV, LK 01) Advanced Solid-State Qubits and Qubit Systems
Erschienen in Annals of physics
Verlag Elsevier
Seiten Article no: 168437
Vorab online veröffentlicht am 20.03.2021
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page