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Abstract: Since the nuclear accident at Fukushima Daiichi Nuclear Power Station in 2011, a consid-
erable number of studies have been conducted to develop accident tolerant fuel (ATF) claddings
for safety enhancement of light water reactors. Among many potential ATF claddings, silicon
carbide is one of the most promising candidates with many superior features suitable for nuclear
applications. In spite of many potential benefits of SiC cladding, there are some concerns over the
oxidation/corrosion resistance of the cladding, especially at extreme temperatures (up to 2000 ◦C) in
severe accidents. However, the study of SiC steam oxidation in conventional test facilities in water
vapor atmospheres at temperatures above 1600 ◦C is very challenging. In recent years, several efforts
have been made to modify existing or to develop new advanced test facilities to perform material
oxidation tests in steam environments typical of severe accident conditions. In this article, the authors
outline the features of SiC oxidation/corrosion at high temperatures, as well as the developments
of advanced test facilities in their laboratories, and, finally, give some of the current advances in
understanding based on recent data obtained from those advanced test facilities.
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1. Introduction

The severe accident in 2011 at Fukushima Daiichi Nuclear Power Station (FDNPS) has
stagnated the usage of nuclear energy but has also accelerated the research and develop-
ment for safety enhancement of light water reactors (LWRs). Soon after the occurrence
of the Great East Japan earthquake, emergency scram of the FDNPS operating reactors
was activated automatically as were the emergency power supplies to ensure fuel cooling
operations. However, approximately 50 min after the initial earthquake, a huge tsunami
struck the station, flooding the emergency power supplies (particularly diesel generators),
which led to a loss of the reactor core cooling, resulted in lowered coolant level in the
Reactor Pressure Vessel (RPV), and a temperature increase of fuel cores. Initially, this loss
of coolant accident (LOCA) resulted in decay heat temperature increases of approximately
0.5 ◦C/s. When the fuel temperature attained around 1200–1400 ◦C, then a steam oxidation
of zirconium (major component of fuel claddings and channel box) with steam accelerated,
generating a huge amount of hydrogen and significant chemical heat to drive temperatures
higher. Furthermore, boron carbide (B4C, as a neutron absorber) contained in the control
blade could react not only interact with the stainless steel (lowering its melting point) but
also react with steam and further accelerate the hydrogen and heat generation, as seen in
the following equations [1]:

Zr + 2 H2O→ ZrO2 + 2 H2 (∆H = −6.4 MJ/kg-Zr), (1)
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B4C + 8 H2O→ 2 B2O3 + CO2 + 8 H2 (∆H = −15 MJ/kg-B4C). (2)

Once the exothermic reactions of Zry and B4C in steam have started, they are hardly
possible to mitigate or control. Besides the nuclear decay heat, these exothermic reactions
became a significant heat source and result in local temperature escalations with prototypi-
cally 8 ◦C/s to values where there is significant degradation (melting/slumping) of the
fuel. Once fuel cores have lost their original geometry and loss of coolant channels, the
retrieval of heat removal capability is very difficult, even when the cooling system has been
revived due to the blockage of the coolant channel. The water/steam supply needs to be
able to cool large melted fuel masses of low surface area/volume ratios.

The meltdown sequence starts from the failure of control blades, which is initiated by
the eutectic reaction between B4C and SS at approximately 1250 ◦C [2–7]. This temperature
is far below the melting points of these components. The B4C-SS melt then attacks the
zircaloy (Zry) channel boxes and penetrating them to reach the fuel rods. The degradation
of the irradiated fuel rods, consisting of UO2 fuel pellets in Zry cladding, starts with the
liquefaction interaction between the partially oxidized inner Zry cladding (Zr(O)) and the
UO2 pellet at around 1900 ◦C [8–10], far below the melting allows the release of gaseous
and volatile fission products (FPs) collected in the clad free space to the external steam
atmosphere.

Concepts of accident tolerant fuel (ATF) had been studied to mitigate or block these
chemical interactions by introducing advanced fuel and cladding materials replacing either
UO2 fuel and/or conventional Zry cladding [11]. Regarding the ATF-cladding, three major
concepts have been proposed, such as silicon carbide [12,13], iron-based alloys [14–16],
and coated zirconium-based claddings [17,18]. The motivation for transitioning away from
the conventional Zry-cladding to the ATF-cladding alternatives is to delay or mitigate the
chemical reactions and to reduce the amount of heat and hydrogen generation from the
cladding steam oxidation of the. Each concept has a unique conceptual idea, based on the
attributes of the base materials. For example, the concept of environmental barrier coatings
of Zry is to delay or reduce the zirconium-steam interaction in the early stages. This concept
is applicable to current nuclear safety technology and regulation as so-called “evolutionary”
concept [11]. The idea of using iron-based alloys is to replace the major component of
fuel cladding from zirconium to iron, which has “less heat generation capability”, hence
mitigating the catastrophic temperature increase and H2 generation in the early stage
of accident. It also draws on the experience of rapid (fast neutron flux) reactors, where
316 stainless steels have been the standard cladding materials. Furthermore, Al and Cr
as alloying elements should provide the capability to form protective oxide layers. The
concept of replacing the major component of fuel cladding from zirconium to silicon carbide
(SiC) is to decrease the heat and hydrogen generation capabilities, and to maintain the
fuel integrity even at high temperatures, which could maintain the ability to suppress the
release of fission products. However, in order to use a ceramic material as a fuel cladding,
a significant improvement of LWR-relevant conventional technologies is needed (hence,
SiC-cladding is a so-called “revolutionary” concept).

Among the potential ATF cladding materials, SiC seems to stand out in terms of
oxidation resistance [19,20] and structural integrity at high temperatures [21,22], high
radiation damage tolerance [23,24], high thermal conductivity [25], and high neutron
economy [26]. In spite of these potential benefits of SiC cladding, however, there are some
key issues that need to be addressed for the LWRs application, such as hydrothermal
corrosion and fission product retention capability [23,27,28]. The present review attempts
to outline: (1) features of high temperature SiC corrosion by comparing relevant reactions in
steam to those in air or oxygen atmospheres, (2) the further needs for improved test facilities
for SiC steam corrosion tests, and (3) the current knowledge based on recent data obtained
at Japan Atomic Energy Agency (JAEA) and Karlsruhe Institute of Technology (KIT).
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2. Features of SiC Oxidation/Corrosion at High Temperatures in “Dry” and “Wet”
Atmospheres and Remaining R&D Issues for ATF-Cladding
2.1. Oxidation/Corrosion of SiC at High Temperatures in “Dry” Atmospheres

As expected for high-temperature applications, such as components in gas turbine
engines and LWRs, high-temperature oxidation of silicon carbide has been extensively
studied in various environments and temperatures ranges. Oxidation of SiC at high
temperatures in dry atmospheres, such as O2/Ar, CO2/CO environments, and technical
helium gas as used in high-temperature gas-cooled reactors [29–33], can be classified into
three features as active oxidation, passive oxidation and bubble formation [34–37]. At
high oxygen potentials, the oxidation of SiC results in formation of a protective SiO2 layer
accompanying a mass gain, which is termed “passive oxidation” [34,38]:

SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g). (3)

At lower oxygen potential, the oxidation of SiC at high temperatures induced a mass
loss due to the formation of gaseous SiO, which is termed “active oxidation” [34,38]:

SiC(s) + 2 SiO2(s) = 3 SiO(g) + CO(g). (4)

Figure 1 illustrates the expected weight change during the active and the passive
oxidations which have been reported for Si and SiC [29,39,40]. In the passive regime, the
chemical reaction, as shown in Equation (3), results in the formation of protective SiO2,
thus inducing a mass gain, whereas, in the active regime, the chemical reaction as shown
in Equation (4) occurs, which causes the volatilization of the surface SiO2 layer (formation
of gaseous SiO) and leads to a mass loss. Reaction 4 also indicates there is always a SiO2
surface layer to react with SiC substrate to form volatile SiO(g), and there is no SiC surface
layer in contact with the atmosphere.
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Figure 1. Schematic diagram on weight change during active and passive oxidations of SiC according
to oxygen partial pressure (drawn by the authors referring to data reported by Jacobson [39]).

Oxidation mechanisms in active regime and the active-to-passive transitions can be
classified into two types [40], as shown in Figure 2, according to the ambient environments.
For example, Goto [38] observed a clear transition of active-to-passive of SiC in O2-Ar
environment at 1600 ◦C, in which the mass loss proceeds up to PO2 = 146 Pa (volatilization
of SiO), and, at PO2 = 160 Pa, mass gain occurs (volatilization of SiO ceases and formation
of SiO2 as a non-volatile and protective layer dominates). The oxidation behavior of SiC
in CO/CO2 environment is a contrast to that in O2-Ar atmosphere. In active oxidation
regime of SiC, the active oxidation rate shows a maximum value at a certain value of
PCO2/PCO ratio. It is suggested that the vaporization of SiO and formation of SiO2 in
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CO/CO2 environment might proceed simultaneously (neither of them becomes dominant)
during the active oxidation regime as the following reactions [37,40]:

SiC(s) + 3 CO2(g) = SiO2(s) + 4 CO(g), (5)

SiO2(s) + CO(g) = SiO(g) + CO2(g). (6)
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In other words, the high temperature oxidation behavior of SiC in dry air is fairly
complicated and can vary according to the environment. Comprehensive reviews of SiC
oxidation at high temperatures in various environments (dry and wet air) have been
reported elsewhere [39,40].

2.2. Oxidation/Corrosion of SiC at High Temperatures in “Wet” Atmospheres

The steam oxidation of SiC at high temperatures can be categorized into two different
processes, known as SiO2 formation and its volatilization, as shown in Figure 3. At high
temperatures, SiC reacts with water vapor to form SiO2 on the sample surface via the
following reaction:

SiC(s) + 3H2O(g) = SiO2 + 3H2(g) + CO(g). (7)

The formation of SiO2 is the diffusion rate-controlled process, which depends on the
diffusion of oxidizing species through the oxide layer, thus obeying parabolic laws. The
kinetics due to the formation of the oxide layer is described by:

dx1

dt
=

kp

2x
, (8)

where x1 can be the mass gain or the thickness growth of the oxide scale. kp is the parabolic
rate constant and t the time. The driving force of this process is the difference of steam
partial pressure at the top surface and the interface of SiO2-SiC. It means that the parabolic
rate constant is proportional to the steam partial pressure on the top surface [41]:

kp ∝ P(H2O)n, (9)

where P(H2O) is water vapor partial pressure, and n the power law exponent. On the
surface, the oxide scale reacts with water vapor at high temperatures and undergoes
volatilization via, e.g., the following reaction:

SiO2(s) + 2H2O(g) = Si(OH)4(g). (10)
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The volatilization of SiO2 depends on the chemical reaction on the surface, and
transport of gaseous products away from the surface, thus obeying linear laws. The change
due to the volatilization of SiO2 is described as:

dx2

dt
= kl, (11)

where x2 can be mass loss or thickness reduction of the SiO2 scale. kl is the linear rate
constant and t the time. According to Opila et al. [42], the linear constant kl is proportional
to the velocity (v) and total pressure Ptotal, as shown in the following equation:

kl ∝ v1/2 P(H2O)2

P1/2
total

. (12)

As steam oxidation of SiC at high temperatures is a combination of the SiO2 formation
and its volatilization, the mass/thickness evolution of the oxide scale follows the paralinear
behavior [42,43] as shown in Equation (13).

dx
dt

=
dx1 − dx2

dt
=

kp

2x
− kl. (13)
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The oxidation behavior of SiC in steam at high temperatures obeys paralinear kinetics,
which can be different from the oxidation behavior of SiC in dry air, as shown in Figure 4.
Oxidation mechanism of SiC in dry air can be either active or passive oxidation, depending
on oxygen potential. In wet atmosphere, the formation of SiO2 at the SiC-SiO2 interface
and the volatilization of SiO2 on the top surface happens simultaneously, which results in
paralinear kinetics. Therefore, the high temperature oxidation of SiC in steam environments
should be discussed separately, especially for applications in LWRs.
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2.3. Oxidation Kinetics of SiC at High Temperatures and R&D Issues for ATF-Cladding

Oxidation behavior of SiC at high temperatures in wet air, such as H2O/Ar [44–47]
and H2O/O2 [30,45,48], have been reported. One has to recognize an important difference
in the steam oxidation of SiC in “wet” atmospheres, in which the formation of both a
condensed SiO2 oxide and volatile phases, such as Si(OH)4, is induced at the same time.
While the formation of SiO2 scale is a diffusion rate-controlled process, which obeys a
parabolic law, the formation of volatile products depends on mass transport of the volatile
products away from the surface, which yields linear kinetics [49,50].

To obtain kp and kl values based on Equation (13), one of the two terms (kp, kl) needs
to be known. For example, Opila et al. [42] conducted a separate experiment to directly
obtain the linear volatilization rate (kl) of SiO2 by exposing a fused quartz coupon to a
50%O2/50%H2O gas mixture using the thermogravimetric analysis (TGA) procedure. A
similar solution has been proposed by Terrani et al. [13], in which electrically fused silica
specimens were exposed in 100%H2O using TGA and high temperature furnace (HTF)
to obtain the volatilization rate kl. The investigation conditions of the volatilization rate
(kl) of SiO2 obtained by various authors are shown in Table 1. Experimental results of the
investigations for linear volatilization rate of SiO2 reported by Opila [42] and Terrani [13]
are summarized in Figure 5. After obtaining the volatilization rate kl of SiO2, the parabolic
oxidation rate kp can be determined by Equation (11) and the given experimental data
(specifically, the mass change and investigation duration). Another method to obtain kp and
kl together is a curve fitting technique (nonlinear least-squares analysis) of experimental
data. Observing the paralinear kinetics of SiC, as well as the volatilization of fused silica,
Opila concluded that the above techniques give similar results for the linear volatilization
of SiC in water vapor [42].

Table 1. Investigation conditions of volatilization rate of SiO2 reported by various authors.

Author
[Ref. No.] Method Specimen Atmosphere Velocity,

cm/s
Temperature

(◦C)

Opila [42] TGA SiO2 50% H2O/O2 4.4 1200–1400

Opila [42] TGA Preoxidized SiC 50% H2O/O2 4.4 1200–1400

Terrani [13] TGA SiO2 100% H2O 1.3~1.6 1200–1500

Terrani [13] HTF SiO2 100% H2O 18~138 1400–1600

Pham [47] LAHF SiC 97% H2O/Ar 1200 1400–1800
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As the parabolic oxidation rate constant kp is proportional to the steam partial pressure,
various authors have reported the oxidation kinetics of SiC in different environments. Table 2
briefly summarizes the investigation conditions of major studies for oxidation kinetics of
CVD-SiC at high temperature in various steam partial pressures [13,42,45,47,48,51]. Rep-
resentative results of these studies are presented in an Arrhenius-type diagram (Figure 6),
which describes the relationship between logarithm of parabolic rate constant and reciprocal
of temperature. The parabolic oxidation rate constant of SiC at a certain temperature, as
shown in Figure 6, can vary, depending on many factors, such as the steam partial pressure
and examination methods. The slopes (the activation energies) of the lines in Figure 6 give
information about the diffusing species, which controls the process. In general, the activation
energy for the permeation of a molecular species is less than that for the diffusion of a
charged species, such as OH− and O2−. For example, Deal [52] concluded that the activation
energies for the oxidation of silicon in dry oxygen and water vapor by permeation mech-
anism to be 119 and 68 kJ/mol, respectively. Narushima [48] reported that the activation
energy for SiC oxidation in 10 vol% H2O/O2 was 397 kJ/mol and stated that O2− was the
diffusing species. In another study, Doremus [53] discussed that the diffusion of charged
oxygen species is expected to have an activation energy magnitude similar to the bond
energies of Si-O and Si-OH bonds (approximately 377 kJ/mol). More details of discussion on
the activation energy for oxidation of SiC at high temperatures can be found elsewhere [45].

Table 2. Investigation conditions of major studies for oxidation kinetics of SiC in steam.

Author
[Ref. No.] Method Specimen Atmosphere Temperature

(◦C)

Narushima [48] TGA CVD-SiC 10% H2O/O2 1550–1650

Opila [51] TGA CVD-SiC 10% H2O/O2 1200–1400

Opila [45] HTF CVD-SiC 10% H2O/O2 1100–1400

Opila [45] HTF CVD-SiC 25% H2O/O2 1100–1400

Opila [45] HTF CVD-SiC 50% H2O/O2 1100–1400

Opila [42] TGA CVD-SiC 50% H2O/O2 1200–1400

Opila [45] HTF CVD-SiC 70% H2O/O2 1100–1400

Opila [45] HTF CVD-SiC 90% H2O/O2 1100–1400

Terrani [13] TGA CVD-SiC 100% H2O 1200–1500

Terrani [13] HTF CVD-SiC 100% H2O 1400–1600

Pham [47] LAHF Monolithic SiC 97% H2O/Ar 1400–1800Thermo 2021, 1, FOR PEER REVIEW  8 
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To investigate the influence of steam partial pressure on the parabolic oxidation rate of
SiC (as seen in Equation (9)), Opila conducted oxidation tests of CVD-SiC at temperatures
of 1100–1400 ◦C in H2O/O2 gas mixtures with compositions of 10–90 vol% water vapor
at a total pressure of 1 bar [45]. The results of the investigation are presented in Figure 7,
where the parabolic oxidation rate constant increased with the increase of steam partial
pressure. A range of possible activation energies of 28–156 kJ/mol has been reported, which
indicated that the molecular permeation mechanism is more dominant than a diffusion
mechanism that involves a charged species.
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Opila [45].

Impurities from environment can also affect the oxidation of SiC in steam at high
temperatures. Opila [51] investigated the oxidation kinetics of CVD-SiC at 1200–1400 ◦C
in 10 vol% H2O/O2 mixture using TGA with either pure Al2O3 or fused quartz reaction
tubes. Results of the investigation (Figure 8) indicated that the parabolic oxidation rate
of SiC samples tested in Al2O3 reaction tube was about one order of magnitude higher
than that of SiC samples tested in quartz tube. It was found that the steam oxidation of
SiC in Al2O3 reaction tube led to sodium and aluminum contamination of the oxide scale.
The sodium and aluminum might be transported from the Al2O3 reaction tube to the SiC
sample surface in the gas phase to form less protective oxide scales.
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Due to the characteristics of the applications of SiC, most of the oxidation studies of
SiC focused at temperatures ranging from 1000 to 1600 ◦C. Although the normal cladding
temperature of cladding is approximately 300 ◦C, SiC ATF claddings may suffer temper-
atures over 2000 ◦C in the event of severe accidents [54]. It is necessary to verify the
performance of SiC cladding, as well as other potential candidates for ATF claddings under
severe accident conditions, above at least 1600 ◦C in steam. However, the oxidation kinetics
of SiC is still insufficient studied due to the lack of test facilities capable of operating in
steam at temperatures above 1600 ◦C.

3. Advanced Test Facilities for ATF-Claddings

Steam oxidation tests at temperatures above 1600 ◦C are very challenging as major
refractory lining materials, such as alumina and even zirconia, in conventional test facilities
are at their limits. In recent years, several efforts have been made to modify existing or
to develop new test facilities [46,47] to study SiC under extreme conditions. To perform
the oxidation tests at temperatures higher than 1600 ◦C, the QUENCH-SR facility with
utilization of induction heating was developed at Karlsruhe Institute of Technology [55].
First oxidation and quench tests of SiC at temperatures up to 2000 ◦C in steam atmo-
sphere were reported by Avincola et al. [46]. Under the same motivation, JAEA has also
developed a new test facility (Laser Heating Facility: LAHF) with utilization of laser heat-
ing for oxidation tests at extreme temperatures [47]. In this section, we introduce these
two facilities.

3.1. Laser Heating Facility (LAHF)

A schematic diagram of the laser heating facility is shown in Figure 9. This apparatus
was designed for heat-treatment tests of small samples (less than 20 mm in diameter)
in controlled environments (including vacuum) at temperatures beyond 1600 ◦C. The
main unit includes a laser head, vacuum pump, gas line heaters, flow rate controllers,
and airtight test vessel which is equipped with two radiation pyrometers, a W-Re 5-26
thermocouple, and a video camera. Sample holders are made of zirconia. The laser
light transmission, pyrometer temperature measurement, and in situ observation were
made via five quartz windows (synthetic silica) located in the vessel wall. To avoid water
vapor condensation, the test vessel, including gas pipes and quartz windows, are heated
up to 200 ◦C using resistance heating. The flow rates can be controlled in the range of
0.1–3.0 g/min (water vapor), 0.1–5.0 L/min (= 0.18–8.9 g/min) (Ar), and 0.06–3.14 g/min
(hydrogen), respectively. The 2500 W laser module allows the sample to be heated at the
rate of 1000 ◦C/s. Parameters, such as laser beam power, sample temperatures, and gas
flow rates, are monitored in a control system and recorded by a datalogger. After passing
through a steam trap, outlet gases, such as hydrogen and carbon monoxide, are sampled
and analyzed using a gas chromatograph.
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Figure 10 shows experimental data of a preliminary investigation for steam oxidation
of CVD-SiC/SiC composites under 1 bar pressure, in a stream of 50% H2O/Ar gas mixture,
and at temperatures up to 2200 ◦C with 0.1 ◦C/s heating rate. In the temperature range
of 200 to 1650 ◦C, the LAHF was automatically controlled by feedback of the pyrometer
detecting sample temperature at the periphery. Above 1650 ◦C, the LAHF was manually
controlled because the feedbacks from pyrometers are no longer reliable (pyrometer mea-
surement is affected by the change of sample surface and the formation of gaseous products
during the test). Using the laser current output and the immediately preceding temperature
trends (before the interference mentioned above), the surface temperature of the sample
at the center is estimated. An example is shown in Figure 10a–d. Hydrogen production
during the test can be divided into 3 stages (below 1800 ◦C, 1800–2000 ◦C, and above
2000 ◦C). Below 1800 ◦C (points a and b): before the appearance of bubbles, the amount of
H2 produced during the test was less than 10 L/h/m2

SiC, indicating the excellent oxidation
resistance in steam. In the temperature range of 1800–2000 ◦C (point c), the formation
of bubbles on sample surface led to the degradation of SiC oxidation resistance in steam
and an acceleration of H2 production (to 700~800 L/h/m2

SiC). Above 2000 ◦C (point d), a
significant increase of H2 production (up to 1000 L/h/m2

SiC) was observed. However, the
causes of this final increase are not fully understood.
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3.2. QUENCH-SR Facility

The QUENCH-SR (single rod) facility at KIT Karlsruhe with inductive heating and the
possibility of quenching of the samples by water is applied for steam oxidation tests to very
high temperatures. The samples are enclosed in a quartz glass tube allowing observation of
the tested sample by video recording. A water-cooled copper coil surrounding the quartz
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glass tube generates a magnetic field inducing eddy currents in an electrically conductive
sample. The power is provided by a high frequency (HF) generator with a power of 20 kW
working at a frequency up to 700 kHz. The temperature is measured and controlled via a
two-color pyrometer (type IGAR 12-LO MB22) with a measuring range of 500 to 2200 ◦C
working at the wavelengths 1.28 µm and 1.65 µm. Additionally, thermocouples can be
attached on the surface of the samples. Gas supply is controlled by a Bronkhorst® gas flow
controller, water flow controller, and a CEM (controlled evaporator and mixer). Usually,
there is 40 L/h (max. 100 L/h) argon flow through the facility throughout all tests, and
60 g/h (max. 75 g/h) steam is injected during the oxidation phases resulting in a steam
concentration of 65 vol%.

For metallic samples, the heating power is directly produced in the sample. SiC
samples, however, are filled with graphite (used as a susceptor for the HF inductive heating
purpose [46]) and tightly sealed with end caps at both sides to avoid interaction of the
graphite with the oxidizing steam atmosphere. This heating method results in uniform and
prototypical heat generation for cladding tube samples as in fuel rods, where the heat is
also produced by the UO2 fuel within the cladding. Figure 11 provides some illustrations
of the facility and typical samples.
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A number of experiments with SiCf-SiC ceramic-matrix composite (CMC) cladding
tubes from various manufactures have been conducted already with this facility. Figure 12
provides, as one example, results of a transient test with such a cladding tube segment from
1400 ◦C to 2000 ◦C [46], which correspond very well to the results obtained with smaller
CVD-SiC samples in the LAHF facility. According to the gas release data (Figure 12b),
which are a measure for the oxidation kinetics, a protective silica scale should have formed
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immediately after start of steam injection. The minimum of gas release rates at approxi-
mately 1600 ◦C, which is an indication of the beginning of volatilization from the oxide
scale. From approximately 1750–1800 ◦C, in addition to the baseline, huge peaks of H2, CO,
and CO2 releases are observed as large bubbles burst, as described above. Smoke (SiO-OH
vapor) is also formed at temperatures above 1900 ◦C. The test was terminated at approxi-
mately 2000 ◦C by flooding a quartz glass cylinder with water from below. The sample
was superficially degraded, but it survived these extreme conditions without breaking.
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4. Recent Findings in Advanced Test Facilities
4.1. Oxidation Kinetics of SiC in Steam at Temperatures Up to 1800 ◦C

With the development of LAHF, oxidation tests of monolithic SiC under a pressure of
1 bar, in a stream of 97% H2O/Ar gas mixture, at a temperature range of 1400–1800 ◦C, were
made possible and reported in the previous study [47]. Up to 1800 ◦C, the SiC samples
underwent a mass loss process, which obeyed paralinear kinetics. Based on the mass
change data, the parabolic oxidation rate, kp (see Figure 6), and the linear volatilization rate,
kl (see Figure 5), were calculated. Comparison of parabolic oxidation rate obtained from
this investigation is compared with the other work in Figure 6. The parabolic oxidation
rate, kp, obtained by using LAHF on monolithic SiC under 97% H2O/Ar gas (1 bar), up to
1800 ◦C seemed to have the same activation energy (approximately 96 kJ/mol) with the one
reported by Opila [45], which was conducted by using fused quartz tube furnace. In another
study, in which steam oxidation tests of SiC was conducted in alumina tubes, Terrani [13]
reported an activation energy of parabolic oxidation rate of 238 kJ/mol. As reported
elsewhere [42,51], the use of alumina tube with water vapor substantially increased the
parabolic oxidation rate kp of SiC due to the residual volatile sodium impurities. Because of
the characteristics of LAHF facility (only the SiC sample was heated up to high temperature,
the influence of the impurities from the environment was reduced. Therefore, the data
of oxidation kinetics at high temperatures obtained from the LAHF facility best fit with
the data reported by Opila [42,45], which were obtained in a high purity quartz tube. In
summary, the study of SiC steam oxidation by using the LAHF is the first study that ranges
up to 1800 ◦C. However, SiC oxidation kinetics above 1800 ◦C need further investigation as
the SiC properties particularly viscosity and volatility are clearly changing the SiO2 scale
in this range.

4.2. Oxide Scale and Bubble Formation

The oxidation resistance of SiC at high temperatures relies on the formation of a
protective SiO2 scale. The influence of even small amounts (ppm levels) of impurities, such
as alkali metals and aluminum, on oxidation kinetics of SiC has been reported in various
studies [42,57,58]. These impurities may come from various sources, such as reaction tubes,
residual additives/impurities from the tested sample, or the oxidizing atmosphere. The
impurities will modify the SiO2 melting point, but also its microstructure and properties,
and enhance the diffusion of oxidizing species through the scale. However, from the
elastic behavior observed in the LAHF and QUENCH-ATF experiments, the SiO2 layer
formed at high temperatures on the SiC is likely to be in a glassy (rather than a crystalline)
form. The glassy form has SiO2 tetrahedra chains with -O- bridging links, has a so-called
glass transition point followed by a softening range. The chain length determines the
transition point and softening range. In glass-making, small additions of alkali metal
oxides are known reduce the chain lengths in silica melts and lower their viscosity [59].
Thus, amorphous/glassy phases formed between the impurities and silica may also be
more permeable and volatile than the pure silica.

Bubble formation of SiC in steam has been reported in a number of studies [13,45–47].
Avincola [46] discussed three criteria, which have to be fulfilled for the formation of
bubbles: (1) the formation of a dense, complete silica scale, (2) the presence of a higher
gas pressure at the SiC/SiO2 interface, and (3) sufficiently low viscosity of the silica scale.
The impurities have been demonstrated to be able to significantly affect the viscosity of
silica [60–62]. It means the less impurities the SiO2 layer has, the higher temperature the
bubble phenomenon occurs at and may explain the formation of bubbles over a wide range
of temperatures with various bubble sizes.

Pressure may also influence the formation of SiO2 bubbles. Currently, most of the
oxidation studies for SiC at high temperature in steam were conducted at atmospheric
pressure. High pressure environments in LWRs (60 bar before any depressurization phe-
nomena) might suppress the formation of SiO2 bubble at high temperatures. Nevertheless,
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it remains necessary to conduct oxidation tests of SiC in high-pressure steam. Investigating
the effect of controlled impurities on SiO2 layer properties is a further aspect for testing.

4.3. Tests with Prototypical SiC-Based Cladding Tubes

More prototypical tests in the QUENCH-SR rig have confirmed the results obtained
in the LAHF facility. The transient tests showed the same temperature ranges for stable
and protective SiO2 oxide scale formation, as well as for the development of bubbles and
increasing volatilization of the silica scale in this temperature range. Isothermal tests
confirmed the stability of such SiC-based cladding for a few hours up to 1700 ◦C. Longer
term testing is also necessary to determine these limits. A rapidly enhanced oxidation
kinetics is always observed when the superficial monolithic SiC environmental barrier
layer (or seal-coat) failed, which gave access of the oxidizing atmosphere to the fiber-matrix
composite [63]. The main reason for this dramatically increased oxidation kinetics, then,
is the much higher accessible surface of the CMC system and the graphite-based fiber-
matrix interface, which easily oxidizes. The temperature and time of CMC failure is mainly
determined by the thickness and quality, respectively, of the external monolithic SiC layer.
Most samples remained intact even during water quenching from temperatures of 1700 ◦C
to 2000 ◦C.

5. Summary and Perspective

The steam oxidation of SiC at high temperatures and advanced facilities for accident
tolerant fuel (ATF) cladding testing have been reviewed. In spite of many potential benefits,
such as superior high-temperature properties and excellent irradiation resistance, there
remain key issues, such as steam oxidation at extreme temperatures (1800–2000 ◦C), that
needed to be addressed for LWR safety issues. Due to the lack of appropriate test facilities,
study of oxidation behavior of SiC in steam at temperatures above 1600 ◦C was very
challenging. Recent developments using remote heating and sensing (eddy current heating,
laser heating, and pyrometry) have enabled oxidation studies to be carried out for SiC in
steam up to 2000 ◦C. A summary of these developments and experiments are presented
as follows:

• Development of non-contact heating and measurement techniques provide unique
tools for studying of materials behavior in severe environments, which were not possi-
ble before. Further common features include localized heating of small sample masses
allowing for high heating rates and avoiding contamination other materials of the
facility, such as the support plate. All this occurs under fixed atmospheric conditions.

• Investigations conducted using the LAHF successfully yielded the SiC steam oxidation
kinetics up to 1800 ◦C. The LAHF data at 1400–1800 ◦C are in good agreement with
the data obtained at 1200–1400 ◦C by Opila. It indicated a similar SiC steam oxidation
mechanism existed up to 1800 ◦C as was valid at 1400 ◦C. In other words, the excellent
oxidation resistance of SiC in steam (producing relatively less heat and hydrogen gas)
was maintained at temperatures up to 1800 ◦C. Investigation of SiC steam oxidation in
conducted with the QUENCH-SR facility also confirmed the excellent performance of
SiC, as prototypical SiC cladding samples remained intact even after quenching with
water from 2000 ◦C.

• Future works: In spite of these recent efforts, further investigations of SiC steam
oxidation in for a wider range of conditions should be carried out. For example,
recent studies on steam oxidation of SiC were conducted in very clean environments.
It is, therefore, necessary to conduct high temperature SiC steam oxidation tests
under various impure environments, such as Cl−, SO4

2−, Ca2+, or Na+-containing
steam (from sea water). Tests under high pressure conditions of SiC steam oxidation
of at high temperatures or pressure cycles should also be conducted to reflect the
pressurization /depressurization cycles during reactor accidents. Furthermore, this
new data of high-temperature SiC steam oxidation kinetics needs to be tested to
the highest available temperatures and to the longest times possible particularly for
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operating fuel temperatures cycling in larger-scale experiments as planned in the
QUENCH bundle facility at KIT. This is expected in the framework of the forthcoming
OECD-NEA Joint Undertaking QUENCH-ATF [64].
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